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Abstract: This paper describes a kind of linear quadratic uncertain stochastic hybrid differential
game system grounded in the framework of subadditive measures, in which the system dynamics
are described by a hybrid differential equation with Wiener–Liu noise and the performance index
function is quadratic. Firstly, we introduce the concept of hybrid differential games and establish
the Max–Min Lemma for the two-player zero-sum game scenario. Next, we discuss the analysis of
saddle-point equilibrium strategies for linear quadratic hybrid differential games, addressing both
finite and infinite time horizons. Through the incorporation of a generalized Riccati differential
equation (GRDE) and guided by the principles of the Itô–Liu formula, we prove that that solving the
GRDE is crucial and serves as both a sufficient and necessary precondition for identifying equilibrium
strategies within a finite horizon. In addition, we also acquire the explicit formulations of equilibrium
strategies in closed forms, alongside determining the optimal values of the cost function. Through the
adoption of a generalized Riccati equation (GRE) and applying a similar approach to that used for the
finite horizon case, we establish that the ability to solve the GRE constitutes a sufficient criterion for
the emergence of equilibrium strategies in scenarios extending over an infinite horizon. Moreover, we
explore the dynamics of a resource extraction problem within a finite horizon and separately delve
into an H∞ control problem applicable to an infinite horizon. Finally, we present the conclusions.

Keywords: uncertain stochastic hybrid differential games; saddle-point equilibrium; generalized
Riccati differential equation; generalized Riccati equation

MSC: 49L20; 49N90; 91A10

1. Introduction

Rufus Isaacs [1] pioneered differential game theory in 1965, and initially applied it to
military strategies like pursuit and evasion. This sparked enduring interest in decision-
making dynamics. In 1971, Friedman [2] established key theoretical foundations, revealing
value and saddle points. Basar and Olsder [3] expanded on this, exploring noncooperative
games, enriching our understanding of strategic dynamics. Later, Docker et al. [4] utilized
mathematical tools to analyze equilibrium conditions, strengthening the field’s mathemat-
ical underpinnings. Overall, research in differential game theory has led to significant
advancements in understanding strategic decision making in dynamic systems.

Linear quadratic differential games, a subset of the broader field of differential games,
attract both dynamic game theorists and economists exploring policy coordination, resource
extraction, and capital accumulation due to their applicability to real-world scenarios and
ability to model complex strategic interactions. In 1965, Ho et al. [5] explored pursuit-
evasion games, a key example of linear quadratic differential games, revealing foundational
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insights into strategic dynamics within this framework. Building on this foundation, Starr
and Ho in 1969 [6] established a crucial condition for closed-loop strategies’ existence,
essential for strategic decision making, utilizing the solution of the Riccati equation to
provide valuable insights into dynamic optimal strategies. In 1970, Schmitendorf’s work [7]
illuminated a notable aspect of linear quadratic differential games, revealing that the exis-
tence of a closed-loop saddle point does not guarantee the presence of an open-loop saddle
point, emphasizing the complexities inherent in strategic decision making within dynamic
systems. In recent years, scholars have continued to delve into linear quadratic differential
games, refining methodologies and uncovering deeper strategic insights, underscoring the
enduring relevance and complexity of this specialized area within differential game theory
(see, e.g., Bernhard [8], Delfour et al. [9] and Delfour [10]).

In real-world scenarios, the evolution of states in dynamic systems is frequently dis-
rupted by environmental noise, which can infiltrate the state equation or affect players’
observations of the system. When noise follows the Wiener process, stochastic differen-
tial equations become essential for characterizing system evolution, thus converting the
differential game into a stochastic differential game. Similarly, when noise is shaped by
the Liu process, reflecting the uncertainty tied to experts’ belief degrees, uncertain dif-
ferential equations offer a pivotal means of characterizing system evolution, leading to
the emergence of uncertain differential games. Fleming’s seminal contributions [11] in
stochastic control paved the way for solving differential game scenarios with stochastic
state dynamics. For instance, in 2006, Mou and Yong [12] utilized the Hilbert space method
to examine open-loop strategies in stochastic linear quadratic differential games, while Sun
and Yong [13] explored both open-loop and closed-loop saddle-point equilibriums in 2014.
In uncertain settings, Zhu’s introduction [14] of uncertain optimal control in 2010 facilitated
the analysis of differential games with uncertain state dynamics. Yang and Gao [15,16]
further advanced this field by proposing uncertain differential games incorporating Liu
process noise, establishing conditions for the existence of a feedback Nash equilibrium in
2013 and delving into linear quadratic uncertain differential games in 2016. The integration
of chance theory based on subadditive measures addresses systems where both uncertainty
and randomness coexist, modeling noise through the Wiener–Liu process and system
evolution through uncertain stochastic hybrid differential equations, thus transforming the
differential game into a hybrid differential game. Liu’s pioneering work [17] in 2013 laid the
foundation for exploring uncertain stochastic hybrid systems [18,19] based on subadditive
measures, followed by subsequent research by Fei et al. [20] in 2014, introducing uncertain
stochastic hybrid optimal control and the equation of optimality via uncertain stochastic
hybrid differential equations. With the help of uncertain stochastic optimal control, there
has been a growing body of literature focusing on uncertain stochastic hybrid differential
game systems [21–24]. Unlike the models and methods mentioned earlier, this work is the
beginning of linear quadratic uncertain stochastic hybrid differential games in finite and
infinite horizons.

