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Abstract: Blockchain technology, serving as the backbone for decentralized systems, facilitates secure
and transparent transactional data storage across a distributed network of nodes. Blockchain plat-
forms rely on distributed ledgers to enable secure peer-to-peer transactions without central oversight.
As these systems grow in complexity, analyzing their topological structure and vulnerabilities requires
robust mathematical frameworks. This paper explores applications of graph theory for modeling
blockchain networks to evaluate decentralization, security, privacy, scalability and NFT Mapping. We
use graph metrics like degree distribution and betweenness centrality to quantify node connectivity,
identify network bottlenecks, trace asset flows and detect communities. Attack vectors are assessed
by simulating adversarial scenarios within graph models of blockchain systems. Overall, translating
blockchain ecosystems into graph representations allows comprehensive analytical insights to guide
the development of efficient, resilient decentralized infrastructures.
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1. Introduction

Blockchain technology has emerged as a disruptive innovation for decentralized
record-keeping and transaction processing in digital networks. Some key features offered
by public blockchain networks include distributed consensus, persistency of recorded data,
anonymity of users, and tolerance to malicious attacks [1]. These properties distinguish
blockchains from traditional centralized databases and financial systems. However, as
blockchain platforms scale up with wider adoption, analysis of their underlying complex
network architecture becomes crucial. Issues like network congestion, privacy leaks,
malicious attacks, and centralization trends need to be monitored and addressed [2]. This
requires studying topological structures and interactions between network components.
Graph theory provides an appropriate mathematical framework to model and analyze the
connectivity and relationships within complex systems including communication, social,
biological, and infrastructure networks [3,4].

Graph theory facilitates a profound understanding of a network’s foundational prop-
erties, which cannot be achieved without referring to network science. Network science
plays a pivotal role in understanding the dynamic and structural properties of networks
and provides valuable insights into the applications of blockchain.

This work focuses on establishing mathematical theorems that enable a more granular
theoretical representation of blockchain networks. It demonstrates the applications of
graph theory and network analysis techniques to evaluate the critical facets of blockchain
platforms, including decentralization trends, security threats, scalability issues, simula-
tion modeling and asset mapping. Rigorous mathematical analysis provides data-driven
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insights to guide the development of efficient, resilient decentralized digital ledgers and
techniques to analyze blockchain systems and address challenges in their design and
operation. An extensive application of network science is beyond the scope of this work.

Table 1 presents a holistic summary of graph theory’s contribution and proofs that can
provide insight and improvement to blockchain technology.

Table 1. Holistic summary of the contribution.

Facet Insights from Graph Modelling Enabled Improvements

Decentralization Power laws in degree distribution highlight consensus vulnerabilities Mitigate centralization risks
Security Simulate infection spread to assess attack resilience Fortify consensus mechanisms
Privacy Stylometry helps create transaction fingerprints Address anonymity leaks
Scalability Partition graphs to localize bottlenecks Optimize network sharding
Simulation Model attacks and peak loads via graph generators Stress test systems pre-deployment
Mapping Assert mapping and understanding assert movement via graphs Assert authentication

Graph theory has been widely recognized for its diverse applications across various
fields. Gangrade et al. [5] discuss the applications of graph coloring in different practical
scenarios, highlighting the versatility of graph theory. Similarly, Majeed and Rauf [6]
emphasize the extensive use of graphs in computer science and social networks, showcasing
the relevance of graph theory in modern technological domains. Raza et al. [7] delve into
the significance of domination in graph theory and its wide applicability in different
fields. Moreover, Ahmad et al. [8] showcase the interdisciplinary nature of algebraic
graph theory, indicating its potential for future applications. Holmes et al. [9] explore the
application of graph theory in plasma chemical reaction engineering, demonstrating how
graph visualization and algorithms can aid in analyzing reaction networks. El-Mesady
and Bazighifan [10] discuss the applications of mutually orthogonal graph squares in
various communication and design domains, showcasing the practical implications of
graph theory concepts.

Graph theory was also explored to solve many real-world problems with multi-dynamic
and rapidly evolving characteristics. It provides an apt abstraction for modeling the topolog-
ical structure and interactions within blockchain networks. Some of the recent applications
demonstrated by researchers include advanced treatment for epilepsy based on Epileptogenic
Zone localization [11], network vulnerability analysis by finding the secure dominating set [12],
Alzheimer’s Disease investigation [13], and techniques to place PMU in an electrical power
network [14]. But the list is not comprehensive, Table 2’s references collectively highlight the
broad spectrum of applications of graph theory in a wide range of the computer science field.

Table 2. Graph theory application in Computer Science (CS) and Information Technology (IT).

Domain Subdomain Ref.

Computer Science and Information Technology Artificial Intelligence and Machine Learning [15–18]
Data Science and Analytics [19]
Network and Security [20–22]
Software Development [23–26]
Theoretical Computer Science [27–34]

Graph theory has been applied in various ways in the field of blockchain. Qu et al. [35]
use hypergraphs to create a blockchain model that reduces storage consumption and enhances
security. Tsoulias et al. [36] incorporate graph models in blockchain functionality, allowing
for data analysis and visualization of changes in blockchain data. Abay et al. [37] find that
topological features computed from the blockchain graph using persistent homology are useful
in predicting Bitcoin price dynamics. Shen et al. [38] use graph neural networks for DApp fin-
gerprinting, where a graph structure called Traffic Interaction Graph (TIG) is used to represent
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encrypted DApp flows, leading to accurate classification. Liu et al. [39] use big graph analytics
and learning techniques to infer the identity of nodes in blockchain transaction graphs.

The past literature conveys how graph theory applications highlight the fundamental
role of graphs in modeling real-world problems and optimizing various systems across
different disciplines. The interdisciplinary nature of graph theory allows for innovative
solutions and insights into complex problems, making it a valuable tool in modern research
and practical applications. Most of the existing work has used graph theory in specific
applications, and complete graph theory applications for blockchain are under-explored.
Blockchain, being relatively recent in its evolution, has a wide scope for cross-domain
and interdisciplinary adoption. This work serves as a quick exploration of employing
graph theory to real-world problems and data focused on blockchain, providing theoretical
grounds and direction for future research.

2. Background

In graph theory, networks are represented as graphs with vertices (nodes) connected
by edges (links) [40]. When the incidence relation is not necessarily symmetrical, we
have arcs and keep the edge for symmetrical relations. An edge connecting a vertex to
itself is called a loop. Except specified otherwise, we consider loopless graphs with at
most one edge/arc between two vertices. Vertices may represent individual actors while
edges capture relationships between them [3]. Network analysis using graph models
helps discover crucial properties like connectivity trends, influential nodes, community
structures and vulnerability to attacks. Blockchain platforms can be naturally modeled as
transaction graphs, with vertices as users or system components like miners and smart
contracts, while transaction links or messaging channels may be shown as graph edges [4].
Such network graphs keep evolving dynamically as new blocks are added to the chain. The
graph mappings uncover hidden patterns, clusters, bottlenecks and weaknesses that are
not evident otherwise. These findings have implications for improving system efficiency,
security and privacy. Next, we briefly introduce blockchain technology and overview some
applications of graph theory for general network analysis.

3. Blockchain Technology Overview

A blockchain is essentially an expanding record of data stored in containers called
blocks, with cryptographic validation to ensure tamper-resistance and transparency [1,41].
Each block contains a timestamp and a link to the previous block, thus chaining them
together in proper sequence from the genesis block. Transactions are recorded in blocks
after validation by miners over P2P overlay networks based on consensus protocols like
proof-of-work and proof-of-stake. All participating nodes maintain the latest replicated
copies of the distributed ledger. Key advantages of blockchain infrastructure include
persistence [42], provenance tracking of assets [43], and disintermediation from centralized
control [44]. Blockchains also enable smart contracts which are automated executable
programs stored on-chain.

4. Relevant Concepts from Graph Theory

We briefly recap some common graph metrics and analytical methods that would be
relevant for blockchain networks [3]:

1. Degree centrality identifies highly connected nodes that interact with many others in
the network [45].

2. Betweenness centrality identifies nodes that bridge different communities, enabling
the flow of information [46].

3. Closeness centrality measures how fast information from one vertex can reach others
via minimum links [47,48].

4. Clustering analyzes whether a network partitions into densely interconnected com-
munities with sparse connections among them [49,50].
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5. Bridges, cut vertices, and articulation points are crucial connectors whose removal
can fragment graphs [51,52].

6. Shortest paths, network diameter, and average path lengths indicate how easily nodes
can reach each other [53,54].

7. Resilience evaluates a network’s vulnerability to random failures or targeted attacks
on nodes or edges [55].

These graph properties are mirrored in blockchain platforms through influential
miners, network partitions caused by regional regulations, bottleneck links that affect
transaction speeds, and systemic risks from the failure of critical mining pools. Applying
graph theory can, therefore, offer actionable insights to enhance the system’s design,
efficiency, and security [36].

5. Graph Theory Application in Blockchain Systems

In this section, we review some specific applications of graph theory for blockchain
network analysis along five major dimensions—decentralization, security and privacy,
scalability, simulations and manipulation [56].

Analyzing decentralization, metrics derived from the connectivity patterns and com-
munity structure within blockchain graphs determine whether decision-making power and
asset ownership concentrate among a few dominant players. Skewed degree distributions
or highly interconnected hubs highlight centralization risks [57].

Evaluating security: simulating attack mechanisms like Sybils and Denial-of-Service
within graph models of blockchain systems allows evaluating consensus resilience even
before deployment. Graph metrics also uncover network vulnerabilities [58].

Preserving privacy: Advanced graph analysis can compromise anonymity by uncov-
ering patterns in transaction histories to uniquely identify entities within the network.
Clustering and classification techniques quantify re-identification risks [59].

Managing scalability: Graph algorithms localized performance bottlenecks, enabling
targeted optimizations to improve transaction throughput like sharding and structured
peer networking. Comparisons between baseline and stressed system graphs determine
breaking points [60].

NFT manipulation mapping: Utilizing graph theory to analyze the patterns and trans-
actions of NFTs on blockchain networks sheds light on wash trading activities, where
individuals artificially inflate the value of NFTs through self-directed trades [61]. By exam-
ining the graph’s edges and nodes representing transactions and participants, respectively,
we can identify cyclical trading patterns that indicate possible manipulation [62]. This
analysis not only enhances the transparency and integrity of the NFT market but also assists
in the development of regulatory and monitoring tools to combat fraudulent activities [63].

The subsequent sections elaborate on these applications, and provide mathematical
proofs and network simulations to demonstrate the problem-solving efficacy of graph
theoretic approaches within the blockchain domain.

5.1. Analyzing Network Decentralization

An oft-cited benefit of public blockchains is the decentralization of control from sin-
gle authorities in favor of distributed governance [64]. However, recent studies indicate
growing oligopolies in mining pools and increasing centralization risks from protocols
favoring stronger validators [65]. Graph analysis provides effective techniques to track
such trends over time. The nodes and edges would correspond to actual network partici-
pants and their interactions, which could be analyzed for decentralization aspects such as
centralization risks, power distribution, or collaboration dynamics.

