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Abstract: Recently, Gorenstein dimensions relative to a semidualizing module have been the subject
of numerous studies with interesting extensions of the classical homological dimensions. Although
all these studies share the same direction, a common basis, and similar final goals, there is no
common framework encompassing them as parts of a whole, progressing, on different fronts, towards
the same end. We provide this general and global framework in the context of abelian categories,
standardizing terminology and notation: we establish a general context by defining Gorenstein
categories relative to two classes of objects ((X , Y )-Gorenstein categories, denoted G (X , Y )), and
carry out a study of the homological dimensions associated with them. We prove, under some
mild standard conditions, the corresponding version of the Comparison Lemma that ensures the
consistency of a homological-dimension theory. We show that Ext functors can be used as tools to
compute these G (X , Y )-dimensions, and we compare the dimensions obtained using the classes
G(X ) with those computed using G (X , Y ). We also initiate a research of the global dimensions
obtained with these classes G (X , Y ) and find conditions for them to be finite. Finally, we show that
these classes of Gorenstein objects are closely and interestingly related to the Foxby classes induced
by a pair of functors. Namely, we prove that the Auslander and Bass classes are indeed G (X , Y )

categories for some specific classes X and Y .

Keywords: Gorenstein categories; Gorenstein injective module; Gorenstein projective module;
Foxby classes

MSC: 16E30; 18G25

1. Introduction

Over the past years, the investigation of (co)homology with respect to various classes
of modules has emerged as a dynamic field of algebra, captivating the dedication of
numerous mathematicians.

Within the realm of (co)homology calculations for different classes of modules, the
significance of Gorenstein projective modules and Gorenstein injective modules (originally
introduced by Enochs and Jenda in [1]) has been notably profound. The study of these
module classes has played a pivotal role in advancing relative homological algebra, giving
rise to a considerable number of generalizations as a testament to their importance.

One of the highly promising extensions in this context is the class of Gorenstein
projective (injective) modules with respect to a semidualizing module, known as the class of
GC-projective (injective) modules. Notable research exploring the homological dimensions
associated with these module classes has been conducted by Holm and Jørgensen in [2],
as well as by White in [3], and by Huang, Liu zand Xu in [4]. These studies serve as
noteworthy examples of the advancements made in understanding the properties of these
generalized classes.

It is important to highlight that semidualizing modules possess rather stringent prop-
erties, as the condition EndR(C) ∼= R renders C almost projective-like. Consequently,
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methods have been explored to weaken these requirements on C without forfeiting the
essential characteristics that make it an ideal candidate for establishing a satisfactory rela-
tive (co)homology theory. These newly studied modules were termed weakly Wakamatsu
tilting modules or simply w-tilting modules.

On the other hand, within the context of abelian category A , the exploration of
Gorenstein categories with respect to a specific full subcategory X of A , known as the
categories G (X ), has already been investigated by Sather-Wagstaff, Sharif, and White
in [5], or in more recent works, the same types of studies were carried out, for example, by
Huang in [6] or by Wu and Gao in [7]. This implies that, even though not explicitly stated,
the notion of X -Gorenstein objects has already been treated in the literature, extending the
original concepts of Gorenstein projective and Gorenstein injective modules into the realm
of categorical frameworks.

In contrast to classical Gorenstein projective (injective) modules, GC-projective (injec-
tive) modules require the definition of two module classes (either projective modules and
AddR(C) or injective modules and ProjR(C)), whereas the latter only necessitate one class
(either projective modules or injective modules). This distinction prompted the natural
inclination to explore the potential of studying Gorenstein objects relative to two distinct
classes of objects (which, to some extent, expand upon the properties of a w-tilting module)
within an abelian category. The objective is to construct a theory of relative Gorenstein-like
objects within a categorical framework, which is the primary focus of this paper.

The inception of this idea dates back to 2016 during the development of Enrique
Duarte’s master’s thesis. It is important to acknowledge that as our work was reaching an
advanced stage, we discovered a paper that explores a similar concept (Zhao and Sun’s
paper [8]), where the authors introduced the notion of (X ,Y )-Gorenstein objects. However,
Zhao and Sun’s ultimate objective and methods differed from the ones presented in our
work, which led us to further develop our study and strategy.

2. Preliminaries

Throughout the paper, and unless otherwise specified, A will always be an abelian
category with enough injectives, Inj(A ) (respectively, Proj(A )) will denote the class of all
injective (respectively, projective) objects of A , and X and Y will be two full subcategories
of A , closed under isomorphisms and containing the zero object.

We will occasionally use certain results of [8], and it is worth noting that, although the
authors require the classes X and Y to be closed under direct summands, the proofs of [8]
(Corollary 3.8, Theorem 4.2 and Proposition 4.8) do not require this assumption.

We start by recalling some well-known concepts. Given an object M of A , an X -
precover of M is a morphism φ : X → M with X ∈ X such that for any other X′ of X , the
morphism of abelian groups HomA (X′, φ) is surjective. If, furthermore, any solution of
the equation HomA (X, φ)(g) = φ is an automorphism, then φ is said to be an X -cover.
An X -precover φ is said to be special if it is an epimorphism and Ext1

A (X′, Ker φ) = 0 for
all X′ ∈ X . Pre-envelopes, special pre-envelopes, and envelopes are defined dually.

The right orthogonal class of any class C , denoted C⊥, is defined as the class of
all objects A of A such that Ext≥1

A (C, A) = 0 for every object C of C . Similarly, the left
orthogonal class of C , denoted ⊥C , is defined as the class of all those objects A such that
Ext≥1

A (A, C) = 0 for every C of C . Given a class D , if C ⊆ ⊥D (equivalently, D ⊆ C⊥), we
write C ⊥ D . If C ⊥ C , C is called self-orthogonal.

An X -resolution of an object M of A is a complex (not necessarily exact)

X = · · · → X1 → X0 → M → 0,

which is HomA (X ,−)-exact (that is, HomA (X, X) is an exact complex for every X ∈ X ),
and such that Xi ∈ X ∀i ≥ 0. It is immediate to see that M having an X -resolution
is equivalent to M having a X -precover whose kernel has an X -precover and so on.
X -coresolutions can be defined dually.
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The full subcategory of A consisting of all objects that have X -resolutions (X -
coresolutions) will be denoted as res(X ) (cores(X )), and the full subcategory of A con-
sisting of all objects that admit an exact X -resolution (an exact X -coresolution) will be
denoted by r̂es(X ) (ĉores(X )).

If 0 → A → B → C → 0 and 0 → B → D → E → 0 are two exact sequences in A , the
pushout diagram of B → C and B → D gives the following commutative diagram with
exact rows and columns:

0

��

0

��
0 // A // B //

��

C //

��

0

0 // A // D

��

// F //

��

0

E

��

E

��
0 0

Throughout the paper, we will need results concerning the Hom-exactness of pullback
and pushout diagrams. We think that these kinds of results should be known but we
have not found them in the literature, so we will state what we need in the following four
lemmas, avoiding giving the proofs since they are straightforward.

Lemma 1. Let 0 → A → B → C → 0 and 0 → B → D → E → 0 be two exact and
HomA (X ,−)-exact (HomA (−,X )-exact) sequences in A . Then, the commutative pushout diagram

0

��

0

��
0 // A // B //

��

C //

��

0

0 // A // D

��

// F //

��

0

E

��

E

��
0 0

has exact and HomA (X ,−)-exact (HomA (−, X )-exact) rows and columns.

Lemma 2. Let 0 → A → B → C → 0 and 0 → A → D → E → 0 be two exact and
HomA (X ,−)-exact (HomA (−,X )-exact) sequences in A . Then, the commutative pushout diagram
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0

��

0

��
0 // A //

��

B //

��

C // 0

0 // D //

��

F //

��

C // 0

E

��

E

��
0 0

has exact and HomA (X ,−)-exact (HomA (−, X )-exact) rows and columns.

These two results have corresponding duals relative to pullbacks.

Lemma 3. Let 0 → A → B → C → 0 and 0 → D → E → B → 0 be two exact and
HomA (X ,−)-exact (HomA (−,X )-exact) sequences in A . Then, the commutative pullback diagram

0

��

0

��
D

��

D

��
0 // F //

��

E

��

// C // 0

0 // A //

��

B

��

// C // 0

0 0

has exact and HomA (X ,−)-exact (HomA (−, X )-exact) rows and columns.

Lemma 4. Let 0 → A → B → C → 0 and 0 → D → E → C → 0 be two exact and
HomA (X ,−)-exact (HomA (−,X )-exact) sequences in A . Then, the commutative pullback diagram

0

��

0

��
D

��

D

��
0 // A // F

��

// E //

��

0

0 // A // B

��

// C //

��

0

0 0

has exact and HomA (X ,−)-exact (HomA (−, X )-exact) rows and columns.
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Let us now recall some fact related to the exactness of the mapping cone associated
with a morphism of complexes. We state the result without proof since it is standard and
well-known.

