
Citation: Wang, S.; Yang, C.; Cha, G.

Existence of Periodic Solutions for

Second-Order Ordinary p-Laplacian

Systems. Mathematics 2024, 12, 1131.

https://doi.org/10.3390/

math12081131

Academic Editors: Ravi P. Agarwal

and Maria Alessandra Ragusa

Received: 12 March 2024

Revised: 31 March 2024

Accepted: 1 April 2024

Published: 9 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Existence of Periodic Solutions for Second-Order Ordinary
p-Laplacian Systems
Shaomin Wang 1,*, Cunji Yang 1 and Guozhi Cha 2,3

1 School of Mathematics and Computer, Dali University, Dali 671003, China; kmycj@126.com
2 School of Engineering, Dali University, Dali 671003, China; chagz@dali.edu.cn
3 Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
* Correspondence: smw2023@dali.edu.cn

Abstract: In this paper, we study the variational principle and the existence of periodic solutions for a
new class of second-order ordinary p-Laplacian systems. The variational principle is given by making
use of two methods. We obtain three existence theorems of periodic solutions to this problem on
various sufficient conditions on the potential function F(t, x) or nonlinearity ∇F(t, x). Four examples
are presented to illustrate the feasibility and effectiveness of our results.
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1. Introduction

Consider the following second-order ordinary p-Laplacian system

{ d
dt (|

.
u(t)|p−2 .

u(t)) + g(t)| .
u(t)|p−2 .

u(t)− A(t)|u(t)|p−2u(t) +∇F(t, u(t)) = 0, a.e t ∈ [0, T],
u(0)− u(T) =

.
u(0)− .

u(T) = 0,
(1)

where we can see p > 1, T > 0, g ∈ L1(0, T; R), and where A(t) = [aij(t)] is a positivedefi-
nite symmetric N × N matrix-valued function defined in [0, T] with aij ∈ C(0, T). Moreover,
F : [0, T]× RN → R satisfies the following assumption:

(H0) F(t, x) is measurable in t for every x ∈ RN and continuously differentiable in x
for a.e t ∈ [0, T], and there exist a ∈ C(R+, R+) and b ∈ L1(0, T; R+) such that

|F(t, x)| ≤ a(|x|)b(t), |∇F(t, x)| ≤ a(|x|)b(t), x ∈ RN , a.e t ∈ [0, T].

when p = 2, g(t) ≡ 0 and A(t) = 0, the second-order ordinary p-Laplacian system of form
(1) becomes the following second-order Hamiltonian system{ ..

u(t)+∇F(t, u(t)) = 0,
u(0)− u(T) =

.
u(0)− .

u(T) = 0.
(2)

Over the last few decades, system (2) has been studied by using the variational method.
The existence and multiplicity of periodic solutions to problem (2) were obtained on various
hypotheses on the potential function F(t, x) or nonlinearity ∇F(t, x) (see, Refs. [1–6]).

Given that p = 2, the second-order ordinary p-Laplacian system of form (1) reduces to
the following second-order damped vibration system{ ..

u(t) + g(t)
.
u(t)− A(t)u(t) +∇F(t, u(t)) = 0,

u(0)− u(T) =
.
u(0)− .

u(T) = 0.
(3)
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Wu, Chen and Teng [7] provided the variational principle of system (3). At the same time,
some existence results of system (3) were obtained by using critical point theorem.

Taking g(t) ≡ 0 and A(t) = 0 in problem (1), many scholars have studied the following
second-order ordinary p-Laplacian system{ d

dt (|
.
u(t)|p−2 .

u(t)) = ∇F(t, u(t)),
u(0)− u(T) =

.
u(0)− .

u(T) = 0.
(4)

A lot of important existence and multiplicity results of periodic solutions to problem (4)
have been obtained by using the critical point theory (see, Refs. [8–12]). In particular,
Lv [10] gave the following existence theorem of periodic solutions to problem (4).

Theorem 1. Let F(t, x) = F1(t, x) + F2(x), where F1 and F2 satisfy assumption (H0) and the
following conditions:

(i) There exist k, m ∈ L1(0, T; R+) and γ ∈ [0, p − 1) such that

|∇F1(t, x)| ≤ k(t)|x|γ + m(t)

for all x ∈ RN and a.e t ∈ [0, T];
(ii) There exist constants 0 ≤ r1 < 1

Tp and r2 ∈ [0,+∞) such that

(∇F2(x)−∇F2(y), x − y) ≥ −r1|x − y|p − r2|x − y|

for all x ∈ RN and a.e t ∈ [0, T];
(iii) 1

|x|γq

∫ T
0 F(t, x)dt → +∞ as |x| → +∞ , where 1

p + 1
q = 1.

Then, problem (4) has at least one solution which minimizes φ on W1,p
T .

In addition, taking g(t) ≡ 0 in problem (1), then one has{ d
dt (|

.
u(t)|p−2 .

u(t))− A(t)|u(t)|p−2u(t)+∇F(t, u(t)) = 0,
u(0)− u(T) =

.
u(0)− .

u(T) = 0.
(5)

Zhang and Tang [13] studied the more general second-order ordinary p-Laplacian system
of form (5). Some existence theorems of periodic solutions to problem (5) were obtained by
using minimax methods in critical point theory.