The structure of this paper is organized as follows. Section 2 begins by recalling some
basic results about the principle of optimality, the HJB equation and the feedback Nash
equilibrium of hybrid differential games and so on, and then gives Max–Min Lemma of
a two-player zero-sum game, which is essential for our analysis. Section 3 is devoted to
the study of the saddle-point equilibrium strategy for linear quadratic hybrid differential
games in continuous time. Section 4 presents a resource extraction problem and an H∞
control problem. Finally, Section 5 presents the conclusions.

2. Preliminaries

For any (k, z) ∈ [0, T]×ℜm, s ∈ [k, T], and any control variable D(·) ∈ U , where f , g,
and h are the given functions, we consider the state equation,{

dz(s) = f (s, z(s), D(s))ds + g(s, z(s), D(s))dWs
+h(s, z(s), D(s))dCs, z(T) = z.
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The corresponding cost functional is

J(k, z, D) = ECH

[∫ T

s
Φ1(s, z(s), D(s))ds + Φ2(T, z(T))

]
,

where ECH is the chance expectation, Ws is a Wiener process and Cs a Liu process. Define

the value function V(k, z) by V(k, z) ∆
= inf

D∈U
J(k, z, D).

Theorem 1 ([20]). (Principle of optimality.) For any (k, z) ∈ [0, T]×ℜp, we have

V(k, z) = inf
D∈U

ECH

[∫ k̂

k
Φ1(s, z(s), D(s))ds + V(k̂, z(k̂))

]
, 0 ≤ k ≤ k̂ ≤ T.

Theorem 2 ([20]). (HJB equation.) Let C([0, T]×ℜp) denote all functions V(k, z) on [0, T]×ℜp

that are continuously differentiable in time k and continuously twice differentiable in z. If V(·) ∈
C([0, T]×ℜp), define operators L(D)V by

L(D)V(k, z) ∆
=

∂V
∂k

(k, z) +
p

∑
k=1

∂V
∂zk

(k, z) fk(k, z, D)

+
1
2

p

∑
k=1

p

∑
l=1

∂2V
zkzl

(k, z)
m

∑
i=1

gki(k, z, D)gli(k, z, D).

Then, V is a solution of the following terminal problem of an HJB equation

inf
D∈U

{L(D)V(k, z) + Φ1(k, z, D)} = 0

with the terminal condition V(T, z) = Φ2(T, z).

A differential game is a class of decision problems in which the evolution of the state
is described by a differential equation. The players act throughout a time interval [k0, T]
and aim to maximize their payoffs. In the general n-person differential game model, player
i optimizes the objective

sup
ui

∫ T

k0

Ri(k, z(k), u1(k), u2(k), · · · , un(k))dk + Θi(z(T)) for i ∈ N = {1, 2, · · · , n} (1)

subject to

dz(k) = f (k, z(k), u1(k), u2(k), · · · , un(k))dk, z(k0) = z0, (2)

where T > k0 ≥ 0, z(k) ∈ ℜm is the state variable, z0 is the given initial state, ui ∈
Ui is the control variable of player i, and Ui is a compact metric space. The function
Ri(k, z, u1, u2, · · · , un) is the transient payoff function of player i at time k, Θi(·) is the
terminal reward function of player i at terminal time T, and f (k, z, u1, u2, · · · , un) is a vector
function. All functions mentioned are differentiable.

In the true essence of the game, the state evolution is inevitably disturbed by environ-
mental noise. This noise may may occur directly within the state equations or indirectly
through the players’ observations of the system’s condition. In a vector-valued n-person
uncertain stochastic hybrid differential game model, player i optimizes the objective

sup
ui

Ek0
CH

[∫ T

0
Ri[k, z(k), u1(k), u2(k), . . . , un(k)]dk

+ Θi(z(T))
]

, i ∈ N = {1, 2, . . . , n}. (3)
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A vector-valued hybrid differential equation, which delineates the evolution of the
state and n objective functions (3), provides a more suitable framework for analyzing
differential games with uncertain stochastic noise driven by the Wiener–Liu process:

dz(k) = f [k, z(k), u1(k), u2(k), · · · , un(k)]dk

+ σ[k, z(k), u1(k), u2(k), · · · , un(k)]dHk

z(0) =z0 (4)

where Ek0
CH represents the chance expectation operator performed at time k0, z(k) ∈ ℜm

represents the state variables, ui ∈ ℜli is the control of player i, Hk = (Wk, Ck) is an
l-dimensional Wiener–Liu process, similar to refs. [18,19], and z0 is the given initial state.