Lemma 5. Suppose the diagram

0 // An
δn //

fn

��

An−1 //

fn−1
��

· · · // A1
δ1 //

f1
��

A0 //

f0
��

0

0 // Bn dn

// Bn−1 // · · · // B1 d1

// B0 // 0

is commutative with exact rows.
Let κAi : Ai → Bi+1 ⊕ Ai and κBi+1 : Bi+1 → Bi+1 ⊕ Ai be the canonical monomorphisms,

and πAi : Bi+1 ⊕ Ai → Ai and πBi+1 : Bi+1 ⊕ Ai → Bi+1 be the canonical projections.
For any integer number i with 1 < i ⩽ n, let ∆i : Bi ⊕ Ai−1 → Bi−1 ⊕ Ai−2 be the morphism

given by ∆i = (−κAi−2 δi−1 + κBi−1 fi−1)πAi−1 + κBi−1 diπBi .
Finally, let ∆1 : B1 ⊕ A0 → B0 be given by ∆1 = f0πA0 + d1πB1 and ∆n+1 : An →

Bn ⊕ An−1 be given by ∆n+1 = −κAn−1 δn + κBn fn.
The following statements hold.

1. If fn is an isomorphism, then the sequence

0 → An−1
φ−→ Bn−1 ⊕ An−2

∆n−1−→ · · · → B1 ⊕ A0
∆1−→ B0 → 0

is exact, where φ = −kAn−2 δn−1 + kBn−1 fn−1.
2. If f0 is an isomorphism, then the sequence

0 → An
∆n+1−→ Bn ⊕ An−1

∆n−→ · · · → B2 ⊕ A1
ρ−→ B1 → 0

is exact, where ρ = f1πA1 + d2πB2 .

We now turn our attention to ExtA functors. The following result is an extension of
the classical shift property of ExtA functors.

Lemma 6. If Y ⊥ X and

0 → A → Xn−1 → · · · → X1 → X0 → B → 0

is an exact sequence with each Xi ∈ X , then Extk
A (Y, B) ∼= Extk+n

A (Y, A) for every Y ∈ Y .

Dually, we have the following.

Lemma 7. If X ⊥ Y and

0 → A → Xn−1 → · · · → X1 → X0 → B → 0

is an exact sequence with each Xi ∈ X , then Extk
A (A, Y) ∼= Extk+n

A (B, Y) for every Y ∈ Y .

We will finish this section by giving a version of the Comparison Lemma that will
later give consistency to the definition of dimensions.

Theorem 1. Suppose that X is self-orthogonal and closed under finite direct sums and kernels of
epimorphisms. If

0 // An
fn // Xn−1 // · · · // X1

f1 // X0
f0 // M // 0
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and
0 // Bn

gn // X′
n−1

// · · · // X′
1

g1 // X′
0

g0 // M // 0

are any two exact sequences with Xi, X′
i ∈ X for every i ∈ {0, 1, . . . , n − 1}, then

An ∈ X ⇔ Bn ∈ X .

Proof. Call Ai = Ker fi−1 and Bi = Ker gi−1 for every i ∈ {1, 2, . . . , n − 1}.
If An ∈ X , then by Lemma 6 we have

Extk
A (X, Ai) ∼= Extk+n−i

A (X, An) = 0 ∀X ∈ X , ∀k > 0, ∀i ∈ {1, 2, . . . , n − 1}.

Then, the exact sequence

0 → An → Xn−1 → · · · → X1 → X0 → M → 0

is HomA (X ,−)-exact. Therefore, there exists h0 : X′
0 → X0 such that g0 = f0h0, that is,

we have the following commutative diagram with exact rows:

· · · // X′
1

v′1   

g1 // X′
0

g0 //

h0

��

M // 0

B2

u′
2

>>

B1

u′
1

>>

λ1

��

· · · // X1

v1   

f1 // X0
f0 // M // 0

A2

u2

>>

A1

u1

>>

Now, since 0 = g0u′
1 = f0h0u′

1, there is a unique λ1 : B1 → A1 such that u1λ1 = h0u′
1.

Therefore, since Ext1
A (X′

1, A2) = 0, there exists h1 : X′
1 → X1 such that v1h1 = λ1v′1 and

then f1h1 = h0g1.
We can repeat this argument until we reach the commutative diagram with exact rows

0 // Bn //

��

X′
n−1

//

��

· · · // X′
0

//

��

M // 0

0 // An // Xn−1 // · · · // X0 // M // 0

Applying then Lemma 5 we obtain the exact sequence

0 → Bn → An ⊕ X′
n−1 → Xn−1 ⊕ X′

n−2 → · · · → X1 ⊕ X′
0 → X0 → 0,

in which all objects are in X except, perhaps, Bn. But X is closed under kernels of
epimorphisms so indeed we have that Bn ∈ X .

The converse holds using the same arguments.

The dual result says the following.

Theorem 2. Suppose that X is self-orthogonal and closed under finite direct sums and cokernels
of monomorphisms, and that 0 → M → X0 → X1 → · · · → Xn−1 → An → 0 and 0 → M →
X′

0 → X′
1 → · · · → X′

n−1 → Bn → 0 are any two exact sequences with Xi, X′
i ∈ X for every

i ∈ {0, 1, . . . , n − 1}. Then,
An ∈ X ⇔ Bn ∈ X .
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3. (XXX ,YYY )-Gorenstein Subcategories

In this section we will study (X , Y )-Gorenstein objects as a natural generalization of
Gorenstein projective and Gorenstein injective objects.

Even in module categories, where the existence of enough projectives is always guar-
anteed, the study of objects that generalize Gorenstein projective modules (generalizations
with respect to a semidualizing or w-tilting module as indicated in the Introduction) has
proven to be of extraordinary interest and to have a more than remarkable impact. For
example, the dimensions provided by these generalizations are a refinement of those pro-
vided by the classical Gorenstein classes. Thus, an extension of this theory to contexts
where projectives may not be enough to generate, acquires even greater importance. But
such a treatment requires laying the groundwork and establishing a solid terminological
and result base framework.

We will investigate the structure of (X , Y )-Gorenstein objects and introduce the
concepts of G-compatible and G-perfect pairs (X , Y ) for which the subcategory of all
(X , Y )-Gorenstein objects verifies the usual desired properties of classes used to compute
(co)homology.

We start by recalling the definition of (X , Y )-Gorenstein objects.

Definition 1 ([8] Definition 3.1). An object M is called (X , Y )-Gorenstein if there exists a
HomA (X ,−)-exact, HomA (−, Y )-exact, and exact sequence

· · · → X1 → X0 → Y0 → Y1 → · · ·

with Xi ∈ X , Yi ∈ Y for all i ≥ 0 and M = Im(X0 → Y0).
An exact sequence of this type is called a complete (X , Y )-resolution of M.
The full subcategory of A consisting of all (X , Y )-Gorenstein objects will be denoted by

G (X , Y ). Set G (X ) = G (X , X ).

Since the subcategories X and Y contain the zero object, then G (X , Y ) contains the
zero object. Furthermore, the subcategory G (X , Y ) is closed under isomorphisms.

From the definition, by abusing the language, we have:

1. X ∩Y ⊆ G (X , Y ).
2. If X ⊥ Y , then (r̂es(X ) ∩Y ∩ ⊥Y ) ⊆ G (X , Y ).
3. If X ⊥ Y , then (X ∩X ⊥ ∩ ĉores(Y )) ⊆ G (X , Y ).

This subcategory generalizes many well-known categories:

1. G (Proj(A ),Proj(A )) = GProj(A ) is the subcategory of Gorenstein projective ob-
jects and G (Inj(A ), Inj(A )) = GInj(A ) is the subcategory of Gorenstein injective
objects, studied, for example, in [1].

2. In the category R-Mod, we have that the category of GC-projective modules, studied
for example in [4], is G (Proj(R), AddR(C)).

The following characterization of (X , Y )-Gorenstein objects can be observed by
employing conventional arguments.

Proposition 1. Let X and Y be such that X ⊥ Y . Then, M is (X , Y )-Gorenstein if and only
if M admits an exact X -resolution, an exact Y -coresolution and M ∈ X ⊥ ∩ ⊥Y .

In the following two propositions we investigate when the category of all (X ,Y )-
Gorenstein objects is closed under kernels of epimorphisms and cokernels of monomorphisms.

Proposition 2. Let X and Y be such that X ⊥ X and X ⊥ Y . If X and Y are closed under
finite direct sums and X is closed under kernels of epimorphisms, then G (X , Y ) is closed under
kernels of epimorphisms.
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Proof. Let 0 → M′ → M → M′′ → 0 be an exact sequence in A where M, M′′ ∈ G (X , Y ).
Then, M, M′′ ∈ X ⊥ ∩ ⊥Y (see Proposition 1). Given Y ∈ Y , from the long exact homology
sequence, it follows that Ext⩾1

A (M′, Y) = 0. Thus, M′ ∈ ⊥Y .
Let us prove that M′ admits an exact Y -coresolution. For example, let

0 → M → Y0 → Y1 → · · ·

be an exact Y -coresolution of M and call C0 = Im(Y0 → Y1). Then, by Lemma 1 we can obtain
the following pushout diagram with all rows and all columns exact and HomA (−,Y )-exact

0

��

0

��
0 // M′ // M //

��

M′′ //

��

0

0 // M′ // Y0 //

��

P //

��

0

C0

��

C0

��
0 0

Since the sequence 0 → M′′ → P → C0 → 0 is HomA (−, Y )-exact and
M′′, C0 ∈ ĉores(Y ), by the Horseshoe Lemma, we have P ∈ ĉores(Y ). Hence, the exact Y -
coresolution of M′ can be constructed by combining the short exact sequence
0 → M′ → Y0 → P → 0 and an exact Y -coresolution of P.