In the paper, inspired by the results of [7,10,13], we study the second-order ordinary
p-Laplacian system of form (1) under the conditions p > 1, g(t) ̸= 0 and, A(t) ̸= 0.
Obviously, the second-order ordinary p-Laplacian system of form (1) is more general than
systems (2)–(5). Namely, systems (2)–(5) are only special cases of system (1). As far as
we know, there is no relevant research or any results by using the variational method to
study the ordinary p-Laplacian system of form (1). Therefore, system (1) is proved to be a
more general new system. The remaining part of the paper is as follows. We first study
the variational principle of problem (1) by two methods in Section 2. Furthermore, as an
application, we obtain three existence theorems for problem (1) by using the critical point
theorem in Section 3. Finally, four examples are given to illustrate our results in Section 4.
Our results generalize existing relevant conclusions.

For convenience, the meanings of the main symbols used in the paper are as fol-
lows: a = max

i,j=1,··· ,N
{aij} where aij = max

t∈[0,T]
{| aij(t )|}, d1 = max

t∈[0,T]
eQ(t), d2 = min

t∈[0,T]
eQ(t),

∥ũ∥Lp = (
∫ T

0 |ũ(t)|pdt)
1
p ,
∥∥ .

u
∥∥

Lp = (
∫ T

0 | .
u(t)|pdt)

1
p , ∥u∥∞ = max

t∈[0,T]
|u(t)|, and various posi-

tive constants as Ci (i = 1, 2, · · · ).

2. The Variational Principle

In this section, we will obtain the variational principle of problem (1) by two methods.



Mathematics 2024, 12, 1131 3 of 12

W1,p
T is a Sobolev space defined by W1,p

T =
{

u : [0, T] → RN |u is absolutely continuous,
u(0) = u(T) and

.
u ∈ Lp([0, T

]
; RN)

}
with the norm

∥u∥ = (
∫ T

0
|u(t)|pdt +

∫ T

0

∣∣ .
u(t)

∣∣pdt)
1
p
, u ∈ W1,p

T .

Let u = 1
T
∫ T

0 u(t)dt and ũ(t) = u(t)−u for any u ∈ W1,p
T . Then, one has W1,p

T = W̃1,p
T ⊕ RN

, where W̃1,p
T =

{
u ∈ W1,p

T |u = 0
}

. Using the technique of [14] (Proposition 1.3), one has

∥ũ∥Lp ≤ T
∥∥ .

u
∥∥

Lp (Wirtinger’s inequality)

and
∥ũ∥∞ ≤ T

1
q
∥∥ .

u
∥∥

Lp (Sobolev’s inequality)

for all u ∈ W1,p
T , where 1

p + 1
q = 1 (see, Ref. [10]).

Lemma 1. ([14] (Proposition 1.1)). There exists c > 0 such that, if u ∈ W1,p
T , then ∥u∥∞ ≤

c∥u∥ . Moreover, if
∫ T

0 u(t)dt = 0 , then ∥u∥∞ ≤ c
∥∥ .

u
∥∥

Lp .

Lemma 2. ([14] (Fundamental Lemma)). Let u, v ∈ L1(0, T; RN). If for every f ∈
C∞

T ,
∫ T

0 (u(t), f ′(t))dt = −
∫ T

0 (v(t), f (t))dt, then
∫ T

0 v(s)ds = 0 and there exists c ∈ RN such
that u(t) =

∫ t
0 v(s)ds + c a.e on [0,T]. By Lemma 1, there is a constant C0 > 0 such that

∥u∥∞ ≤ C0∥u∥, ∀u ∈ W1,p
T . (6)

Method 1. We first offer an expression for the functional I(u) and further prove that
one solution to problem (1) is the critical point of the functional I(u) in the sense of a weak
derivative.

Define the functional I(u) on W1,p
T by

I(u) =
1
p

∫ T

0
eQ(t)| .

u(t)|pdt +
1
p

∫ T

0
eQ(t)(A(t)|u(t)|p−2u(t), u(t))dt −

∫ T

0
eQ(t)F(t, u(t))dt,

where Q(t) =
∫ t

0 g(s)ds. We know that I(u) is continuously differentiable and the weak

lower semi-continuity on W1,p
T . The detailed proof is similar to the corresponding parts

in [14] (pp. 10–11) and

(I′(u), v) =
∫ T

0
eQ(t)(| .

u(t)|p−2 .
u(t),

.
v(t))dt +

∫ T

0
eQ(t)(A(t)|u(t)|p−2u(t), v(t))dt

−
∫ T

0
eQ(t)(∇F(t, u(t)), v(t))dt, u, v ∈ W1,p

T .

Theorem 2. If u ∈ W1,p
T is a solution to I′(u) = 0 (i.e., u is a critical point of I(u)), then u is a

solution to problem (1).

