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Abstract: In this context, the nonlinear bending investigation of a sector nanoplate on the elastic
foundation is carried out with the aid of the nonlocal strain gradient theory. The governing relations
of the graphene plate are derived based on the higher-order shear deformation theory (HSDT) and
considering von Karman nonlinear strains. Contrary to the first shear deformation theory (FSDT),
HSDT offers an acceptable distribution for shear stress along the thickness and removes the defects of
FSDT by presenting acceptable precision without a shear correction parameter. Since the governing
equations are two-dimensional and partial differential, the extended Kantorovich method (EKM)
and differential quadrature (DQM) have been used to solve the equations. Furthermore, the numeric
outcomes were compared with a reference, which shows good harmony between them. Eventually,
the effects of small-scale parameters, load, boundary conditions, geometric dimensions, and elastic
foundations are studied on maximum nondimensional deflection. It can be concluded that small-scale
parameters influence the deflection of the sector nanoplate significantly.
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1. Introduction

The emergence of nanotechnology can be described as the beginning of a new era
in the world of science. After the discovery of carbon nanotubes, nanostructures have at-
tracted the attention of many researchers. Preliminary studies showed that the mechanical
properties of nanostructures are different from those of other materials. Therefore, these
special properties have made nanostructures used in many fields, including nanosensors,
nanoactuators, nanobearings, electric batteries, nanocomposites, etc. [1–3]. Nanostructures
include graphene sheets, carbon nanotubes, nanowires, nanorings, and nanorods, which
are created by forming graphene sheets [4]. For this reason, the analysis of graphene
sheets is the main subject of the study of carbon nanomaterials. The graphene sheet is as
thick as a carbon atom, arranged in a hexagonal crystal lattice that has unique mechanical
and physical properties, including high flexibility, high tensile strength, high thermal and
electrical conductivity, etc. The geometry of sector nanoplates allows for precise tuning
of their physical and chemical properties by controlling parameters such as the angle of
the sector. These nanoplates can provide inherent directionality in certain applications,
such as in optical devices or sensors [5,6]. This directional response can be advanta-
geous for achieving desired functionalities or improving the sensitivity and selectivity of
the nanodevices.

Experimental investigations have shown that the mechanical characteristics of struc-
tures at the very small scale can be different from those at the macroscale. For this reason,
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classical continuum mechanics models cannot anticipate the characteristics of nanostruc-
tures because of their inability to consider small-scale effects. To overcome these obstacles,
nonclassical continuum mechanics models have been developed, including the nonlocal
elasticity principle, couple stress principle, strain gradient principle, etc. These models
provide a more thorough understanding of the mechanical properties of nanoscale struc-
tures and were created to address the shortcomings of classical approaches. To be more
specific, Eringen [7] introduced a nonlocal elasticity model that adds nonlocal effects to
classical elasticity theory. According to this principle, the stress at a point is affected by the
entire material domain. The various behaviors of ultra-small structures have been widely
predicted by size-dependent elasticity models, such as nonlocal elasticity. Furthermore, it
has been determined that nonlocal effects disappear after a specified length. Researchers
recently employed another theory called nonlocal strain gradient theory in their studies to
address these shortcomings [8,9]. Using this ultra-small-size theory, stiffness softening as
well as hardening can be illustrated.

To take into account the effects of the strain gradient, Mindlin [10] and Aifantis [11]
added the strain gradient component to the classical elasticity principle. Furthermore,
Toupin [12] proposed the couple stress theory, which includes the impact of internal couple
stresses on material behavior, thereby extending the scope of classical elasticity theory.
Also, Yang and his colleagues [13] developed the couple stress principle by considering
symmetry, rotation, and strain gradients. Moreover, Lam and his coauthors [14] formulated
the modified strain gradient principle, which examines the influence of strain gradients
including the dilatation gradient, symmetry rotation gradient, and deviatoric stretch gra-
dient. In these theories, the strain gradient influence, or the nonlocal role, is taken into
account. To consider both of these effects for nanostructure computations, the nonlocal
strain gradient principle was formulated by Lim et al. [15].