5.1.1. Mining Pool Power

The mining landscape can be modeled as a dynamic graph with dominant pools occu-
pying highly connected hub nodes as shown in Figure 1. Monitoring degree distribution
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skewness, betweenness centrality and the emergence of a few super-connected hubs can
quantitatively track centralization among miners [66].

Assumption 1.

• Graph Model: The blockchain network is modeled as a dynamic graph G = (V, E), where V
represents the set of mining pools, and E represents the connections between them.

• Degree of a Node: The degree of a node d(v) in G represents the number of connections a
mining pool has with other pools.

• Wealth and Power Correlation: The mining power of a pool is directly proportional to its degree
in the graph.

• Network Growth: New nodes (mining pools) prefer to connect to existing nodes with higher
degrees (a preferential attachment model, akin to the Barabási–Albert model).

Application Statement 1.

• In a blockchain network modeled as a graph following the above assumptions, the network
naturally evolves towards a state of increased centralization of mining power.

Proof.

(a) Initial State Analysis:
Let G0 = (V0, E0) be the initial state of the graph, where |V0| is relatively large and
the degree distribution D0 = {d(v) : v ∈ V0} is uniform or near-uniform.

(b) Preferential Attachment:

Define the attachment probability Pattach(v) = d(v)
∑u∈V d(u) for a new node connecting

to an existing node v.
New nodes vnew prefer to attach to existing nodes v with higher Pattach(v). each new
node is connected to k other ones, each one of those connections is chosen according
to the Pattach probabilities

(c) Degree Distribution Evolution:
Over time, the degree distribution Dt for Gt = (Vt, Et) becomes skewed, favoring
nodes with initially higher degrees.
The skewness can be represented by the increase in variance over time: Var(Dt) > Var(D0)
for t > 0. The variance could increase but still tend to a limit. It seems like the usual
argument for the skewness of such a network is that the degree distribution follows a
power law. It is indeed the case in the Barabási–Albert model

(d) Correlation of Degree and Mining Power:
Let mining power M(v) of a node v be proportional to its degree: M(v) ∝ d(v).
Thus, M(v) is also increasingly skewed as Dt becomes skewed.

(e) Centralization:
Centralization can be quantified by a metric C(Gt), where C(Gt) increases as the
skewness in M(v) increases.
Formally, C(Gt) > C(G0) for t > 0, indicating increased centralization over time.

(f) Implications for Network Security and Decentralization:
Security risk R(Gt) and decentralization level ∆(Gt) can be formally defined.
Increased C(Gt) implies increased R(Gt) and decreased ∆(Gt).

Figure 1 graph is semi-randomly generated to illustrate the concept. In a real-world
scenario, the nodes and edges would correspond to actual network participants and their
interactions, which could be analyzed for decentralization aspects such as centralization
risks, power distribution, or collaboration dynamics. Nodes represent entities within the
network like mining pools, stakeholders, and developers. Edges signify the relationships or
interactions between these entities. Node Color indicates the mining power of each node,
which, for simplicity is assumed to be directly proportional to its degree. The color scale,
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from light to dark, illustrates the range of mining power across the network, with darker
nodes possessing higher mining power. Node Size, corresponds to the degree of each
node, with larger nodes having more connections. The size variation visually emphasizes
the nodes that are more central to the network’s structure, highlighting the preferential
attachment growth model’s impact.

Figure 1. Mining Pool Power.

The visualization of Figure 1 offers a nuanced view of the network, underlining the
relationship between a node’s degree (and thereby its mining power) and its centrality
within the network. Such a representation aids in understanding the centralization of
mining power within blockchain networks, providing insights into how certain nodes
(or mining pools) can dominate based on their connectivity and influence.

Figure 2 visualizations illustrate the theoretical evolution of a blockchain network towards
centralization, based on the assumptions and theorem statement provided. Degree Distribution
Figure 2a: The degree distribution follows a power law, characteristic of networks that evolve
according to preferential attachment. This indicates that a few nodes (mining pools) become
highly connected over time, representing the centralization of mining power. The log-log plot
shows that a few nodes have a high degree while the majority have a low degree, which aligns
with the concept of centralization as fewer entities control a larger portion of the network’s
power. Betweenness Centrality Distribution Figure 2b: The betweenness centrality values
across nodes show variation, indicating that some nodes play a more critical role in the network
as intermediaries in transactions or information flow. Nodes with higher betweenness centrality
are pivotal in connecting various parts of the network, further highlighting the potential central
points of control or influence within the network.

Figure 2. Distribution and Betweenness.
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This proof outlines the theoretical evolution of a blockchain network’s mining power
distribution towards centralization under specific graph-theoretic and network growth
assumptions. It demonstrates how the dynamics of network growth and connectivity can
influence the distribution of mining power in blockchain networks.

5.1.2. Stake Pool Power

For proof-of-stake consensus, the graph analysis of delegate nodes and their stake
ratios determine the relative influences of validator pools and the likelihood of collusion.
Figure 3 graph illustrates the concept of staking delegations in a proof-of-stake blockchain
network [67]. In an actual blockchain network, these edges would represent real staking
delegations from one pool to another, and their analysis could reveal patterns of stake
distribution, possible centralization of power, and the overall structure of the stake dele-
gation network. Nodes represent stake pools. Directed edges (arrows) represent staking
delegations between pools.

Assumption 2.

• Graph Model: The blockchain network is modeled as a (weighted) directed graph G = (V, E),
where each node v ∈ V represents a stake pool and each arc (u, v) ∈ E represents staking
delegation from pool u to pool v.

• Stake Representation: The weight of each node w(v) corresponds to the total stake delegated to
the pool v.

• Influence by Stake: The influence or power of a stake pool is directly proportional to its total stake.
• Network Dynamics: New stakeholders tend to delegate their stake to pools with higher existing

stakes, modeling a preferential attachment similar to the Barabási–Albert model.

Application Statement 2.

• In a blockchain network modeled as a directed graph following the above assumptions, the
network evolves towards a state where a small number of stake pools accumulate a dispropor-
tionately large amount of total stake, indicating a trend towards centralization of stake power.

Proof.

(a) Initial State Analysis:
Let G0 = (V0, E0) represent the initial state of the graph, with w(v0) denoting the
stake for each pool v0 ∈ V0, where w(v0) is relatively uniform across V0.

(b) Preferential Attachment Dynamics:

Define Pdelegate(v) = w(v)
∑u∈V w(u) , the probability of a new stakeholder delegating their

stake to pool v. New stakeholders are more likely to delegate to pools with higher
w(v), following preferential attachment.

(c) Evolution of Stake Distribution:
As time progresses, this dynamic leads to an evolved graph Gt = (Vt, Et) at time t,
where the distribution of w(v) for v ∈ Vt becomes increasingly skewed. This skewness
is represented by an increasing variance: Var(w(Vt)) > Var(w(V0)) for t > 0.

(d) Centralization of Stake Power:
Quantify centralization at time t with Cstake(Gt), which increases with the skewness
of w(v). Formally, Cstake(Gt) > Cstake(G0) for t > 0, indicating a trend towards
increased centralization of stake power.

In Figure 3, the Node Color represents the influence score of each stake pool, with the
color scale indicating the level of influence based on both the stake and the pool’s position
within the network’s structure. Lighter colors denote higher influence scores. Node Size,
corresponds to the total stake of each pool, allowing for a direct visual comparison between
a pool’s stake and its overall influence within the network. Color Bar (Influence Score),
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aids in interpreting the influence scores, with the gradient showing the range of influence
scores across the network from low to high.

This proof demonstrates that under the given assumptions and network dynamics, a
blockchain network’s stake distribution evolves towards increased centralization, with a
few stake pools gaining a majority of the total stake. This centralization of stake power can
have implications on the network’s security and governance, potentially contradicting the
decentralized ethos of blockchain technology.

Figure 3. Stake Pool.

5.1.3. Wealth Concentration

The degree and strength distribution of transaction graphs can identify the concentration
of token ownership and flow among addresses over time [68]. Figure 4 is a representation of
the Wealth concentration constructed from actual transaction data and the analysis would focus
on identifying nodes (addresses) with a high number and value of incoming and outgoing
transactions, indicating the concentration of wealth. Nodes represent individual addresses or
wallets in a blockchain network. Directed edges (arrows) signify transactions between these
addresses. The width and color intensity of the edges reflect the transaction value (with thicker,
darker edges indicating higher values).

Figure 4. Wealth Concentration.
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Assumption 3.

• Graph Model: The blockchain transaction network is modeled as a weighted directed graph
G = (V, E, W), where:

– V represents addresses (wallets) in the network.
– E represents transactions between addresses.
– W is a set of weights on the edges, where each weight w(u, v) represents the value of the

transaction from address u to address v.

• Degree of a Node: The degree of a node (address) d(v) in G represents the number of transac-
tions involving that address. The degree is the number of wallet transactions.

• Strength of a Node: The strength of a node s(v) is defined as the sum of the weights (transaction
values) of the edges connected to the node. This represents the total value of transactions for
that address.

• Wealth and Transaction Correlation: An address’s wealth is assumed to correlate with both its
degree and strength in the graph.

Application Statement 3.

• In a blockchain transaction network modeled as a weighted directed graph, a skewed degree and
strength distribution indicates a concentration of token ownership and transactional flow among a
limited number of addresses, suggesting wealth concentration.

Proof.

(a) Degree and Strength Analysis:
Analyze the degree distribution D = {d(v) : v ∈ V} and the strength distribution
S = {s(v) : v ∈ V} in graph G. A uniform distribution implies decentralized token
flow, while a skewed distribution indicates concentration.

(b) Skewness of Distributions:
Apply skewness metrics to D and S. High skewness values in D and S indicate that a
few addresses have much higher degrees and strengths, respectively.

(c) Wealth Concentration Inference:
Given the correlation between an address’s wealth and its degree/strength, the skew-
ness in D and S can be interpreted as indicators of wealth concentration. A few
addresses (high-degree, high-strength nodes) dominate the total token flow, indicat-
ing wealth concentration.

(d) Temporal Evolution:
By examining the evolution of D and S over time, trends in wealth concentration can
be identified. Increasing skewness over time suggests increasing wealth concentration.

This proof demonstrates that by analyzing the degree and strength distributions in
a transaction graph of a blockchain network, it is possible to identify trends of wealth
concentration. High skewness in these distributions over time indicates an increasing
concentration of wealth among fewer addresses, which can have significant implications
for the network’s decentralization and security.

5.1.4. Developer Concentration

Analyzing collaboration graphs and code contribution statistics for blockchain plat-
forms can detect excessive dependencies on a few core developers [69] as depicted in
Figure 5. The node in the graph represents developers, lighter shade links for less contribu-
tion and darker shades for higher contribution.
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Figure 5. Developer Concentration.

Assumption 4.