We now prove that M′ admits an exact X -resolution.
Since M′′ ∈ G (X , Y ), we can obtain a HomA (X ,−)-exact exact sequence

0 → K′′
0 → X′′

0 → M′′ → 0

where X′′
0 ∈ X and K′′

0 ∈ X ⊥ ∩ r̂es(X ). Then, we consider the following pullback
diagram with all rows and columns exact

0

��

0

��
K′′

0

��

K′′
0

��
0 // M′ // P //

��

X′′
0

//

��

0

0 // M′ // M //

��

M′′ //

��

0

0 0
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From the middle vertical sequence and Horseshoe Lemma, we obtain P ∈ r̂es(X )∩X ⊥.
Then, there is an exact sequence 0 → K′

0 → X′
0 → P → 0 where K′

0 ∈ X ⊥ ∩ r̂es(X ). We
can obtain the pullback diagram with all rows and columns exact

0

��

0

��
K′

0

��

K′
0

��
0 // P′ //

��

X′
0

//

��

X′′
0

// 0

0 // M′ //

��

P //

��

X′′
0

// 0

0 0

Since X is closed under kernels of epimorphisms, P′ ∈ X and then the exact X -
resolution of M′ can be constructed by combining the short exact sequence 0 → K′

0 →
P′ → M′ → 0 and an exact X -resolution of K′

0.
The exactness of the left vertical sequence gives M′ ∈ X ⊥.
Hence, M′ ∈ G (X , Y ) by Proposition 1.

Dually.

Proposition 3. Let X and Y be such that Y ⊥ Y and X ⊥ Y . If X and Y are closed under
finite direct sums and Y is closed under cokernels of monomorphisms, then G (X , Y ) is closed
under cokernels of monomorphisms.

We will study when the subcategories X and Y are “included” in G (X , Y ) since
this fact increases the interest of this class: X and Y being included in G (X , Y ) means
that the G (X , Y )-dimension gives a finer measurement than the X -dimension and Y -
dimension, and therefore the G (X , Y )-dimension provides more accurate results than the
other two dimensions.

Proposition 4. Let X and Y be such that X ⊥ Y . Then, X ⊆ G (X , Y ) if and only if
X ⊆ ĉores(Y ) and X ⊥ X .

Proof. Assume X ⊆ ĉores(Y ) and X ⊥ X . Given X ∈ X , it is clear that X ∈ X ⊥ ∩ ⊥Y
and X ∈ r̂es(X ), and by hypothesis X ∈ ĉores(Y ), then X ∈ G (X , Y ) by Proposition 1.

Conversely, it is sufficient to note that G (X ,Y ) ⊆ ĉores(Y )∩X ⊥ (see Proposition 1).

Dually, we have the following.

Proposition 5. Let X and Y be such that X ⊥ Y . Then, Y ⊆ G (X , Y ) if and only if
Y ⊆ r̂es(X ) and Y ⊥ Y .

Building upon Propositions 4 and 5, we now introduce the concepts of G-compatibility.

Definition 2. We say that the pair (X , Y ) is left G-compatible when X and Y are closed under
finite direct sums, X ⊥ Y , X ⊥ X and X ⊆ ĉores(Y ).

Dually, we say that the pair (X , Y ) is right G-compatible if X and Y are closed under finite
direct sums, X ⊥ Y , Y ⊥ Y and Y ⊆ r̂es(X ).

And we say that the pair (X , Y ) is G-compatible if it is both left and right G-compatible.
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The following result shows that if (X , Y ) is left G-compatible, then every kernel of
any exact X -resolution of a (X , Y )-Gorenstein object is (X , Y )-Gorenstein.

Proposition 6. Let X and Y be such that (X , Y ) is left G-compatible. Then, every kernel of any
exact X -resolution of a (X , Y )-Gorenstein object is (X , Y )-Gorenstein.

Proof. Let M be a (X , Y )-Gorenstein object and · · · → X1 → X0 → M → 0 be an exact
X -resolution of M. If we call K0 = Ker(X0 → M), then we have the exact, HomA (X ,−)-
exact, and HomA (−, Y )-exact sequence 0 → K0 → X0 → M → 0. Given X ∈ X
and Y ∈ Y , from the long exact sequences of homology associated with the functors
HomA (X,−) and HomA (−, Y), it follows that K0 ∈ X ⊥ ∩ ⊥Y .

Let us prove that K0 admits an exact Y -coresolution.
Since X ⊆ ĉores(Y ), there is 0 → X0 → Y1 → C1 → 0 where Y1 ∈ Y and

C1 ∈ ĉores(Y ) and we consider the following pushout diagram, given by Lemma 1,
with all rows and columns exact and HomA (−, Y )-exact

0

��

0

��
0 // K0 // X0 //

��

M //

��

0

0 // K0 // Y1 //

��

P //

��

0

C1

��

C1

��
0 0

By the right vertical sequence and Horseshoe Lemma, we have P ∈ ĉores(Y ). Then,
the exact Y -coresolution of K0 can be constructed by combining the short exact sequence
and an exact Y -coresolution of P. Thus, K0 is (X , Y )-Gorenstein by Proposition 1.

Dually.

Proposition 7. Let X and Y be such that the pair (X , Y ) is right G-compatible. Then, every
cokernel of any exact Y -coresolution of a (X , Y )-Gorenstein object is (X , Y )-Gorenstein.

In the next result we prove that when the pair (X , Y ) is G-compatible, the iterative
construction process of (X , Y )-Gorenstein objects reaches stability in the second iteration.
This means that by constructing Gorenstein objects relative to the classes X and Y , further
construction of Gorenstein objects relative to G (X , Y ) does not yield any new entities.

Theorem 3. If (X , Y ) is G-compatible, then G (G (X , Y )) = G (X , Y ).

Proof. To see that G (X , Y ) ⊆ G (G (X , Y )), take any M ∈ G (X , Y ) and consider the
disc complex

· · · // 0 // M
idM // M // 0 // · · ·
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Conversely, given any M ∈ G (G (X , Y )), there is a HomA (G (X , Y ),−)-exact,
HomA (−, G (X , Y ))-exact, and exact sequence

· · · // G1 //

  

G0 //

��

G0 //

  

G1 // · · ·

M1

>>

M

??

M1

>>
(1)

where Gi, Gi ∈ G (X ,Y ), Mi = Im(Gi → Gi−1), Mi = Im(Gi−1 → Gi) and M = Im(G0 → G0).
Since X ⊆ G (X , Y ) and the sequence (1) is HomA (G (X , Y ),−)-exact, the se-

quence (1) is HomA (X ,−)-exact. With the same reasoning, the sequence (1) is also
HomA (−, Y )-exact. Then, M ∈ X ⊥ ∩ ⊥Y .

Let us prove that M ∈ r̂es(X ) (dually M ∈ ĉores(Y )). Since G0 ∈ G (X , Y ), there
is an exact sequence 0 → K0 → X0 → G0 → 0 where X0 ∈ X and K0 ∈ G (X , Y ) (by
Proposition 6). Then, by Lemma 3 we can obtain the pullback diagram with all rows and
all columns being exact and HomA (X ,−)-exact

0

��

0

��
K0

��

K0

��
0 // P0 //

��

X0 //

��

M // 0

0 // M1 //

��

G0 //

��

M // 0

0 0

With 0 → K0 → P0 → M1 → 0 and 0 → M2 → G1 → M1 → 0, we obtain, by Lemma 4,
the pullback diagram with all rows and all columns exact and HomA (X ,−)-exact

0

��

0

��
M2

��

M2

��
0 // K0 // D0 //

��

G1 //

��

0

0 // K0 // P0 //

��

M1 //

��

0

0 0

Since G1, K0 ∈ G (X , Y ), by [8] (Corollary 3.8), we have D0 ∈ G (X , Y ), then there
is a HomA (X ,−)-exact exact sequence 0 → K1 → X1 → D0 → 0 where X1 ∈ X and
K1 ∈ G (X , Y ). Then, by Lemma 3 we obtain the pullback diagram with all rows and all
columns exact and HomA (X ,−)-exact
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0

��

0

��
K1

��

K1

��
0 // P1 //

��

X1 //

��

P0 // 0

0 // M2 //

��

D0 //

��

P0 // 0

0 0

Hence, combining the HomA (X ,−)-exact exact sequences 0 → P1 → X1 → P0 → 0
and 0 → P0 → X0 → M → 0, we obtain the HomA (X ,−)-exact exact sequence
0 → P1 → X1 → X0 → M → 0. If we continue this process indefinitely, we obtain
an exact X -resolution of M.