Proof. As I′(u) = 0, then

0 = (I′(u), v) =
∫ T

0
eQ(t)(| .

u(t)|p−2 .
u(t),

.
v(t))dt +

∫ T

0
eQ(t)(A(t)|u(t)|p−2u(t), v(t))dt

−
∫ T

0
eQ(t)(∇F(t, u(t)), v(t))dt,
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for all u, v ∈ W1,p
T . That is,

∫ T

0
(eQ(t)| .

u(t)|p−2 .
u(t),

.
v(t))dt = −

∫ T

0
eQ(t)(A(t)|u(t)|p−2u(t)−∇F(t, u(t)), v(t))dt,

for all v ∈ W1,p
T . By Lemma 2, it can be seen that eQ(t)| .

u(t)|p−2 .
u(t) has a weak derivative,

and

(eQ(t)| .
u(t)|p−2 .

u(t))′ = eQ(t)(A(t)|u(t)|p−2u(t)−∇F(t, u(t)), a.e t ∈ [0, T].

Hence, u satisfies the following equation

(| .
u(t)|p−2 .

u(t))′+ g(t)| .
u(t)|p−2 .

u(t)− A(t)|u(t)|p−2u(t)+∇F(t, u(t) = 0, a.e t ∈ [0, T].

Then, u is a solution to problem (1). This completes the proof.

Method 2. By the semi-inverse method [15], we can obtain the variational principle of
problem (1). Its derivation process is as follows.

The problem (5) has the following variational principle:

φ1(u) =
1
p

∫ T

0
| .
u(t)|pdt +

1
p

∫ T

0
(A(t)|u(t)|p−2u(t), u(t))dt −

∫ T

0
F(t, u(t))dt.

To acquire the variational principle for problem (1), we introduce an integrating factor f (t)
and consider the following integral:

φ(u) =
∫ T

0

{
f (t)[

1
p
| .
u(t)|p +

1
p
(A(t)|u(t)|p−2u(t), u(t))− F(t, u(t ))] + L(u, ut, utt, · · · )}dt, (7)

where L is an unknown function of u and/or its derivatives. The Euler–Lagrange equation
of Equation (7) is

− f (t)∇F(t, u(t)) + f (t)A(t)|u(t)|p−2u(t)− ( f (t)| .
u(t)|p−2 .

u(t))
′
t +

δL
δu

= 0, (8)

where δL
δu is called the variational derivative [16,17] and is defined as

δL
δu

=
∂L
∂u

− ∂

∂t
∂L
∂ut

+
∂2

∂t2
∂L

∂utt
− · · · .

We simplify (8) as follows

(| .
u(t)|p−2 .

u(t))′+ f ′

f
(| .

u(t)|p−2 .
u(t)) = −∇F(t, u(t)) + A(t)|u(t)|p−2u(t) +

1
f

δL
δu

. (9)

By comparison between Equation (9) and problem (1), we set

f ′

f
= g(t),

δL
δu

= 0.

Hence, we have

f = exp
∫ t

0
g(s)ds = eQ(t), L = 0.

Consequently, we obtain the energy functional for problem (1) (i.e., the variational principle
of problem (1)), which is

φ(u) =
∫ T

0
eQ(t)

[
1
p
| .
u(t)|p +

1
p
(A(t)|u(t)|p−2u(t), u(t))− F(t, u(t ))]dt.
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Obviously, I(u) = φ(u).

3. Existence of Solutions for the Ordinary p-Laplacian System

Lemma 3. ([10] (Lemma 2.1)). In Sobolev space W1,p
T , for u ∈ W1,p

T , ∥u∥ → +∞ if and only

if (|u|p +
∥∥ .

u
∥∥p

Lp)
1
p → +∞ .

Theorem 3. Let F(t, x) = F1(t, x) + F2(t, x), and suppose that F1(t, x) and F2(t, x) satisfy
assumption (H0). If the following conditions hold:

(H1) There exists a function h1 ∈ C([0 ,+∞); [0 ,+∞)) with the properties:

(i) h1(s) ≤ h1(t) ∀s ≤ t, s, t ∈ [0,+∞),
(ii) h1(s + t) ≤ h1(s) + h1(t) ∀s, t ∈ [0,+∞),
(iii) h1(t) → +∞ as t → +∞ .

Moreover, there exist r ∈ L1(0, T; R+), K1 > 0 and α ∈ [0, p) such that

F1(t, x) ≤ h1(|x|) + r(t), ∀ x ∈ RN , a.e t ∈ [0, T]

and

lim sup
s→+∞

h1(s)
sα

≤ K1;

(H2) There exist m1, m2 ∈ L1(0, T; R+), K2 > 0, β ∈ [0, p − 1) and a function h2 ∈
C([0 ,+∞); [0 ,+∞)) which satisfies the conditions (i)–(iii) such that

|∇F2(t, x)| ≤ m1(t)h2(|x|) + m2(t), ∀ x ∈ RN , a.e t ∈ [0, T]

and

lim sup
s→+∞

h2(s)
sβ

≤ K2;

(H3)(A(t)|x|p−2x, x) ≥ 1
2
|x|p, ∀ x ∈ RN , a.e t ∈ [0, T];

(H4) lim
|x|→+∞

1
|x|qβ

∫ T

0
eQ(t)(F2(t, x) + h1(|x|))dt = −∞, where

1
p
+

1
q
= 1.