• Graph Model: The collaboration network is modeled as a directed graph
G = (V, E, W), where:

– V represents the set of developers.
– E represents collaborative relationships (e.g., working on the same project or module).
– W is a set of weights on the edges, where each weight w(u, v) quantifies the level of

collaboration or contribution from developer u to developer v.

• Degree of a Node: The in-degree din(v) and out-degree dout(v) of a node v represent the number
of contributions received by and made by developer v, respectively.

• Strength of a Node: The strength s(v) of a node is defined as the sum of the weights of the outgoing
edges connected to v, reflecting the total impact of a developer’s contributions.

• Core Developer Identification: A core developer is identified by high out-degree, high strength,
or a combination of both, indicating significant influence or dependency in the network.

Application Statement 4.

• In a blockchain platform’s collaboration network modeled as a weighted directed graph, a skewed
distribution of degrees and strengths among developers indicates excessive dependencies on a
few core developers.

Proof.

(a) Degree and Strength Analysis:
Define the in-degree and out-degree of a node (developer) v in graph G as din(v)
and dout(v), respectively. These represent the number of contributions received by
and made by developer v. The strength s(v) of a node is the sum of the weights
of the edges connected to v, quantifying the impact of a developer’s contributions:
s(v) = ∑(u,v)∈E w(u, v).

(b) Skewness of Distributions:
Analyze the skewness of the degree distributions Din = {din(v) : v ∈ V} and
Dout = {dout(v) : v ∈ V}, and the strength distribution S = {s(v) : v ∈ V}. High
skewness indicates a small number of developers (nodes) with significantly higher
degrees or strengths.
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(c) Dependency Inference:
A core developer can be identified by high values of din(v), dout(v), and s(v). If the
skewness in Din, Dout, or S is high, it indicates a network structure with excessive
dependency on a few developers.

(d) Network Health and Robustness:
A network’s robustness and sustainability can be at risk if it is overly dependent on a
few core developers. The temporal evolution of Din, Dout, and S can be examined to
understand how these dependencies change over time.

This proof demonstrates that graph theory can be effectively used to analyze developer
collaboration networks in blockchain platforms. By examining the degree and strength
distributions, one can identify if there are excessive dependencies on a few core developers,
which can be critical for understanding the network’s health and sustainability.

Thus, graph metrics enable the ongoing quantification of decentralization levels across
various facets. Network visualizations also easily highlight the growth of hubs, clusters
and disparities.

5.2. Evaluating Security and Privacy

Public blockchains aim to provide security and privacy for user transactions. However,
incidents of thefts and data leaks frequently occur [70]. Figure 6 graph helps evaluate such
vulnerabilities and how critical nodes, articulation points, and bridges can be identified
in a network. In a real-world scenario, these elements could represent vulnerable points
in a blockchain network, where targeted attacks could significantly disrupt the network’s
topology and functionality.

5.2.1. Topological Attacks

Critical nodes whose failure fragments networks widely are attractive attack vec-
tors. Graph metrics like betweenness centrality, bridges and articulation points detect
such components [71].

Figure 6. Topological Attack.
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Assumption 5.

• Graph Model: The blockchain network is modeled as an undirected, connected graph G =
(V, E), where:

– V represents the set of nodes (miners, validator pools).
– E represents connections between the nodes.

• Critical Nodes: Nodes whose removal fragments the network topology into multiple discon-
nected components.

• Articulation Points: Nodes whose removal increases the number of connected components in
the graph.

• Bridges: Edges whose removal disconnects the graph.

Application Statement 5.

• Nodes with high betweenness centrality are critical articulation points or bridges in a blockchain
network. Targeted removal of such nodes presents an effective topological attack vector to
fragment the network.

Proof.

(a) Betweenness Centrality: The betweenness centrality CB(v) of a node v ∈ V is defined

as: CB(v) = ∑
s ̸=v ̸=t∈V

σst(v)
σst

Where σst is the total number of shortest paths from s to t, and σst(v) is the number of
those paths passing through node v.

(b) Critical Node Identification:
Nodes with higher CB(v) values participate in more shortest paths in the network.
The removal of such nodes leads to disconnecting components previously connected
via them.

(c) Network Robustness:
Analyzing the distribution of betweenness centrality scores over time provides in-
sight into the emergence of critical nodes and quantifies network resilience against
topological attacks.

Figure 6 combines betweenness centrality, articulation point status, and degree, of-
fering a comprehensive measure of a node’s role in the network. Node Size and Color,
reflect the importance score, larger and more intensely colored nodes indicating higher
importance. Node Border Color, Articulation points are highlighted with a gold border,
distinguishing them as nodes whose removal would significantly impact network connec-
tivity. Edges with gray representing standard connections and blue highlighting bridges
are crucial links whose removal would fragment the network.

This proves that betweenness centrality can effectively identify critical components
in blockchain networks that serve as attractive targets for malicious attacks aimed at
fragmenting the network topology.

5.2.2. Threat Modelling

Blockchain technology is renowned for its security features; however, lots of studies
prove that the security mechanism of blockchain exposes its vulnerability especially when
the blockchain suffers attacks [72]. Ideal systems do not exist and so blockchain has a
number of problems, requiring attention on the security vulnerabilities [73]. Based on [74]
we narrowed down threat to (1) Domain Name System (DNS) Attacks, (2) Phishing Attacks,
(3) Border Gateway Protocol (BGP), (4) Eclipse Attacks, (5) Distributed Denial of Service
Attacks (DDoS), and (6) 51% attack categories under the network context [72,75]. In the
section, we have employed the Erdős–Rényi model, a common model for generating
random graphs, which is used to simulate the network topology [76] for simulating the
threat model [77].
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DNS Attacks. In the realm of blockchain technology, DNS attacks pose a serious threat to
the integrity of network communication. The Domain Name System (DNS) acts in translating
domain names to IP addresses. However, if compromised, it can lead to the isolation of
network participants. Graph theory provides an analytical framework to model and study the
repercussions of such attacks. Here, we present a graph theory-based mathematical proof of
how DNS attacks can isolate users and miners from the genuine network.

Assumption 6.
Let us consider the following assumptions within our graph model:

• A directed graph G = (V, E): A directed graph where V is the set of nodes representing users,
miners, and DNS servers, and E represents the communication links between these nodes.

• Node Function r(v): Each node v ∈ V is assigned a role indicating whether it is a user/miner
(U) or a DNS server (D).

• DNS Integrity s(d): Each DNS server node d has a status indicating whether it is legitimate
(L) or compromised/malicious (M).

Application Statement 6.

• For a blockchain network represented by graph G with assumptions as stated, DNS attacks
can isolate a subset of nodes U ⊆ V, such that U consists solely of users and miners from the
genuine network by manipulating the resolutions provided by DNS servers.

Proof.

(a) Attack Initiation: An attacker manipulates a subset of DNS server nodes DM ⊆ V
such that their status s(d) for all d ∈ DM is changed from L to M.

(b) Resolution Compromise: As users and miners initiate DNS queries, these requests are
intercepted by DM. Thus, the set of edges EU ⊆ E from U now points to DM, and
their integrity status i(e) for all e ∈ EU changes from V to I.

(c) Network Isolation: The DNS resolutions from DM redirect U to endpoints outside the
genuine blockchain network resulting in an isolation set IS ⊆ U.

(d) Isolation Quantification: The isolation metric IM is defined as the ratio of the num-
ber of isolated user/miner nodes to the total number of user/miner nodes, i.e.,
IM = |IS|/|U|. If IM > 0, it implies that the DNS attack was successful in iso-
lating at least a portion of the network’s participants.

In the Figure 7 Nodes labeled “User_x” nodes represent individual users within the
network.The nodes labeled “DNS_Legit” represent legitimate DNS servers. The nodes labeled
“DNS_Malicious” represent DNS servers that have been compromised or are malicious. Edges
represent communication links or DNS queries made from users to DNS servers. Black edges
represent legitimate DNS queries directed towards legitimate DNS servers. Red edges signify
DNS queries that have been redirected to the malicious DNS servers due to the DNS attack.
Green nodes indicate non-compromised, functioning DNS servers. Blue nodes represent
unaffected users or users who are not the current target of the attack. Red nodes indicate DNS
servers that have been compromised and are under the control of an attacker. From the graph
Figure 7, we can infer that the network is under a DNS attack, where certain DNS queries
from users are being intercepted and redirected to malicious DNS servers. This redirection
can lead to a range of malicious activities, such as phishing, spreading malware, or data
interception. The graph visually demonstrates the extent of the DNS attack, showing which
users are potentially affected by the compromised DNS servers.

DNS attacks have the potential to disrupt the normal functionality of a blockchain
network by isolating users and miners from the real network. This graph theory-based
proof highlights the critical need for secure DNS protocols and the implementation of robust,
decentralized resolution mechanisms within blockchain infrastructures to safeguard against
such vulnerabilities. The integrity and reliability of blockchain communications rely on the
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ability to resist such isolation attacks, reinforcing the network’s foundational premise of
decentralized security.

Figure 7. DNS attack.

Phishing attacks. Graph theory offers a systematic way to model and analyze the
dynamics of phishing attacks in a network, especially in the context of blockchain where
key compromise can lead to significant security breaches. This is a graph theory-based
mathematical model to understand phishing for key compromise.

Assumption 7.

• Let us construct a graph G = (V, E) to model the blockchain network where:

– V: Set of nodes, representing users of the blockchain network.
– E: Set of edges representing trust relationships or communication channels between

users.

• Each node v has an associated trust level t(v), representing the user’s vulnerability to phishing
attacks, with a higher trust level indicating greater susceptibility.

Application Statement 7.

• A phishing attack within a blockchain network graph G can result in private key theft if the
attacker can successfully deceive a subset of nodes Vp ⊆ V, where nodes in Vp have a high
trust level t(v).

Proof.

(a) Targeting High Trust Nodes: The attacker identifies nodes with high trust levels Vp
by analyzing the graph for nodes with the most edges, indicating a high interaction
with other nodes, and therefore, higher visibility for phishing attacks.

(b) Trust Exploitation: Through phishing techniques, the attacker attempts to compromise
nodes in Vp by exploiting their trust levels. Let tthresh be the threshold above which
the nodes are highly susceptible. Then, Vp = {v ∈ V|t(v) > tthresh}.

(c) Key Compromise: The attacker crafts deceptive messages that are sent across edges
Ep ⊆ E to nodes in Vp. If a node v ∈ Vp is deceived, its private key is considered
compromised, transitioning its status to s(v) = C.

(d) Asset Theft: Using the compromised private keys, the attacker gains access to the
nodes’ assets and can perform unauthorized transactions, leading to theft.
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The critical importance of user awareness and secure communication within blockchain
networks. The trust levels within a network, as modeled by graph G, are directly correlated
to the vulnerability of users to such attacks.

Network Representation. Let G = (V, E) be a directed graph where V represents
the set of nodes (participants) in the network, and E represents the set of directed edges
(communications or transactions) between these nodes.

Node Attributes. Each node v ∈ V has several attributes:

• Key Status k(v): Indicates whether the private key of the node is compromised
(C) or secure (S).