It is worth noting that in [8] (Theorem 4.2), it was proved that the class G (X , Y )
coincides with the class of all objects M ∈ A such that there exists an HomA (X ,−)-exact,
HomA (−, Y )-exact, and exact sequence · · · → A1 → A0 → A0 → A1 → · · · in A with
all Ai, Aj ∈ G (X , Y ) and M = Im(A0 → A0). This establishes another perspective on
the stability of G (X , Y ) objects after iterations, extending the concept introduced in [4]
(Theorem 2.9), while Proposition 3 generalizes the context elucidated in [5] (Corollary 4.10)
by providing a broader framework for examining the relationship between G (X , Y ) and
G (G (X , Y )).

To conclude this section, we introduce the concept of G-perfect pairs and present a study
in Theorem 4 regarding the (X ,Y )-Gorenstein nature of kernels in a (X ,Y )-Gorenstein
resolution. This finding carries substantial importance in the computation of (X ,Y )-Gorenstein
dimensions and sets the stage for further exploration in the upcoming sections.

Definition 3. We say that the pair (X , Y ) is left G-perfect if (X , Y ) is G-compatible and X is
closed under kernels of epimorphisms.

Dually, we say that the pair (X , Y ) is right G-perfect if (X , Y ) is G-compatible and Y is
closed under cokernels of monomorphisms.

And we say that the pair (X , Y ) is G-perfect if it is both left and right G-perfect.

The following lemma will be useful in the proof of Theorem 4.

Lemma 8. Let X and Y be such that the pair (X ,Y ) is left G-compatible. Given an exact sequence

0 → An → Gn−1 → · · · → G1 → G0 → M → 0

with all Gi ∈ G (X , Y ), there exist an exact sequence

0 → Kn → Xn−1 → · · · → X1 → X0 → M → 0

with all Xi ∈ X , and a morphism of complexes

0 // Kn

��

// Xn−1 //

��

· · · // X1 //

��

X0 //

��

M // 0

0 // An // Gn−1 // · · · // G1 // G0 // M // 0
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Proof. We call Ai = Im(Gi → Gi−1) for all i ∈ {1, 2, · · · , n − 1} and consider the exact
sequence 0 → A1 → G0 → M → 0. Since G0 ∈ G (X , Y ), there is an exact sequence
0 → G′

0 → X0 → G0 → 0 where X0 ∈ X and G′
0 ∈ G (X , Y ) (see Proposition 6). Then, we

can obtain the pullback diagram with exact rows and columns

0

��

0

��
G′

0

��

G′
0

��
0 // P1 //

��

X0 //

��

M // 0

0 // A1 //

��

G0 //

��

M // 0

0 0

and hence, we have the following commutative diagram with exact rows

X0 //

��

M // 0

P1

>>

��

0

??

· · · // G1 //

''

G0 // M // 0

A1

>>

!!
0

??

0

Now, we consider the pullback diagram with exact rows and columns

0

��

0

��
G′

0

��

G′
0

��
0 // A2 // D1 //

��

P1 //

��

0

0 // A2 // G1 //

��

A1 //

��

0

0 0
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Since G (X , Y ) is closed under extensions (see [8] [Corollary 3.8]), D1 ∈ G (X , Y )
and then there is an exact sequence 0 → G′

1 → X1 → D1 → 0 where X1 ∈ X and
G′

1 ∈ G (X , Y ). Then, we can obtain the pullback diagram

0

��

0

��
G′

1

��

G′
1

��
0 // P2 //

��

X1 //

��

P1 // 0

0 // A2 //

��

D1 //

��

P1 // 0

0 0

Thus, we have the following commutative diagram:

P2 //

��

X1 //

��

P1

A2 // D1 //

��

P1

��
A2 // G1 // A1

From which we construct the following commutative diagram with exact rows:

X1 //

��

X0 //

��

M // 0

P2

>>

��

0

??

· · · // G2 //

''

G1 // G0 // M // 0

A2

>>

!!
0

??

0

If we continue this process until step n, we obtain the desired exact sequence together
with the morphism of complexes.

Dually, we have the following.

Lemma 9. Let X and Y be such that the pair (X ,Y ) is right G-compatible. Given an exact sequence

0 → M → G0 → G1 → · · · → Gn−1 → An → 0



Mathematics 2024, 12, 1130 15 of 30

with all Gi ∈ G (X , Y ), there exist an exact sequence

0 → M → Y0 → Y1 → · · · → Yn−1 → Kn → 0

with all Yi ∈ Y , and a morphism of complexes

0 // M // G0 //

��

G1 //

��

· · · // Gn−1 //

��

An //

��

0

0 // M // Y0 // Y1 // · · · // Yn−1 // Kn // 0

Theorem 4. Let X and Y be such that the pair (X , Y ) is left G-perfect. Given the exact sequences

0 → An → Gn−1 → · · · → G1 → G0 → M → 0

0 → Bn → Hn−1 → · · · → H1 → H0 → M → 0

with all Gi, Hi ∈ G (X , Y ), then

An ∈ G (X , Y ) ⇔ Bn ∈ G (X , Y ).

Proof. Assume An ∈ G (X ,Y ) ⊆ X ⊥. Since Gi ∈ G (X ,Y ) ⊆ X ⊥, if we call Ai = Im(Gi →
Gi−1) then Ext1A (X, Ai) ∼= Ext1+n−i

A (X, An) = 0 for all X ∈ X . Then, the exact sequence

0 // An
dn // Gn−1 // · · · // G1

d1 // G0
d0 // M // 0 (2)

is HomA (X ,−)-exact.
On the other hand, applying Lemma 8 there is a commutative diagram

0 // Kn
fn //

��

Xn−1 //

��

· · · // X1
f1 //

��

X0
f0 //

��

M // 0

0 // Bn // Hn−1 // · · · // H1 // H0 // M // 0

(3)

where Xi ∈ X for all i = 0, 1, . . . , n − 1.
Since the sequence (2) is HomA (X ,−)-exact, we can construct the following commu-

tative diagram

0 // Kn
fn //

hn
��

Xn−1

hn−1
��

// · · · // X1

h1
��

f1 // X0

h0
��

f0 // M // 0

0 // An
dn // Gn−1 // · · · // G1

d1 // G0
d0 // M // 0

whose mapping cone,

0 → Kn → An ⊕ Xn−1 → · · · → G1 ⊕ X0 → G0 → 0,

is exact. Since X ⊆ G (X , Y ) and G (X , Y ) is closed under kernels of epimorphisms (see
Proposition 2), we have Kn ∈ G (X , Y ).

The mapping cone of the morphism of complexes (3) is also exact

0 → Kn → Bn ⊕ Xn−1 → · · · → H1 ⊕ X0 → H0 → 0.
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In this sequence, all objects are (X , Y )-Gorenstein except, perhaps, Bn ⊕ Xn−1. Since
G (X , Y ) is closed under kernels of epimorphisms, we have an exact sequence

0 → Kn → Bn ⊕ Xn−1 → G → 0

with G ∈ G (X , Y ). Since G (X , Y ) is closed under extensions we obtain Bn ⊕ Xn−1 ∈
G (X , Y ), so Bn ∈ G (X , Y ) since G (X , Y ) is closed under direct summands (see [8]
Proposition 4.8).

Dually, we have the following.

Theorem 5. Let X and Y be such that the pair (X ,Y ) is right G-perfect. Given the exact sequences

0 → M → G0 → G1 → · · · → Gn−1 → An → 0

0 → M → H0 → H1 → · · · → Hn−1 → Bn → 0

with all Gi, Hi ∈ G (X , Y ), then

An ∈ G (X , Y ) ⇔ Bn ∈ G (X , Y ).

4. G (X , Y )G (X , Y )G (X , Y )-Projective Dimension

Throughout this section we assume that the pair (X , Y ) is left G-perfect. Our primary
focus in this section is to explore the relative homological dimensions induced by the
subcategories G (X , Y ). We will establish that the G (X , Y )-projective dimension of an
object (in the finite case) is completely determined by the minimum degree of the ExtA
functor from which all higher degrees vanish. In simpler terms, it will be the smallest
natural number n for which Extk

A = 0 holds for all k ≥ n + 1. Additionally, we will
investigate the conditions under which the X -projective dimension coincides with the
G (X , Y )-projective dimension.

We start by recalling the definition of the projective dimension relative to any subcategory.

Definition 4. Let T be a subcategory of A . An object M in A is said to have T -projective
dimension less than or equal to an integer n, T - pd(M) ⩽ n, if there is an exact sequence

0 → Tn → Tn−1 → · · · → T1 → T0 → M → 0

with Ti ∈ T for every i ∈ {0, 1, . . . , n}. If no such finite sequence exists, then T - pd(M) = ∞;
otherwise, T - pd(M) = n if n is the least non-negative integer for which such a sequence exists.

The T -injective dimension of M, denoted T - id(M), is defined dually.

Note that Proj- pd (respectively, Inj- id) coincides with the classical projective dimen-
sion, pd (respectively, injective dimension, id).

