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1. Introduction and Preliminaries

Zadeh in [1] initiated the concept of fuzzy sets which has been applied in many
branches. Chang in [2] initiated the notion of a topology of fuzzy sets. Sostak in [3] and
Kubiak in [4] redefined the topological structure in the fuzzy case as a mapping with grades
of openness and not as a family of fuzzy sets as introduced by Chang [2]. In [5], Sostak
introduced a wide research study on the fuzzy topological structures. Atanassov in [6]
initiated the concept of intuitionistic fuzzy sets. Coker in [7] constructed a topology in
case of intuitionistic fuzzy sets. Following the constructed topology notion as presented by
Sostak, Montal and Samanta [8] introduced the concept of the intuitionistic gradation of
openness. Garcia and Rodabaugh in [9] proved their idea that the more suitable notation in
the intuitionistic fuzzy case is the notation “double”. That is, “intuitionistic fuzzy” will be
replaced with “double fuzzy”, and it will shortened to “DE”. Thus, through this paper, in-
tuitionistic fuzzy topological spaces will be denoted by DFTS and any type of intuitionistic
fuzzy continuity will be denoted by DF-continuity. In [10], the author considered the nor-
mality of DFTS. In [11], the authors defined the DF-semi continuity. A fuzzy multifunction
is a fuzzy set valued function ([12,13]). Fuzzy multifunctions are used and applied in many
directions like economics, artificial intelligence, decision theory, uncertainty, etc. Each fuzzy
multifunction has a lower inverse and an upper inverse. These lower inverses and upper
inverses are numerous and imply several types of continuity as described in [14-17].

The motivation and the highlights of this paper are as follows: To introduce DF-local
multifunctions related with DF-ideals and study its properties. Also, to submit new types
of DF-continuity based on a DF-ideal and study the common properties of continuity
and discuss the implications between these new types of continuity. Some examples are
submitted to explain that these implications may be not reversed. The use of DF-ideals
in defining these new types of continuity extended the usual corresponding definitions
of fuzzy continuity, and so the introduced types of DF-continuity are extensions of the
corresponding usual ones. We called these types of DF-ideal continuous multifunctions
almost, weak and almost weak.
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The paper is divided to five sections following this introduction as follows. Section 2
introduces the main definition of DF-local functions joined to a DF-ideal. Section 3 in-
vestigates the notion of DFU-almost and DFL-almost 0-continuity, and introduces many
characteristic properties of these defined multifunctions. Section 4 investigates the no-
tion of DFU-weakly and DFL-weakly 0-continuity, and discusses its properties, as well
as studies the implications with the previous definition of DFU-almost and DFL-almost
O-continuity. Section 5 investigates the notion of DFU-almost weakly and DFL-almost
weakly 0-continuity, and discusses its properties, as well as studying the implications with
the previous definitions of DFU-almost and DFL-almost 0-continuity and DFU-weakly and
DFL-weakly 0-continuity. Section 6 outlines the conclusion.

Let X be a universal set, I = [0,1], [y = (0,1],and I = [0, 1).

IX refers to the set of all fuzzy sets in X. 0 and 1 refer to the empty and the whole fuzzy
sets, respectively, on X. By the family (2, we refer to the set of all compared fuzzy sets, that
is, A,y € Qiff A < por u < A. The complement 1 — A of a fuzzy set A € X is defined
by 1 —A(x) = 1— A(x). A fuzzy point x; in X is a fuzzy set, so that x;(z) = 0 Vz # x
and x¢(x) = t. xy € Aiff t < A(x),x € X. The difference ([18]) p A A, is defined by
UAA=0ifp <A, and pAA = puAA° otherwise.

Recall that a DF-ideal on X ([19]), (3,3*) : IX — I satisfies the following conditions:

(1) 9(A)+0"(A) <1.

(2) Ay < Ay implies 9(A1) > 0(Az) and 0%(A1) < 0%(Ap).

3) 6(/\1 \% /\2) > 6()\1) VAN 6(/\ ) and 5*(/\1 vV /\2) < 6*(}\1) \/5*(}\2)
@) 9(0) = 1,3(1) = 0,5(0) = 0,*(1) — 1.

The special DF-ideals (8°,5*0), (3%, 0*1) are defined by: 8°(0) = §*!(1) = 1,0"°(0) =
0'(1) = 0, otherwise we have 8°(v) = 8*!(v) = 0and ' (v) = 0*°(v) = 1.

Let (31,0;) and (9;, 05 ) be DF-ideals on X. Then, (31, 9;) < (3,,3%) iff 92(v) < 94 (v)
and 33 (v) > 07 (v) for each v € IX. If v; < 15, then 3(v1) > O(v2) and 0*(11) < 0% (1p).

A map ®: X —o Y is called a fuzzy multifunction ([20]) iff ®(x) € IY for each x € X.
The membership value of y to ®(x) is ®(x)(y) = Go(x,y) forall (x,y) € X x Y. The
domain of ®, denoted by dom(®P) and the range of ®, denoted by rng(®P) for any x € X
and y € Y are defined by: dom(®)(x) = V Go(x,y) and rng(®)(x) = V Go(x,y).

€Y xeX
® is called normalized fuzzy mult1funct10yn iff for each x € X, there exists yp € Y
such that Go(x,19) = 1. @ is called crisp fuzzy multifunction iff Ge(x,y9) = 1 for
each x € Xand y € Y. The image ®(A) of A € I%, the lower inverse ®' (1) and the
upper inverse ®*(A) are defined, respectively, as follows: ®(A)(y) = V (Go(x,y) AA(x)),
xeX

PI(A)(x) = \/ (Go(x,y) ANA(y)), @*(A)(x) = é\y(Gi’p(xfy) VA(Y))-
Y
Letd: X — Yand E: Y —o Z be two fuzzy multifunctions. Then, the composition

Eod: X — Zisdefinedby ((Eo®)(x))(z) = V (Go(x,y) AGa(y,2)).
yeYy

If®: (X,7,7°) — (Y,0,0°) is a DF-multifunction, p € [y and q € I, then, @ is
called ([21]):

(1) DFU-semi-continuous at a fuzzy point x; € dom(®) if x; € ®*(u) for each u € I¥
and o(u) > p,0°(u) < g, there exists A € IX, T(A) > p, 7°(A) < gand x; € A such
that A A dom(®) < ®¥(u).

(2) DFL-semi-continuous at a fuzzy point x; € dom(®) if x; € ®(u) for each y € I and
c°(u) > p,o(p) < g, there exists A € IX, T(A) > p, °(A) < gand x; € A such that
A< @ (p).

(3) DFU- (DFL-) semi-continuous if it is DFU- (DFL-) semi-continuous at every each
point x; € dom(®).

All definitions and properties of the image, the lower inverse, the upper inverse and
the composition of fuzzy multifunctions could be found in [7,8,20].
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2. DF-Local Functions

In this section, we introduce the notion of (p, q)-fuzzy local functions related with a
DF-ideal.

Definition 1. Let (X,1,7°, (3,0")) be a DF-0-topological space, A € I1X,p € Iyand q € 1.
Then, the (p, q)-fuzzy local function ¥ (A, p, q) of A is defined as follows:
YA p,q) = Npu e IX:0(AAu) > p,0*(AAp) <q,7(1) > p, (1) < q}.