Then, problem (1) has no less than one solution on W1,p
T .

Proof. By (H1), for all u ∈ W1,p
T , we have∫ T

0 eQ(t)F1(t, u(t))dt ≤
∫ T

0 eQ(t)(h1(|u(t)|) + r(t))dt
≤

∫ T
0 eQ(t)h1(|u|+ ∥ũ∥∞)dt +

∫ T
0 eQ(t)r(t)dt

≤
∫ T

0 eQ(t)h1(|u|)dt +
∫ T

0 eQ(t)h1(∥ũ∥∞)dt +
∫ T

0 eQ(t)r(t)dt
≤

∫ T
0 eQ(t)h1(|u|)dt + Td1(K1∥ ũ∥α

∞ + C1) +
∫ T

0 eQ(t)r(t)dt
≤

∫ T
0 eQ(t)h1(|u|)dt + T1+ α

q d1K1
∥∥ .

u
∥∥α

Lp + C2.

(10)

By (H2), Sobolev’s inequality and ε-Young’s inequality, one has
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|
∫ T

0 eQ(t)(F2(t, u(t))− F2(t, u))dt|
= |

∫ T
0 eQ(t)∫ 1

0 (∇F2(t, u + sũ(t)), ũ(t)) dsdt|
≤

∫ T
0 eQ(t)m1(t)(h2(|u|)|ũ(t)|+ h2(|ũ(t)|)|ũ(t)|)dt +

∫ T
0 eQ(t)m2(t)|ũ(t)| dt

≤
∫ T

0 eQ(t)m1(t) dt h2(|u|)∥ũ∥ ∞ +
∫ T

0 eQ(t)m1(t) dt h2(∥ ũ∥ ∞)∥ ũ∥ ∞ +
∫ T

0 eQ(t)m2(t) dt∥ ũ∥ ∞

≤ ε∥ ũ∥p
∞ + ε

−q
p

q hq
2(|u|)(

∫ T
0 eQ(t)m1(t) dt)

q
+
∫ T

0 eQ(t)m1(t) dt(K2∥ ũ∥ β
∞ + C3) ∥ ũ∥ ∞

+
∫ T

0 eQ(t)m2(t) dt ∥ũ∥ ∞

≤ ε∥ũ∥p
∞ + C4|u|qβ + C5 +

∫ T
0 eQ(t)m1(t) dt(K2∥ ũ∥β

∞ + C3) ∥ ũ∥ ∞ +
∫ T

0 eQ(t)m2(t) dt ∥ ũ ∥ ∞

≤ εT
p
q
∥∥ .

u
∥∥p

Lp + C6
∥∥ .

u
∥∥β+1

Lp + C7
∥∥ .

u
∥∥

Lp + C4|u|qβ + C5.

(11)

for all u ∈ W1,p
T , where εT

p
q < d2

2p .
Thus, by (10), (11) and (H3), we obtain

I(u) = 1
p
∫ T

0 eQ(t)| .
u(t)|pdt + 1

p
∫ T

0 eQ(t)(A(t)|u(t)|p−2u(t), u(t))dt −
∫ T

0 eQ(t)F(t, u(t))dt

= 1
p
∫ T

0 eQ(t)| .
u(t)|pdt + 1

p
∫ T

0 eQ(t)(A(t)|u(t)|p−2u(t), u(t))dt −
∫ T

0 eQ(t)F1(t, u(t)) dt

−
∫ T

0 eQ(t)(F2(t, u(t)− F2(t, u))dt −
∫ T

0 eQ(t)F2(t, u) dt
≥ d2

p
∫ T

0

∣∣ .
u(t)

∣∣pdt + d2
2p
∫ T

0 |u(t)|pdt −
∫ T

0 eQ(t)h1(|u|)dt − T1+ α
q d1K1

∥∥ .
u
∥∥α

Lp − C2

−εT
p
q
∥∥ .

u
∥∥p

Lp − C6
∥∥ .

u
∥∥β+1

Lp − C7
∥∥ .

u
∥∥

Lp − C4|u|qβ − C5 −
∫ T

0 eQ(t)F2(t, u) dt

= d2
2p∥u∥p + ( d2

2p − εT
p
q )
∥∥ .

u
∥∥p

Lp − T1+ α
q d1K1

∥∥ .
u
∥∥α

Lp − C6
∥∥ .

u
∥∥β+1

Lp − C7
∥∥ .

u
∥∥

Lp

−|u|qβ( 1
|u|qβ

∫ T
0 eQ(t)(F2(t, u) + h1(|u|))dt + C4)− C8

(12)

for all u ∈ W1,p
T . Since α ∈ [0, p) , β ∈ [0, p − 1) and Lemma 3, we have I(u) → +∞ as

∥u∥ → +∞ by (H4) and (12). Namely, I(u) is coercive. Therefore, by using the least action
principle [14], problem (1) has no less than one solution on W1,p

T .