Proposition 8. Given M in A , if G (X , Y )- pd(M) is finite, then M admits an exact X -
resolution. Moreover, M ∈ X ⊥.

Proof. By definition there is an exact sequence

0 → Gn → · · · → G0 → M → 0

where Gi ∈ G (X , Y ) for all i = 0, 1, . . . , n. Applying Lemma 8 we have the exact sequence

0 → Kn → Xn−1 → · · · → X0 → M → 0
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with Xi ∈ X . Then, Kn ∈ G (X , Y ) by Theorem 4. Furthermore, this sequence is
HomA (X ,−)-exact since, if we call Ki = Im(Xi → Xi−1), we have Extk

A (X, Ki) ∼=
Extn−i+k

A (X, Kn) = 0 for all X ∈ X .
Now, combining the above sequence with an exact X -resolution of Kn, we have an

exact X -resolution of M.
To see that M ∈ X ⊥ just use that

Extk
A (X, M) ∼= Extk+n

A (X, Kn) = 0

for all k > 0 and all X ∈ X .

Proposition 9. The following conditions are equivalent for an object M and a non-negative integer n.

1. G (X , Y )- pd(M) ⩽ n.
2. There is an exact sequence 0 → M → P → G → 0, where G is (X , Y )-Gorenstein and P

admits an exact Y -resolution of length n.
3. There is an exact sequence 0 → M → P → G → 0, where G is (X , Y )-Gorenstein and

there exists an exact sequence 0 → Yn → · · · → Y0 → P → 0 with every Yi ∈ Y .

Proof. For 1. ⇒ 2., assume G (X , Y )- pd(M) ⩽ n and proceed by induction on n. The
case n = 0 follows from Proposition 7. If n ≥ 1, there exists an exact sequence

0 → Gn → · · · → G0 → M → 0.

We decompose this sequence into two exact sequences

0 → K → G0 → M → 0,

0 → Gn → · · · → G1 → K → 0,

and see that G (X , Y )- pd(K) ⩽ n − 1, so by induction, there is an exact sequence

0 → K → P′ → G′ → 0,

where G′ ∈ G (X , Y ) and P′ admits an exact Y -resolution of length n − 1,

0 → Yn−1 → · · · → Y0 → P′ → 0.

Consider the following pushout diagram:

0

��

0

��
0 // K //

��

G0 //

��

M // 0

0 // P′ //

��

D //

��

M // 0

G′

��

G′

��
0 0

By the middle vertical sequence, D ∈ G (X , Y ) ([8] Corollary 3.8). Then, there exists
an exact sequence 0 → D → Y → G′′ → 0, where Y ∈ Y and G′′ ∈ G (X , Y ). Let us see
that if we consider the pushout diagram
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0

��

0

��
0 // P′ // D //

��

M //

��

0

0 // P′ // Y //

��

P //

��

0

G′′

��

G′′

��
0 0

the right vertical sequence gives the desired sequence.
We only need to show that P has an exact Y -resolution of length n. But we have the

exact Y -resolution
0 → Yn−1 → · · · → Y0 → P′ → 0,

so the sequence

0 → Yn−1 → · · · → Y0 → Y → P → 0 (4)

is exact, and since Y is self-orthogonal, we have

Ext1
A (Y′, P′) ∼= Extn

A (Y′, Yn−1) = 0 ∀Y′ ∈ Y ,

so (4) is an exact Y -resolution of P of length n.
2. ⇒ 3. Clear.
To prove 3. ⇒ 1. choose any exact sequence of length n,

0 → Yn → · · · → Y0 → P → 0

with all Yi ∈ Y and call K = Ker(Y0 → P). Then, we can consider the pullback diagram

0

��

0

��
K

��

K

��
0 // P′ //

��

Y0 //

��

G // 0

0 // M //

��

P //

��

G // 0

0 0

By the middle horizontal sequence, P′ ∈ G (X , Y ) (Propositions 2 and 5). There-
fore, we obtain the result by combining the left vertical sequence and the exact sequence
0 → Yn → · · · → Y1 → K → 0.

Theorem 6. For any non-negative integer n, if G (X , Y )- pd(M) ⩽ n, then there is an exact
sequence 0 → P → G → M → 0, where G is (X , Y )-Gorenstein and P admits an exact
Y -resolution of length n − 1. Moreover, P ∈ G (X , Y )⊥.
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Proof. By definition, there is an exact sequence 0 → N → G0 → M → 0, where
G0 ∈ G (X , Y ) and G (X , Y )- pd(N) ⩽ n − 1. By Proposition 9, there is an exact se-
quence 0 → N → P → G′ → 0, where G′ ∈ G (X , Y ) and P admits an exact Y -resolution

0 → Yn−1 → · · · → Y0 → P → 0.

Consider the following pushout diagram:

0

��

0

��
0 // N //

��

G0 //

��

M // 0

0 // P //

��

G //

��

M // 0

G′

��

G′

��
0 0

By the middle vertical sequence, G ∈ G (X , Y ).
Finally, since Y is self-orthogonal, we have, for every A ∈ G (X , Y ),

Extk
A (A, P) ∼= Extk+n−1

A (A, Yn−1) = 0,

which means that P ∈ G (X , Y )⊥.

Corollary 1. Every object of finite G (X ,Y )-projective dimension has a special G (X ,Y )-precover.

As a consequence of Theorem 6, we see that when G (X , Y )- pd(M) is finite, it can be
computed using exact G (X , Y )-resolutions of M.

Corollary 2. If M is any object of finite G (X , Y )-projective dimension, then G (X , Y )- pd(M) ⩽ n
if and only if M has an exact left G (X , Y )-resolution of length less than or equal to n.

Proposition 10. If there is a HomA (−, Y )-exact exact sequence 0 → G′ → G → M → 0 with
G, G′ ∈ G (X , Y ), then M ∈ G (X , Y ).

Proof. Let Y be any object of Y . From the long exact sequence of homology it follows that
Extk

A (M, Y) = 0 for all k > 0.
By definition G (X , Y )- pd(M) ⩽ 1, so applying Theorem 6 there is an exact sequence

0 → Y → G′′ → M → 0 where Y ∈ Y and G′′ ∈ G (X , Y ). Since Ext1
A (M, Y) = 0,

this sequence splits, so M is a direct summand of G′′ and therefore is (X , Y )-Gorenstein
(see [8] Proposition 4.8).

Theorem 7. For an object M of finite G (X , Y )-projective dimension and an integer n ≥ 0 the
following conditions are equivalent:

1. G (X , Y )- pd(M) ⩽ n.
2. Exti

A (M, Y) = 0 for all i > n and all Y ∈ Y .
3. For every exact sequence

0 → Kn → Gn−1 → · · · → G0 → M → 0,
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if each Gi is (X , Y )-Gorenstein, then so is Kn.

Proof. By Theorem 4 it is clear that 1. ⇔ 3. To show 1. ⇒ 2. we just use Extn+i
A (M, Y) ∼=

Exti
A (Gn, Y) = 0 ∀i > 0, being

0 → Gn → Gn−1 → · · · → G0 → M → 0

an exact sequence in which each Gi is (X , Y )-Gorenstein.
2. ⇒ 1. Since the dimension of M is finite, there is an exact sequence

0 → Gm → · · · → G0 → M → 0

where G0, . . . , Gm ∈ G (X , Y ). If m ⩽ n we are done so we suppose m > n and consider
Kn = Ker(Gn−1 → Gn−2). Then, we have the exact sequence

0 → Kn → Gn−1 → · · · → G0 → M → 0

and therefore Exti
A (Kn, Y) ∼= Exti+n

A (M, Y) = 0 for all i > 0 and all Y ∈ Y .
On the other hand, we have that Kn is of finite dimension, so there is an exact sequence

0 → G′
s → · · · → G′

0 → Kn → 0,

where G′
0, . . . , G′

s ∈ G (X , Y ). We decompose it into short exact sequences, 0 → C′
j →

G′
j−1 → C′

j−1 → 0 for j = 1, . . . , s, where C′
s = G′

s and C′
0 = Kn, which are HomA (−, Y )-

exact since
Ext1

A (C′
j−1, Y) ∼= Extj

A (Kn, Y) = 0

for all j = 1, · · · s and all Y ∈ Y . Thus, Proposition 10 can be applied successively to
conclude that C′

s−1, . . . , C′
0 are (X , Y )-Gorenstein. In particular, Kn = C′

0 is (X , Y )-
Gorenstein.

Corollary 3. If M is of finite G (X , Y )-projective dimension, then

G (X , Y )- pd(M) = sup{i ∈ N : Exti
A (M, Y) ̸= 0 for some Y ∈ Y }.

Proposition 11. Given a short exact sequence 0 → M′ → M → M′′ → 0 in A , if any two of
M′, M or M′′ have finite G (X , Y )-projective dimension, then so has the third. Moreover, we have
the following:

1. G (X , Y )- pd(M′) ≤ max{G (X , Y )- pd(M), G (X , Y )- pd(M′′)− 1}.
2. G (X , Y )- pd(M) ≤ max{G (X , Y )- pd(M′), G (X , Y )- pd(M′′)}.
3. G (X , Y )- pd(M′′) ≤ max{G (X , Y )- pd(M′) + 1, G (X , Y )- pd(M)}.