On the basis of the nonlocal strain gradient principle, numerous studies have been car-
ried out on the size-dependent mechanical behavior of nanostructures. For instance, using
the nonlocal strain gradient model, Gui and Wu [16] conducted research on the buckling
of the thermo-magneto-elastic nanocylindrical shell exposed to axial load. They observed
that the effect of the nonlocal coefficient on the buckling load of nanocylindrical shells
is more significant than that of the strain gradient parameter. Lu and his colleagues [17]
proposed a size-dependent classical model to investigate the buckling analysis of rectangu-
lar nanoplates. Using the nonlocal strain gradient principle and FSDT, the bending of the
sandwich nanoplates with porosity was presented by Arefi et al. [18]. In addition, Farajpour
and his colleagues [19] perused the buckling of orthotropic nanoplates exposed to thermal
conditions based on a higher-order nonlocal strain gradient principle. They observed that
the higher-order nonlocal parameter almost has a decreasing influence on the buckling
load. Moreover, the authors of Ref. [20] applied the same theory to study the nonlinear
vibration of sandwich nanoplates. They concluded that by enhancing the amplitude of
vibrations, the influence of small-scale parameters on the nonlinear frequency becomes
more significant. Thai et al. [21] studied the free vibrations of functionally graded circu-
lar/annular nanoplates made of magneto-electro-elastic materials via the nonlocal strain
gradient principle. They showed that the non-dimensional natural frequencies obtained
from circular nanoplates are higher than those predicted for annular types. In another
paper, Thai and his coauthors [22] used the nonlocal strain gradient theory, HSDT, and
isogeometric analysis technique to study free vibration analysis of functionally graded
(FG) magneto-electro-elastic rectangular nanoplates. They concluded that, considering
the nonlocal coefficient is equal to or larger than the strain gradient coefficient, the results
gained by the classical theory are higher than those predicted by the nonlocal strain gra-
dient theory. Moreover, in the case that the nonlocal parameter is smaller than the strain
gradient parameter, the natural frequencies achieved based on the classical theory are lower
than those obtained by the nonlocal strain gradient theory. Alghanmi [23] analyzed the
deflection of nanoplates with porosity and functionally graded properties based on the
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nonlocal strain gradient model. They inferred that the deflection of FG nanoplates with
even porosities has higher values than the ones with uneven porosities in many cases.

The nonlinear bending analysis of the plate is one of the important topics in the engi-
neering field, which attracts many researchers [24–26]. For instance, Liu et al. [27] studied
the large deflection of a thin rectangular plate exposed to uniform loads. Gao et al. [28]
studied the large deflection of a cantilever beam exposed to tip and distributed loads. Wang
and Xiao [29] investigated the bending examination of the rectangular nanolaminates using
the Kirchhoff theory and the Gurtin-Murdoch surface elasticity model. They concluded
that surface effects decrease the deflections. Krysko et al. [30] investigated the static analy-
sis of nanoplates exposed to local areas and distributed loads using the modified couple
stress theory. They observed that for various boundary conditions and types of loads, the
stress–strain state reduces stress and deflection by enhancing the size-dependent parameter.
Sadeghian et al. [31] studied the nonlinear bending of circular nanoplates based on non-
local strain gradient theory and HSDT using the one-dimensional DQM. Because HSDTs
consider the effects of shear deformation and satisfy the zero transverse shear stresses on
the plate’s top and bottom surfaces, a shear correction parameter is not necessary [32]. The
HSDT uses similar presumptions as the FSDT, except that the hypothesis on the straight-
ness of the transverse normal after deformation remains. In other words, the transverse
normal is no longer inextensible, causing the deformations as a function of the thickness
coordinate z.

Mantari et al. [33] studied the static response of functionally graded plates exposed to
transverse, distributed, and bi-sinusoidal loads using a novel HSDT via Navier solution. By
comparing their results with other references, they noticed good agreement between their
theory and other HSDTs. Li and Hu [34] investigated the nonlinear vibration and bending
of functionally graded beams based on the nonlocal strain gradient theory. They noticed the
FG beam experiences a stiffness-hardening effect. When the nonlocal coefficient is smaller
than the material characteristic coefficient. In contrast, the FG beam experiences a stiffness-
softening effect when the nonlocal coefficient is larger than the material characteristic
coefficient. Li et al. [35] considered the thickness effect on the dynamical and statical
investigations of nanobeams. They demonstrated that the stiffness-hardening effect can be
seen for the buckling behaviors of silicon nanobeams due to the size-dependent effect of
thickness, but the stiffness-softening effect can only be found for the longitudinal dispersion
relationship of silicon.