Remark 1. (1) Ifd = 8° and 5* = 0*0 for each A € 1%, we obtain that ¥ (A, p,q) = N{u € IX:
A<wT(p )2 (1) <4} = Coro (A pq).

(2) Iffi = 0l and 0" = 0*1, 9(A) > p, 0*(\) < q) for each A € I, we obtain that
YA pg) =0

Note that: Y(A, p,q)or¥(A,0,0% p,q) stands for the same local function .

Theorem 1. Let (X, 7,7°,(0,0%)) be a DF-ideal topological space and (31,07 ), (02, 0% ) be DF-
ideals on X. Then, for any sets \,v € IX, p € Iy and q € L;:

1) ¥(0Opq) =0

(2 IfA<v, then¥(A,p,q) <¥(v,pq).

(3) If(81/6*) (82/ 82)' then ‘Y(A/ 81/81(/ p/q) < T()\' 62’ 63' P, q)

@) YA pq) = Core (YA, ), p.4) < Crzo(A,p 1)

G) Y(YNpg)pq) <Y pq)and (Y(A,p,q)" # YA pq).

6) YAV, pq) >¥YApq) VY, p,q) and Y(AAv,p,q) <Y¥(A,p,q) NY(v,p,9q).
(7) Ifo(v) > pand 0 (v) < g, then Y(AVv,p,q) > YA p,q).

Proof. (1) From Definition 1, we have ¥(0,p,q9) = 0.

(2) Assume that ¥ (A, p,q) £ ¥Y(v,p,q). If A < v, then using the definition of ¥ (v, p, q),
there exists u € IX w1th Y(v,p,q) <u,0(vau)>p 0*(vAau) <q t(u) >p W) <q
such that ¥ (A, p,q) £ . Since A < vimpliesthat AApy <vAu, 3(AAN) >d(vAu) >p
and 0*(A Ap) < 0*(vApu) <g. Hence, ¥(A, p,q) < p, and this is a contradiction. Thus,
YA pq) <¥(v,pq)

(3) Suppose that ¥ (A, 91,07, p, q) ﬁ Y(A,0,0%,p,q) and (01,07) < (0,03 ). From the
definition of ¥ (A, 3y, 3%, p, q), there exists u € IX with ¥(A, 02,05, p,q9) < u, 02(AAp) > p,
(AAu) < g, T(p°) > p, ©°(u°) < g such that ¥(A,81,07,p,q9) £ p. Since (31,9;) <
(02,0%) implies that 91 (A A ) > 0p(AA ) > pand 07 (A Ap) < 05(AAu) < q. Hence,
¥(A,01,07,p,q9) <, and this is a contradiction. Thus, ¥(A, 91,07, p,q) < Y(A, 02,05, p,9).

(4) Definition 1 implies that ¥(A,p,q) = Cr1o(¥(A,p,q),p,9). Since (3°,0%0) <
(0,0*) for any DF-ideal (3,0%), ¥(A,0,0%,p,q) < ¥ (A, d°,0%,p,q) = Cr1o(A, p,q). Then,
YA p,q) = Core (YA p,4),p,g) < Coro (A, p, ).

(5) From (4), wehave ¥ (¥ (A, p,q), p,q) = Core (Y(¥(A, p,q), p.9), p4) < Core (YA p.0), ) =
¥(A,p,q). (In general the converse is not true as shown by Example 1).

(6) Since A < AVvand v < AVvimply that ¥(A,p,q) < ¥(AVv,p,q) and
Y(v,p,q) <Y¥(AVv,pq). Thus, ¥Y(A, p,q) V¥ (v, p,q) <Y(AVvV,p,q). Also,since A Av <
Aand AAv < vimply that ¥(AAv,p,q) < ¥Y(A,p,q) and Y(AAv,p,q) < ¥(v,p9).
Hence, ¥(AAv,p,q) <Y\ p,q) N¥(v,p,9).

(7) Since d(v) > p and 0*(v) < g imply that ¥(v, p,q) = 0. Thus, ¥(AVv,p,q) >
YA p) VY, pq) =¥ pq). O

Lemma 1. Let (7,7°) : Q — I be a DF-topology on X and (9,0*) : QO — I be a DF-ideal on X.
Then, foreach A,jp € O, p € Ipand g € I,

N YAVupq=YNpaVY¥upq-
(2) Ifo(u) > pand 0*(u) < q,then Y(AV pu,p,q) =¥ (A, p,q).

Proof. (1) Suppose Y(AV u,p,q) £ ¥(A, p,q) V¥ (u, p,q), then there exist v1,1, € Q,
OAAY) > p, 0" (AAY) < gwithT(vf) > p, T°(vf) < gand O(pA1p) > p, O (u A
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vy) < g with 7(v§) > p, °(v§) < gsuch that ¥(A,p,q) VY¥(i,p,q) < vV, < ¥(AV
i, p,q). However, (AV u) A (11 Vo) < (AA1) V (A1), thend[(AV u) A (v Vo) > p,
F[(AVu)A(vi V)] < gand (11 V12)°) > p, T°((v1 V12)°) < g. So, ¥(AV p,p,q) <
v1 V 1p, and this is a contradiction. Thus, ¥ (A V u, p,q) <Y (A, p,q) V¥ (1, p,9)-

(2) Since d(p) > p and 0* () < q imply that ¥ (y, p,q) = 0. Then,
YAVupa) =YX pq)V¥ppg) =%Apq). O

The following example shows that generally, ¥ (¥ (A,p,q),p,9) # ¥(A, p,q) and
(YA, p,q9) #Y(A,p,q) forany A € IX,p € [yand q € I.

Example 1. Define t,7°,0,0% : IX — I as follows:

1L, Ae{01} 0, Are{01}
I, A=05 1L A=05
T(A) = ™°(A) =
1 _ 2 _
37 /\7@ 37 )\—@
O/ o.w, 1, 0.w,
1/ V:Q 0, V:Q
3 0<v<05 1, 0<v<05
(v) = 0*(v) =
%/ V:L %, V:%
0, o.w, 1, ow
Then,
1212 12
= Y(¥(0.7,=,2),=,2) #¥(0.7,=,2) =
0=Y(¥(0 ,3,3),3,3)7é (L3,3) 0.5,
and .
_ 12 c 120
1= (‘F(O.5,3,3)> #¥((0.5) ,g,g)_g.

Lemma 2. Let (X, 7,7°,(0,0%)) be a DF-ideal topological space and {/\]-, j€ ]} C IX. Then,
Vieg YA p,q) < ¥(Vjer A p.q) (resp. ¥ (Ajep Aj p.9) < Njeg Y (A p,q)-

Proof. Since A; < V¢ A for each j € ] and from Theorem 1 (2), we obtain that ¥ (A}, p, q)
<Y¥(VjesAj,p,q) for each j € J. This implies that

V¥ pa) < ¥V Ay pq)-
j€l i€l
The other case is similarly proven. O

Definition 2. Let (X, T, 7°,(0,0*)) be a DF-ideal topological space. Then, for each A € 1X,p €
Iy and q € 1y, we define an operator cl* : I x Iy x I} — IX as follows:

c* (A, p,q) =AVY (A p,q).
If (0,8%) = (8°,0*0), then cI*(A,p,q) = AVY (A, p,q) = AV Crre(A,p,q) = Coro(A, p,q)

for each A € IX. Again, if (0,0%) (01,0%1) (resp. B(v) > p and 0*(v) < q), then
cl*(A,p,q) = A foreach A € I%.
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Theorem 2. Let (X, 7,7°, (8,0*)) be a DF-ideal topological space. Then, for any A,v € I%,
p € Iy, and q € I, the operator cl* : IX x Iy x I — IX satisfies the following properties:

(1) c*(0,p,q) =0

@) A< (Ap,q) < Core (A p.g).