Proof. We already know (Proposition 8) that having finite G (X , Y )-projective dimension
implies having an exact X -resolution. Let us first show that if any two of M, M′ or M′′

have finite G (X , Y )-projective dimension, the third have an exact X -resolution.

• If M′ and M′′ have finite dimension, then M′ ∈ X ⊥ by Proposition 8, so the sequence

0 → M′ → M → M′′ → 0

is HomA (X ,−)-exact and then, since M′ and M′′ both have exact X -resolutions, M
also does by the Horseshoe Lemma.

• If M′ and M have finite dimension, then the sequence

0 → M′ → M → M′′ → 0
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is again Hom(X ,−)-exact. Now, M has an exact X -resolution, so there is an exact
sequence 0 → K1 → X0 → M → 0 with X0 ∈ X and K1 ∈ X ⊥ ∩ r̂es(X ). Then, all
rows and columns of the pullback diagram

0

��

0

��
K1

��

K1

��
0 // P //

��

X0 //

��

M′′ // 0

0 // M′ //

��

M //

��

M′′ // 0

0 0

are HomA (X ,−)-exact and P ∈ X ⊥ since K1, M′ ∈ X ⊥. Applying the Horseshoe
Lemma, we obtain an exact X -resolution of P, and therefore M′′ has an exact X
resolution too.

• If M and M′′ have finite dimension, then M, M′′ ∈ X ⊥ and both admit exact X -
resolutions, so there is an exact sequence

0 → K′′
1 → X′′

0 → M′′ → 0

with X′′
0 ∈ X and K′′

1 ∈ X ⊥ ∩ r̂es(X ). Consider then the pullback diagram

0

��

0

��
K′′

1

��

K′′
1

��
0 // M′ // P //

��

X′′
0

//

��

0

0 // M′ // M //

��

M′′

��

// 0

0 0

Since K′′
1 , M ∈ X ⊥, we have P ∈ X ⊥, and since the sequence 0 → K′′

1 → P → M → 0
is HomA (X ,−)-exact, we can apply the Horseshoe Lemma to see that P ∈ r̂es(X ).
Therefore, there is an exact (and HomA (X ,−)-exact) sequence

0 → K′
1 → X → P → 0

with X ∈ X and K′
1 ∈ X ⊥ ∩ r̂es(X ). We consider the following pullback diagram
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0

��

0

��
K′

1

��

K′
1

��
0 // X′

0
//

��

X //

��

X′′
0

// 0

0 // M′ //

��

P //

��

X′′
0

// 0

0 0

Since X is closed under kernels of epimorphisms we have that X′
0 ∈ X , and then, by

the first column, we obtain M′ ∈ X ⊥ ∩ r̂es(X ).

Therefore, we have seen that, in any case, the sequence

0 → M′ → M → M′′ → 0

is HomA (X ,−)-exact and that the objects M′, M, and M′′ admit exact X -resolutions.
Then, we consider the diagram

...

��

...

��

...

��
0 // X′

1
//

��

X′
1 ⊕ X′′

1
//

��

X′′
1

//

��

0

0 // X′
0

//

��

X′
0 ⊕ X′′

0
//

��

X′′
0

//

��

0

0 // M′ //

��

M //

��

M′′ //

��

0

0 0 0

Let n be the maximum of the known dimensions and consider

K′
n = Ker(X′

n−1 → X′
n−2),

Kn = Ker(X′
n−1 ⊕ X′′

n−1 → X′
n−2 ⊕ X′′

n−2), and

K′′
n = Ker(X′′

n−1 → X′′
n−2).

We obtain the exact sequence

0 → K′
n → Kn → K′′

n → 0.

• If G (X , Y )-pd(M′) ⩽ n and G (X , Y )-pd(M) ⩽ n, by Theorem 7 we have K′
n, Kn ∈

G (X , Y ). Then, G (X , Y )- pd(K′′
n ) ⩽ 1 and therefore G (X , Y )-pd(M′′) ⩽ n + 1.

• If G (X , Y )-pd(M′) ⩽ n and G (X , Y )-pd(M′′) ⩽ n, then K′
n, K′′

n ∈ G (X , Y ) and
then Kn ∈ G (X , Y ) since G (X , Y ) is closed under extensions. Therefore, G (X , Y )-
pd(M) ⩽ n.
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• If G (X , Y )-pd(M) ⩽ n and G (X , Y )-pd(M′′) ⩽ n, we have Kn, K′′
n ∈ G (X , Y ).

Then, K′
n ∈ G (X , Y ) since G (X , Y ) is closed under kernels of epimorphisms by

Proposition 2 and therefore G (X , Y )-pd(M′) ⩽ n.

Now, after the first statement is proved, 1, 2 and 3 follow using standard arguments.

Corollary 4. If 0 → M′ → M → M′′ → 0 is an exact sequence where M′, M, and M′′ have
finite G (X , Y )-projective dimension, then the following statements hold:

1. If G (X , Y )- pd(M) ̸= G (X , Y )- pd(M′′), then

G (X , Y )- pd(M′) = max{G (X , Y )- pd(M), G (X , Y )- pd(M′′)− 1}.

2. If G (X , Y )- pd(M′′) ̸= G (X , Y )- pd(M′) + 1, then

G (X , Y )- pd(M) = max{G (X , Y )- pd(M′), G (X , Y )- pd(M′′)}.

3. If G (X , Y )- pd(M) ̸= G (X , Y )- pd(M′), then

G (X , Y )- pd(M′′) = max{G (X , Y )- pd(M′) + 1, G (X , Y )- pd(M)}.

Proof. Use Corollary 3.

Applying Proposition 11 to a split short exact sequence

0 → A → A ⊕ B → B → 0

we obtain that if G (X , Y )- pd(A) ⩽ n and G (X , Y )- pd(B) ⩽ n, then also G (X , Y )- pd(A⊕
B) ⩽ n. The following proposition shows that if every object in A has an exact X -resolution,
then the converse is also true.

Proposition 12. If every object in A has an exact X -resolution, then for every two objects A and
B of A and any integer n ≥ 0, G (X , Y )- pd(A ⊕ B) ⩽ n if and only if G (X , Y )- pd(A) ⩽ n
and G (X , Y )- pd(B) ⩽ n.

As a consequence,

G (X , Y )- pd(A ⊕ B) = max{G (X , Y )- pd(A), G (X , Y )- pd(B)}.

Proof. Let · · · → X1 → X0 → A → 0 and · · · → X′
1 → X′

0 → B → 0 be exact X -
resolutions and call Kn = Ker(Xn−1 → Xn−2) and K′

n = Ker(X′
n−1 → X′

n−2).
The sequence

0 → Kn ⊕ K′
n → Xn−1 ⊕ X′

n−1 → · · · → X0 ⊕ X′
0 → A ⊕ B → 0

is then exact and all Xi ⊕ X′
i ∈ X ⊆ G (X , Y ), so G (X , Y )- pd(A ⊕ B) ⩽ n implies

Kn ⊕ K′
n ∈ G (X , Y ). Then, by [8] (Proposition 4.8) we have Kn, K′

n ∈ G (X , Y ) and so
G (X , Y )- pd(A) ⩽ n and G (X , Y )- pd(B) ⩽ n.

For the converse, we apply Proposition 11 to the short exact sequence 0 → A →
A ⊕ B → B → 0.

It is worth noting that when X is self-orthogonal, closed under finite direct sums
and closed under kernels of epimorphisms, we observe that G (X ) is left G-perfect. As
a consequence, it satisfies all the previously discussed properties. In addition, we have
the following.

Proposition 13. Let X be such that (X , X ) is left G-perfect. Given any M in A , if M has finite
X -projective dimension, then X -pd(M) = G (X )-pd(M).

Proof. Since X ⊆ G (X ), the inequality G (X )-pd(M) ≤ X -pd(M) always holds.
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Conversely, let n = X -pd(M). Then, there is an exact sequence

0 → Xn → Xn−1 → · · · → X0 → M → 0

with all Xi ∈ X .
If G (X )-pd(M) < n, then K = Ker(Xn−2 → Xn−3) ∈ G (X ) by Theorem 7 and then

K ∈ ⊥X . Thus, the exact sequence

0 → Xn → Xn−1 → K → 0

is HomA (−, X )-exact and so it splits. Thus, Xn−1
∼= Xn ⊕ K and we obtain that K ∈ X

since X is closed under kernels of epimorphisms. But this means X -pd(M) < n,
a contradiction.

Theorem 8. Let G (X ) ⊆ G (X , Y ) and X ⊆ Y . Then, for any object M in A , the following
assertions hold:

1. If G (X )-pd(M) < ∞, then G (X , Y )-pd(M) = G (X )-pd(M).
2. If X - pd(M) < ∞, then G (X , Y )- pd(M) = G (X )-pd(M) = X - pd(M).