The unique geometry and tunable properties of sector nanoplates offer advantages
over other types of nanoplates in various applications, ranging from catalysis and sensing
to optics and material science. Therefore, relevant studies investigating sector nanoplates
are needed. In this paper, a combination of nonlocal strain gradient theory and HSDT is
presented to examine the nonlinear bending of sector nanoplates. In addition, the roles of
diverse factors are examined, including the geometry, elastic foundation, bending loads,
sector angle, radius, small-scale parameters, and different boundary conditions. Unlike
circular/annular analyses, which consider symmetric assumptions resulting in some terms
equal to zero (and can be observed in Ref. [31]), investigations related to sector plates are
relatively more complicated due to examining two-dimensional solution methods. Since
the governing equations are two-dimensional and partial differential, EKM and DQM
have been used to solve the equations. It can be noticed that the small-scale coefficients
significantly influence the deflection of the sector nanoplate. Also, the strain gradient
parameter has a relatively more notable effect at larger angles of the sector nanoplate.

2. The Governing Equations

Figure 1 shows the graphene sector plate on the elastic foundation, considering ri and
ro as the internal and outer radii, respectively. Additionally, the angle of the sector and the
thickness of the plate are defined by τ and h.
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Figure 1. Graphene annular sector plate on the elastic foundation.

Considering the HSDT with the addition of a special function as g(z), the displacement
field can be gained in the r, θ, and z directions (defined by U, V, and W, respectively) as:

U(r, θ, z) = u0(r, θ)− z ∂w0(r,θ)
∂r + g(z)ϕ(r, θ)

V(r, θ, z) = v0(r, θ)− z
r

∂w0(r,θ)
∂θ + g(z)ψ(r, θ)

W(r, θ, z) = w0(r, θ)

(1)

Here, u0, v0, and w0 can be regarded as the displacement components of the midplane
along r, θ, and z axes. Besides, ψ and ϕ are the rotation components in the r and θ
directions. It is noted that for analyzing the sector plate, the symmetric assumption cannot
be considered. So, in Equation (1), V has values and also u0, v0 and w0 are depend on both
r and θ (contrary to the circular plate which was analyzed in ref. [31]).

Moreover, the function g(z) can be clarified as:

g(z) = f (z) + zy∗ (2)

f (z) and y* can be regarded as several functions that have been applied in some
references summarized in Table 1. For the better clarification, the Ambartsumian [36]

model can be considered as −1
6

z3︸ ︷︷ ︸
f (z)

+
h2

8︸︷︷︸
y∗

z.

Table 1. Some recommended g(z) functions applied in the references.

Model g(z) Function

Ambartsumian [37] − 1
6 z3 + h2

8 z

Reddy [38] − 4
3h2 z3 + z

Reissner [39] − 5
3h2 z3 + 5

4 z

Touratier [30]
h
π sin

(
πz
h
)

Soldatos [31] hsinh
( z

h
)
− z cosh

(
1
2

)
Aydogdu [40] ze−2( z

h )
2

Mantari [41] h
π

(
sin
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πz
h
)
em cos ( πz

h ) + m π
h z
)
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Based on the presumptions of von Karman, the nonlinear strain components are:

εr =
∂U
∂r

+
1
2
(

∂W
∂r

)
2
=

∂u0

∂r
− z

∂2w0

∂r2 + g(z)
∂ϕ

∂r
+

1
2

(
∂w0

∂r

)2
(3)

εθ = U
r + 1

r
∂V
∂θ + 1

2r2

(
∂W
∂θ

)2
=

1
r

(
u0 − z ∂w0

∂r + ∂v0
∂θ − z

r
∂2w0
∂θ2 + g(z)

(
∂ψ
∂θ + ϕ

))
+ 1

2

(
1
r

∂w0
∂θ

)2 (4)

γrθ = 1
r

∂U
∂θ + ∂V

∂r − V
r + 1

r
∂W
∂θ

∂W
∂r =

1
r

(
∂u0
∂θ − 2z ∂2w0

∂r∂θ + g(z) ∂ϕ
∂θ + ∂w0

∂θ
∂w0
∂r − v0 − g(z)ψ

)
+2 z

r2
∂w0
∂θ + ∂v0

∂r + g(z) ∂ψ
∂r

(5)

γrz =
∂W
∂r

+
∂U
∂z

= ϕ
∂g(z)

∂z
(6)

γθz =
1
r

∂W
∂θ

+
∂V
∂z

= ψ
∂g(z)

∂z
(7)