(3) IfA<wv,thencl*(A,p,q) <cl*(v,p,q).

4) c*(AVuy,pq)>cl*(Apq) Vl*(v,pq).

(5) c*(AAv,pq) <cl*(Apq) Ncd*(v,p,q).

Proof. (1) Since cl*(0,p,q) =

(2) cl*(A,p,q) = AV (
we have Y(A,p,q) < Crro(A,
cl*(A,p,q) < Crre (A, p,4)-

(3) From A < v and Theorem 1 (2), we have A VY (A, p,q) < vV ¥(v,p,q), that s,
cl*(A,p,q) < cl*(v, p,q)-

(4) Since A < AVwvand v < AVvimply that cI*(A,p,q) < cI*(AVv,p,q) and
c*(v,p,q) <cl*(AVv,p,q). Thus, cI*(A, p,q) Vcl*(v,p,q9) < cd*(AVv,p,q).

(5) AAv < Aand A Av < vimply that cI*(A Av,p,q) < cI*(A,p,q) and cI*(A A
v,p,q) <cl*(v,p,q). Thus, cI*(AAv,p,q) < cl*(A,p,q) ANcl*(v,p,q). O

¥(Op,q) and ¥(0,p,q) =
) implies that A < cI*(A, p,q) From A < Cr o (A, p,q),
p,q) implies that cI*(A, p,q) < Crro(A, p,q). Thus <

0, then c/*(0, p,q) = 0.

Lemma 3. Let (7,7°) : QO — I be a DF-topology on X and (0,0*) : QO — I be a DF-ideal on
X. Then, foreach A,y € O, p € Iy and q € I, the operator clI* : Q) x Iy x I — Q) satisfies the
following:

(1) c*(AVu,pq) =c*(Apqg) Ve (upq).
@  c*(c*(A, p,q), p.q) = c* (A, p,q).

Proof. (1) By the definition of cI*, we have

cd*AVupq) = AVE)VYAVupq)
AV VNP9 VY pq)
AVYApg)V (VY pq)
= "\ p.q) Vel (upq)

(2) cl*(A,p,q) < cI*(cI*(A,p,q),p,q). Now, it will be shown that cI*(A, p,q) >
cl*(cl*(A, p,q), p,q), where

cl*(cl*(A,p,9),p,9) = cI"(AVY¥(Ap.9),p.9)
= d*(A\p.q )vCl*( (A pa)pq)
= "M pg) VYN pg) VEE(A P9)p.9)
= "N pg) VY(Y (A p9)p.9)
< d"(Apg) V@A, pq) =cl*(Apq),

and thus the proof is completed. [

From Lemma 3, T(A) = \/{p: cl*(AS, p,q) = A°}, T°(A) = A{q:cl*(AS, p,q) = A°},
and then (7, 7°) is a DF-topology generated by cl*.

Theorem 3. Let (X, T, 7°,(3,0%)) be a DF-ideal topological space. Then, for each A € IX,p € I
and q € Iy, we define an operator int* : IX x Iy x I} — X as follows:
int"(A,p,q) = AN (YA p, )"
For A, v € I%, the operator int* fulfills the following:

(1) int*(Lpq) =1
) ILwe(Ap,q) <int*(A,p,q) < A.
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() IfA <w,thenint*(A,p,q) < int*(v,p,q).

@) int*(AAv,p,q) < int*(A,p,q) Nint* (v, p,q).
) int*(A,p,q) = L= (A, p,q) if (9,0%) = (3°,0%).
6) int*(AS,p,q) = (cI*(A, p,q))".

Proof. Direct. [

Lemma 4. Let (7,7°) : Q) — I be a DF-topology on X and (9,0%) : Q3 — I be a DF-ideal on
X. Then, foreach A,y € Q, p € Iy and q € I, the operator int* : (3 x Iy x Iy — () satisfies
the following:

(1) int*(int*(A, p,q), p,q) = int*(A, p,q).

(2) int*(AAv,p,q) =int* (A, p,q) Nint*(v, p,q).

Proof. It is similarly proven as that proof of Lemma 3. [

Definition 3. Let @ : (X, 7,7°,(0,0%)) — (Y,0,0°) be a DF-multifunction, p € Iy and q € L.

Then, ® is called:

(1) DFU-O-continuous at a fuzzy point x; € dom(®) iff x; € ®*“(u) for each y € 1Y,
o(p) > pand 0°(u) < q, there exists A € IX,T(A) > pand t°(A) < qand x; € A such
that A A\ dom(®) < ¥(P"(u),p,q).

(2) DFL-d-continuous at a fuzzy point x; € dom(®) iff x € ®'(u) for each u € 1Y,
o(u) > pand o°(u) < gq, there exists A € 1%, T(A) > pand t°(\) < qand x; € A such
that A < Y (@' (p), p, q).

(3) DFU- (resp. DFL-) O-continuous iff it is DFU- (resp. DFL-) O-continuous at every fuzzy
point xy € dom(®).

Remark 2. If ® is a normalized multifunction, then ® is DFU- O-continuous at x; € dom(P)
iff xr € ®“(u) foreach yw € 1Y, o(u) > pand c°(u) < q, there exists A € 1%, T(A) > p,
T°(A) < qand x; € A such that A < ¥ (D" (u),p,q).

Theorem 4. Let @ : (X, 7,7°,(0,0%)) — (Y,0,0°) be a DF- (resp. normalized) multifunction,
Then, ® is DFL- (DFU-) d-continuous iff @ (u) < Ipro (‘-I’(d)l(y),p,q),p, q) (resp. ®*(u) <

Lo (¥ (®“(1), p.q), p,q)) foreach p € IY, o(u) > p,0°(p) < q,p € Ipand q € L.

Proof. (=) Let x; € dom(®), u € IV, o(u) > p, 0°(u) < gand x; € ! (y). Then, there
exists A € IX,7(A) > p,7°(A) < gand x; € A such that A < ¥(®' (i), p,q). Thus,
0),p.9).

%t € A < Inge (¥(®! (1), p,q), p,q), and hence D () < I (F(P! (u )
(<) Let x; € dom(®), u € IV, o(u) > p,0°(n) < gand x; € D! (y) Then, & () <
Looo (¥ (' (1), p,q), p,9) , and hence x; € Ip,oo (¥ (P (1), p.q), p,q) < ¥ (' (1), p,q). Thus,

® is DFL-0-continuous.
The other case is similarly proven. O

Remark 3. (1) DFU- (resp. DFL-) 8%-continuity < DFU- (resp. DFL-) semi-continuity.
(2) DFU- (resp. DFL-) O-continuity and DFU- (resp. DFL-) semi-continuity are independent
notions as shown by Example 2.