• Phishing Susceptibility p(v): A probabilistic measure of the node’s vulnerability to
phishing attacks, ranging from 0 (immune) to 1 (highly susceptible).

Edge Dynamics. Edges in E represent potential channels through which phishing
attacks can be propagated or information can be exchanged, such as email communications,
social media interactions, or blockchain transactions.

Attack Dynamics. A phishing attack targets a subset of nodes Vp ⊆ V where the attacker
attempts to compromise the private keys of these nodes through deceptive communication.
The success of phishing on each node depends on p(v), the phishing susceptibility of the node.

Compromise Propagation. Once a node’s key is compromised (k(v) = C), the attacker
can utilize this node to further propagate the attack within the network, increasing the
reach of the phishing campaign.

Representation of the Attack’s Impact

• Initial Compromise Set Vc0: The set of nodes initially targeted and successfully com-
promised by the phishing attack.

• Propagation Function F: A function that models how the attack propagates through
the network from the initial set of compromised nodes.

• Total Compromised Set Vc: The set of nodes that are eventually compromised as a
result of both the initial attack and subsequent propagation. Vc is derived by applying
F to Vc0 and the network G.

• Network Vulnerability Index (NVI): A metric to quantify the overall impact of the
phishing attack on the network. It is given by:

NVI(G) =
|Vc|
|V| ×

(
1 + ∑

v∈Vc

centrality(v)

)
Figure 8 represents a model of a blockchain network under the threat of phishing

attacks. Nodes represent network participants, color-coded based on their key status:
nodes in red have compromised keys (C), while nodes in green have secure keys (S).
Edges represent potential communication channels through which phishing attacks can
be propagated or through which information is exchanged among participants. The
network includes both initially targeted nodes for phishing attacks (selected based on a
higher susceptibility to phishing) and nodes that may potentially be compromised through
network propagation. This graph-theory-based simulation illustrates the dynamics of
phishing attacks within a network, highlighting the importance of understanding both the
structural vulnerabilities and behavioral aspects that make nodes susceptible to phishing.
By analyzing such models, network administrators and blockchain protocol designers can
develop strategies to detect and mitigate the risk of key compromise through phishing
attacks, thereby enhancing the overall security and resilience of the network.

BGP hijacking affects the routing on the Internet by maliciously rerouting traffic
through an attacker-controlled system. In blockchain networks, full nodes play a crit-
ical role in maintaining the network’s integrity. If these are compromised, the reliability of
the lightweight nodes that depend on them can also be compromised, leading to spatial
partitioning within the network.
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Figure 8. Phishing Attacks.

Assumption 8.

• We assume a graph G = (V, E), where:

– V: Set of nodes, partitioned into full nodes VF and lightweight nodes VL, such that
V = VF ∪ VL and VF ∩ VL = ∅.

– E: Set of directed edges representing communication links, with EF representing links between
full nodes and EL representing links from full nodes to lightweight nodes.

• Node Status s(v): Indicates whether a node is secure (S) or compromised (C).
• Routing Path R(u, v): Ordered list of nodes a message traverses from u to v.

Application Statement 8.

• In a blockchain network subject to BGP hijacks, if an attacker compromises a subset of full
nodes VFC ⊆ VF, it can induce a spatial partitioning where the associated lightweight nodes
VLC ⊆ VL, which rely on compromised full nodes, are also controlled by the attacker.

Proof.

(a) BGP Hijacking Initiation: Attacker gains control of one or more full nodes VFC by
diverting their incoming and outgoing routing paths. For all v ∈ VFC, s(v) changes
from S to C.

(b) Routing Path Alteration: The routing paths R(u, v) for u ∈ VF and v ∈ VL are al-
tered to pass through VFC, if not already. For all (u, v) ∈ EL, if v ∈ VLC, then VFC
is in R(u, v).

(c) Spatial Partitioning Effect: The network experiences spatial partitioning where VLC
only receives blockchain data from VFC. The integrity of the data received by VLC is
compromised, and the attacker can control the blockchain view of VLC.

(d) Control over Lightweight Nodes: The attacker manipulates blockchain data flowing
to VLC, effectively controlling these nodes.
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Figure 9 graph represents a simulated blockchain network and illustrates the im-
pact of BGP hijacking on network participants. The graph contains two types of nodes,
full nodes and lightweight nodes, each playing a different role in the blockchain net-
work. Full nodes, labeled as “Full_Node_x”, are responsible for maintaining a complete
copy of the blockchain ledger and validating transactions. Lightweight nodes, labeled
as “Lightweight_Node_x”, rely on full nodes for transaction validation and network in-
formation. The color of the nodes indicates their security status. Green nodes are secure
and operating as intended. Red nodes have been compromised through BGP hijacking,
indicating that an attacker controls them. The attacker can manipulate the data that flow
through these nodes, potentially leading to incorrect transaction validations or false in-
formation being fed to the rest of the network. The orange nodes in the graph represent
a state that is between the secure represented in green and compromised in red statuses.
Edges connecting the nodes represent communication paths. In the context of a BGP hijack,
these paths may be altered to route through compromised nodes, which is a critical aspect
of the attack as it can lead to network partitioning and isolation of certain nodes from the
rest of the network.

The graph organizes nodes in layers, with full nodes being more centrally located, rep-
resenting their pivotal role in the network’s operation. The lightweight nodes are positioned
around the periphery, demonstrating their reliance on the full nodes for information.

Figure 9. BGP hijacking.

The compromised full nodes (central red nodes) effectively create a false sub-network
that can mislead the connected lightweight nodes. This spatial partitioning demonstrates
the potential of a BGP hijack to disrupt blockchain network operations by isolating and
controlling segments of the network. The simulation aims to visualize how BGP hijacks can
lead to significant vulnerabilities within blockchain infrastructures, particularly for those
nodes that do not hold a full copy of the blockchain and depend on others for accurate
information. In the context of BGP hijacking and blockchain, an orange node indicates a
full node that is under attack but not fully compromised, or it could signify a node whose
status is uncertain or in the process of being verified.

BGP hijacking can lead to a spatial partitioning of a blockchain network by compro-
mising the integrity of full nodes and, by extension, controlling associated lightweight
nodes. The model highlights the critical importance of securing full nodes against such
routing attacks, as they are pivotal in ensuring the correct operation of lightweight nodes
within the blockchain infrastructure. This proof highlights the need for robust, secure
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routing protocols and practices within blockchain networks to prevent such disruptive
spatial partitioning.

Eclipse attack is characterized by the isolation of honest nodes in a blockchain network.
The adversary strategically places compromised nodes to intercept or eclipse the victim’s
connections, controlling their view of the network and potentially leading to double-
spending or other fraudulent activities.

Assumption 9.

• Let us consider a graph G = (V, E) where:

– V: Set of nodes, representing the blockchain participants.
– E: Set of directed edges representing network connections between nodes.

We further categorize the nodes as:

– VH : Set of honest nodes.
– VC: Set of compromised nodes controlled by the attacker.

Application Statement 9.

• For a blockchain network represented by graph G, an attacker can successfully conduct an
Eclipse attack on a subset of honest nodes VEH ⊆ VH by ensuring all connections to and from
VEH are with nodes in VC, thus controlling the flow of information to the isolated nodes.

Proof.

(a) Isolation of Honest Nodes: The attacker infiltrates the network, adding or compromis-
ing nodes to become part of VC. The attacker then uses these nodes to form all direct
connections with the target honest node h ∈ VEH .

(b) Manipulation of Network Traffic: For each edge e = (u, v) where u ∈ VEH and v ∈
V, the attacker redirects e such that v ∈ VC , effectively controlling the
communication channels.

(c) Impact of Isolation: The information received by any h ∈ VEH is now fully controlled
by VC, leading to a scenario where h is eclipsed from the genuine blockchain network.
This prevents h from receiving valid transactions and blocks, effectively isolating it
from the true state of the blockchain.

Figure 10 is a representation of a network that includes both honest and compromised
nodes, illustrating a scenario of eclipse attack within a blockchain network. Blue nodes
are labeled “Honest_Node_x” and represent the honest participants in the network, nor-
mal or secure status, meaning these nodes are functioning correctly and have not been
compromised. Red nodes are labeled “Compromised_Node_x” and indicate nodes that
have been compromised or are under the control of an attacker. Edges, the lines between
the nodes represent connections or potential pathways for communication or data flow
between the nodes.

The graph could be used to understand the impact of the compromised nodes on
the network, particularly how the honest nodes are influenced or isolated due to these
compromised nodes. In an eclipse attack, the compromised nodes may be strategically
positioned to control the communication of the honest nodes, effectively isolating them
from the rest of the network. The goal of such an attack could be to feed false information
or prevent honest nodes from accessing the true state of the blockchain.

The model demonstrates that through an Eclipse attack, the adversary can control
the information available to certain nodes in the blockchain network, which can have
severe implications, such as facilitating double spending or denying service. The graph’s
theoretical approach to this proof provides a clear depiction of the attack’s potential and
highlights the importance of establishing secure and diverse peer-to-peer connections
within blockchain networks to mitigate such risks.
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Figure 10. Eclipse attack.

DDOS Attack on blockchain networks aims to overload the network by flooding nodes
with a large number of requests or malformed transactions. When executed in tandem with
a 51% attack, the malicious actor may also have enough control over the network to prevent
legitimate transactions from being confirmed, effectively causing a denial of service.

Assumption 10.

• We model the blockchain network as a graph G = (V, E) where:

– V: Set of nodes in the blockchain network, where each node v represents a participant
(e.g., user, miner, full node).

– E: Set of edges representing connections or potential transaction paths
between nodes.

• Each node v has a capacity c(v) representing the maximum number of transactions it can
process per time unit. A DDoS attack is modeled by increasing the demand d(v) on the node’s
resources to exceed c(v).

Application Statement 10.

• For a blockchain network represented by graph G, a successful DDoS attack is achieved by
creating a demand on nodes such that d(v) > c(v) for a significant subset VDDoS ⊆ V,
leading to service failure for those nodes.

Proof.

(a) Attack Initialization: The attacker distributes a set of malicious nodes VM ⊆ V or
botnets within the network that initiate the attack.

(b) Overwhelming Network Resources: Each malicious node m ∈ VM generates a number
of transactions t(m) directed at nodes in V, such that ∀v ∈ VDDoS, ∑m∈VM

t(m) > c(v).
(c) Exploiting Network Control: If combined with a 51% attack, the attacker can prior-

itize malicious transactions or invalidate legitimate ones, increasing the network’s
congestion. The attacker can create intentional forks by generating blocks at a rate
that overwhelms the network’s ability to reach consensus, further contributing to the
denial of service.
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(d) Service Failure: A significant number of nodes v ∈ VDDoS are unable to process
legitimate transactions, leading to service failure as defined by the inability of the
network to perform its intended operations.

