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Abstract: In recent years, community detection has received increasing interest. In network analysis,
community detection refers to the identification of tightly connected subsets of nodes, which are
called “communities” or “groups”, in the network. Non-negative matrix factorization models are
often used to solve the problem. Orthogonal non-negative matrix tri-factorization (ONMTF) exhibits
significant potential as an approach for community detection within multiplex networks. This paper
explores the application of ONMTF in multiplex networks, aiming to detect both shared and exclusive
communities simultaneously. The model decomposes each layer within the multiplex network into
two low-rank matrices. One matrix corresponds to shared communities across all layers, and the
other to unique communities within each layer. Additionally, graph regularization and the diversity
of private communities are taken into account in the algorithm. The Hilbert Schmidt Independence
Criterion (HSIC) is used to constrain the independence of private communities. The results prove
that ONMTF effectively addresses community detection in multiplex networks. It also offers strong
interpretability and feature extraction capabilities. Therefore, it is an advanced method for community
detection in multiplex networks.

Keywords: community detection; orthogonal non-negative matrix tri-factorization; multiplex networks

MSC: 68R10

1. Introduction

There are many real systems, including social networks, collaboration networks,
citation networks, and protein–protein networks, that represent complex networks. These
networks express the connections between the same sets of nodes in different types of
interactions through different layers. However, most traditional measures merely consider
single-layer networks. But they do not consider the diversity of connections between
entities. Thus, multiplex networks have been proposed recently to represent various modes
of interaction. A multiplex network is a unique form of multilayer network in which
every layer contains a distinct topology but the same types of nodes [1]. The most critical
challenge of this network is effectively identifying and dividing the structure in the network,
also called community detection.

The goal of community detection is to discover the clustering or partition of nodes
in the network’s groups of nodes. There is a lot of connectivity between nodes. However,
they have a shaky connection to other communities’ nodes. While there is a large body
of work on community detection, most of it focuses on single-layer networks. Because
they typically cannot handle multiple layers of the network simultaneously, traditional
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community detection methods often face challenges when dealing with multiplex networks.
Three basic types of community discovery methods are now available for multiplex net-
works. The first approach directly simplifies the multiplex network into a single graph.
After employing a flattening algorithm to merge the layers of a multilayer network into a
single graph, traditional community detection algorithms are utilized for detection [2,3].
Nevertheless, the approach can only effectively identify the common communities across
each layer of the network. It might also generate some spurious communities due to
the flattening process, ultimately impacting the results of community detection. In the
second approach, each layer is analyzed layer by layer using standard single-layer network
community detection algorithms, with the results eventually combined. The application
is referred to as Principal Modularity Maximization (PMM) and Spectral Clustering on
Multilayer graphs (SC-ML) [4]. The third approach involves directly operating on the
multiplex network model. Based on this category of methods, several algorithms have
been proposed, including Locally Adaptive Random Transitions (LART) [5], Infomap [6],
and multilayer community quality measure optimization-based techniques [7–9].

The existing community detection methods based on multiplex networks typically
select a partition suitable for all layers [10]. However, no method simultaneously considers
the shared communities across different layers and the unique communities existing in
each layer. Therefore, for real-world complex networks, existing community detection
algorithms often exhibit poor performance. The reason behind this is that, in real social
networks, different layers often represent distinct interaction patterns, and each layer’s
network is heterogeneous. For instance, in real social networks, students of a class might
interact on different social platforms like WeChat, QQ, and Facebook. Each layer of the
network corresponds to a specific social platform. On different platforms, each student may
connect with different individuals. Hence, for a class of students, there may be common
communities across each social platform. In the meantime, each layer possesses distinct
communities. Based on the above, the goal is to address the challenge of simultaneously
identifying both common and private communities within multiplex networks. Specific
constraints are introduced for detected shared and unique communities, aiming to enhance
the algorithm’s performance.

Non-negative matrix factorization (NMF) is a widely utilized technique in data mining
and machine learning, exhibiting particularly unique advantages when dealing with high-
dimensional data. In recent years, NMF has been successfully applied in various domains,
including image processing, text mining, and bioinformatics. In the field of network
science, particularly in community detection within multiplex networks, NMF has shown
tremendous potential. In fact, NMF has been widely employed in community identification
for single-layer networks, multiplex networks, multilayer networks, and dynamic networks
because of its high interpretability and effect [11–13]. In a previous paper, an orthogonal
non-negative matrix tri-factorization [14] model was proposed to detect each layer of the
network separately. The proposed model decomposes each layer of the multiplex network
into two low-rank matrices. The first component relates to the communities that are
shared by all levels. Additionally, the second relates to the exclusive groups that are found
inside each stratum. Compared to standard non-negative matrix factorization, orthogonal
non-negative matrix tri-factorization decomposes the matrix into three independent parts,
thereby offering stronger interpretability. Additionally, it can better extract features from
the data, accurately capturing structural information. It considers additional orthogonal
constraints, avoiding the overfitting issues commonly found in NMF and ensuring a more
stable decomposition. It demonstrates better performance and applicability in multiplex
networks compared to traditional non-negative matrix factorization.