Proof. Assertion 2. is a direct consequence of 1. and Proposition 13, so we just prove 1. But
G (X ) ⊆ G (X , Y ), so we always have G (X , Y )- pd(M) ⩽ G (X )− pd(M). Thus, we
only need to prove the inequality G (X )- pd(M) ⩽ G (X , Y )- pd(M). We use induction
on n = G (X )-pd(M).

If n = 0, there is nothing to prove by hypothesis.
If n = 1, there is an exact sequence

0 → X → E → M → 0

with X ∈ X and E ∈ G (X ) (see Theorem 6). If G (X , Y )-pd(M) = 0, then M ∈ ⊥Y
by Proposition 1. Thus, the sequence splits since X ⊆ Y by hypothesis. Hence, G (X )-
pd(M) = 0, a contradiction. Thus, G (X , Y )-pd(M) = 1.

Now, if n > 1, we know (Theorem 6) there is an exact sequence

0 → K → G → M → 0

where K has an exact X -resolution of length n − 1 and G ∈ G (X ). Then, X - pd(K) ⩽ n − 1
and then G (X )-pd(K) ⩽ n− 1 by Proposition 13. But G (X )-pd(M) = n, so indeed G (X )-
pd(K) = n − 1 (see Theorem 7) and, by induction, G (X , Y )-pd(K) = n − 1. Therefore, we
apply Corollary 4 to obtain

G (X , Y )- pd(M) = max{G (X , Y )- pd(G), G (X , Y )- pd(K) + 1} = n.

All the results of this section have their dual version referring to the right (X , Y )-
Gorenstein dimension, whose proofs do not go beyond repeating the arguments by dualiz-
ing the corresponding ideas.

5. Global (X , YX , YX , Y )-Gorenstein Dimension

The objective of this section is to investigate the conditions under which the global
projective and injective G (X , Y )-dimensions of A are finite.

Definition 5. Let X and Y be subcategories of an abelian category A . The global G (X , Y )-
projective dimension of A , G (X , Y )- PD(A ) is defined as the supremum of the G (X , Y )-
projective dimension of all objects of A or ∞ if there is no such supremum.
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Dually,

G (X , Y )- ID(A ) = sup{G (X , Y )- id(M)| M ∈ A } or ∞.

Theorem 9. Assume that A has arbitrary direct sums and let (X , Y ) be left G-perfect. Then, the
following assertions are equivalent for any positive integer n:

1. G (X , Y )- PD(A ) ⩽ n.
2. The following statements hold:

(a) G (X , Y ) is closed under direct sums.
(b) r̂es(X ) = A (every object of A admits an epic X -precover).
(c) X ⊆ Proj(A ).
(d) id(Y) ⩽ n ∀Y ∈ Y .
(e) G (X , Y )- pd(I) ⩽ n ∀I ∈ Inj(A ).

Proof. 1. ⇒ 2. (a) Let Gi ∈ G (X , Y ) be a family of objects with i ∈ I. Then, for each i,
Extk

A (Gi, Y) = 0 for any k > 0 and Y ∈ Y , by Theorem 7, which implies Extk
A (⊕Gi, Y) ∼=

∏ Extk
A (Gi, Y) = 0 for any k > 0 and Y ∈ Y . Thus, applying Theorem 7, we obtain

⊕Gi ∈ G (X , Y ).
(b) By Corollary 1, every object M ∈ A has a special G (X , Y )-precover, that is, there

exists an exact sequence 0 → K → G → M → 0 with G ∈ G (X , Y ) and K ∈ G (X , Y )⊥.
On the other hand, since G ∈ G (X , Y ), by Proposition 6 there is an exact and

HomA (X ,−)-exact sequence 0 → G′ → X → G → 0 with X ∈ X and G′ ∈ G (X , Y ).
Thus, by Lemma 3, all rows and columns of the pullback diagram

0

��

0

��
G′

��

G′

��
0 // F //

��

X //

��

M // 0

0 // K //

��

G //

��

M // 0

0 0

are HomA (X ,−)-exact, so the middle row represents an epic X -precover of M. But X is
self-orthogonal, so the middle row being Hom(X ,−)-exact and Ext1

A (X′, X) = 0 for any
X′ ∈ X imply Ext1

A (X′, F) = 0 for any X′ ∈ X , and then X → M is a special X -precover.
To see (c), let X ∈ X and M ∈ A . Since G (X ,Y )- pd(M) ⩽ n, there is an exact sequence

0 → Gn → · · · → G0 → M → 0

with Gi ∈ G (X , Y ). Now, Exti
A (X, M) ∼= Extn+i

A (X, Gn) = 0 for every i, so we have
X ∈ Proj(A ).

(d) Since G (X , Y )-pd(M) ⩽ n for every M in A , by Corollary 3, we have

Exti
A (M, Y) = 0, ∀i ≥ n + 1, ∀Y ∈ Y , ∀M ∈ A ,

that is, id(Y) ⩽ n, ∀Y ∈ Y .
(e) Nothing to prove.
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2. ⇒ 1. Given any M ∈ A , we consider an exact X -resolution of M

· · · → X1 → X0 → M → 0

and an injective resolution of M

0 → M → E0 → E1 → · · · .

We decompose these exact sequences into short exact sequences for all i ∈ N,

0 → Qi → Xi → Qi−1 → 0,

0 → Li−1 → Ei → Li → 0,

where Qi = Ker(Xi → Xi−1) and Li = Im(Ei → Ei+1). We take the direct sum of the first
set of sequences,

0 →
⊕
i∈N

Qi →
⊕
i∈N

Xi → M ⊕
(⊕

i∈N
Qi

)
→ 0,

and the direct product of the second set of sequences,

0 → M ⊕
(

∏
i∈N

Li

)
→ ∏

i∈N
Ei → ∏

i∈N
Li → 0.

Let Q =
⊕

i∈N Qi, L = ∏i∈N Li, G =
⊕

i∈N Xi and E = ∏i∈N Ei and consider the short
exact sequence

0 → M ⊕ (Q ⊕ L) → G ⊕ E → M ⊕ (Q ⊕ L) → 0.

Now, we know we can find an exact X -resolution of M ⊕ Q ⊕ L:

· · · → X′
1 → X′

0 → M ⊕ Q ⊕ L → 0.

Since 0 → M ⊕ (Q ⊕ L) → G ⊕ E → M ⊕ (Q ⊕ L) → 0 is HomA (X ,−)-exact
(X ⊆ Proj(A )), by the Horseshoe Lemma, we have the following commutative diagram:

0

��

0

��

0

��
0 // Jn //

��

G′ //

��

Jn //

��

0

0 // X′
n−1

//

��

X′
n−1 ⊕ X′

n−1
//

��

X′
n−1

//

��

0

...

��

...

��

...

��
0 // X′

0
//

��

X′
0 ⊕ X′

0
//

��

X′
0

//

��

0

0 // M ⊕ Q ⊕ L //

��

G ⊕ E //

��

M ⊕ Q ⊕ L //

��

0

0 0 0
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Since E is injective, we have G (X , Y )- pd(E) ⩽ n by assumption, and since G is (X , Y )-
Gorenstein (G (X , Y ) is closed under taking direct sums), applying Proposition 11 we obtain
G (X , Y )- pd(G ⊕ E) ⩽ n. Then, by Theorem 7, we obtain G′ ∈ G (X , Y ).

On the other hand, using the X -resolution of M ⊕ Q ⊕ L, we have, for all Y ∈ Y and
all positive integers i ≥ 1, Exti

A (Jn, Y) ∼= Exti+n
A (M ⊕ Q ⊕ L, Y) = 0 by Lemma 7 because

id(Y) ⩽ n. Therefore, 0 → Jn → G′ → Jn → 0 is HomA (−, Y )-exact.
Now, join all the sequences 0 → Jn → G′ → Jn → 0 to obtain an exact, HomA (X ,−)-

exact, and HomA (−, Y )-exact sequence of the form · · · → G′ → G′ → G′ → . . . . Then,
we have Jn ∈ G (X , Y ) by [8] (Theorem 4.2) so G (X , Y )- pd(M ⊕ Q ⊕ L) ⩽ n. Therefore,
G (X , Y )- pd(M) ⩽ n by Proposition 12.

Corollary 5. Assume that A has arbitrary direct sums and let (X , Y ) be left G-perfect. If
G (X , Y )- PD(A ) ⩽ n for some positive integer n, then A has enough projectives and

G (X , Y ) = G (Proj(A ), Y ).

Proof. By Theorem 9 every object of A has an epic X -precover, and by the hypotheses
X ⊆ Proj(A ), so any object of A is a quotient of a projective object.

Now, since X ⊆ Proj(A ) and every exact sequence is HomA (Proj(A ),−)-exact, we
already have the first inclusion.

Conversely, let M ∈ G (Proj(A ),Y ). Then, M ∈ ĉores(Y ) and M ∈ ⊥Y by Proposition 1,
and, by Theorem 9, M ∈ r̂es(X ) and X ⊆ Proj(A ) (hence M ∈ X ⊥). Then, we conclude,
by Proposition 1, that M ∈ G (X , Y ).