Figure 11 depicts a highly interconnected network of nodes in a blockchain system.
Nodes labeled “Regular_Node_x” are honest participants in the blockchain network. Nodes
labeled “Malicious_Node_x” probably represent attackers or compromised nodes that may
be part of a coordinated attack. Edges’ dense interconnections shown by the multitude of
lines between nodes imply a network where each node is in communication with many
others, which is typical for peer-to-peer networks in blockchain systems. The blue color of
the “Regular_Node_x” suggests they are standard, uncorrupted nodes. The red color of the
“Malicious_Node_x” nodes implies danger or corruption, indicative of nodes that may be
initiating malicious activities like a DDoS attack. The dense web of connections signifies that
the network has a high level of redundancy and connectivity, which is usually a strength
for resilience and distributed consensus. However, the presence of malicious nodes within
this web can be a significant threat. The malicious can flood the network with superfluous
requests, transactions, or blocks, attempting to overwhelm the system’s computational
resources, thereby slowing down or even halting legitimate network operations.

The model concludes that a DDoS attack, particularly when coupled with a 51% attack
or intentional forks, can cripple a blockchain network’s functionality. This highlights
the importance of implementing robust transaction validation mechanisms, anti-spam
measures, and network capacity planning to mitigate the impact of DDoS and related
attacks on blockchain systems. The resilience of blockchain networks against such attacks
is crucial for maintaining service continuity and trust in the system.

Figure 11. DDoS attack.

51% attack in the context of blockchain technology occurs when a single entity gains
control of the majority of the network’s hash rate, enabling it to unilaterally alter the
blockchain’s state. This mathematical model, underpinned by graph theory, seeks to
encapsulate the dynamics of such an attack.

Assumption 11.

• Consider a blockchain network represented as a weighted directed graph
G = (V, E, w) where:
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– V: Set of nodes, where each node v represents a miner in the network.
– E: Set of directed edges representing hash rate contributions from one node to another (in

the case of pool mining).
– w(e): Weight of edge e, representing the hash rate directed from one node to another.

Application Statement 11.

• In a blockchain network graph G, an entity controlling a set of nodes VA ⊆ V, such that the
sum of outbound hash rate weights from VA surpasses 50% of the total network’s hash rate,
can perform a 51% attack.

Proof.

(a) Let WT be the total network hash rate, computed as the sum of weights of all outbound
edges in G:

WT = ∑
e∈E

w(e)

(b) An attacker controls a subset of nodes VA. Let WA be the hash rate controlled by the
attacker, calculated as:

WA = ∑
v∈VA

∑
e outbound from v

w(e)

(c) For the attacker to perform a 51% attack, WA must be greater than half of WT :

WA >
WT
2

This would enable the attacker to:

• Prevent transaction confirmations: By choosing not to include them in the blocks
they mine.

• Halt payments: By ignoring blocks containing certain transactions, preventing them
from being confirmed.

• Double-spend coins: by creating a private fork of the blockchain and then releasing it
to replace the previously agreed-upon blocks.

The control of the majority hash rate allows the attacker to have the longest chain,
which is considered the valid chain by honest nodes, thus enabling them to
manipulate the blockchain.

Figure 12 illustrates a 51% attack scenario on a blockchain network, which is char-
acterized by a single entity—the attacker—having a majority control over the network’s
mining power.

Nodes, labeled as “Miner_x” represent individual mining participants in the blockchain
network. The node labeled as “Attacker” represents the entity that has gained control
over a significant portion of the network’s mining power. Edges from the “Attacker” node
to the “Miner” nodes indicate the direction of control or influence. It implies that the
attacker has a direct or indirect influence over the individual miners, possibly because they
are part of a mining pool controlled by the attacker or are malicious nodes themselves.
The “Miner” nodes are colored blue, which could represent normal miners in the network.
The “Attacker” node is colored red, a common color to signify danger or a warning, in
this case representing the malicious entity conducting the attack. The “Attacker” node is
significantly larger than the “Miner” nodes, representing its larger hash rate relative to the
individual miners. The graph theory-based model conclusively demonstrates that if an
entity can accumulate more than half of the hash rate in a blockchain network, it possesses
the capability to undermine the network’s integrity. This proof highlights the intrinsic
security risks within proof-of-work blockchain systems and highlights the necessity for
distributed and balanced hash rate distribution to safeguard against 51% attacks.
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Through the lens of graph theory, we have explored a variety of attack vectors: phish-
ing attacks that lead to private key theft, 51% attacks that compromise the integrity of the
blockchain, DDoS attacks that overwhelm network resources, and DNS and BGP hijacks
that reroute traffic to compromise data integrity and availability. Threat modeling is an in-
dispensable part of designing and maintaining secure blockchain networks. It not only aids
in identifying and understanding potential threats but also in developing comprehensive
strategies to mitigate such risks and ensure the continuity, integrity, and trustworthiness of
blockchain systems.

Figure 12. 51% attack.

5.2.3. Deanonymization

Malicious actors often try linking user identities across blockchain transactions to
compromise privacy. Clustering and classification algorithms on user graphs generate
fingerprint profiles that quantify re-identification risks [78]. Figure 13 demonstrates how
advanced analysis techniques, including clustering and classification, apply to network
structure to uncover hidden patterns and compromise user privacy. By simulating clusters
and highlighting transaction activity levels, it provides a visual context for understanding
the deanonymization risks in blockchain networks.

Nodes represent individual wallets in the blockchain network. Directed edges (ar-
rows) signify transactions between these wallets. The transaction activity level of each
wallet can help identify highly active wallets relevant to the analysis for deanonymization.
Node Color simulates clustering results, with nodes color-coded to represent hypothetical
clusters identified in a deanonymization effort. These clusters could indicate wallets with
common spending patterns or other characteristics that algorithms have grouped together,
potentially revealing user identities.
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Figure 13. Deanonymization.

Assumption 12.

• The blockchain transaction network is a graph G(V, E) with wallets as nodes vi ∈ V and
transactions as edges eij ∈ E.

• User identities are anonymized behind wallet addresses.
• Transactions have attributes like timestamps, and coin values transferred.

Application Statement 12.

• Clustering algorithms applied on user transaction subgraphs can reveal common spending
patterns that fingerprint user identities in blockchain networks.

Proof.

(a) Construct transaction subgraphs Gk induced by each user k’s wallets Wk ⊆ V.
(b) Apply graph clustering methods (e.g., K-means) on Gk based on transaction attributes

and temporal patterns to separate coin mixes.
(c) Use resulting clusters as features to train classifier model Mk identifying user k.
(d) Apply Mk to full transaction graph G to predict the presence of user k’s payments.

Thus by extracting distinctive transaction features and styles from known user sub-
graphs, deanonymization classifier models can be constructed to compromise wider
blockchain privacy. Graph clustering enables the creation of fingerprint profiles that
quantify re-identification risks for blockchain users.

5.2.4. Tracking Ransom Payments

Ransomware groups use mixes of coin transactions across accounts to mask extorted
payments. But network analysis reveals identifiable payment flows by correlating transac-
tion times, values and links between groups of addresses [79].

Figure 14 is a simplified representation, aimed at demonstrating the underlying struc-
ture of ransomware payment flows in a blockchain transaction network. The actual process
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of unmixing coin transactions and tracking ransom payments involves a more complex
and nuanced analysis of transaction attributes and connectivity patterns. The visualization
serves to illustrate how ransomware groups move extorted payments through various
wallet addresses. The complexity and inter-connectedness of these transactions can be seen,
showcasing the challenge in tracking and analyzing these flows. Nodes represent wallet
addresses within the blockchain network. Directed edges (arrows) signify ransom-related
transactions between these wallets.

Figure 14. Tracking Ransom Payments.

Assumption 13.

• The blockchain transaction network is a temporal graph G(V, E, T) with wallet addresses as
nodes vi ∈ V, transactions as edges eijϵE, and timestamps tijϵT on edges.

• Ransomware groups mix coins across multiple wallets to hide payment trails.

Application Statement 13.

• Correlating transaction timing, value flow patterns and connectivity trails between groups of
addresses on temporal transaction graphs can reveal identifiable ransomware payment flows.

Proof.

(a) Apply the Modularity Optimization algorithm for community detection on transaction
graph G to cluster related wallets A into campaigns.

(b) Construct subgraphs GA ⊆ G induced by each ransomware wallet group A ⊆ V.
(c) Apply network flow modeling and tracking on GA based on transaction amounts,

timings and unmixing of trails between clusters to trace laundered payments.

This allows tracing obfuscated ransom transfers on blockchain networks via com-
bined analysis of graphs, flows and temporal patterns. Multi-faceted network analysis
techniques facilitate tracking ransomware payments on blockchain platforms despite coin
mixing attempts.
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Thus, graph techniques enable enhanced the modeling, prediction and containment of
security threats by uncovering hidden relationships and activity patterns.

5.3. Managing Scalability

Performance limitations like network congestion and transaction delays prevent
blockchains from scaling for mass adoption. Graph theory provides analytical approaches
as well as solutions to address scalability issues [80]. The scope of this section is limited to
theoretical representation.

5.3.1. Bench Marking Delays

The shortest path lengths and the diameter in baseline transaction graphs represent
best-case timings. Growth trends in these metrics during peak loads or attacks quantify
the extent of performance impacts [81]. Figure 15, ensuring a connected graph focusing
on the largest connected component necessary to compute these metrics and benchmark
delays effectively. Nodes represent entities in the blockchain network. Edges represent
transactions between these entities, with weights indicating transaction delays.

Figure 15. Benchmarking Delays.

Assumption 14.

• The blockchain network is modeled as a transaction graph G(V, E) with average edge weight
wavg representing delays.

• Shortest path lengths characterize best-case timings.

Application Statement 14.

• Tracking growth trends in shortest path lengths and diameter of the baseline transaction
graph during network attacks or congestion quantifies lower bounds on
performance degradation.

Proof.

(a) Measure average shortest path lavg, diameter D and average degree davg on G.
(b) Under attacks/congestion, adjust G by increasing edge weights to w′avg(> wavg).
(c) Re-compute shortest paths and diameter D′ on updated G.
(d) Benchmark slowdown as Ratio = D′

D (Also compare l′avg and d′avg).

This quantifies the extent of performance impacts under adverse events. Analyzing
structural graph metrics on baseline vs stressed blockchain networks provides lower bound
estimates on transaction delays.
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5.3.2. Identifying Bottlenecks

Congested network links manifest as high betweenness centrality edges in transaction
graphs. Alleviating such bottlenecks using solutions like off-chain payment channels
improves throughput [82].

Figure 16 visualization demonstrates how graph analysis, particularly edge betweenness
centrality, can be used to identify critical links in a blockchain network that leads to bottlenecks.
Addressing congestion on these links, perhaps through off-chain payment channels or other
scaling solutions, can potentially improve overall network throughput and efficiency. Nodes
represent entities in the blockchain network. Edges represent transaction links between these
entities. Edges with high betweenness centrality are highlighted in red. These edges are
potential network bottlenecks, as they participate in a large number of shortest paths that
experience high traffic and congestion. Other edges are shown in grey and dashed, indicating
normal transaction links with less centrality and, presumably, less congestion.