Example 2. Let X = {x1,x2}, Y = {y1,y2,y3} and ® : X — Y be a DF-multifunction defined
by Go(x1,y1) = 0.3, Go(x1,¥2) = 0.1, Go(x1,y3) = 1, Ga(x2,y1) = 1, Go(x2,¥2) = 0.1,
Go(x2,y3) = 0.5. Define the DF-topologies (11,7}, (T2, T ) : IX — I, (0,0°) : IY — I, and the
DF-ideals (01,03 ), (D2,03) : IX — 1 as follows:
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o
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o
S>> >

g

1, re{0,1} 0, A e{0,1}
»(A) = 05 A=04 (A) = 05 A=04

0, 0., 1, 0.W,

1, v=_0 0, v=_0
O1(v)=4¢ 06, 0<v<04 oj(v)=4¢ 04, 0<v<04

0, 0.W, 1, 0.W,

1, v=_0 0, v=_0
J(v)=4¢ 05 0<v<03 o5(v) =< 05 0<v<03

0, 0.w, 1, 0.,
o(u)=4q 05 pu=03 o°(p) =4 05 u=03

Or o0.w, 1, 0.w.

Let p = 0.5and g = 0.5. Then, (1) ® : (X, 7,7/, (01,0;7)) — (Y,0,0°) is DFU- (resp.
DFL-) semi-continuous but it is not DFU- (resp. DFL-) O-continuous because

®*(0.3) = 0.3 (resp. ®(0.3) = 0.3) and 0.3 < I, +(0.3,0.5,0.5) = 0.3

and 03 £ I, ((¥(03,05,0.5),0.5,05) = 0.

(2) @ : (X, 1,75,(0,,05)) — (Y,0,0°) is DFU- (resp. DFL-) 0-continuous but it is
not DFU- (resp. DFL-) semi-continuous because ®*(0.3) = 0.3 (resp. ®/(0.3) = 0.3), 0.3 <
Iy (¥(03,0.5,0.5),05,05) = 04 and 03 ¢ Ir,=(03,05,0.5) = 0.

Corollary 1. Let @ : (X, 7,7°,(0,0%)) — (Y,0,0°) and E : (Y,0,0°) — (Z,1,4°) be
two DF- (resp. normalized) multifunctions. Then, Z o ® is DFL- (resp. DFU-) O-continuous
multifunction if ® is DFL- (resp. DFU-) 0-continuous multifunction and E is a DFL- (resp. DFU-)
semi-continuous multifunction.

3. DFU-Almost and DFL-Almost d-Continuity

This section investigates the notions of DFU-almost and DFL- almost d-continuity, and
introduces many characteristic properties of the defined multifunctions.

Definition 4. Let ® : (X, 7,7°) — (Y,0,0°,0,0%) be a DF-multifunction, p € Iy and q € L.

Then, ® is called:

(1) DFU-almost d-continuous at x; € dom(®) iff x; € ®“(u) foreach y € 1Y, o(u) > p
and o°(u) < q, there exists A € IX,T(A) > pand t°(A) < qand x; € A such that
AN dom(P@) < D" (oo (cl* (1, p,q), P, 9))-

(2) DFL-almost d-continuous at x; € dom(®) iff x; € ®'(u) for each y € 1V, o(u) > p
and o°(u) < g, there exists A € IX,T(A) > pand t°(A) < qand x; € A such that
A < © (Ip oo (I (1, p, ), p,9))-

(3) DFU- (resp. DFL-) almost O-continuous iff it is DFU- (resp. DFL-) almost 0-continuous at
every fuzzy point x; € dom(P).

If we take cI* = Cr 1o, then we have the definition of DF-almost continuous multifunctions.
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Remark 4. (1) If ® is a normalized DF-multifunction, then ® is DFU-almost O-continuous at
xt € dom(®) iff x € D (u) for each y € 1Y, o(u) > p and o°(u) < q, there exists A € I%,
T(A) > p, 7°(A) < gand x; € A such that A < O (I, oo (cI* (1, p,9), 1. 9))-

(2) DFU- (resp. DFL-) semi-continuity = DFU- (resp. DFL-) almost 0-continuity = DFU-
(resp. DFL-) almost continuity.

(3) DFU- (resp. DFL-) almost 8%-continuity <> DFU- (resp. DFL-) almost continuity.

Theorem 5. For a DF-multifunction ®: (X,7,7°) —o (Y,0,0°,(9,0%)),u € I¥,p € lyand q €
14, these statements are equivalent:

(1) @ is DFL-almost O-continuous.
@ () < Toee (W (oo (1 (1, p,), 2,9) ), p,0) i () = pand 0 () < g.
B)  Crre(P"(Cooe (int™ (1, p,9),p,9)), p,q) < P () if o (u®) = pand o°(p°) < g.

Proof. (1) = (2) Let x; € dom(®), u € 1Y, o(u) > p, 0°(u) < gand x; € @ (). Then,
there exists A € IX,7(A) > p,7°(A) < gand x; € A such that A < CDI(IMo(cl*(y,p,q),p,q)). Thus,

5t € A < Ieeed! (o (e (1,,9), 1)), pr4), and hence @ (1) < e (W Lo (e (1,2, 1)), P11
(2) = (3) Let u € I' with o(u¢) > p and ¢°(u) < q. Then,

@I = @) < Lo (@ e (e (5, p, ), p.), 21
= [Coo(@"(Cooo (int"(u, p,9), p,9)), P, 9)]"-
Thus, Crro(®"(Coee (int* (1, p,q),p,q)), P, q) < " (1).
(3) = (1) Let x; € dom(®), p € IV, o(u) > p,0°(u) < q and x; € &' (u). Then,

c

(e (@ (o (el (1, p,), 22) ), 11 0)]

= oo (P (Cae (it (1, p,0), p,0)), P, ) < (1) = [@' ()]

c
7

and hence CDI(pt) < IT,To(@l(lg,go(cl*(y,p,q),p,q)),p,q). Therefore, x; €

Ieeo (@ (Lo (1" (1, p,9), P, ) ), p,9) < ® (Ioo=(cl* (1, p,4), p,q)). Thus, @ is
DFL-almost 0-continuous. O

Theorem 6. For a normalized DF-multifunction ® : (X, t,7°) —o (Y,0,0°,(9,0%)), u € I,
p € Iy and q € Iy, these statements are equivalent:

(1) @ is DFU-almost 0-continuous.

@) @(p) < Leeo (P (oo (" (1, . 4), ), ) i () = pand 0°(p) < .

(®)  Cone (@ (Cooe (int* (1, p,0), p,0)), p) < @ () if o) = p and o°(u) < q.

The following example shows that generally the implications of Remark 4 (2) are not
reversed.