Dually, we have the following.

Theorem 10. Assume that A has enough projectives and arbitrary direct products and let (X , Y )
be right G-perfect. Then, the following assertions are equivalent for any positive integer n:

1. G (X , Y )- ID(A ) ⩽ n.
2. The following statements hold:

(a) G (X , Y ) is closed under direct products.
(b) ĉores(Y ) = A (all object of A admit a monic Y -preenvelope).
(c) Y ⊆ Inj(A ).
(d) pd(X) ⩽ n ∀X ∈ X .
(e) G (X , Y )- id(P) ⩽ n ∀P ∈ Proj(A ).

Corollary 6. Under the assumptions of Theorem 10, if G (X , Y )- ID(A ) ⩽ n for some integer n,
then G (X , Y ) = G (X , Inj(A )).

6. Relative Foxby Classes

Throughout this section, C and D will be two abelian categories with arbitrary direct
products and coproducts, and we will assume that C has a projective generator and that
D has an injective cogenerator. F : C → D and H : D → C will be two functors in
an adjoint situation, (F, H), and their derived functors will be denoted by LiF and Ri H
∀i ≥ 0 respectively.

The Auslander class of C relative to F, denoted by A(C ), consists of all objects X of C
satisfying the following:

1. LiF(X) = 0 ∀i ≥ 1.
2. Ri H(F(X)) = 0 ∀i ≥ 1.
3. The unit µX : X → HF(X) is an isomorphism.

Similarly, the Bass class of D relative to H, denoted by B(D), consists of all objects Y
of D , satisfying the following:

1. Ri H(Y) = 0 ∀i ≥ 1.
2. LiF(H(Y)) = 0 ∀i ≥ 1.
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3. The counit νY : FH(Y) → Y is an isomorphism.

Definition 6 ([9] Definition 2.1).

1. The adjoint pair (F, H) is said to be right semidualizing if the class of injective objects is
contained in B(D).

2. The adjoint pair (F, H) is said to be left semidualizing if the class of projective objects is
contained in A(C ).

Theorem 11. If (F, H) is a right semidualizing adjoint pair, then

A(C ) = G (Proj(C ), H(Inj(D))).

Proof. Given any (Proj(C ), H(Inj(D)))-Gorenstein object M, we know it has a complete
(Proj(C ), H(Inj(D)))-resolution

X : · · · → P1 → P0 → H(E0) → H(E1) → · · · ,

so HomC (X, H(E)) is exact for any injective object E of D . In particular, if E′ is an injective
cogenerator of D , then HomC (X, H(E′)) is exact, so the complex HomD (F(X), E′) is also
exact (where we denote by F(X) the complex · · · → F(P1) → F(P0) → FH(E0) →
FH(E1) → · · · ).

But then F(X) is exact, so we can apply [9] (Theorem 2.11) to obtain that M ∈ A(C ).
Conversely, given any M ∈ A(C ), we know by [9] (Theorem 2.11) that there is an

exact sequence
X : · · · → P1 → P0 → H(E0) → H(E1) → · · ·

such that the following hold:

1. Ei ∈ Inj(D) and Pi ∈ Proj(C ) for all i.
2. M = Ker(H(E0) → H(E1)).
3. F(X) is exact.

Thus, to obtain M ∈ G (Proj(C ), H(Inj(D)), we only need to prove that the sequence
X is HomC (−, H(Inj(D)))-exact. But F(X) is exact, so for any E ∈ Inj(D), the complex
HomD (F(X), E) is exact, and therefore the complex HomC (X, H(E)) is also exact.

Corollary 7. Let (F, H) be both a right and a left semidualizing adjoint pair of functors. Then, the
pair (Proj(C ), H(Inj(D)) is G-perfect.

Proof. H is right adjoint, so it preserves direct sums, so both Proj(C ) and H(Inj(D)) are
closed under finite direct sums. Moreover, we know that Proj(C ) ⊥ H(Inj(D)), that
Proj(C ) is closed under kernels of epimorphisms and that both Proj(C ) and H(Inj(D))
are self-orthogonal classes (see [9] Lemma 2.8).

Now, since (F, H) is both a right and a left semidualizing adjoint pair, Proj(C ) ⊆ A(C )
and H(Inj(D)) ⊆ A(C ) (see [9] Proposition 2.1).

Then,
Proj(C ), H(Inj(D)) ⊆ G (Proj(C ), H(Inj(D))

by Theorem 11. Thus, Proj(C ) ⊆ ĉores(H(Inj(D))) and H(Inj(D)) ⊆ r̂es(Proj(C )) by
Propostions 4 and 5.

Therefore, it only remains to prove that H(Inj(D)) is closed under cokernels of
monomorphisms.

Consider the exact sequence

0 → H(E) → H(E′) → K → 0
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with E, E′ ∈ Inj(D). By [9] (Proposition 2.12) we have K ∈ A(C ). Applying F, since
E, E′ ∈ B(D), we have the exact sequence

LiF(K) = 0 → E → E′ → F(K) → 0.

Since Inj(D) is closed under cokernels of monomorphisms, we have F(K) ∈ Inj(D).
Therefore, since K ∼= H(F(K)), K ∈ H(Inj(D)).

Dually, we have the following.

Theorem 12. Let (F, H) be a left semidualizing adjoint pair. Then,

B(D) = G (F(Proj(C )), Inj(D)).

Corollary 8. Let (F, H) be both a right and a left semidualizing adjoint pair. Then, the pair
(F(Proj(C )), Inj(D)) is G-perfect.

7. Conclusions

As a result of the study carried out in this paper, we obtain that a common framework
can be (and has been) established in the general categorical environment of an abelian
category for the development of a general Gorenstein homological theory involving all the
existing variants so far introduced. This framework consists in defining (X , Y )-Gorenstein
objects, or simply G (X , Y ) objects, as the 0 syzygies of complete (X , Y )-resolutions.

Under certain compatibility conditions between the classes X and Y (compatibility
conditions which are clear in the particular cases treated so far, such as Gorenstein projective
or injective modules in all their variants), this theory becomes (as one would wish) very
strong in the sense that all kernels of complete (X , Y )-resolutions are (X , Y )-Gorenstein
objects. In other words, the category G (X , Y ) of all (X , Y )-Gorenstein objects is stable
(G (G (X , Y )) = G (X , Y )) as proved in Theorem 3.

Of course, to give maximum value and impact to this development of general Goren-
stein objects, the dimensions associated with them must be consistent. Thus, the Compari-
son Lemma is proved in Theorems 4 and 5.

But also, as in the classical cases, there must be a useful tool to calculate these di-
mensions, beyond the use of the resolution lengths indicated in the definition. And as
in the classical cases, Ext functors are these tools. Thus, for the projective dimension,
Theorem 7 says that whenever M is of finite G (X , Y )-projective dimension, one has
G (X , Y )- pd(M) ⩽ n if and only if Exti

A (M, Y) = 0 for all i > n and all Y ∈ Y . In other
words, if G (X , Y )- pd(M) is finite, then

G (X , Y )- pd(M) = sup{i ∈ N : Exti
A (M, Y) ̸= 0 for some Y ∈ Y }.

This, of course, has its dual statement for the injective dimension whose proof does
not go beyond a mere dualization of arguments.

With the tools for computing and comparing (X , Y )-Gorenstein dimensions in hand,
the study of the global dimension of the category seems to be the natural question to
address. More specifically, the interest lies in finding conditions that guarantee that
the global (X , Y )-Gorenstein dimension of the category is finite. When the category
has arbitrary direct sums, these conditions are found in Theorem 9: if (X , Y ) is left G-
perfect, then G (X , Y )- PD(A ) ⩽ n if and only if G (X , Y ) is closed under direct sums,
every object of A admits an epic X -precover, X ⊆ Proj(A ), id(Y) ⩽ n ∀Y ∈ Y , and
G (X , Y )- pd(I) ⩽ n ∀I ∈ Inj(A ). As consequence, it follows that, under these condi-
tions for A and the pair (X , Y ), if G (X , Y )- PD(A ) ⩽ n for some n, then A has enough
projectives, and G (X , Y ) = G (Proj(A ), Y ).

Finally, it was of particular interest to relate the classes of Gorenstein objects to the
Foxby classes. Indeed, Foxby classes are defined in module categories based on the functors
Hom and ⊗ (and their derived functors). However, the nature of these classes can be
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considered on the basis of general adjoint pairs of functors. And even at this level of
generality (always assuming conditions on the pair of functors, of course), it is possible
to give a satisfactory relation between these two types of classes. Thus, if F : C → D
and H : D → C are such that (F, H) is a right semidualizing adjoint pair of functors (see
Definition 6), then A(C ) = G (Proj(C ), H(Inj(D))) (Theorem 11), and if (F, H) is left
semidualizing, then B(D) = G (F(Proj(C )), Inj(D)) (Theorem 12).

It would be interesting to study the possible translation of the results obtained in this
paper to the context of generalizations of Gorenstein-derived categories with the perspective
of applying them in categories with special interest, such as those of quasi-coherent sheaves.
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