Figure 16. Identifying bottlenecks.

Assumption 15.

• The blockchain network is modeled as a transaction graph G(V, E) with edges ei having
capacities ci.

• Transaction throughput is limited by congested edges.

Application Statement 15.

• Edges with high betweenness centrality in the blockchain transaction graph correspond to
network bottlenecks limiting throughput. Offloading transactions along these edges to payment
channels can improve capacity.

Proof.

(a) Compute edge betweenness centrality BC(ei) in graph G.
(b) Edges with the highest BC(ei) participate in the largest number of shortest paths.
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(c) Congestion manifests as transaction backlogs along these top betweenness edges,
reducing throughput.

(d) Off-chain payment channels ease congestion along top bottleneck edges, improving
network capacity.

Graph centrality metrics identify network bottlenecks while payment channels help
mitigate congestion and transaction delays on blockchain platforms. This demonstrates a
graph analysis-based approach to pinpoint and alleviate congestion bottlenecks limiting
blockchain transaction throughput using concepts like betweenness centrality and off-chain
scaling solutions.

5.3.3. Sharding Blockchains

Large networks can be partitioned into zones of dense intra-cluster and sparse inter-
cluster connections via graph clustering methods. Transactions within shards process
faster, enhancing capacity [83]. Figure 17 presents partitioning the network into shards like
this, allowing transactions within each shard to be processed more quickly and efficiently,
potentially enhancing the overall capacity and speed of the blockchain network. This graph-
theoretical approach to sharding aims to improve blockchain scalability by optimizing
the processing of transactions within densely connected communities. Nodes represent
entities in the blockchain network. Edges represent transaction links between these entities.
Different colors indicate different clusters or shards identified using graph clustering
methods. Each color represents a different shard, nodes within the same shard (same
color) are densely connected, indicating a high density of within-community transactions.
Inter-cluster (inter-shard) connections are sparser, indicating less frequent transactions
between different shards.

Assumption 16.

• G(V, E) is a connected, undirected graph.
• C = {C1, C2, . . . , Ck} is the set of clusters identified within G, where each Ci is a subset of

V, representing a shard.

Application Statement 16.

• Partitioning G into k shards such that transactions within each shard Ci are processed more
quickly and efficiently, thereby enhancing the overall capacity and speed of the blockchain network.

Proof.
Given a blockchain network modeled as a transaction graph G(V, E), where V rep-

resents the set of nodes (entities in the blockchain network) and E represents the set
of edges (transaction links between entities), our objective is to partition G into sub-
graphs (Gi) that represent shards. This partitioning aims to maximize the density of
intra-cluster transactions while minimizing the inter-cluster transactions, enhancing overall
network throughput.

(a) Cluster Identification: Apply a graph clustering algorithm, such as modularity opti-
mization, to partition G into k clusters. The modularity Q of a partition is given by:

Q =
1

2m ∑
ij

[
Aij −

kik j

2m

]
δ(Ci, Cj)

where m is the total number of edges, Aij is the adjacency matrix of G, ki and k j are
the degrees of nodes i and j, and δ is the Kronecker delta function, indicating if nodes
i and j are in the same cluster. The goal is to maximize Q, which indicates a strong
community structure with dense intra-cluster and sparse inter-cluster connections.
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(b) Shard Assignment: Each node v ∈ V is assigned to a shard based on its cluster
membership determined in step 1. Formally, if v ∈ Ci, then v belongs to shard i.

(c) Transaction Routing: Intra-shard transactions (those occurring between nodes within
the same cluster) are routed internally within Ci. This minimizes the path length and,
by extension, the processing time for these transactions. Inter-shard transactions are
minimized but when necessary, are processed through designated gateway nodes that
facilitate communication between shards.

(d) Throughput Enhancement: By confining the majority of transactions to densely con-
nected clusters, each shard can independently process transactions in parallel, signifi-
cantly increasing the network’s throughput. The reduction in inter-shard transactions
decreases the overall network load, further contributing to speed improvements.

Figure 17. Sharding blockchains.

The application of graph clustering algorithms to partition a blockchain network
into shards effectively segregates transactions into densely connected communities. This
method enhances throughput by enabling parallel processing within shards and minimizing
the load on the network, thereby increasing the capacity and speed of blockchain transac-
tions. The formalization and optimization of such partitioning through graph-theoretical
methods are crucial for realizing scalable and efficient blockchain architectures.

5.3.4. Shaping Peer Networks

Analyzing degree distributions and connectivity trends between node pairs allows
configuring P2P topology for efficient resolvability of transactions [84]. Figure 18 infinite
average path length suggests that there are isolated nodes or small disconnected compo-
nents, highlighting areas for potential improvement in the network’s connectivity. This
visualization and the calculated metrics demonstrate how analyzing the degree distribution
and connectivity patterns in a P2P network can help in configuring the network structure
for efficient transaction propagation. Adjustments to the network (like adding or removing
edges) would be made to optimize these metrics. The goal is to achieve a network topol-
ogy that ensures fast and reliable dissemination of transactions, which is crucial for the
efficiency of blockchain systems. Nodes represent peers in the P2P network. Edges depict
connections between these peers.
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Figure 18. Shaping peer networks.

Assumption 17.

• The P2P network is modeled as a graph G(V, E) where nodes vi ∈ V are peers and edges eij
depict connections.

• Efficient propagation of transactions requires optimal P2P topology.

Application Statement 17.

• Analyzing degree distribution and connectivity patterns in the P2P topology graph allows for
configuring the network structure for fast and reliable transaction dissemination.

Proof.

(a) Measure degree distribution P(k) and avg degrees k of peer nodes in G.
(b) Evaluate Giant connected component size GCC(G) and avg path lengths lavg.
(c) Configure graph via adding/removing edges and nodes to tailor P(k), k, GCC(G)

and lavg to optimal values.
(d) This shapes the P2P topology for efficient and resolvable transaction propagation.

Applying graph metrics facilitates engineering blockchain P2P networks’ structure
and connectivity patterns for reliable transaction dissemination.

Overall graph algorithms facilitate systematic tracing of performance issues while
graph partitioning enables technical remedies.

5.4. Simulating Blockchain Networks

Often, new consensus protocols, computational models and attack strategies need eval-
uation before deployment on production systems [85]. Graph frameworks help simulate
blockchain networks for such testing [86].

5.4.1. Sybil Attacks

Adding fake identities to subvert consensus is a known risk. Operating Sybil attacks
on modeled transaction graphs measures the effectiveness of detection mechanisms [87].
Figure 19 presents a graph-based network modeling and simulation, we can analyze the
resilience of blockchain consensus systems against illicit Sybil attacks and benchmark the
effectiveness of Sybil detection mechanisms designed to secure network consensus. Light
Blue Nodes represent legitimate peers in the blockchain network. Red Nodes represent
Sybil nodes inserted into the network by an adversary. These are labeled with ’S’ to indicate
their Sybil status. Edges’ connections between nodes in the network, including those
between legitimate peers and Sybil nodes, illustrate how Sybil nodes integrate into the
network to subvert consensus mechanisms
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Figure 19. Sybil attacks.

Assumption 18.

• G(V, E) represents the transaction or interaction graph of a blockchain network.
• S ⊆ V represents the set of Sybil nodes inserted by an adversary.
• L = V \ S represents the set of legitimate nodes in the network.

Application Statement 18.

• Simulating Sybil attacks by introducing pseudo-nodes (S) into the modeled blockchain trans-
action graph G allows for the quantitative evaluation of the effectiveness of Sybil detection
mechanisms designed to secure network consensus.

Proof.
Given a blockchain peer network modeled as an interaction graph G(V, E), where V

represents the set of nodes in the network, including both legitimate peers and Sybil nodes,
and E represents the set of edges indicating connections between these nodes, our objective
is to simulate Sybil attacks and evaluate the effectiveness of Sybil detection mechanisms.

(a) Interaction Graph modelling: Define G(V, E) as the interaction graph of the blockchain
network, where nodes represent peers (legitimate and Sybil) and edges represent con-
nections or transactions between these peers.

(b) Sybil Node Insertion: An adversary introduces n Sybil nodes into G, resulting in the
updated graph G′(V′, E′), where V′ = V ∪ S and E′ includes edges connecting Sybil
nodes to legitimate nodes. Mathematically, for each Sybil node s ∈ S, connect s to at
least one l ∈ L via edge esl ∈ E′.

(c) Community Detection and Sybil Identification: Apply a community detection algo-
rithm to G′ aiming to partition V′ into disjointed subsets where each subset repre-
sents a tightly knit community. Formally, identify partitions P1, P2, . . . , Pk such that⋃k

i=1 Pi = V′ and Pi ∩ Pj = ∅ for i ̸= j. Detect Sybil groups by analyzing community
structures; communities with unusually high edge densities to specific external nodes
(potential gateways) are flagged as Sybil.

(d) Sybil Detection Algorithm Performance: Evaluate the detection algorithm by calculat-
ing the True Positive Rate (TPR) and False Positive Rate (FPR) based on the algorithm’s
ability to accurately identify inserted Sybil nodes. Define TPR as TP

TP+FN and FPR as
FP

FP+TN , where TP is true positives, FN is false negatives, FP is false positives, and
TN is true negatives.

(e) Benchmarking: Benchmark the Sybil detection algorithm’s performance across various
network topologies and Sybil attack scenarios by varying the number of Sybil nodes
(n) and their connection patterns within G′.
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In this modeling of the blockchain network as an interaction graph and simulating
Sybil attacks, we quantitatively evaluate the effectiveness of detection mechanisms against
such attacks. The mathematical framework and community detection approach provides a
systematic method for identifying Sybil nodes and assessing the resilience of blockchain
consensus systems to illicit activities, ultimately benchmarking Sybil detection schemes on
empirically modeled blockchain topologies.

5.4.2. Stress Testing

Simulating sudden surges in peak transaction loads on scaled versions of existing
graphs examines system robustness. Mining inequality metrics on resultant graphs quantify
capacity margins [88]. Figure 20 simulation demonstrates how scaling the blockchain
network and introducing surges in transactions can affect network characteristics, such as
mining power distribution, indicated by changes in average degree centrality. The increase
in average degree centrality from the baseline to the scaled network under peak load
suggests a shift in the network’s mining power distribution, potentially pointing towards
emerging bottlenecks or capacity margins. Orange Nodes represent nodes in the scaled
blockchain network. Edges indicate transactions between nodes, with an increased number
of transactions to simulate a surge and examine network robustness under stress.

Figure 20. Stress testing.

Assumption 19.

• The blockchain network is modeled as a transaction graph G(V, E).
• Network robustness is evaluated under simulated peak traffic.

Application Statement 19.

• Subjecting scaled blockchain transaction graphs to simulated peak traffic loads reveals system
capacity margins and bottlenecks via quantitative mining inequality metrics.

Proof.

(a) Model baseline blockchain transaction network as graph G(V, E). Obtain baseline
mining power distribution.