Theorem 4. Let F(t, x) = F1(t, x) + F2(x), suppose that F1(t, x) and F2(x) satisfy assump-
tion (H0). If (H3) and the following conditions hold:

(H5) There exist r1, r2 ∈ L1(0, T; R+) and α ∈ [0, p − 1) such that

|∇F1(t, x)| ≤ r1(t)|x|α + r2(t), ∀ x ∈ RN , a.e t ∈ [0, T];

(H6) There exist 0 < K < d2

2d1 pT
p
q +1

and an increasing function h ∈ C([0 ,+∞); [0 ,+∞)) such

that
(∇F2(x)−∇F2(y), x − y) ≤ h(|x − y|), ∀ x ∈ RN , a.e t ∈ [0, T]

and

lim sup
s→+∞

h(s)
sp ≤ K;

(H7) lim
|x|→+∞

1
|x|αq

∫ T

0
eQ(t)F(t, x)dt = −∞, where

1
p
+

1
q
= 1

Then, problem (1) has no less than one solution on W1,p
T .

Proof. By (H5), ε-Young’s inequality and Sobolev’s inequality, we obtain
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|
∫ T

0 eQ(t)(F2(t, u(t))− F2(t, u))dt|
= |

∫ T
0 eQ(t)∫ 1

0 (∇F1(t, u + sũ(t)), ũ(t))dsdt|
≤

∫ T
0

∫ 1
0 eQ(t)r1(t)|u + sũ(t)|α · |ũ(t)| dsdt +

∫ T
0

∫ 1
0 eQ(t)r2(t)|ũ(t)| dsdt

≤ 2α|u|α∥ũ∥∞
∫ T

0 eQ(t)r1(t)dt + 2α∥ũ∥α+1
∞

∫ T
0 eQ(t)r1(t)dt + ∥ũ∥∞

∫ T
0 eQ(t)r2(t)dt

≤ ε∥ũ∥p
∞ + ε

−q
p

q 2αq|u|αq(
∫ T

0 eQ(t)r1(t) dt)
q
+ 2α

∫ T
0 eQ(t)r1(t)dt∥ ũ ∥α+1

∞ +
∫ T

0 eQ(t)r2(t)dt∥ ũ ∥∞

≤ εT
p
q
∥∥ .

u
∥∥p

Lp + C9
∥∥ .

u
∥∥α+1

Lp + C10
∥∥ .

u
∥∥

Lp + C11|u|αq

(13)

for all u ∈ W1,p
T , where εT

p
q < d2

2p − d1KT
p
q +1.

By (H6) and Sobolev’s inequality, we obtain∫ T
0 eQ(t)[F2(u(t))− F2(u )]dt =

∫ T
0 eQ(t)∫ 1

0 (∇F2(u + sũ(t)), ũ(t))dsdt
=

∫ T
0 eQ(t)∫ 1

0 (∇F2(u + sũ(t))−∇F2(u), ũ(t))dsdt
≤

∫ T
0 eQ(t)∫ 1

0
1
s h(|sũ(t)|)dsdt

≤
∫ T

0 eQ(t)∫ 1
0 Ksp−1∥ũ∥p

∞dsdt + C12

≤ d1KT
p
q +1∥∥ .

u
∥∥p

Lp+C12.

(14)

Thus, by (13), (14) and (H3), we have

I(u) = 1
p
∫ T

0 eQ(t)| .
u(t)|pdt + 1

p
∫ T

0 eQ(t)(A(t)|u(t)|p−2u(t), u(t))dt −
∫ T

0 eQ(t)F(t, u(t))dt

= 1
p
∫ T

0 eQ(t)| .
u(t)|pdt + 1

p
∫ T

0 eQ(t)(A(t)|u(t)|p−2u(t), u(t))dt

−
∫ T

0 eQ(t)[F1(t, u(t))− F1(t, u )]dt −
∫ T

0 eQ(t)(F2(u(t))− F2(u))dt−
∫ T

0 eQ(t)F(t, u) dt

≥ d2
p
∫ T

0

∣∣ .
u(t)

∣∣pdt + d2
2p
∫ T

0 |u(t)|pdt − εT
p
q
∥∥ .

u
∥∥p

Lp − C9
∥∥ .

u
∥∥α+1

Lp − C10
∥∥ .

u
∥∥

Lp

−C11|u|αq − d1KT
p
q +1∥∥ .

u
∥∥p

Lp − C12 −
∫ T

0 eQ(t)F(t, u) dt

= d2
2p∥u∥p + ( d2

2p − d1KT
p
q +1 − εT

p
q )
∥∥ .

u
∥∥p

Lp − C9
∥∥ .

u
∥∥α+1

Lp − C10
∥∥ .

u
∥∥

Lp

−|u|αq( 1
|u|αq

∫ T
0 eQ(t)(F(t, u)dt + C11)− C12 for all u ∈ W1,p

T .

(15)

As α ∈ [0, p − 1) and Lemma 3, we have I(u) → +∞ as ∥u∥ → +∞ by (H7) and (15).
Namely, I(u) is coercive. Hence, by the least action principle [14], problem (1) has no less
than one solution on W1,p

T .