The stress and moment resultants with the nonlocal form (NL) can be written as:

{Nr, Nθ , Nrθ , Qr, Qθ}NL =
∫ h

2

− h
2

{σr, σθ , σrθ , σrz, σθz}NLdz (8)

{Mr, Mθ , Mrθ}NL =
∫ h

2

− h
2

{σr, σθ , σrθ}NLzdz (9)

{Rr, Rθ , Rrθ}NL =
∫ h

2

− h
2

{σr, σθ , σrθ}NL f (z)dz (10)

{Rrz, Rθz}NL =
∫ h

2

− h
2

{σrz, σθz}NL f ′(z)dz (11)

f ′(z) can be defined as the derivative of f with respect to the z.
The potential energy of the system includes the sum of the strain energy (related to

the internal forces work) and the potential energy (related to external forces):

Π = U + Ω (12)

Π can be considered as the potential energy of the whole system, U defines the strain
energy of the system. Additionally, Ω is the potential energy of external forces. Considering
the principle of minimum potential energy when the system is in equilibrium condition,
the variation of the potential energy is equal to zero:

δΠ = δU + δΩ = 0 (13)

The integral over the volume of the strain energy density is computed in order to write
the variations of the system’s strain energy. The following is the strain energy density:

δuv = σijδεij (14)

Furthermore, for strain energy variations, the following relation is considered:

δU =
y

V

δuvdV =
y

V

σijδεijdV (15)
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Therefore:

δU =
y

V

(σrδεr+σθδεθ + σrθδγrθ + σrzδγrz + σzθδγzθ)dV (16)

Also:
δΩ = −

x

A

(q − kww0)rδw0drdθ (17)

where kw defines the Winkler elastic foundation constant. Therefore:

δΠ = δΩ + δU = −
2π∫
0

r∫
0

(q − kww0)rδw0drdθ + δU = 0 (18)

Considering δΠ is equal to zero, the coefficients of δu0, δw0, δv0, δψ and δϕ should
be zero, and the Euler–Lagrange equations are computed in the non-local form (with
superscript NL) as follows:

δu0 : NNL
r − NNL

θ + r
∂NNL

r
∂r

+
∂NNL

rθ

∂θ
= 0 (19)

δv0 :
∂NNL

θ

∂θ
+ r

∂NNL
rθ

∂r
+ 2NNL

rθ = 0 (20)

δw0 : r ∂2 MNL
r

∂r2 + 2 ∂MNL
r

∂r − ∂MNL
θ

∂r + 1
r

∂2 MNL
θ

∂θ2 + 2
r

∂MNL
rθ

∂θ + 2 ∂2 MNL
rθ

∂θ∂r + (q − kww0)r + NNL
r

∂w0
∂r +

rNNL
r

∂2w0
∂r2 + ∂NNL

r
∂r r ∂w0

∂r + 1
r Nθ

∂2w0
∂θ2 + 1

r
∂NNL

θ
∂θ

∂w0
∂θ +

∂NNL
rθ

∂θ
∂w0
∂r +

∂NNL
rθ

∂r
∂w0
∂θ + 2NNL

rθ
∂2w0
∂r∂θ = 0

(21)

δψ : y∗
(

r
∂MNL

rθ

∂r
+

∂MNL
θ

∂θ
+ 2MNL

rθ − rQNL
θ

)
+ 2RNL

rθ − rRNL
zθ + r

∂RNL
rθ

∂r
+

∂RNL
θ

∂θ
= 0 (22)

δϕ : y∗
(

r
∂MNL

r
∂r

+
∂MNL

rθ

∂θ
+ MNL

r − MNL
θ − rQNL

r

)
+ RNL

r − RNL
θ + r

∂RNL
r

∂r
+

∂RNL
rθ

∂θ
− rRNL

rz = 0 (23)

It is possible to write Equation (21) as:

δw0 : r ∂2 MNL
r

∂r2 + 2 ∂MNL
r

∂r − ∂MNL
θ

∂r + 1
r

∂2 MNL
θ

∂θ2 + 2
r

∂MNL
rθ

∂θ + 2 ∂2 MNL
rθ

∂θ∂r +

(q − kww0)r + rNNL
r

∂2w0
∂r2 + NNL

θ
∂w0
∂r + 1

r NNL
θ

∂2w0
∂θ2 − 2

r NNL
rθ

∂w0
∂θ + 2NNL

rθ
∂2w0
∂r∂θ = 0

(24)