(b) Create scaled synthetic network with amplified transaction and mining traffic based on G.



Mathematics 2024, 12, 1133 32 of 45

(c) Simulate surges and analyze emergent mining inequality and centralization metrics
on the stressed graph.

This examines the robustness of the margins relative to baseline network inequal-
ity. Graph-based blockchain simulations under peak projected loads determine capacity
headrooms and reliability weaknesses before real-world deployments.

5.4.3. Protocol Testing

Analyzing consensus propagation across node communication graphs under various
conditions vets the performance of experimental protocols before finalization [89]. Figure 21
represents a blockchain peer network graph, which serves as a basis for protocol testing
of consensus algorithms where nodes represent peers in the blockchain network. Edges
depict the communication links between these peers.

Figure 21. Protocol testing.

Assumption 20.

• The blockchain peer network is modeled as a communication graph G(V, E).
• Consensus requires agreement propagation among peers.

Application Statement 20.

• Simulating consensus algorithms on graph models of blockchain peer networks under various
conditions facilitates the performance evaluation of proposed protocols before finalization.

Proof.

(a) Model peer network as graph G(V, E), capturing node connections.
(b) Implement consensus protocol logic for state transitions of G’s nodes and edges.
(c) Test consensus algorithm on G under different conditions of failures, delays and partitions.
(d) Compare simulation metrics like agreement times, message complexity and partitions

tolerated to analyze protocol progress and limitations.
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This allows comprehensive benchmarking of any consensus mechanism under realistic
scenarios. Graph-based blockchain network simulations enable the systematic testing of
consensus protocols for standardization and live deployment.

5.4.4. Forecasting Trends

Evolving synthetic graphs by adding projected nodes and edges predicts emerging
usage patterns and helps plan node additions and infrastructure upgrades [90]. Figure 22
represents an evolved synthetic blockchain network, developed for forecasting future
trends in network growth and usage patterns. This network has been expanded based
on projected increases in nodes and edges, simulating expected expansion and enabling
predictions for emerging usage patterns and infrastructure requirements. The network
starts with a historical state and evolves by adding a projected number of new nodes and
edges, reflecting the anticipated growth. The orange nodes represent both historical and
newly added nodes in the synthetic graph, showcasing the network’s expansion. Edges
indicate transaction links, increased according to growth predictions.

Figure 22. Forecasting trends.

Assumption 21.

• The historical blockchain network is modeled as transaction graph G(V, E).
• Future growth and usage patterns need estimation.

Application Statement 21.

• Extrapolating synthetic blockchain network graphs based on adding projected nodes and
edges to model expected expansion enables predicting emerging usage patterns and required
infrastructure upgrades.

Proof.

(a) Analyze historical transaction graph G(V, E) to develop blockchain adoption
forecast models.

(b) Initialize synthetic graph G′ matching the latest state of G.
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(c) Evolve G′ by adding nodes/edges based on growth predictions.
(d) Analyze properties of the simulated expanded graph G′ across multiple periods.
(e) This forecasts transaction volumes and infrastructure demands to plan upgrades.

Generating synthetic blockchain graphs helps estimate future adoption trends for
capacity planning.

All the above theorems and proofs using the graph theory model can enable modeling
attack scenarios, simulations, forecasting and vetting decisions before modifying produc-
tion systems. Graph theory can be used as a tool for blockchain simulation models and
facilitate safer innovation.

5.5. NFT Manipulation Mapping

Graph theory can be effectively used to represent and analyze activities like buying
and selling NFTs (Non-Fungible Tokens) to create fake volume, among other manipulative
trading strategies [91]. In a graph-theoretical model, these activities can be mapped in a
way that highlights the relationships and transactions between accounts or entities, making
it easier to identify patterns indicative of such practices [63]. Various avenues on how
graph theory can be applied to the specific activities are as follows:

5.5.1. Buying and Selling NFTs to Create Fake Volume (Wash Trading)

Identifying cycles where an NFT is repeatedly traded between the same set of accounts
within a short time frame can indicate wash trading. High transaction volumes with mini-
mal change in ownership could be flagged for further investigation Hasan et al. [92]. Wash
trading in the NFT market is a significant concern that requires attention and monitoring
to maintain market integrity [93]. Suspicious trading activities, such as wash trading,
have been observed in the NFT ecosystem, emphasizing the need for robust detection
mechanisms. By characterizing wash trading behaviors through graph theory analysis,
it becomes possible to pinpoint irregularities and potential fraudulent activities in NFT
transactions [94]. Victor von et al. [95] provides a lower bound estimation for suspicious
trading behaviour on NFT markets.

Assumption 22.

• Graph Model: The blockchain transaction network is modeled as a directed graph G = (V, E)
where:

– V is a set of vertices representing accounts participating in the NFT market.
– E is a set of directed edges representing transactions of NFTs between accounts. Each

edge eij ∈ E from vertex i to vertex j represents a transaction and is associated with
attributes such as transaction value vij, timestamp tij, and the specific NFT nij involved.

• C is a set of cycles within G, where each cycle represents a sequence of transactions returning
to the original account.

• A short time frame T is defined to identify rapid trading cycles indicative of wash trading.
• The transaction volume V(C) for a cycle C is the sum of the transaction values vij for all edges

eij in C.

Application Statement 22.

• For a given NFT marketplace transaction graph G, cycles C ⊆ G that complete within a short
time frame T and exhibit high transaction volumes V(C) relative to the network average are
indicative of wash trading.

Proof.

(a) Cycle Detection. Detect all cycles C in G, utilizing a depth-first search or other graph
traversal algorithms capable of identifying cycles.
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(b) Temporal Analysis. For each cycle C, calculate the duration D(C) as

D(C) = max(tij)− min(tij)

for all eij ∈ C. Identify cycles where D(C) < T.
(c) Volume Analysis. Calculate the transaction volume V(C) for each cycle C identified

in step b as
V(C) = ∑

eij∈C
vij.

(d) Benchmarking. Define the network’s average transaction volume Vavg and compare
V(C) for each cycle C against Vavg. Cycles with V(C) ≫ Vavg are scrutinized for
wash trading.

(e) Ownership Consistency. Verify the change in ownership for NFTs involved in cycles C.
Minimal change in ownership despite high V(C) reinforces the wash trading hypothesis.

Figure 23 directed graph modeling of the NFT marketplace transactions. In this graph,
Nodes (in skyblue) represent accounts participating in the NFT market. Directed edges (in
black) symbolize transactions of NFTs between these accounts. Each NFT involved in a
transaction is denoted by labels on the edges (in red). From this graph representation, we
detected 37 cycles, which could potentially indicate wash trading activities where NFTs are
repeatedly traded between the same set of accounts within a short timeframe.

Figure 23. NFT marketplace transactions.

Through the mathematical formulation of detecting cycles C within a transaction
graph G, analyzing these cycles for short-duration D(C) and abnormally high transaction
volumes V(C), and scrutinizing the consistency of ownership, we can effectively identify
and quantify wash trading activities in the NFT marketplace. This methodological approach
enhances our ability to maintain the integrity of blockchain platforms by pinpointing
manipulative trading behaviors, thereby ensuring a more transparent and trustworthy
NFT ecosystem.
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5.5.2. Coordinated Trading

By examining the timestamps and correlation of transactions among a subset of nodes,
one can detect abnormal spikes in activity that suggest coordination. Clustering algorithms
can help identify groups with unusually synchronized trading patterns [96].

Assumption 23.

• Let G = (V, E) be a directed graph where

– V represents traders in the NFT market, and
– E represents transactions of NFTs between traders. Each transaction eij ∈ E from trader

i to trader j is associated with attributes like transaction value vij, timestamp tij, and the
specific NFT nij involved.

– Define a subset S ⊆ V where traders are involved in coordinated trading, engaging in
transactions within a narrowly defined time frame T.

Application Statement 23.

• In the NFT marketplace represented by graph G, the subset S of traders engaging in coordinated
trading activities can be identified by analyzing the temporal clustering of transactions ES
within T, which leads to an abnormal surge in trading volume and price movement for the
involved NFTs.

Proof.

(a) Temporal Clustering. For each NFT nij involved in transactions ES within the sub-
set S, cluster transactions based on their timestamps tij. Identify clusters where
the number of transactions exceeds a threshold within time frame T, indicative
of coordinated trading.

(b) Volume and Price Analysis. Calculate the total transaction volume VS and average
price change ∆PS for NFTs involved in identified clusters. Compare VS and ∆PS with
the network-wide averages Vavg and ∆Pavg to identify significant deviations.

(c) Statistical Significance. Use statistical tests to evaluate the likelihood that observed
surges in volume and price movement are due to chance. Significant deviations from
the averages suggest the presence of coordinated trading.

Figure 24 visualization represents a directed graph of NFT market transactions, high-
lighting the dynamics of coordinated trading. In the graph, Skyblue Nodes represent all
traders participating in the NFT market. Red Nodes indicate the subset of traders involved
in coordinated trading within a defined time frame, showcasing potential collusion to
manipulate market perception. Edges symbolize transactions between traders, annotated
with NFT identifiers, transaction values, and timestamps, providing a comprehensive view
of market activity. This model allows us to identify clusters of coordinated trading activity
(red nodes) and analyze the temporal clustering of transactions within the narrowly defined
time frame T. By examining these patterns and comparing the transaction volume and
price changes of involved NFTs to network-wide averages, we can effectively detect and
quantify instances of market manipulation.

The ability to visualize and mathematically analyze such trading activities highlights
the importance of graph-based analysis in enhancing market transparency, integrity, and
fairness. Through these methodologies, stakeholders can better understand market dynam-
ics, implement measures to mitigate manipulative practices and foster a more trustworthy
NFT ecosystem.
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Figure 24. Coordinated Trading Visualization.

5.5.3. Cross Trading

Cross-referencing transactions involving the same NFTs across different graphs can re-
veal cross-trading activities. Matching transactions by time, NFT, and price across platforms
would highlight potential cross-trading schemes [97].This approach enables the detection
of coordinated trading practices that span multiple platforms, contributing to a more com-
prehensive understanding of market activities and potentially manipulative behaviors.

Assumption 24.

• Let us consider a collection of directed graphs {G1, G2, . . . , Gn} where each graph Gk = (Vk, Ek)
represents a transaction network on a distinct NFT trading platform k. In each graph:

– Vk is a set of vertices representing traders on platform k.
– Ek is a set of directed edges representing transactions of NFTs between traders on platform

k, with each edge ek
ij ∈ Ek from trader i to trader j associated with attributes like

transaction value vk
ij, timestamp tk

ij, and the specific NFT nk
ij involved.

Cross-trading is characterized by transactions involving the same set of traders and NFTs
across different platforms {G1, G2, . . . , Gn}.

Application Statement 24.

• In a multi-platform NFT marketplace represented by a collection of graphs
{G1, G2, . . . , Gn}, the presence of identical subsets of traders S ⊆ V1 ∩ V2 ∩ . . . ∩ Vn en-
gaging in transactions involving the same NFTs across these platforms is indicative of the
cross-trading aimed at artificially inflating perceived demand and price.