For the subsequent analysis, the following assumptions are presented:

f : [0, T]×ℜm ×ℜl1 × . . . ×ℜln → ℜm

and
σ : [0, T]×ℜm ×ℜl1 × . . . ×ℜln → ℜm ×ℜl

which satisfy the Lipschitz condition and linear growth condition and possess continuous
partial derivatives.

For k ∈ [k0, T], the admissible feedback control denotes:

ui(k) = ui(k, z(k))

where
ui(·, ·) : [0, T]×ℜm −→ ℜli .

Denote

u−i(k, z) = {u1(k, z), u2(k, z), · · · , ui−1(k, z), ui+1(k, z), · · · , un(k, z)}.

A feedback Nash equilibrium of the hybrid differential game (3)–(4) can be defined
as follows.

Definition 1. A set of strategies {u∗
1(s, z), u∗

2(s, z), · · · , u∗
n(s, z)} is called a feedback Nash equilib-

rium for the n-person hybrid differential game (3)–(4), and {z∗(s), k ≤ s ≤ T} is the corresponding
state trajectory, if there exist real-valued functions Vi(k, z) : [0, T] × ℜm → ℜ, satisfying the
following relations for each i ∈ N :

Vi(k, z) = Ek0
CH [

∫ T

k0

Ri(k, z∗(k), u∗
1(k), u∗

2(k), · · · , u∗
n(k))dk + Θ∗

i (z(T))

≥ Ek0
CH [

∫ T

k0

Ri(k, z[i](k), u[i]
1 (k), u[i]

2 (k), · · · , u[i]
n (k))dk + Θ[i]

i (z(T))

∀ui(·, ·) ∈ [k0, T]×ℜm, z(·) ∈ ℜm;

Vi(T, z) = Θi(z(T))

where on the time interval [k, T]:

dz∗(s) = f [s, z∗(s), u∗
i (s, z∗), u∗

−i(s, z∗)]ds

+ g[s, z∗(s), u∗
i (s, z∗), u∗

−i(s, z∗)]dHs

z∗(k) =z;

dz[i](s) = f [s, z[i](s), ui(s, z[i]), u∗
−i(s, z[i])]ds

+ g[s, z[i](s), ui(s, z[i]), u∗
−i(s, z[i])]dHs

z[i](k) =z.
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Remark 1. If an n-pair u∗
i (s, z); i ∈ N establishes a feedback Nash equilibrium for an n-person

differential game, as defined in Equations (3)–(4), over the duration [k0, T], then its restriction to the
time interval [k, T] also constitutes a feedback Nash equilibrium, just as Docker et al. [4] described.
Importantly, the feedback Nash equilibrium depends solely on the the current state value z(T) and
time variable k, not on any prior history (including the initial state z0).

Next, we give sufficient conditions guaranteeing that ui(k, z); i ∈ N is a feedback Nash
equilibrium for the game (3)–(4).

Lemma 1. An n-tuple of strategies {u∗
i (k, z); i ∈ N} provides a feedback Nash equilibrium

to the n-player uncertain differential game (3)–(4) if there exist real-valued functions Vi(k, z) :
[0, T]×ℜm → ℜ, i ∈ N, satisfying the partial differential equations:

−Vi
k(k, z) = sup

ui

{
Ri[k, z(k), ui(k, z), u∗

−i(k, z)]

+∇zVi(k, z) f [k, z, ui(k, z), u∗
−i(k, z)] +

1
2
∇zzVi(k, z)στσ[k, z, ui(k, z), u∗

−i(k, z)]
}

=Ri[k, z, u∗
i (k, z), u∗

−i(k, z)]

+∇zVi(k, z) f [k, z, u∗
i (k, z), u∗

−i(k, z)] +
1
2
∇zzVi(k, z)στσ[k, z, u∗

i (k, x), u∗
−i(k, z)]

Vi(T, z) =Θi(z(T)).

Proof. The result can be readily derived from Theorem 2 and the definition of the feedback
Nash equilibrium. By holding the strategies of all players fixed at their equilibrium choices,
except for the ith player’s, we transform the scenario into a hybrid optimal control problem
as described by Theorem 2.

Now, let us delve into The “Max–Min Lemma” of the two-player zero-sum hybrid
differential game.