The nonlocal strain gradient principle was developed by Lim and his coauthors [15]
and is expressed as follows (which can be regarded as the combination of the strain gradient
model and nonlocal stresses field):

(1 − µ2∇2)σij = Cijkl(1 − l2∇2)εkl ,
∇2 = ∂2

∂r2 +
1
r2

∂2

∂θ2 +
1
r

∂
∂r

(25)

In Equation (25), the coefficients denoting nonlocal, elastic, and strain gradients (or
internal material length scales) are µ, Cijkl and l, respectively. Moreover, the constitutive
equation for stress–strain on the nanoscale is shown as [42]:



Mathematics 2024, 12, 1134 7 of 16


σr
σθ

σrθ

σrz
σθz

 =


Q11 Q12 0 0 0
Q12 Q22 0 0 0
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0 0 0 G13 0
0 0 0 0 G23




εr
εθ

γrθ

γrz
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{
Q11 = E1

1−ν12ν21
, Q22 = E2

1−ν12ν21

Q12 = ν12E2
1−ν12ν21

(26)

It is noted that in the above equation, E1 and E2 are the Young modulus along 1 and
2 directions. In addition, v12 and v21 are Poisson’s ratios, also G12, G13 and G23 are the
shear moduli.

The nonlocal form is as:(
1 − µ∇2){Nr, Nθ , Nrθ , Qr, Qθ}NL =∫ h

2
− h

2

(
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The following equations represent the local expression of the equilibrium equations
for the sector nanoplate on the elastic foundation:
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∂u0
∂r + 1
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1
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1
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(
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1
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h3

12

(
− ∂2w0

∂r2 + y∗ ∂ϕ
∂r

)
+ h3

12

(
− 1

r
∂w0
∂r − 1

r2
∂2w0
∂θ2 + y∗ 1

r

(
∂ψ
∂θ + ϕ

))
+
(

ν12
∂ϕ
∂r + 1

r

(
∂ψ
∂θ + ϕ

))∫ h
2
− h

2
z f (z)dz)

(36)
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ML
rθ = (1 − l2∇2)G12(

h3

12

(
− 2

r
∂2w0
∂r∂θ + 2

r2
∂w0
∂θ + y∗

(
1
r

∂ϕ
∂θ − 1

r ψ + ∂ψ
∂r

))
+
(

1
r

∂ϕ
∂θ − 1

r ψ + ∂ψ
∂r

)∫ h
2
− h

2
z f (z)dz)

(37)

RL
r = (1 − l2∇2) 1

1−ν12ν21
{(

E1

(
∂u0
∂r + 1

2

(
∂w0
∂r

)2
)
+ ν12E2

(
1
r u0 +

1
r

∂v0
∂θ + 1

2

(
1
r

∂w0
∂θ

)2
))∫ h

2
− h

2
f (z)dz

+
(

E1

(
− ∂2w0

∂r2 + y∗ ∂ϕ
∂r

)
+ ν12E2

(
− 1

r
∂w0
∂r − 1

r2
∂2w0
∂θ2 + y∗ 1

r

(
∂ψ
∂θ + ϕ

)))∫ h
2
− h

2
z f (z)dz

+
(

E1
∂ϕ
∂r + ν12E2

1
r

(
∂ψ
∂θ + ϕ

))∫ h
2
− h

2
( f (z))2dz}

(38)

RL
θ = (1 − l2∇2) E2

1−ν12ν21
{
(

ν12

(
∂u0
∂r + 1

2

(
∂w0
∂r

)2
)
+

(
1
r u0 +

1
r

∂v0
∂θ + 1

2

(
1
r

∂w0
∂θ

)2
))∫ h

2
− h

2
f (z)dz

+
(

ν12

(
− ∂2w0

∂r2 + y∗ ∂ϕ
∂r

)
+
(
− 1

r
∂w0
∂r − 1

r2
∂2w0
∂θ2 + y∗ 1

r

(
∂ψ
∂θ + ϕ

)))∫ h
2
− h

2
z f (z)dz

+
(

ν12
∂ϕ
∂r + 1

r

(
∂ψ
∂θ + ϕ

))∫ h
2
− h

2
( f (z))2dz}

(39)