Example 3. Let X = {x1,x2}, Y = {y1,y2,y3} and ® : X — Y be a DF-multifunction defined
by Go(x1,¥1) = 0.2, Go(x1,¥2) = 1, Go(x1,y3) = 0, Go(x2,¥1) = 0.4, Go(x2,y2) = 0.2,
Gao(x2,y3) = 1. Define the DF-topologies (11, T ), (12, T ) : IX — I, (0, 07), (02,05) : IY — I,
and the DF-ideals (01, 0%), (D2,05) : I — 1 as follow:
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1, Ae{01} 0, Ae{0,1}
n(A) ={ 03, A=04 T(A)={ 07, A=04
0/ 0.w, 1, 0.w,
1, Ae{0,1} 0, Ae{01}
n(A)={ 05 A=05 Z(A)={ 05 A=05
0/ 0.w, 1, 0.w,
L, pe{0l} 0, wne{0l}
_) 04, pu=03 /v ) 06, u=03
(%1 (;l/l) - 0.6, U= M 01 (F’l) - 0.4, §= 74
0, 0.w, 1, 0.W,
1, we{0l1} 0, wne{0l}
) 04, u=05 N _J 06, u=05
(72(#) - 0.7, p= 04 ) (]’l) - 0.3, = 04
O, o0.w, 1/ 0.w,

1, Vv = Q 0/ vV = Q
B()={ 07, 0<v<04 B5)={ 03, 0<v<04
0/ o0o.w, 1, 0.w.

Then, (1) @ : (X,71,77) — (Y,01,07,(01,07)) is a DFU- (resp. DFL-) almost 0-
continuous and it is not DFU- (resp. DFL-) semi-continuous because

03 = &(03) < Iy« (@“(IW]* (c*(0.3,0.3,0.7),0.3, 0.7)),0.3, 0.7) = 04,

04 = *(04) < I o (d)“([a

1

o (c17(04,0.3,07),0.3, 0.7)),0.3, 0.7) =04,

and 0.3 £ I :(0.3,03,0.7) = 0.
(2)@: (X, 12, 75) —o (Y,02,03,(0,,0%)) is DFU- (resp. DFL-) almost continuous and it
is not DFU- (resp. DFL-) almost O-continuous because

4= 0"(04) < Iy (cp“(lﬁ,z,g; (Copoz(04,03,07),0.3, 0.7)),0.3, 0.7) = 0.5,

05 = O(05) < I, (cp”(lazlgf (Conry (0.5,0.3,0.7),0.3, 0.7)),0.3, 0.7) = 0.5,

and 0.4 = *(04) £ L, (cpu(IUZ,(,; (c1*(0.4,03,0.7),0.3, 0.7)),0.3, 0.7) = 0.

Theorem 7. For a DF-multifunction ® : (X,t,7°) — (Y,0,0°,(0,0%)), u € IV, p € Iy and
q € Iy, these statements are equivalent:

(1) @ is DFL-almost O-continuous.

@ (@) = pand (0! (n)) < qif 1 = Lo (el (1, 2,9), P.17).

@) (@ (Lo (el (0,p,0), p,40))) 2 pand (@ (Lo (el (0, p, ), p,0) ) < q
o(u) = pand o°(u) < q.
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Proof. (1) = (2) If u = Iy oo (cI™ (1, p,9),p,q), then () > p and 0°(u) < q. From
Theorem 5 (2), ®/ (1) < Tco (! (T (cl* (1, p,), 1.9) ) 1,0) = Lezee (@ (), p,q7). Thus,
(@' () = pand T (@' () < g

(2) & (3) Obvious.

(3) = (1) Let xy € dom(®), u € IV, () > p, °(u) < gand x; € D (p).
Then, from y < Iy o (cI* (1, p,9), p,q), we obtain that T(@l(lglgo(cl*(y, p,q),p,q))) >p,

© (! (o= (cl* (1,p,9),p,9))) < qand x; € D (p) < @ (Lo (cl* (1, p,9), p,9))- Thus,

® is DFL-almost 0-continuous. [

Theorem 8. For a DF-multifunction ® : (X, 1,7°) — (Y,0,0°,(8,0%)), u € IY, p € Iy and

q € Iy, these statements are equivalent:

(1) @ is DFL-almost O-continuous.

@ T([e*(W)]) > pand T ([ "(p )l“) 9, if i = Copo (int* (1, p, ), p.4).

@) T([®"(Cope(int*(w,p,a), p,9))I) Z p
<q

and T ([ (Co oo (int* (1, p, q ) )]Y) < qifo(ps) = rand o°(pf) < q.

Theorem 9. For a normalized DF-multifunction ® : (X, t,7°) — (Y,0,0°,(9,0%)), u € IV,
p € Ipand q € I, these statements are equivalent:

(1) @ is DFU-almost 0-continuous.

) T(P*(p)) = pand T (D" (n)) < qif p = loo=(cI* (1, p, q), . q)-

@) (" (I (cl* (P, 9), P,q))) = pand T°(D*(Ipoo (cI* (1, p,9),p,9))) < qifo(p) > p
and c°(u) < q.

Theorem 10. For a normalized DF-multifunction ® : (X,7,7°) —o (Y,0,0°, (0,0%)), u € IV,
p € Iy and q € Iy, these statements are equivalent:

(1) @ is DFU-almost 0-continuous.
1 ¢ o 1 ¢ ; P gk
) T([GD (u)] ) > pand T ([CD (#)} ) < qif p= Cope(int™(p,p,q), p.q)-
Cc Cc
©) T([¢’(Ca,ao(int*(urm)fM))] ) > pand T° [¢’(Ca,ao(int*(urm)fM))] <qif
o(u) = pand c°(u) < q.
Theorem 11. Let @ : (X,7,7°) — (Y,0,0°,(0,0%)) be a DF-multifunction. Then, ® is

DFL-almost O-continuous iff Cro(®*(u),p,q) < ®*(Cope (1, p,9)) for any p € 1Y with
p < Cooo(int* (1, p,9),p,q), p € I and q € L.

Proof. = Let®bea DFL-almost -continuous. Then, forany y € I¥ with y < Cope(int* (4, p,q), p,9) =
v (say), where v = Cypo (int*(v,p,q), p,q). By Theorem 8, then 7([®"(v)]") > p and
°([®"(v)]°) < g, and thus

Coro (@ (), pq) < Core(®(v),p,q)
Q4 (Cooo (int" (v, p,q),p,9)) < P*(Cooo (1, 1, 9))-
(<) Letu € 1Y with u = Copo(int*(u,p,q),p,q)- Then, u < Cypo(int*(u, p,q),v,9)
and Crro (P (1), p,q) < D (Cooo (1, p,q)) = " (1)
Therefore, 7([®"(u)]°) > p and 7°([®"(1)]°) < g. Hence, ® is DFL-almost 9-
continuous. [J

Theorem 12. Let @ : (X, 7,7°) — (Y,0,0°,(0,0%)) be a normalized DF-multifunction. Then,
® is DFU-almost 0-continuous iff Cr o (@l (n),p, q) < ®NCp oo (1, p,q)) for any u € TV with
p < Cooo(int™(u, p,q), p,q), p € o g € L.
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Theorem 13. Let {®; : (X,7,7°) — (Y,0,0°,(0,0%)), i € T'} be a family of DFL-almost
O-continuous multifunctions. Then, J;cr ®; is a DFL-almost O-continuous multifunction.