Remark 1. In a sense, the conditions “(∇F2(x) − ∇F2(y), x − y) ≤ h(|x − y|)” and
“lim sup

s→+∞

h(s)
sp ≤ K” in Theorem 4 are weaker than the condition “(∇F2(x)−∇F2(y), x− y) ≥−r1|x−

y|p − r2|x − y|” in Theorem 1, so that Theorem 4 generalizes Theorem 1 even in the case of g(t) ≡
0 and A(t) = 0. For another, the difference between Theorem 3 and Theorem 4 lies in the different decom-
position formula of F(t, x), and as an auxiliary function is used, the condition satisfied by F1(t, x) in
Theorem 3 is weaker than that satisfied by F1(t, x) in Theorem 4.

Theorem 5. Let F : [0, T]× RN → R satisfy assumption (H0). If the following conditions hold:
(H8) |x|p ≤ (A(t)|x|p−2x, x), ∀ x ∈ RN , a.e t ∈ [0, T];
(H9) There exist M1 > 0 and h ∈ C([0 ,+∞); [0 ,+∞)) with lim

s→+∞
h(s) = +∞, and h(s)

sp is

non-increasing in s for all s ∈ R+ such that

(∇F(t, x), x)− pF(t, x) ≥ h(|x|) F(t, x)
|x|p

and
F(t, x) > 0
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for all |x| ≥ M1 and a.e t ∈ [0, T].

(H10)
d1aN

p
< liminf

|x|→+∞

eQ(t)F(t, x)
|x|p ≤ lim sup

|x|→+∞

eQ(t)F(t, x)
|x|p <

d2

p
+

d2

pTp , a.e t ∈ [0, T].

Then, problem (1) has no less than one solution on W1,p
T .

To prove our Theorem 5, we need the following result.

Lemma 4. Suppose F(t, x) satisfies assumption (H0) and the conditions (H8), (H9) of Theorem
5. Then, the functional I(u) satisfies the condition (C), that is, for every sequence {un} ⊂
W1,p

T , {un} has a convergent subsequence if I(un) is bounded and lim
n→∞

(1 + ∥un∥)∥I′(un)∥ = 0.

Proof. Suppose {un} ⊂ W1,p
T , I(un) is bounded and lim

n→∞
(1 + ∥un∥)∥I′(un)∥ = 0. Then,

there exists a constant L > 0 such that

|I(un)| ≤ L, (1 + ∥un∥)
∥∥I′(un)

∥∥ ≤ L, ∀ n ∈ Z+. (16)

Since [0 , T] = {t | |un(t)| ≥ M1, t ∈ [0 , T]} ∪ {t | |un(t)| < M1, t ∈ [0 , T]} , we can set
En = {t | |un(t)| ≥ M1, t ∈ [0 , T]} . From (16), (H9) and assumption (H0), we obtain

(p + 1)L ≥ pI(un)− (I′(un), un)

=
∫ T

0 eQ(t)[(∇F(t, un), un)− pF(t, un )]dt
=

∫
En

eQ(t)[(∇F(t, un), un)− pF(t, un )] dt+
∫
[0,T]\En

eQ(t)[(∇F(t, un), un)− pF(t, un )]dt

≥
∫

En
h(|un|) eQ(t)F(t,un)

|un |p
dt − d1

∫ T
0 γ1(t) dt, ∀ n ∈ Z+,

(17)

where γ1(t) = (p + M1) max
|un |≤M1

a(|un|)b(t) ≥ 0. We have

∫
En

h(∥un∥∞)
eQ(t)F(t, un)

∥un∥∞
p dt ≤

∫
En

h(|un|)
eQ(t)F(t, un)

|un|p
dt < C13. (18)

By (6) and (18), one has

∫
En

eQ(t)F(t, un) dt < C13
CP

0 ∥un∥P

h(C0∥un∥)
.

Then, we obtain

|
∫ T

0
eQ(t)F(t, un) dt| ≤ |

∫
En

eQ(t)F(t, un) dt|+ |
∫
[0,T]\En

eQ(t)F(t, un) dt| ≤ C13
CP

0 ∥un∥P

h(C0∥un∥)
+ d1

∫ T

0
γ2(t) dt, (19)

where γ2(t) = max
|un |≤M1

a(|un|)b(t).

Hence, by (H8), (H9) and (19), we have

L ≥ I(un)

= 1
p
∫ T

0 eQ(t)| .
un(t)|pdt + 1

p
∫ T

0 eQ(t)(A(t)|un(t)|p−2un(t), un(t))dt −
∫ T

0 eQ(t)F(t, un(t))dt

≥ 1
p d2∥un∥p − C13

CP
0 ∥un∥P

h(C0∥un∥) − d1
∫ T

0 γ2(t) dt

≥ ( d2
p − C13CP

0
h(C0∥un∥) )∥un∥p − d1

∫ T
0 γ2(t) dt.