RL
rθ = (1 − l2∇2){G12

(
1
r

∂u0
∂θ + 1

r
∂w0
∂θ

∂w0
∂r − 1

r v0 +
∂v0
∂r

)∫ h
2
− h

2
f (z)dz

+G12

(
− 2

r
∂2w0
∂r∂θ + 2

r2
∂w0
∂θ + y∗

(
1
r

∂ϕ
∂θ − 1

r ψ + ∂ψ
∂r

))∫ h
2
− h

2
z f (z)dz

+G12

(
1
r

∂ϕ
∂θ − 1

r ψ + ∂ψ
∂r

)∫ h
2
− h

2
( f (z))2dz}

(40)

QL
r = (1 − l2∇2)G13

(
ϕ
∫ h

2

− h
2

f ′(z)dz + hy∗ϕ

)
(41)

QL
θ = (1 − l2∇2)G23

(
ψ
∫ h

2

− h
2

f ′(z)dz + hy∗ψ

)
(42)

RL
rz = (1 − l2∇2){(G13ϕ

∫ h
2

− h
2

(
f ′(z)

)2dz + G13y∗ϕ
∫ h

2

− h
2

f ′(z)dz)} (43)

RL
θz = (1 − l2∇2){G23ψ

∫ h
2

− h
2

(
f ′(z)

)2dz+G23y∗ψ
∫ h

2

− h
2

f ′(z)dz} (44)

The following equations represent the local expression of the equilibrium equations
for the sector nanoplate on the elastic foundation:

δu0 : NL
r − NL

θ + r
∂NL

r
∂r

+
∂NL

rθ

∂θ
= 0 (45)

δv0 :
∂NL

θ

∂θ
+ r

∂NL
rθ

∂r
+ 2NL

rθ = 0 (46)

δw0 : r ∂2 ML
r

∂r2 + 2 ∂ML
r

∂r − ∂ML
θ

∂r + 1
r

∂2 ML
θ

∂θ2 + 2
r

∂ML
rθ

∂θ + 2 ∂2 ML
rθ

∂θ∂r +
(
1 − µ∇2)((q − kww0)r+

rNL
r

∂2w0
∂r2 + NL

θ
∂w0
∂r + 1

r NL
θ

∂2w0
∂θ2 − 2

r NL
rθ

∂w0
∂θ + 2NL

rθ
∂2w0
∂r∂θ

)
+

µr
((

∇2NL
r
) ∂2w0

∂r2 +
(
∇2NL

θ

)( 1
r

∂w0
∂r + 1

r2
∂2w0
∂θ2

)
+2
(
∇2NL

rθ

)( 1
r

∂2w0
∂r∂θ − 1

r2
∂w0
∂θ

))
= 0

(47)

δϕ : y∗
(

r
∂ML

r
∂r

+
∂ML

rθ

∂θ
+ ML

r − ML
θ − rQL

r

)
+ RL

r − RL
θ + r

∂RL
r

∂r
+

∂RL
rθ

∂θ
− rRL

rz = 0 (48)

δψ : y∗
(

r
∂ML

rθ

∂r
+

∂ML
θ

∂θ
+ 2ML

rθ − rQL
θ

)
+ 2RL

rθ − rRL
zθ + r

∂RL
rθ

∂r
+

∂RL
θ

∂θ
= 0 (49)
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In addition, the boundary conditions can be considered as the following relations:
Simply supported (S):

u = v = w = ψ = Mr = Rr = 0 r = ri , ro
u = v = w = φ = Mθ = Rθ = 0 θ = 0 , τ

(50)

Clamped (C):

u = v = w = φ = ψ = 0 : r = ri , ro
u = v = w = φ = ψ = 0 : θ = 0 , τ

(51)

Free (F):
Nr = Mr = Rr = Nrθ = Mrθ = 0 r = ri , ro
Nθ = Mθ = Rθ = Nrθ = Mrθ = 0 θ = 0 , τ

(52)

3. The Computational Procedure

One of the most efficient methods for solving partial differential equations is the
extended Kantorovich method (EKM), developed in 1968 by Arnold Kerr [43]. In this
research, to solve the two-dimensional equations of the sector plate, the extended Kan-
torovich method was first used, and the two-dimensional equations were converted into
one-dimensional form. Then, it is solved by the one-dimensional differential quadratic
method. Using the EKM, the bivariate function becomes the product of two univariate
functions, as follows:

f (r, θ) = f1(r)× g1(θ) (53)