1
Proof. Let u € I'. Then, (Uier dDi) (u) = Vier (CIDf(y)) Since {®;,i € T'} is a family of
DFL-almost d-continuous multifunctions, T(Cbﬁ(y)) > pand 7° (CDﬁ(‘u)) < g, for any
= Isoo(cl*(n,p,q9),p,q) andi € I'. Then,

T((U@)l(m) = T<\/(<I>f(u))> > Ar(®hw) = p

icl iel iel

and 7° ((U,.g cpi)l(m) = 7 (Vier (®l1)) ) < Vier (1)) < g. Hence, Uyer &; is

DFL-almost O0-continuous. [

Theorem 14. Let &1, O, : (X, 7,7°) — (Y,0,0°,(0,0%)) be two normalized DFU-almost
0-continuous multifunctions. Then, &1 U &, is a DFU-almost 0-continuous multifunction.

Proof. Let u € IY. Then, (&1 UD,)" () = ®¥(u) A D4(u). Since ®; and P, are two
normalized DFU-almost 9-continuous, T(®¥(p)) > p and °(®¥(u)) < g for any p =
Iooo(cl*(u,p,q),p,q9) and i € {1,2}. Then,

T((P1UD)" (1)) = T(P (1) A D5 (1)) > T(DF (1)) AT(P5 (1)) > p,

and (@1 U®2)" (1)) = 7 (@4(0) ADY()) < T°(@4()) VT (@4() < g. Hence,
®; U D, is a DFU-almost 0-continuous multifunction. [J

Corollary 2. Let  : (X,1,7°) — (Y,0,0°) and E: (Y,0,0°) — (Z,1,4°,(0,0%)) be two
DF- (resp. normalized) multifunctions. Then, E o ® is a DFL- (resp. DFU-) almost O-continuous if
& is DFL- (resp. DFU-) almost 0-continuous and ® is DFL- (resp. DFU-) semi-continuous.

4. DFU-Weakly and DFL-Weakly 0-Continuity

In this section, we introduce the notion of DFU-weakly and DFL-weakly 0-continuity,
and discuss its relations with the previous definitions of DFU-almost and DFL-almost
0-continuity.

Definition 5. Let @ : (X, 7,7°) — (Y,0,0°,(0,0%)) be a DF-multifunction, p € Iy and q € 1.

Then, ® is called:

(1) DFU-weakly d-continuous at x; € dom(®) iff x; € ®*(u) foreach u € IV, o(u) > p
and 0°(p) < q, there exists A € 1%, T(A) > pand T°(\) < qand xy € A such that
ANdom(®) < D*(cl*(p,p,q))-

(2) DFL-weakly d-continuous at x; € dom(®) iff x; € ®(u) for each y € 1V, o(u) > p
and 0° () < q, there exists A € 1%, T(A) > pand T°(\) < qand xy € A such that
A < @'l (1, p,q))-

(3) DFU- (resp. DFL-) weakly O-continuous iff it is DFU- (resp. DFL-) weakly O-continuous at
every x; € dom(P).

If cI* = Cy o, then we have the definition of DF-weakly continuous multifunctions.

Remark 5. (1) If ® is normalized DF-multifunction, then ® is DFU-weakly O-continuous at
x; € dom(®) iff x; € ®*(u) foreach u € 1Y, o(p) > p and o°(u) < q there exists A €
IX,7(A) > p, °(A) < gand x¢ € A such that A < ®*(cl*(u,p,q)).

(2) DFU- (resp. DFL-) almost 0-continuity = DFU- (resp. DFL-) weakly 0-continuity =
DFU- (resp. DFL-) weakly continuity.
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(3) DFU- (resp. DFL-) weakly d°-continuity <> DFU- (resp. DFL-) weakly continuity.

Theorem 15. A DF-multifunction ® : (X,t,7°) — (Y,0,0°,(0,0%)) is DFL-weakly 0-
continuous iff ®'(u) < Iyo (P (cI* (1, p,q)),p,q) for each u € 1 with o(u) > p, c°(u) < g,
p€lypandqg € L.

Proof. (=) Let x; € dom(®), u € IY with o(u) > p, c°(u) < gand x; € ®'(u). Then,
there exists A € IX, T(A) > p, °(A) < gand x; € A such that A < ®(cI*(u, p,q)). Thus,
5t € A < Lo (@ (cl* (1,p,)), p,q), and hence @I () < Lree (P! (el (1, p,)), P, 4).

(<) Let x; € dom(®), y € IY with o(u) > p, 0°(4) < gand x; € QD( ). Then,
x € ®(p) < Ioae (P(cl* (1, p,4)), p,9). Thus, x1 € A < Loz (el (1, p,9)), p,q) <
@ (cI*(u, p,q)). Hence, @ is DFU-weakly d-continuous. [J

Theorem 16. A normalized DF-multifunction ® : (X, t,7°) — (Y,0,0°,(0,0%)) is DFU-
weakly d-continuous iff ®*(u) < Ireo (P*(cI* (1, p,9)),p,q) for each u € 1Y with o(u) > p,
c°(n) <g,p€lpand q € L.

The following example shows that generally, the implications in Remark 5 (2) are
not reversed.

Example 4. Let X = {xq,x2,x3}, Y = {y1,y2,y3} and ® : X —o Y be a DF-multifunction de-
fined by Gq)(xl,yl) = 0.7, Gq)(xl,yz) = 0.3, Gq>(x1,y3) =0.3, G@(Xz, yl) =0.1, G@(Xz, yz) =
1, Gq;(Xz,]/g,) = 0.1, G¢(x3,y1) =02, Gq;(x:),,yz) = 0.1, G@(X3,y3) =1 Deﬁne "1 € X
and py € IY as follows: uy = {0.3,0.1,0.2} and up = {0.3,0.1,0.2}. Deﬁne the DF-topologies
(1,7°) : IX = 1, (0,0%) : IY — I, and the DF-ideals (01,0} ), (02, 0%) : IY — I as follows:

1, Are{01} 0, Ae{01}
7(A) :{ 03, A=05 °(A) :{ 07, A=05

0, 0., 1, 0.w,

1, pe{01} 0, ue{01}
0(#)={ 025, = ff*(u)={ 075, p=p2

0, 0.w, 1, 0.w,

]., v=u 0/ v=y
04, 0<v<03 dj(v) =4 06, 0<v<03
0, 0.w, 1, 0.w,

1, v=20 0, v=_0
O(v)=¢ 05 0<v<02 T5(v)=¢ 05 0<v<02
0, 0w, 1, 0.W.