Lemma 2. (Max–Min Lemma): A pair of strategies {u∗
i (k, z) ∈ ℜli ; i = 1, 2} provides a feedback

Nash equilibrium solution (called a saddle-point Nash equilibrium) to the two-player zero-sum of
the game (3)–(4) if there exists a real-valued function V(k, z) : [0, T]×ℜm → ℜ, satisfying the
partial differential equations:

−Vk(k, z) =max
u1

min
u2

{R(k, z, u1, u2)

+∇zV(k, z) f (k, z, u1, u2)}+
1
2

στ(k, z, u1, u2)∇zzV(k, z)σ(k, z, u1, u2)}

=min
u2

max
u1

{R(k, z, u1, u2)

+∇zV(k, z) f (k, z, u1, u2)}+
1
2

στ(k, z, u1, u2)∇zzV(k, z)σ(k, z, u1, u2)}

=R(k, z, u∗
1 , u∗

2) +∇zV(k, z) f (k, z, u∗
1 , u∗

2) +
1
2

στ(k, z, u∗
1 , u∗

2)∇zzV(k, z)σ(k, z, u∗
1 , u∗

2)

V(T, z) = Θ(z(T)).

Proof. As a special case of Lemma 1, the result can be easily obtained by taking
n = 2, R1(·) = −R2(·)

.
= R(·), and Θ1(·) = −Θ2(·)

.
= Θ(·), in which case V1 = −V2 .

= V
and the Max–Min Lemma is completed.

3. Main Results

Notation: in the following, denote by ℜn the set of n-dimensional Euclidean spaces,
ℜm×n the set of all m × n matrices, Sn the set of all real symmetric n × n matrices, and
S̃n the set of all positive definite n × n matrices. P > 0 denotes P ∈ S̃n, Pτ denotes the
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transpose of a matrix or vector, Ṗ = dP
dk , and k is the time. For a Hilbert space H̃ and an

interval I, let L∞(I, H̃) be the space of all bounded and measurable functions from I to H̃,
that is, f : I → H̃, L1,∞ = {P ∈ L∞(I, H̃)|Ṗ ∈ L∞(I, H̃)}, where I = [s, T) or [s, ∞). Now,
we discuss two-player zero-sum hybrid differential games in finite and infinite horizons.

3.1. The Case of Finite Horizons

Fix (s, z) ∈ [k0, T]× ℜn. Let H1 and H2 be two standard independent Wiener–Liu
processes in the chance space over [s, T] with Hi(s) = 0 almost surely. Let Ui[s, T] be
the set of ℜl-valued square integrable processes adapted with the σ-field generated by
Hi(·), i = 1, 2, respectively. Associated with each (u1, u2) ∈ U [s, T] ≡ U1[s, T]× U2[s, T] is
a quadratic cost J(u1, u2). The performance index function is defined as:

J(u1(·), u2(·)) = ECH{zτ(T)Nz(T)+
∫ T

s
(zτGz+2uτ

1L1z+uτ
1R1u1+2uτ

2L2z+uτ
2R2u2)dk} (5)

where z is the solution to the following equation
dz = [Az + B1u1(k) + B2u2(k)]dk

+[C1z + D1u1(k)]dH1(k)
+[C2z + D2u2(k)]dH2(k)

z(s) = z0

(6)

and E{} symbolizes the chance expectation. A, Bi, Ci, Di, G, N, Ri and Li are matrix func-
tions, i = 1, 2.

Assumption 1. We assume that A, Bi, Ci, Di, G, N, Ri and Li in (5)–(6) satisfy{
A, Ci ∈ L∞(I,ℜn×n); Bi, Di, Lτ

i ∈ L∞(I,ℜn×l),
Ri ∈ L∞(I, Sl), i = 1, 2; G ∈ L∞(I, Sn); N ∈ Sn.

Hybrid differential game problem 1: for the hybrid system described by (6), find the
feasible control (u1

∗(·), u2
∗(·)) ∈ U [s, T] and ensure that the following holds:

J(u1
∗(·), u2(·)) ≤ J(u1

∗(·), u2
∗(·)) ≤ J(u1(·), u2

∗(·))

Theorem 3. The two-player zero-sum linear quadratic hybrid differential game (5)–(6) has a
saddle-point Nash equilibrium solution if the following differential Riccati equation has a solution
P(k) ∈ L1,∞(I, Sn)

Ṗ + Aτ P + PA +
2
∑

i=1
Ci

τ PCi + G −
2
∑

i=1
Si

τ(P)R−1
i (P)Si(P) = 0

R1(P) > 0, R2(P) < 0
Ri(P)Ki(P) = Si(P), i = 1,2

P(T) = N

(7)

where Si(P), Ri(P), and Ki(P) are defined as
Si(P) = Bτ

i P + Dτ
i PCi + Li

Ri(P) = Ri+Dτ
i PDi

Ki(P) = R−1
i (P)Si(P), i = 1,2.

and the saddle point and the optimum value are

(u1
∗(·), u2

∗(·)) = (−K1(P)z(·),−K2(P)z(·))

and
J(u1

∗(·), u2
∗(·)) = zτ P(s)z.
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Proof. Let P(k) ∈ L1,∞(I, Sn) be the solution of Equation (7) and z(k) be the solution of
Equation (6) corresponding to control (u1(k), u2(k)). Using the fundamental theorem of
calculus and Itô–Liu formula in ref. [20], applied to zτ(k)p(k)z(k), we obtain

d[zτ pz] =[zτ(Ṗ + PA + Aτ P +
2

∑
i=1

Cτ
i PCi)z

+ 2uτ
1(Bτ

1 P + Dτ
1 PC1)z + uτ

1 Dτ
1 PD1u1+

+ 2uτ
2(Bτ

2 P + Dτ
2 PC2)z + uτ

2 Dτ
2 PD2u2]dk

+ {· · · }dW1 + {· · · }dW2 + {· · · }dC1 + {· · · }dC2.