Moreover, displacement and rotation functions can be written as:

u(r, θ) = f1(r)× g1(θ) (54)

v(r, θ) = f2(r)× g2(θ) (55)

w(r, θ) = f3(r)× g3(θ) (56)

ϕ(r, θ) = f4(r)× g4(θ) (57)

ψ(r, θ) = f5(r)× g5(θ) (58)

By placing the above relationships in equilibrium relations, differential equations with
partial derivatives become ordinary differential relations. With the arbitrary initial choice of
the functions gi, i = 1 . . . 5, the equilibrium relations will be obtained based on the weighted
Galperin residual method. In this method, the governing equations should be multiplied
by a suitable function in terms of θ, and after integration in terms of θ, ordinary differential
equations will only be obtained, which will be a function of fi, i = 1 . . . 5. Consequently, by
solving the ordinary differential relations and considering the boundary conditions, the fi
functions will be obtained: ∫ τ

0
g1(θ)× e1dθ = 0 (59)∫ τ

0
g2(θ)× e2dθ = 0 (60)∫ τ

0
g3(θ)× e3dθ = 0 (61)∫ τ

0
g4(θ)× e4dθ = 0 (62)∫ τ

0
g5(θ)× e5dθ = 0 (63)

where e1, e2, . . . , e5 are equilibrium equations.
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Each of the equilibrium relations should be multiplied by the suitable function gi and
integrated with the range from 0 to τ with respect to θ. Therefore, the equilibrium equations
(in the partial differential form) are converted into a system of ordinary differential equa-
tions in terms of r, which can be solved by taking into account the boundary conditions.
By obtaining the fi functions and placing them in the equilibrium relations, the ordinary
differential relations are obtained in terms of θ, which gi can be calculated by solving the
differential equations.

Using the introduced functions, partial differential equations will be single-variable
and become ordinary differential equations. Due to the non-linearity of the governing
equations of the plate, numerical methods are used to solve the equations. One of the
most efficient and accurate numerical solutions to differential equations is the differential
quadrature method.

In the two-dimensional analysis, there will be a set of nodes, as shown in Figure 2.
Using the Kantorovich method, the calculations are reduced from two directions to one
direction, which will cause a noteworthy reduction in the number of calculations. For
example, in the two-dimensional analysis, by selecting 9 nodes in each direction, the number
of nodes is 81; if using the Kantorovich method, this number is reduced to only 9 points.
Reducing the equations from 81 to 9 nonlinear equations will result in a huge reduction in
calculations, which is one of the obvious advantages of using the Kantorovich method.
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Figure 2. Distribution of nodes in the geometry of the sector plate.

One of the most efficient and accurate numerical solutions to one-dimensional differ-
ential equations is the differential quadratic method. This method is one of the numerical
methods with high precession received from the quadratic integration methodology, where
the integral at one node in the direction of the domain depends on all the nodes along that
direction. It should be noted that weight coefficients determine the dependency value:

d f
dr

∣∣∣∣
ri

=
N

∑
j=1

Aij f
(
rj
)

, i = 1, 2, . . . , N (64)

where weight coefficients and function values at discrete points can be clarified by w1, w2, . . . ,
wn and f1, f2, . . . , fn, respectively.

Belman et al. [44] proposed that in quadratic integration, the derivative at a given
point in the function domain is dependent upon the function values at every point in the
domain through weight coefficients:

A(1)
ij =

P(ri)(
ri − rj

)
P
(
rj
) (65)

P(ri) =
N

∏
j=1

(
ri − rj

)
, i ̸= j (66)
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A(1)
ii = −

N

∑
k=1

A(1)
ik , i ̸= k (67)

Furthermore, with respect to the higher-order derivatives:

d(n) f
dr(n)

∣∣∣∣∣
ri

=
N

∑
j=1

A(n)
ij f (rj) , i = 1, . . . , N (68)

The following equations introduce the weighting coefficients for derivatives of the
second as well as higher orders:

A(n)
ij = n

A(1)
ij A(n−1)

ii −
A(n−1)

ij(
ri − rj

)
 , i ̸= j (69)

A(n)
ii = −

N

∑
j=1, ̸=i

A(n)
ij , i, j = 1 . . . N (70)

The grid point distribution used in this paper is on the basis of Chebyshev-Gauss-
Lubato points, which speeds up the solution’s convergence and takes the following form:

ri =
ri + ro

2
− cos

((
i − 1
N − 1

)
π

)(
ro − ri

2

)
, i = 1 . . . N (71)

In Equation (71) the starting and ending points of the function are denoted by ri and
ro, respectively.