(20)

Since lim
∥un∥→+∞

d2
p − C13CP

0
h(C0∥un∥) =

d2
p > 0, we can confirm {un} is bounded. Or else, we sup-

pose ∥un∥ → +∞ as n → +∞ and obtain a contradiction by (20). In the same manner [14]
(Proposition 4.3), it can be induced that {un} has a convergent subsequence. Hence, I(u)
satisfies the condition (C).



Mathematics 2024, 12, 1131 9 of 12

Lemma 5. ([14] (Theorem 4.7)). Let X be a Banach space and let φ ∈ C1(X, R). Assume
that X splits into a direct sum of closed subspaces X = X− ⊕ X+ with dimX− < ∞ and sup

S−
R

φ <

inf
X+

φ, where S−
R = {u ∈ X− : |u| = R}. Let B−

R = {u ∈ X− : |u| ≤ R}, M =
{

g ∈ C(B−
R , X) :

g(s) = s i f s ∈ S−
R
}

and c = inf
g∈M

max
s∈B−

R

φ(g(s)). Then, if φ satisfies the (PS)c-condition, c is a

critical value of φ.

Now, we provide the proof of Theorem 5.

Proof of Theorem 5. As shown in [18], the deformation lemma is proved to be true by
replacing the (PS) condition with the weaker condition (C), and it can further demonstrate
that Lemma 5 holds true under the condition (C). Hence, by Lemma 5, we only need
to prove

(l1) I(u) → +∞ as ∥u∥ → +∞, u ∈ W̃1,p
T ;

(l2) I(u) → −∞ as |u| → +∞, u ∈ RN .

Now, we prove (l1). By (H10), for

ε =
d2

p
+

d2

pTp − sup
t∈[0,T]

lim sup
|x|→+∞

eQ(t)F(t, x)
|x|p > 0,

there exists M2 > 0 such that

eQ(t)F(t, x) ≤ (
d2

p
+

d2

pTp − ε)|x|p, ∀ |x| ≥ M2, a.e t ∈ [0, T]. (21)

It can be induced from (21) and assumption (H0) that

eQ(t)F(t, x) ≤ (
d2

p
+

d2

pTp − ε)|x|p + d1γ3(t), ∀ x ∈ RN , a.e t ∈ [0, T], (22)

where γ3(t) = max
|x|≤M2

a(|x|)b(t) ≥ 0.

For u ∈ W̃1,p
T , by (H8) and (22), we have

I(u) = 1
p
∫ T

0 eQ(t)| .
u(t)|pdt + 1

p
∫ T

0 eQ(t)(A(t)|u(t)|p−2u(t), u(t))dt −
∫ T

0 eQ(t)F(t, u(t))dt

≥ d2
p
∫ T

0 | .
u(t)|pdt + d2

p
∫ T

0 |u(t)|pdt −
∫ T

0 eQ(t)F(t, u(t))dt

≥ d2
p
∫ T

0 | .
u(t)|pdt + d2

p
∫ T

0 |u(t)|pdt −
∫ T

0 ( d2
p + d2

pTp − ε)|u(t)|p dt − d1
∫ T

0 γ3(t) dt

= d2
p
∫ T

0 | .
u(t)|pdt − ( d2

pTp − ε)
∫ T

0 |u(t)|p dt − d1
∫ T

0 γ3(t) dt.

(23)

Next, we discuss two cases:
Case 1. When d2

pTp − ε > 0, by (23) and Wirtinger’s inequality, one has

I(u) ≥
[

d2

p
− (

d2

pTp − ε)Tp
]∥∥ .

u
∥∥p

Lp − d1

∫ T

0
γ3(t) dt= εTp∥∥ .

u
∥∥p

Lp − d1

∫ T

0
γ3(t) dt. (24)

Case 2. When d2
pTp − ε ≤ 0, by (23), we have

I(u) ≥ d2

p
∥∥ .

u
∥∥p

Lp − d1

∫ T

0
γ3(t) dt. (25)

By Wirtinger’s inequality, we know that

∥u∥ → +∞ ⇔
∥∥ .

u
∥∥

Lp → +∞, u ∈ W̃1,p
T . (26)
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Thus, by (24)–(26), (l1) is proved.
Now, we prove (l2).
For u ∈ RN , we obtain

I(u) = 1
p
∫ T

0 eQ(t)(A(t)|u|p−2u, u) dt −
∫ T

0 eQ(t)F(t, u) dt

≤ 1
p d1aNT|u|p −

∫ T
0 eQ(t)F(t, u) dt

= −|u|p(
∫ T

0 eQ(t) F(t,u)
|u|p − d1aN

p dt).

(27)

Therefore, by (H10), (27) and Fatou’s Lemma, we have

I(u) → −∞ , as |u| → +∞ , u ∈ RN .

Thus, (l2) is proved.

4. Examples

Now, we provide four examples of potential function F(t, x) and matrix A(t) to
illustrate the effectiveness of Theorems 3, 4 and 5, respectively.

Example 1. Let p = 7
2 , α = 3 and β = 1. Moreover, we can put F1(t, x) = |x|

ln(100+x2)
+

r(t), F2(t, x) = −(T − t)|x| 3
2 , h1(|x|) = |x|

ln(100+x2)
, h2(|x|) = |x| 1

2 , A(t) = diag( 3
2 +

sin ω t, · · · , 3
2 + sin ω t), ω = 2π

T .