Taking integrations on [s, T] and chance expectation, we obtain

ECH [zτ(T)P(T)z(T)]=z0
τ P(s)z0 + ECH

∫ T

s
zτ(Ṗ + PA + Aτ P +

2

∑
i=1

Cτ
i PCi)zdk

+
2

∑
i=1

ECH

∫ T

s
[2uτ

i (Bτ
i P + Dτ

i PCi)z + uτ
i Dτ

i PDiui]dk. (8)

Substituting (8) into (5), J(u1, u2) can be be reduced to

J(u1(·), u2(·)) = z0
τ P(s)z0 + ECH{zτ(T)(N − P(T))z(T)}

+ ECH

∫ T

s
{[zτ(Ṗ + PA + Aτ P +

2

∑
i=1

Cτ
i PCi + G)z]}dk

+ ECH

∫ T

s

2

∑
i=1

{[2uτ
i (Bτ

i P + Dτ
i PCi + Li)z

+ uτ
i (Ri + Dτ

i PDi)ui]}dk

=z0
τ P(s)z0 + ECH

∫ T

s
{[zτ(Ṗ + PA + Aτ P +

2

∑
i=1

Cτ
i PCi + G)z]dk

+
2

∑
i=1

[2uτ
i Si(P)z + uτ

i Ri(P)ui]}dk.

While, by the following equality

2uτ
i Si(P)z + uτ

i Ri(P)ui

=uτ
i Ri(P)Ri(P)−1Ri(P)ui + 2uτ

i Si(P)z

+ zτSτ
i (P)R−1

i (P)Si(P)z − zτSτ
i (P)R−1

i (P)Si(P)z

=[ui + R−1
i (P)Si(P)z]

τ
Ri(P)[ui + R−1

i (P)Si(P)z]

− zτSτ
i (P)R−1

i (P)Si(P)z.

we can obtain that

J(u1(·), u2(·)) =z0
τ P(s)z0 + ECH

∫ T

s
{zτ [Ṗ + PA + Aτ P +

2

∑
i=1

Cτ
i PCi + G−

2

∑
i=1

Sτ
i (P)R−1

i (P)Si(P)]zdk+

+
2

∑
i=1

[ui + R−1
i (P)Si(P)z]

τ
Ri(P)[ui + R−1

i (P)Si(P)z]}dk.
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So,

J(u1(·), u2(·)) =z0
τ P(s)z0

+
2

∑
i=1

ECH

∫ T

s
[ui + R−1

i (P)Si(P)z]
τ

Ri(P)[ui + R−1
i (P)Si(P)z]dk.

The theorem is proved.

Theorem 4. If linear feedback controls (u1
∗(·), u2

∗(·)) = (−K1(P)z(·),−K2(P)z(·)) are opti-
mal for the two-player zero-sum linear quadratic hybrid differential game (5)–(6), then the Riccati
Equation (7) must have a solution P(·). Moreover, Ki(P) = R−1

i (P)Si(P)

Proof. By Theorem (2), the value function V(k, z) satisfies the HJB equation

Vk(k, z) + min
u1

max
u2

{zτGz + 2uτ
1L1z+uτ

1R1u1+2uτ
2L2z+uτ

2R2u2

+ [Az(T) + B1u1(k) + B2u2(k)]
τ · Vz(k, z)

+
1
2
[C1z(T) + D1u1(k)]

τVzz(k, z)[C1z(T) + D1u1(k)]

+
1
2
[C2z(T) + D2u2(k)]

τVzz(k, z)[C2z(T) + D2u2(k)]}

= 0.

(9)

Take the following value equation

V(k, z) = zτ Pz. (10)

So, substituting (10) into (9), and by the assumption that (u1
∗(·), u2

∗(·)) = (−K1(P)z(·),
−K2(P)z(·)), we can obtain that

0 =zτ(Ṗ + PA + Aτ P +
2

∑
i=1

Cτ
i PCi + G)z

+ min
u1

max
u2

{2uτ
i Si(P)z + uτ

i Ri(P)ui}

=zτ(Ṗ + PA + Aτ P +
2

∑
i=1

Cτ
i PCi + G)z

+ min
u1

max
u2

{[ui + R−1
i (P)Si(P)z]

τ
Ri(P)[ui + R−1

i (P)Si(P)z]

− zτ
2

∑
i=1

Sτ
i (P)R−1

i (P)Si(P)z}

=zτ(Ṗ + PA + Aτ P +
2

∑
i=1

Cτ
i PCi + G−

2

∑
i=1

Sτ
i (P)R−1

i (P)Si(P))z.