Based on the above findings, this study introduces graph regularization [15] and
Hilbert–Schmidt Independence Criterion (HSIC) [16] terms into the orthogonal non-negative
matrix tri-factorization model. We calculate common communities separately for each
layer and then synthesize the final common communities by incorporating weights. The
contributions of the paper are as follows:
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1. An orthogonal non-negative matrix tri-factorization model is applied to multiplex
networks. It enables the simultaneous detection of common and private communities
within the network. The model has enhanced interpretability and feature extraction
capabilities.

2. For the detected private communities, a graph regularization [15,17] constraint is
added. Graph regularization utilizes the topological structure of networks to bet-
ter capture relationships and connection patterns between nodes. It constrains the
formation of community structures. And it aligns more with the actual community
partitioning rules in real networks. Finally, it enhances the accuracy and robustness of
community detection.

3. The Hilbert–Schmidt Independence Criterion (HSIC) [16] term is introduced. Because
the private communities in each layer are independent of each other with minimal
correlation, an HSIC term is added to the detected private communities [18]. The
HSIC effectively imposes independence constraints on the private communities in
each layer.

4. Weight constraints are applied to the identified shared communities in each layer [19].
Ultimately, the shared communities across all layers are summed, enhancing the
accuracy of the detected common communities.

The remaining sections of this paper are structured as follows. The second section
describes related work. Section 3 introduces some notations and definitions. The proposed
algorithm is introduced in Section 4. Section 5 describes the updating process of the
algorithm. In Section 6, various datasets and comparison models are introduced in detail.
Then, the experimental results are analyzed. In Section 7, conclusions and further research
are covered.

2. Related Works
2.1. Existing Methods

The method proposed in this paper directly operates on multiplex network models.
This category of algorithms includes various types: methods based on random walks,
statistical generative network models, label propagation, objective function optimization,
and non-negative matrix factorization (NMF) methods.

The community detection method based on random walkers is a commonly used
network analysis technique. It involves simulating the behavior of random walkers in the
network to discover community structures. The basic idea is to start from a node in the
network, randomly select a neighboring node to move to, and repeat this process until
certain conditions are met. By simulating the behavior of random walkers multiple times,
the degree of association between nodes can be obtained, finally identifying community
structures. The authors of [5] proposed LART, a method based on a random walk on
a multiplex network. The community detection method based on random walkers has
advantages such as simple implementation, suitability for large-scale networks, and the
ability to detect overlapping communities. However, it needs various parameters. The
selection of parameters in the algorithm may affect the final community detection results.
When processing large-scale networks, it requires a considerable amount of computational
resources and time.

Statistical methods such as the weighted stochastic block model (WSBM) detect shared
and unique communities in heterogeneous weighted networks. While this approach tackles
the problem of network heterogeneity across layers, it overlooks communities that might be
shared by specific subsets or different combinations of layers. By considering the weights
of edges in the network, the weighted stochastic block model can capture more nuanced
relationships between nodes compared to traditional binary network models. However,
for large networks with a high number of nodes and edges, the weighted stochastic block
model can be computationally intensive.

The Label Propagation Algorithm (LPA) is based on the idea of label propagation. The
basic principle of the LPA is to propagate initial labels (or communities) in the network
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until the nodes in the network reach a stable state. Firstly, each node is initially assigned
a unique label (or community). Then, labels propagate in the network, with each node
adopting the most common label among its current neighboring nodes. When the labels
of all nodes no longer change, the algorithm reaches a stable state. Finally, nodes with
the same label are considered to belong to the same community. In general, the LPA is
suitable for community detection in large-scale networks. But it may not accurately identify
overlapping communities or communities with clear hierarchical structures in some cases.

In community detection for multilayer networks, methods based on optimizing ob-
jective functions are commonly used to identify communities that span across different
layers of the network. These methods aim to find the partition of nodes into communities
that maximizes/minimizes a specific objective function, which captures the quality of
the community structure. One popular approach for community detection in multilayer
networks is to extend traditional modularity optimization to multilayer settings. Another
method for optimizing objective functions in multilayer community detection is to use
a variation of the stochastic block model (SBM). The SBM is a generative model that as-
sumes nodes belong to different blocks (communities). And it can define the probability
of edges between nodes based on their block assignments. In the multilayer setting, the
SBM is extended to model interactions within and between layers. It succeeds in detecting
communities that exist across layers.