Proof.

(a) Identification of Common Traders Across Platforms. Identify subsets of traders S
who are active across multiple platforms, i.e., S ⊆ V1 ∩ V2 ∩ . . . ∩ Vn.

(b) Transaction Matching. For each trader s ∈ S and for each pair of platforms (Gk, Gl),
match transactions based on NFT identifiers and approximate timestamps. That
is, find pairs of transactions (ek

ij, el
mn) where nk

ij = nl
mn and |tk

ij − tl
mn| is minimal,

suggesting a deliberate attempt to show activity on multiple platforms.
(c) Volume and Price Analysis. Calculate the aggregated transaction volume VS and

average price PS for matched transactions across platforms. Compare these with
platform-specific and network-wide averages to identify significant deviations.
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(d) Statistical Significance. Employ statistical methods to assess whether the observed
patterns of cross-platform trading deviate significantly from expected distribution
under normal market conditions.

Figure 25 visualization illustrates the concept of cross-trading across two distinct NFT
trading platforms, represented as directed graphs for platforms G1 represented in blue
nodes and G2 represented in green nodes. Nodes represent traders participating in the NFT
market on each platform. Directed edges symbolize transactions of NFTs between traders.
This model enables the identification of cross-trading activities by analyzing transactions
involving the same NFTs by the same group of traders across different platforms. By
leveraging graph theory, stakeholders can better safeguard the ecosystem against such
deceptive strategies, ensuring a more transparent and fair market environment.

Figure 25. Cross trading.

5.5.4. Self-Trading

Detecting self-trading involves identifying subgraphs where transactions form closed
loops back to the original node, potentially through multiple intermediary nodes, indicating
self-trading activity Das et al. [98]. By examining these closed loops within the transaction
graph, irregularities suggestive of self-trading can be uncovered, enabling the identification
of such manipulative behaviors in NFT transactions. This type of wash trade can be
detected by finding Strongly Connected Components (SCCs) in the transaction graph.

Assumption 25.

• Graph Representation. The NFT marketplace is modeled as a directed graph
G = (V, E), where

• V represents individual trading accounts and
• E represents transactions between these accounts. Each transaction eij ∈ E from account i

to account j is associated with attributes such as transaction value vij, timestamp tij, and the
specific NFT nij involved.

Account Linkage. A set of accounts A is controlled by a single entity engaging in self-trading.
These accounts may engage in transactions TA amongst themselves to simulate genuine trading activity.

Transaction Analysis. Transactions that contribute to self-trading are characterized by the
transfer of NFTs within set A without introducing external market participants.

Application Statement 25.

• Self-trading in the NFT marketplace can be identified by analyzing graph G for closed trans-
action loops within the subset of accounts A, indicating artificial trading activity aimed at
inflating perceived market activity and NFT prices.
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Proof.

(a) Identify Linked Accounts. Utilize community detection algorithms or heuristic analy-
sis to identify subsets of accounts A ⊆ V that exhibit patterns of closed-loop transac-
tions indicative of single-entity control.

(b) Detect Closed Transaction Loops. For each account a ∈ A, trace outgoing transactions
eab ∈ E where b ∈ A, forming closed loops that start and end at the same account
or within A.

(c) Analyze Transaction Attributes. Examine attributes vij, tij, and nij of transactions
within closed loops for patterns such as repetitive trading of the same NFT, closely
timed buy-sell actions, and transaction values inconsistent with market norms.

(d) Quantify Artificial Activity. Aggregate the volume of transactions and the frequency
of NFT trades within A to quantify the scale of self-trading activity.

(e) Statistical Significance. Assess the statistical deviation of transaction patterns within A
from those of the broader market to confirm the non-random nature of
self-trading behavior.

Figure 26 visualization represents a directed graph simulating self-trading within the
NFT marketplace. Nodes (in skyblue) correspond to individual trading accounts within the
marketplace. A subset of these accounts (A = 1, 2, 3) is controlled by a single entity engaged
in self-trading to simulate genuine trading activity. Directed edges symbolize transactions
of NFTs between these controlled accounts. The edges are labeled with the specific NFT
involved in the transaction, illustrating the artificial circulation of NFTs within the subset A.
This model effectively demonstrates how self-trading can be identified through the analysis
of closed transaction loops among linked accounts, thereby artificially inflating trading
volume and NFT prices. Through the application of graph theory, the phenomenon of self-
trading in the NFT marketplace can be effectively detected and quantified. By modeling the
marketplace as a directed graph and identifying patterns of closed transaction loops among
linked accounts, it is possible to uncover attempts to artificially inflate trading volume
and NFT.

Figure 26. Self-trading simulation.
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Applying graph theory in the analysis of NFT trading activities not only aids in
detecting manipulative practices but also contributes to enhancing market transparency
and integrity. By leveraging graph-based models to map out transactions and relationships,
researchers and regulators can gain valuable insights into fraudulent behaviors and develop
effective monitoring tools to safeguard the NFT market.

6. Discussion

This paper demonstrates how graph algorithms analyze blockchain infrastructure
across multiple facets—decentralization trends, security hazards, scalability issues and
simulation testing. Translating ecosystem dynamics into graphical constructs provides ac-
tionable intelligence regarding vulnerabilities. Graph techniques also pinpoint inefficiencies
while also assessing resilience to combat external threats or internal performance degra-
dations. Network analysis and predictive modeling further enable smoother technology
management ensuring sound innovations.

We explored the multifaceted applications of graph theory and network analysis within
the context of blockchain platforms, illustrating how these mathematical tools can unravel
the complex dynamics and structural properties inherent to blockchain technology. By
translating the intricate web of transactions, consensus mechanisms, and user interactions
into graph-based models, we unlocked nuanced insights into the blockchain’s operational
efficiency, security posture, and scalability challenges.

The use of graph properties and metrics enriches our understanding of blockchain
networks beyond mere transactional throughput or token distribution. It allows for a
deeper investigation into the essence of decentralization, revealing how power and control
are concentrated across nodes or how resilient the network is to adversarial attacks. This
granular view not only highlights current strengths and vulnerabilities but also provides a
blueprint for mitigating risks and enhancing system robustness.

Security assessments, through the lens of graph theory, illuminate the pathways
through which malicious entities can compromise network integrity. Whether it is through
Sybil attacks, double-spending, or other forms of manipulation, graph models help in
devising countermeasures that are both precise and effective. Similarly, the examination
of network performance under varying loads and conditions offers actionable intelli-
gence for optimizing transaction flow and reducing latency, thereby ensuring a seamless
user experience.

Graph theory can also be applied to detect and prevent fraudulent activities in the NFT
market, such as wash trading, coordinated trading, cross trading, and self trading. These
activities involve manipulating the market by creating artificial demand and inflating prices
through coordinated buying and selling of NFTs among a group of users or by a single
user using multiple accounts. Graph analysis techniques can identify suspicious trading
patterns and clusters of users engaged in these activities by examining the relationships
between buyers, sellers, and NFTs in the transaction graph.

The adoption of graph-based approaches for blockchain analysis is not without its
challenges. The dynamic nature of blockchain networks, coupled with the ever-increasing
scale of transactions, demands the continuous refinement of graph algorithms and mod-
eling techniques. Additionally, privacy considerations and the need for anonymization
in graph data pose significant hurdles that must be navigated carefully to preserve user
confidentiality while still deriving valuable insights.

7. Conclusions

Throughout this paper, we demonstrated the instrumental role of graph theory and
network analysis in enhancing our comprehension and management of blockchain plat-
forms. By representing decentralized digital ledgers and associated interactions within
blockchain systems as graph models, this paper illustrates how mathematical abstrac-
tions enable advanced evaluations regarding topological structure, operational dynamics
and simulated workloads. The multifaceted insights gleaned through graph network
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analytics empower data-driven decision support to govern blockchain platforms. Graph
techniques unveil trends obscuring system transparency, diagnose performance inefficien-
cies, strengthen network robustness and accelerate innovation cycles—contributing to the
continuous evolution of blockchain technology.

As we look to the future, the continued advancement and the increasing sophistication
of modeling techniques promise to further bolster the utility of graph-based approaches in
blockchain analysis.

8. Limitations and Future Work

While this study provides valuable insights into the application of graph theory in
blockchain analysis, it is important to acknowledge its limitations and potential avenues
for future research.

One limitation of this work is its primary focus on graph theory, with only a light
touch on network science. Although graph theory and network science are closely re-
lated and often used in conjunction, this study concentrates mainly on the mathematical
aspects of graph theory and its applications in modeling blockchain systems. The thin
line separating graph theory and network science is not extensively explored, and a more
comprehensive integration of both fields could yield additional insights and opportunities
for blockchain analysis.

Another limitation is the absence of real-time blockchain scalability analysis. The scope
of this study is limited to theoretical proofs and simulations, demonstrating the potential
role of graph theory in modeling and optimizing blockchain networks. However, the appli-
cation of these concepts to real-time blockchain datasets is not included. Future research
could focus on implementing graph-based techniques in live blockchain environments to
validate their effectiveness and scalability in handling large-scale, dynamic networks.

It is important to emphasize that this study serves as a theoretical foundation, proving
the significance of graph theory in blockchain modeling and optimization. The aim is to
showcase how graph theory can be effectively used to model real-world problems in the
context of blockchain and provide optimal solutions. However, the practical implemen-
tation and evaluation of these techniques in real-time blockchain systems remain open
challenges for future work.

Future research could explore several directions to build upon the findings of this
study. One avenue is to delve deeper into the integration of graph theory and network
science, leveraging the strengths of both fields to develop more comprehensive and robust
models for blockchain analysis. This could involve incorporating network science con-
cepts such as network dynamics, community detection, and information propagation into
graph-based approaches.

Another direction for future work is to apply graph theory to real-time blockchain
datasets, testing the scalability and efficiency of the proposed techniques in handling large-
scale, dynamic networks. This could involve collaborating with blockchain platforms or
accessing public blockchain data to validate the performance of graph-based algorithms in
real-world scenarios.

Additionally, future research could explore the application of graph theory to specific
blockchain use cases, such as supply chain management, decentralized finance (DeFi),
or identity verification. By focusing on domain-specific challenges and requirements,
researchers can develop tailored graph-based solutions that address the unique needs of
each application area.

Furthermore, the integration of machine learning and deep learning techniques with
graph theory could open up new possibilities for blockchain analysis. Graph neural
networks, for example, have shown promise in tasks such as node classification, link
prediction, and anomaly detection. Combining these advanced learning algorithms with
graph-based representations of blockchain data could lead to more accurate and efficient
analysis tools.
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This study provides a solid theoretical foundation for the application of graph theory
in blockchain analysis, there is ample room for future research to build upon these findings.
By addressing the limitations, exploring new directions, and leveraging the power of
graph theory in conjunction with other fields, researchers can continue to advance the
understanding and optimization of blockchain networks, ultimately contributing to the
development of more secure, scalable, and efficient decentralized systems.
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