4. Results and Discussions

This section examines various factors based on HSDT and takes the nonlocal strain
gradient model into consideration to determine how they affect the deflations of the sector
nanoplate via EKM and DQM. Table 2 compares the deflections obtained by the current so-
lution with those reported in the references [45,46], considering the following assumptions:

τ =
π

3
, E = 200 × 109Pa, q = 1Pa,

r
h
= 100 (72)

from which can be seen that the results of this paper are in good agreement with the
related references.

Table 2. The comparison of the deflection gained by this article with references.

ri/ro [45] [46] Present Study

0.25 2.84 2.76 2.85

0.5 1.41 1.42 1.45

0.75 0.1 0.09 0.093

By considering the following assumptions:

E1 = 1765(GPa) , E2 = 1588(GPa) ,ν12 = 0.3 , ν21 = 0.27, q = 1(GPa),
k∗w = 0.005, h = 0.34(nm), ro = 10(nm)

(73)

The results of the present study are examined. Also, it is noticed that various functions
in Table 1 give similar results [31,47]. Figure 3 reveals the change of nondimensional
maximum deflection versus nonlocal parameters for the sector nanoplate for diverse
boundary conditions. It can be observed that by increasing the nonlocal parameter, the non-
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dimensional deflection decreases. This reduction is more noticeable when the boundary
conditions are more flexible.
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Figure 3. Changes in dimensionless maximum deflection (w∗) versus nonlocal parameter for the
sector nanoplate.

Figure 4 depicts the changes in dimensionless deflection versus bending loads. It is
noted that by increasing the deflection, the deflection increases. Moreover, the difference in
results between simply supporting boundary conditions and clamped conditions is more
significant with the enhancement of the loads.
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Figure 4. Changes in dimensionless maximum deflection (w∗) versus bending loads for the sector
graphene sheet.

Figure 5 illustrates the changes in dimensionless deflection in terms of nondimen-
sional radius for different boundary conditions. As can be seen, increasing the radius
results in an enhancement of the deflection. Furthermore, increasing the radius causes
a greater difference between the results of deflection in clamped and simply supported
boundary conditions.

The changes in non-dimension deflection against the elastic foundation can be seen
in Figure 6. It can be noticed that increasing the values of the elastic foundation causes
a reduction in deflection values. Furthermore, it can be noted that in the higher elastic
foundation values, the deflection values for the clamped and simply supported boundary
conditions are in close proximity to each other.

Figure 7 shows the influence of the sector plate angle on the non-dimensional deflection
for different boundary conditions. It is noticed that by increasing the sector angle, the
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deflection increases. Moreover, it can be seen that the difference between the boundary
conditions is almost more significant at larger angles.
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Figure 7. Effect of the sector angle on nondimensional maximum deflection of the sector nanoplate.

Figure 8 illustrates the influence of the strain gradient parameter with different sector
plate angles on the non-dimensional deflection for the clamped boundary conditions. As
can be noticed, by increasing the strain gradient parameter, the maximum deflection of
the nanoplate decreases (because increasing the strain parameter causes an increase in the
stiffness of the nanoplate; therefore, the deflection of the plate decreases). Additionally, a
similar result can be found in Ref. [18].
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Figure 8. The nondimensional maximum deflection of the sector nanoplate versus sector angles for
different strain gradient parameters.

It can be seen that by increasing the sector angle, the difference among the curves
increases. In other words, the strain gradient parameter has a relatively more significant
effect at larger sector angles.

5. Conclusions

This paper focuses on the nonlinear bending of the nanoplate with the aid of the
nonlocal strain gradient theory with HSDT via DQM. Unlike circular/annular analyses, in-
vestigations related to sector plates are relatively more complicated due to the examination
of two-dimensional solution methods. Since the governing equations are two-dimensional
and partial differential, EKM and DQM have been employed to solve the equations. The
results were compared with a reference and showed good harmony. From the results of
this paper, it can be noticed that:

∗ Small-scale parameters significantly influence the deflection of the sector nanoplate.
∗ Factors such as radius, flexibility of boundary conditions, load, and sector angle have

direct influences on the deflection of the sector plate.
∗ By increasing load, radius, and sector angle, the values of the deflection for different

boundary conditions converge.
∗ The strain gradient parameter has a relatively more significant effect at larger angles

of the sector nanoplate.
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