So, we obtain that Ki(P) = R−1
i (P)Si(P) and

Ṗ + Aτ P + PA +
2

∑
i=1

Ci
τ PCi + G −

2

∑
i=1

Si
τ(P)R−1

i (P)Si(P) = 0.

The proof is complete.

3.2. The Case of Infinite Horizons

Fix (s, z) ∈ [k0, ∞)×ℜn. Let H1 and H2 be two standard independent Wiener–Liu
processes in a chance space over [s, ∞) with Hi(s) = 0 almost surely. Let Ui[s, ∞) be
the set of ℜl-valued square integrable processes (denote by L2

i (ℜl)) adapted with the σ-
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field generated by Hi(·), i = 1, 2, respectively. Associated with each (u1, u2) ∈ U [s, ∞) ≡
U1[s, ∞) × U2[s, ∞) is a quadratic cost J∞(u1, u2). The performance index function is
defined as:

J∞(u1(·), u2(·)) = ECH{
∫ ∞

s
[(zτGz+2uτ

1L1z+uτ
1R1u1+2uτ

2L2z+uτ
2R2u2)]dk} (11)

where z is the solution to the following equation
dz = [Az + B1u1(k) + B2u2(k)]dk

+[C1z + D1u1(k)]dH1(k)
+[C2z + D2u2(k)]dH2(k)

z(s) = z0

(12)

and E{} represents the expectation of the enclosed uncertain random variable. A, Bi, Ci, Di, G, Ri
and Li are matrix functions, i = 1, 2. and they also satisfy Assumption 1.

Hybrid differential game problem 2: for the hybrid system described by the given
Formula (11), find the feasible control (u1

∗(·), u2
∗(·)) ∈ U [s, ∞) and ensure that the follow-

ing holds:
J∞(u1

∗(·), u2(·)) ≤ J∞(u1
∗(·), u2

∗(·)) ≤ J∞(u1(·), u2
∗(·)).

For this problem, we introduce the following generalized Riccati equation (GRE)
Aτ P + PA +

2
∑

i=1
Ci

τ PCi + G −
2
∑

i=1
Si

τ(P)R−1
i (P)Si(P) = 0

R1(P) > 0, R2(P) < 0
Ri(P)Ki(P) = Si(P), i = 1,2

(13)

where P ∈ Sn is an unknown matrix, and Si(P), Ri(P), and Ki(P) are defined as
Si(P) = Bτ

i P + Dτ
i PCi + Li

Ri(P) = Ri+Dτ
i PDi

Ki(P) = R−1
i (P)Si(P), i = 1,2.

Since we are considering the hybrid differential game problem in an infinite horizon,
we need the concept of mean-square stabilizability.

Definition 2. (i) An open-loop control (u1(·), u2(·)) ∈ L2
1(ℜl)× L2

2(ℜl) is called (mean-square)
stabilizing if the corresponding state of (12) with the initial state z ∈ ℜn satisfies lim

k→∞
E{zτ(k)z(k)} =

0. A feedback control (u1(·), u2(·)) = (−K1z(·),−K2z(·)), where K1, K2 ∈ ℜl×n is a constant
matrix, is called stabilizing if for every initial state z ∈ ℜn, the solution of the following equation

dz(k) = (A − B1K1 − B2K2)z(k)dk
+(C1 − D1K1)z(k)dH1(k)
+(C2 − D2K2)z(k)dH2(k)

z(s) = z0

(14)

satisfies lim
k→∞

ECH{zτ(k)z(k)} = 0.

(ii) The system (12) is called (mean-square) stablizable if there exists a mean-square stabilizing
feedback control of the form (u1(·), u2(·)) = (−K1z(·),−K2z(·)), where K1, K2 is a constant matrix.

Mean-square stabilizability is pivotal in this paper. We now introduce the equivalent
conditions for verifying stabilizability, both analytically and computationally.
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Lemma 3. (u1(·), u2(·)) = (−K1z(·),−K2z(·)) is mean-square stabilizable if and only if there
exist a matrix K and U ∈ Sn, U > 0 such that

(A − B1K1 − B2K2)Uτ + U(A − B1K1 − B2K2)

+
2

∑
i=1

(C1 − D1K1)
τU(C1 − D1K1) < 0. (15)

Proof. For any n × n matrix K, define an operator Φ : Sn → Sn by

Φ(U) = (A + BK)U + U(A + BK)τ + (C + DK)U(C + DK)τ

If z(·) satisfies the feedback Equation (14) (under the feedback gain K), then by Itô–
Liu’s formula, the matrix Z(k) = E[z(k)z(k)τ ] satisfies the differential matrix system
Ż(k) = Φ(z(k)). Applying the result in ref. [25], we have the equivalence between the
mean-square stabilizability and (15).