Then, (1) ® : (X,7,7°) — (Y,0,0%,(01,07)) is DFU- (resp. DFL-) weakly continuous
and it is not DFU- (resp. DFL-) weakly O-continuous because
1 = D" (p2) < I (P (Co o+ (p2,0.25,0.75)),0.25,0.75) = 0.5,
i = @ (1) < Ipo (P (Cp o (112,0.25,0.75)),0.25,0.75) = 0.5,

and
Uy = f_ It 7o (®¥(cl*(p,0.25,0.75)),0.25,0.75) = 0,

2) % Lo ( cl* (42,0.25,0.75)),0.25,0.75) = 0.
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(2)®:(X,1,7°) — (Y,0,0%,(0,0%)) is DFU- (resp. DFL-) weakly 0-continuous and it
is not DFU- (resp. DFL-) almost O-continuous because

p1 = D" (pu2) < Lo (P"(cl*(p2,0.25,0.75)),0.25,0.75) = 0.5,

1 = D (4p) < Iy o (D (cI* (12,0.25,0.75)),0.25,0.75) = 0.5,
and

1 = @ (1) £ I o (@ (I o+ (cl*(112,0.25,0.75),0.25,0.75)),0.25,0.75) = 0,

i = @ (42) £ Itzo (D (Ipp (cI*(42,0.25,0.75),0.25,0.75)),0.25,0.75) = 0.
Theorem 17. A DF-multifunction ® : (X,t,7°) — (Y,0,0°,(0,0%)) is DFL-weakly 0-
continuous iff Coro(P*(int*(u,p,q)),p,9) < ®“(u) for each u € 1Y with o(u°) > p,
c°(u)<gqpelyandq e I.

Proof. (=) Let u € I' with o(u°) > p, o°(y°) < q. Then, by Theorem 15,

(@ (1)) = () < Lo (R (" (15, p,9)), p,9)
= [Coro (D" (int" (1, p,q)), 1, 9)]"

Thus, CT T° (CDM(Znt* ("Ll, p.q ))1 p.q ) cp”(‘u)_
(<) Let x; € dom(®), p € I"with o (u) > p,0°(u) < q and x; € ! (i). Then,

[Ir,ro(ﬂbl(cl*(%M)),P,q)r = Coee(@(int™ (u, p,q)), p,4)
() = [ ()],

IN

and hence ® () < Ir (P! (cI* (4, p,9)), p,q)- Thus, @ is DFL-weakly d-continuous. [

Theorem 18. A normalized DF-multifunction ® : (X, t,7°) — (Y,0,0°,(0,0%)) is DFU-
weakly d-continuous iff Cy o (D (int*(u,p,q)),p,q) < ® (1) for each u € 1Y with o(u°) > p,
c°(u)<q,pelyandq e I.

Theorem 19. If ® : (X, 7,7°) — (Y,0,0°,(0,0%)) is a normalized DFU-weakly O-continuous
multifunction and ®(A) < Iy oo (cI*(®(A), p,q), p, q) for each A € 1%, and then ® is DFU-almost
0-continuous.

Proof. Let x; € dom(®), u € 1Y, o(u) > p, °(n) < gand x; € ®*(u). Then, there
exists A € I with T(A) > p,7°(A) < g a nd x¢ € A such that A < ®*(cl*(p,p,9q)),
D(A) < S(@“(cI*(,p,q))) < cI*(u,p,q). Since P(A) < Ipgo (cI*(®(A), p,q),p,q) <
Lo oo (cI* (1, p,9),p,9) and A < O¥(P(A)) < D" (1o (cI* (1, p,9),p,9))- Thus, @ is DFU-
almost 0-continuous. [

)

<
&
)

Corollary 3. Let  : (X,1,7°) — (Y,0,0°) and E: (Y,0,0°) — (Z,1,4°,(0,0%)) be two
DF- (resp. normalized) multifunctions. Then, 2 o ® is a DFL- (resp. DFU-) weakly d-continuous if
& is DFL- (resp. DFU-) weakly 0-continuous and ® is DFL- (resp. DFU-) semi-continuous.

Theorem 20. Let @ : (X, 7,7°) — (Y,0,0°,(0,0%)) be a DFL-weakly 0-continuous multifunc-

tion. Then, @' (1) < Lr,co (@' (cI* (1, p,9)), p, q) forany p € I¥ with p < oo (cI* (1, p,4), p,4),
pE€lyandqg € L.

Proof. Let ® be a DFL-weakly d-continuous and y € IY with u < Iy s (cI* (1, p,9), 0, 9)-
Then, x; € ® (1) < ® (Iy 0o (cI* (1, p,q), p,q)) and there exists A € IX, T(A) > p, °(A) < g
and x; € A such that
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A < (@ (cl* (Ioo (" (1, 2,9), 2,9), 1,0)) < D' (" (11, p, 7))
Thus, A < I (P (cl* (1, p,9)), p,q) and @ (4) < Lo (P (cl* (1, p,9)), p,q). O

Theorem 21. Let ®: (X,7,7°) —o (Y,0,0°,(0,0%)) be a normalized DFU-weakly O-continuous mul-

tifunction. Then, ®* (1) < Lo (P"(cl* (1, p,q)), p,q) forany u € 1Y with < Ipgo(c*(1t, 9,9),0,9),
pe€lpandqg € L.

Proof. Clear. O

5. DFU-Almost Weakly and DFL-Almost Weakly 0-Continuity

This section introduces the notions of DFU-almost weakly and DFL-almost weakly
0-continuity, and discusses its relations with the previous definitions of DFU-0-continuity
and DFL-0-continuity (weakly or almost).

Definition 6. Let @ : (X, 7,7°) — (Y,0,0°,(0,0%)) be a DF-multifunction, p € Iy and q € 1.

Then, ® is called:

(1) DFU-almost weakly O-continuous at x; € dom(®) iff x; € ®*(u) for each u € 1Y,
o(p) > pand o°(u) < q, there exists A € IX,T(A) > pand t°(\) < qand x; € A such
that A N dom(®) < Cqo(P*(cI* (1, p,9)), P, 9)-

(2) DFL-almost weakly d-continuous at x; € dom(®) iff x; € ®(u) for each y € 1Y,
o(u) > pand o°(u) < gq, there exists A € IX,T(A) > pand t°(\) < qand x; € A such
that A < Cr 1o (D (cI* (1, 1,9)), 1, 9)-

(3) DFEU- (resp. DFL-) almost weakly O-continuous iff it is DFU- (resp. DFL-) almost weakly
0-continuous at every x; € dom(P).

If cI* = C¢ 10, then we have the definition of DF-almost weakly continuous multifunctions.

Remark 6. (1) If ® is a normalized DF-multifunction, then ® is DFU-almost weakly 0-continuous
at x; € dom(®) iff xy € P (u) for each u € 1Y, o(u) > p and o°(u) < q, there exists
AeTX,t(A) > p, t°(A) < qand x¢ € Asuch that A < Cy o (P*(cI* (1, 1,9)),7,9)-

(2) DFU- (resp. DFL-) weakly 0-continuity = DFU-(resp. DFL-) almost weakly O-continuity
= DFU- (resp. DFL-) almost weakly continuity.

(3) DFU- (resp. DFL-) almost weakly 0°-continuity <> DFU- (resp. DFL-) almost weakly
continuity.

Theorem 22. For a DF-multifunction ® : (X, t,7°) —o (Y,0,0°,(9,0%)), u € I', p € Iy and
q € I, these statements are equivalent:

(1) @ is DFL-almost weakly 0-continuous.

@) D (p) < Ireo (Cooo (R (cI* (1, p,9)), 2, q), P, q) if (1) > pand 0°(p) < g.
@) Croo (I (@ (int* (1, p,9)), p,q), p,q) < P*(p) if o(u°) > p and o°(u°) < q.