Therefore, we have

(1) h1(s + t) = s+t
ln(100+(s+t)2)

≤ s
ln(100+s2)

+ t
ln(100+t2)

= h1(s) + h1(t); F1(t, x) ≤ h1(|x|) +

r(t); lim sup
s→+∞

h1(s)
sα = lim sup

s→+∞

1
s2 ln(100+s2)

= 0 ≤ K1;

(2) h2(s + t) = (s + t)
1
2 ≤ s

1
2 + t

1
2 = h2(s) + h2(t); |∇F2(t, x)| = 3

2 |T − t||x| 1
2 ≤ m1(t)h2

(|x|) + m2(t);
(3) (A(t)|x|p−2x, x) = ( 3

2 + sin ω t)|x|p ≥ 1
2 |x|p;

(4) lim
|x|→+∞

1
|x|qβ

∫ T
0 eQ(t)(F2(t, x) + h1(|x|))dt

= lim
|x|→+∞

1

|x|
7
5

∫ T
0 −eQ(t)((T − t)|x| 3

2 + |x|
ln(100+x2)

)dt = −∞.

Then, (H1), (H2), (H3) and (H4) are true. By Theorem 3, problem (1) has no less than
one solution on W1,p

T .

Example 2. Let p = 7
2 , α = 3 and β = 1. We can also put F1(t, x) = |x|

ln(100+x2)
+

r(t), F2(t, x) = −(T − t)|x|2, h1(|x|) = |x|
ln(100+x2)

, h2(|x|) = |x|, A(t) = diag( 3
2 +

cos ω t, · · · , 3
2 + cos ω t), ω = 2π

T .

It can be seen from the derivation process of Example 1 that (H1), (H2), (H3) and (H4)

are true. By Theorem 3, problem (1) has no less than one solution on W1,p
T .

Example 3. Let p = 2 and α = 1
2 . We can also choose F1(t, x) = (T − t)|x| 3

2 , F2(x) = −|x|2,
h(|x − y|) = K|x − y|p(0 < K < d2

2d1 pT
p
q
), A(t) = diag( 3

2 + sin ω t, · · · , 3
2 + sin ω t),

ω = 2π
T .

Then, we have

(1) |∇F1(t, x)| = 3
2 |T − t| · |x| 1

2 ≤ r1(t)|x|α + r2(t);
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(2) (∇F2(x)−∇F2(y), x − y) = −2|x − y|2 ≤ h(|x − y|); lim sup
s→+∞

h(s)
sp = lim sup

s→+∞

Ksp

sp ≤ K;

(3) lim
|x|→+∞

1
|x|αq

∫ T
0 eQ(t)F(t, x)dt = lim

|x|→+∞
1
|x|
∫ T

0 eQ(t)((T − t)|x| 3
2 − |x|2)dt = −∞.

We can know that (H3), (H5), (H6) and (H7) hold. By Theorem 4, problem (1) has no
less than one solution on W1,p

T .

Example 4. Let p = 2. We can choose A(t) = diag(2 + sin ω t, · · · , 2 + sin ω t), F(t, x) =

λ(2 + sin ωt)(|x|2 − ln(1 + |x|2)), h(|x|) =
|x|2 ln(1+|x|2)− |x|4

1+|x|2

3λ(|x|2−ln(1+|x|2)) , where d1aN
2d2

< λ < d2
6d1

(1 +
1

T2 ).

Hence, we obtained the following results:

(1) |x|2 ≤ (A(t)x, x);

(2) (∇F(t, x), x)− 2F(t, x) ≥
|x|2 ln(1+|x|2)− |x|4

1+|x|2

3λ(|x|2−ln(1+|x|2)) · F(t,x)
|x|2 = h(|x|) F(t,x)

|x|2 ;

(3) lim
|x|→+∞

h(|x|) = lim
|x|→+∞

|x|2 ln(1+|x|2)− |x|4
1+|x|2

3λ(|x|2−ln(1+|x|2)) = +∞;

(4) h(s)
s2 is non-increasing on (0,+∞);

(5) lim
|x|→+∞

eQ(t)F(t,x)
|x|2

= eQ(t) lim
|x|→+∞

λ(2+sin ωt)(|x|2−ln(1+|x|2))
|x|2 = eQ(t)λ(2 + sin ωt),

then

d1aN
2

< λd2 ≤ lim inf
|x|→+∞

eQ(t)F(t, x)

|x|2
≤ lim sup

|x|→+∞

eQ(t)F(t, x)

|x|2
≤ 3λd1 <

d2

2
(1 +

1
T2 ).

Therefore, we can know that (H8), (H9) and (H10) hold. By Theorem 5, problem (1)
has no less than one solution on W1,p

T .

5. Conclusions

In this paper, we have studied a class of ordinary p-Laplacian systems by using
the variational method. We have obtained the variational principle and the existence of
periodic solutions to this system. We can further explore system (1) by using the critical
point theorem in the future.
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