Remark 2. Lemma 3 gives the equivalent conditions of mean-square stabilizability, which provides
a theoretical basis for the hypothesis of Theorem 5.

Theorem 5. Suppose the system (14) is mean-square stabilizable. If the GRE (13) exists and
P∗ ∈ Sn, then hybrid differential game problem 2 is solvable; moreover, the saddle point and the
optimum value of the performance index function are

(u1
∗(·), u2

∗(·)) = (−K1(P∗)z(·),−K2(P∗)z(·))

and
J(u1

∗(·), u2
∗(·)) = zτ P∗(s)z,

that is, ∀(u1(·), u2(·)) satisfies (u1
∗(·), u2(·)), (u1(·), u2

∗(·)) ∈ U [s, ∞). Then, we have

J∞(u1
∗(·), u2(·)) ≤ J∞(u1

∗(·), u2
∗(·)) ≤ J∞(u1(·), u2

∗(·))

Proof. Suppose (u1(·), u2(·)) ∈ U [s, ∞), z(·) is the solution of (14). For ∀ T > s, denote

J(u1(·), u2(·)) = ECH

∫ T

s
(zτGz+2uτ

1L1z+uτ
1R1u1+2uτ

2L2z+uτ
2R2u2)dk.

Similar to the proof of Theorem 3, we have

JT(u1(·), u2(·)) =zτ
0 P∗z0 − ECH{zτ(T)P∗z(T)}+ ECH

∫ T

s
{zτ{P∗A + Aτ P∗

+
2

∑
i=1

[Cτ
i P∗Ci − Sτ

i (P∗)R−1
i (P∗)Si(P∗)]z + G

+
2

∑
i=1

[zτSτ
i (P∗)R−1

i (P∗)Si(P∗)z + 2zτSi(P∗)ui + uτ
i Ri(P∗)ui]}dk

=zτ
0 P∗z0 − ECH{zτ(T)P∗z(T)}

+
2

∑
i=1

ECH

∫ T

s
[ui + Ki(P∗)z]τ × Ri(P∗)[ui + Ki(P∗)z]dk.

Because (u1(·), u2(·)) ∈ U [s, ∞), then lim
k→∞

E{zτ(k)P∗z(k)} = 0. Therefore,

J∞(u1(·), u2(·)) = zτ
0 P∗z0 +

2

∑
i=1

ECH

∫ ∞

s
[ui + Ki(P∗)z]τ × Ri(P∗)[ui + Ki(P∗)z]dk.
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The proof is complete.

Remark 3. Unlike refs. [8–10] concerning stochastic differential games and refs. [15,16], the
models in this paper have a wider range of applications and cover these models as well.

4. Applications
4.1. Uncertain Stochastic Resource Extraction Game

The resource extraction problem is a classic issue in economics, involving economic
agents (such as firms or countries) exploiting natural resources. Under certain assumptions,
this problem typically aligns with differential game theory. For instance, Jørgensen and
Yeung [26] explored a stochastic differential game model applied to a common-property
fishery. Similarly, Yang and Gao [16] examined an uncertain differential game model for
resource extraction. Assuming the resource dynamics are governed by a hybrid differential
equation driven by a Wiener–Liu process, we can then consider studying a uncertain
stochastic hybrid differential game model of resource extraction using chance theory.

Consider two companies (resource extractors) that are exploiting a renewable resource
(such as fish stocks). The lease for this resource extraction starts at time 0 and ends at time
T, where T > 0. Let ui(T) represent the amount of resources extracted by company i at
time k, with i = 1, 2, where each extractor can control their own extraction quantity. Let
z(k) represent the size of the resource stock at time k, with z(k) > 0, and the equation of
resource dynamics is

dz(k) = [mz(k)− u1(k)− u2(k)]dk + z(k)dHk, z(0) = z0

where m > 0 represents the growth rate of resources, with the initial state z0 being pro-
vided. The hybrid process Hk is a one-dimensional Wiener–Liu process that is defined in a
chance space

(Γ × Ω,L⊗F ,M× P).

The performance index function is

J(u1, u2) = ECH

{∫ T

0

[
z(k)2 − u1(k)2 + u2(k)2

]
dk + z(T)2

}
.

Extractor 1 endeavors to maximize the value of the performance index function; on
the other hand, Extractor 2 is determined to minimize this value.

Drawing upon Theorems 3 and 4, we arrive at the subsequent Riccati differential
equation: {

Ṗ + 2mP + 3 = 0
P(T) = 1.

Thus,
P(k) =

[
(2m + 3)e2m(T−k) − 3

]/
(2m).

The saddle-point Nash equilibria are u∗
1(k) = − 1

2m

[
(2m + 3)e2m(T−k) − 3

]
z(k)

u∗
2(k) =

1
2m

[
(2m + 3)e2m(T−k) − 3

]
z(k).