Proof. (1) = (2) Let x; € dom(®), u € IY, o(u) > p,0°(y) < gand x; € & (u). Then, there ex-
ists A € IX,7(A) > p,7°(A) <gand x; € A suchthat A < Cyro (Cbl(cl*(y, v.q),p.9)- Thus, x; €
A < Lpo (Coro (D (el (1, 1,9)), p,9), P,4), and hence @ (i) < I ro (Coro (P (I (1, 1,4)), 1,9), P 9)-
(2) = (3) Let u € IY with o(u¢) > p and ¢°(u°) < q. Then,
[ ()] @' (1) < Irzo (Coee (P (cI* (15, p,9)), 2,49), P, 9)
= [Crro(Lee (@ (int* (u, p,9)), p,49), p,q)°

Thus, Cr o (Iree (P (int* (1, p.q)), p.49), p.9) < P ().
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(3) = (1) Let x; € dom(®), p € IV, 0(p) > p, 0° () < gand x; € ®'(u). Then,

[ e (Coiee (9 (el (1, 2, 9)), P 0), 1) | C
= Coe (Lo (@ (int* (1, p,4)), po), ) < @ () = [0/ ()],

and hence CDl(y) < IT,To(CT,To(CDl(cl*(y,p,q)) ,q),P,q). Therefore, x; €

Leee (Cooe (@' (el* (1, p,9)), P, 4) P, 4) < Coee (R (cl* (1, p,q)), p, ). Thus, P is
a DFL-almost weakly 0-continuous multifunction. O

Theorem 23. For a normalized DF-multifunction ® : (X, 7,7°) —o (Y,0,0°, (0,0%)), u € IV,
p € Iy and q € Iy, these statements are equivalent:

(1) @ is DFU-almost weakly O-continuous.
@) () < Lo (Creo (R(c* (1, p,9)), P,q), p,9) if o (1) = pand o°(u) < g.
®)  Cone (Lo (@ (int* (1, p,0)), po0), pog) < @ () if 0 () = p and 0 () < g.

The following example shows that generally, the implications in Remark 6 (2) are not
reversed.

Example 5. LetX = {x1,x2,x3}, Y = {y1,y2,y3} and ® : X — Y be a DF-multifunction de-
fined by Go(x1,y1) = 0.7, Go(x1,¥2) = 0.3, Go(x1,y3) = 0.3, Gop(x2,y1) = 0.1, G (x2,12) =
1, Gq>(X2,y3) = 0.1, G@(Xg,,yl) = 0.2, Gq>(x3,y2) = 0.1, G¢(X3,y3) =1 Deﬁne M € IX
and py € IV as follows: py = {0.3,0.1,0.2} and pp = {0.3,0.1,0.2}. Define the DF-topologies
(1, %), (2, 15) : X =1, (0,0°) : IY = I, and a DF-ideal (9,0%) : ¥ 1 as follows:

1, Ae{01} 0, Ae{01}
a(A)={ 03, A=05 (M) ={ 07, A=05
O/ 0.w, 1, 0.w,

1, A e {01} 0, A e {01}
(A) =¢ 025 A=02 7 (A) =¢ 075, A =02
0 1, 0

075, u=mu
1, 0.W,

1, ne{01} 0, ne {01}
{ : (1) {

1, v=20 0, v=20
o(v)=¢ 04, 0<v<03 0*(v)=¢< 03, 0<v<03
0/ 0.w, 1, 0.w.

Then, (1) @ : (X, 1, 7y) —o (Y, 0,0°,(0,0%)) is DFU- (resp. DFL-) almost weakly continu-
ous and it is not DFU- (resp. DFL-) almost weakly 0-continuous because

H1 = D" (42) < Iy g (Cry ez (P (Coroe (112,0.25,0.75)),0.25,0.75),0.25,0.75) = 1,
H1 =@ (42) < Iy rp (Coy g (P (Cooo (112,0.25,0.75)),0.25,0.75),0.25,0.75) = 1,
H1 =P (j2) & Iy 5 (Cry g (P (cl* (12,0.25,0.75)),0.25,0.75),0.25,0.75) = 0.2,

% Iy 3 (Cry ez (D! (el (2, 0.25,0.75)),0.25,0.75),0.25,0.75) = 0.2.
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2)®:(X,1,77) — (Y,0,0°,(9,0%)) is DFU- (resp. DFL-) almost weakly 9-continuous and it
is not DFU- (resp. DFL-) weakly O-continuous because

j1 = " (p2) < Iy o (Cry oz (@ (cl* (112,0.25,0.75)),0.25,0.75),0.25,0.75) = 0.5,

i =@ (42) < Iy 7 (Cry o (' (eI (12,0.25,0.75)),0.25,0.75),0.25,0.75) = 0.5,
i =" (i) £ Iy 7 (9" (cl" (2,0.25,0.75)),025,0.75) = 0,

i = ' (2) £ Iy (' (e (12,0.25,0.75)),0.25,0.75) = 0.

Theorem 24. Let @ : (X,7,7°) — (Y,0,0°,(0,0%)) be a normalized DF-multifunction, and
® is DFU-almost weakly 0-continuous and DFL-almost 0-continuous. Then, ® is DFU-weakly
0-continuous.

Proof. Let u € IV with o(u) > p, 0°(4) < q and ® be DFU-almost weakly d-continuous.
Then, by Theorem 23 (2),

D" (u) < I o (Cre (D (™ (1, p,9)), P,9), P, 9)-

Since Co,0o (1, p,q) = Co oo (int*(Co oo (1, p,9), P, 9), P, q), it follows that

T([@*(Cooo (11, p,7))]°) = pand T°([®"(Coo= (1, p,9))]°) < g, and then

([ (cl*(u p,))]) > p, T°([@*(cI* (1, p,9))]°) < qand

D" () < Ipzo(D*(cl*(u,p,9)),p,q)- Thus, by Theorem 16, ® is DFU-weakly 0-
continuous. [

Theorem 25. Let @ : (X,7,7°) — (Y,0,0°,(0,0%)) be a normalized DF-multifunction, ®
be DFL-almost weakly 0-continuous and DFU-almost O-continuous. Then, ® is DFL-weakly
0-continuous.

Corollary 4. Let @ : (X,7,7°) — (Y,0,0°) and E: (Y,0,0°) — (Z,1,4°,(0,0%)) be two
DEF- (resp. normalized) multifunctions. Then, & o ® is a DFL- (resp. DFU-) almost weakly
0-continuous multifunction if = is DFL- (resp. DFU-) almost weakly O-continuous and ® is DFL-
(resp. DFU-) semi-continuous.

6. Conclusions

This paper submitted the notions of DFU-almost, DFU-weakly, DFU-almost weakly
0-continuous multifunctions and also submitted the notions of DFL-almost, DFL-weakly,
DFL-almost weakly d-continuous multifunctions depending on a DF-ideal d. Some charac-
terizations of these types of DF-continuity are proven, and many examples are submitted to
explain the allowed implications between these types of DF-continuity. That is, the variety
of continuity of DF-multifunctions based on DF-ideals and the implications in between are
meaningful and have been discussed in detail. In future work, we will generalize these
notions to wider forms of DF-semi continuity. Also, we will try to study the variety of
DF-continuity in the fuzzy soft set theory using special operators.
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