The optimum value of the performance index function is

J(u∗
1 , u∗

2) =
1

2m

[
(2m + 3)e2mT − 3

]
z2

0.
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By taking m = 1, we can obtain the dynamic change curve of the resource stock z(k),
equilibrium strategy (u∗

1 , u∗
2) and equilibrium value J(k, z) in Figure 1.

Time
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-40
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* (k)
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Figure 1. Dynamic change curve of the resource stock z(k), equilibrium strategy (u∗
1 , u∗

2) of (a) and
equilibrium value J(k, z) of (b).

4.2. Uncertain Stochastic H∞ Control

Now, we apply the previous developed theory to solve some problems related to
uncertain stochastic H∞ control.

dz(k) = [Az(k) + B1v(k) + B2u(k)]dk + Cz(k)dHk (16)

with the cost functional

J(u, v; z0) = ECH{
∫ ∞

0
[z(k)T Dz(k)− γ2|v(k)|2]dk} (17)

where the hybrid process Hk is a one-dimensional Wiener–Liu process that is defined in a
chance space

(Γ × Ω,L⊗F ,M× P).

In Equations (16) and (17), z(k) ∈ ℜn is the state vector, u(k) ∈ ℜm2 is the input
control and v(k) ∈ ℜm1 is the vector of the exogenous disturbances, and in Equation (17),
J(u, v; z0) represents H∞ constraints. The infinite-horizon uncertain stochastic H∞ control
of system (16) is parallel with Definition 2 in [27], which can be described as follows.

Definition 3. For a given disturbance attenuation level γ > 0, we can find u∗(k)× v∗(k) ∈
L2([0, ∞),ℜm2)× L2([0, ∞),ℜm1), such that

(i) u∗(k) stabilizes system (16) internally; i.e., when v(k) = 0, u = u∗, the state trajectory of
Equation (16) with any initial value z0 ∈ ℜn satisfies

lim
k→∞

ECH [zT(k)z(k)] = 0.

(ii) |Lu∗ |∞ < ∞ with

|Lu∗ |∞ = sup
v∈L2

F([0,∞),Rm1),v ̸=0,u=u∗ ,z0=0

{ECH
∫ ∞

0 z(k)T Dz(k)dk}1/2

{ECH
∫ ∞

0 |v(k)|2dk}1/2

In essence, the H∞ control issue, as outlined by Equations (16) and (17), seeks to
identify control u∗ that ensures J(u∗) < 0 in the face of any exogenous disturbances v(t).
Following the insights in [27], if we conceptualize u(t) and v(t) in the uncertain stochastic
H∞ control scenario as dual strategies employed by players P1 and P2 through a game
theory lens, this H∞ control challenge transforms into resolving an uncertain stochastic
game dilemma. Consequently, it is acknowledged that the infinite-time horizon uncertain
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stochastic H∞ control issue yields a solution pair. Clearly, the pair (u∗, v∗) represents the
equilibrium strategy of the saddle point such that

J(u∗, v) ≤ J(u∗, v∗) ≤ J(u, v∗).

According to Theorem 5, the following Theorem 6 can be obtained directly.

Theorem 6. For system (16), uncertain stochastic control has a pair of solutions (u∗, v∗), with u∗ =
K2z(k) and v∗ = K1z(k), if the following coupled uncertain stochastic algebraic Riccati equation

PA + AT P + CT PC + D − PBR−1BT P = 0

with

B = (B1, B2), R =

[
−γ2 I 0

0 I

]
has a solution P ∈ Sn, where {

K1 = γ−2BT
1 P

K2 = −BT
2 P

In this scenario, u∗ serves as an H∞ control for the system outlined in Equation (16), while v∗

acts as the associated worst-case disturbance.

Example 1. Consider system (16) with the coefficients as follows:

A =

[
2 4
3 1

]
, C =

[
−2 − 4
3 − 1

]
, B1 =

[
−1
1

]
, B2 =

[
1
−1

]
, D =

[
2 1
1 3

]
Setting γ = 3 and solving (16) by using the LMI toolbox, we have

P =

[
−0.1236 − 0.0615
−0.0615 − 0.1935

]
, K1 =

[
0.0069
−0.0147

]
, K2 =

[
0.0622
−0.1321

]
.

Therefore, H∞ control is given by{
u(k) = 0.0622z1(k)− 0.1321z2(k)
v(k) = 0.0069z1(k)− 0.0147z2(k)

Furthermore, we can obtain the dynamic change curve of system state (z1(k), z2(k)) and
control inputs (u(k), v(k)) in Figure 2.
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Figure 2. Dynamic change curve of system state (z1(k), z2(k)) of (a) and control inputs (u(k), v(k))
of (b).

5. Conclusions

This study aims to propose a new type of uncertain stochastic hybrid differential game.
The main contribution of this study is the development of a saddle-point equilibrium



Mathematics 2024, 12, 1132 14 of 15

strategy for linear quadratic uncertain stochastic two-player zero-sum hybrid differential
games over both finite and infinite horizons. In future work, we may consider uncertain
stochastic hybrid differential games with jumps.
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