The majority of the above-mentioned methods only consider the shared communities
across all or most layers. They all overlook the possibility of shared communities existing
in subsets of different layers. They also do not detect the unique communities. In methods
based on NMF, the number of communities is also provided through prior information.

2.2. Multiplex Networks

A multiplex network is a special multilayer network in which each layer has the
same nodes, but its network topology is different. Like single-layer networks, a finite
graph sequence {Gl} can also be used to depict multiplex networks, where l represents the
number of layers, l ∈ {1, 2, . . . ,L}, Gl = (Vl , El , Al) [20]. The collection of layer l nodes is
denoted by Vl , and Al ∈ Rn×n is the adjacency matrix for layer l, where Aij characterizes
the relationship between vi and vj. In this paper, binary and undirected weighted adjacency
matrices are employed. For both the weighted adjacency matrix and the binary adjacency
matrix, Aij ∈ [0, 1]. We have Aij = 1 if eij ∈ E and Aij = 0 otherwise in each layer of
the network.

2.3. Hilbert–Schmidt Independence Criterion (HSIC)

To determine the degree of independence between two random variables, statisticians
employ the Hilbert–Schmidt Independence Criterion (HSIC). It is based on kernel methods
in Hilbert–Schmidt space and was introduced by Gretton et al. [21]. The primary application
domains of the HSIC include machine learning, statistical, and kernel methods. The HSIC
quantifies the correlation between two variables by comparing their representations in
the feature space. Each of the detected private communities is independent of the others,
meaning their topological structures are entirely different from each other. Hence, the
algorithm proposes the following version of the HSIC as a measure of independence
between two private communities:

HSIC
(

H pl , Hpm
)
=

1
(N − 1)2 Tr(Kl HKmH) (1)

where Hpl and Hpm represent the detected private communities in the l-th and m-th layers,
respectively. And H = I − 1/n, and I is the n-dimensional identity matrix, where n is the
dimension of the matrix. The larger the value of the HSIC, the stronger the correlation
between X and Y; conversely, a smaller HSIC indicates a weaker correlation. The HSIC
equals zero only when X and Y are independent. For the kernels Kl and Km, the inner
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product function is chosen, i.e., Kl = (Hpl)
T Hpl , Km = (Hpm)T Hpm. Substituting it and

the expression for Hpl and Hpm into Equation (1), the following formulation is obtained:

HSIC
(

Hpl , Hpm
)
=

1
(N − 1)2 Tr

(
HT

pl Hpl HHT
pmHpmH

)
. (2)

2.4. Community Detection with NMF in Multiplex Networks

Non-negative matrix factorization (NMF) [22] is an extensively employed algorithm
in community detection. The model has been widely applied in many fields [23]. A non-
negative matrix can be broken down using NMF into the product of two or more other
non-negative matrices, thereby capturing the latent structures within the data. In the context
of community detection, NMF has been successfully utilized to uncover potential modular
structures and is particularly well suited for representing the non-negative characteristics
inherent in the data. Given a non-negative matrix A ∈ Rn×m, NMF attempts to find two
non-negative matrices, X ∈ Rn×k and U ∈ Rm×k, such that A ≈ XUT and k << n, m. X
and U are found by solving the following optimization problem:

min
X,U

∥∥∥A− XUT
∥∥∥2

F
s.t. X, U ≥ 0. (3)

The community feature matrix (X) and community indicator matrix (U) are both
community detection techniques based on NMF. The algorithm adds the orthogonality
constraint to both factor matrices, XXT = I and UUT = I, resulting in better performance.
Each row in W or U has only one non-zero element due to the requirements of orthogonality
and non-negativity, which suggests that each node is only a member of one community.
The decomposed matrix X is an adjacency matrix. Typically, the number of communities is
expressed as k [24,25].

The algorithm research on community detection in single-layer networks has been
improved, and various non-negative matrix decomposition algorithms based on single-
layer networks have been widely applied and achieved good performance [26]. However,
in the research of multilayer networks, the non-negative matrix factorization algorithm
has not been widely applied. The main reason is that the traditional non-negative matrix
factorization algorithm cannot detect the relationship between communities in a multilayer
network. It only applies to the single-layer network. For community detection in two-
layer and more-than-two-layer networks, there are two basic models: one is a multilayer
network, and the other is a multiplex network [27]. In the multilayer network, there are
interlayer connections between the network nodes of the adjacent layers. In the multiplex
network, each layer has the same type of entity, and there are no node connections between
adjacent layers.

For multilayer networks, an existing model is Community Detection in Fully Con-
nected Multilayer Networks Through Joint Non-negative Matrix Factorization [28,29].
The approach views a multilayer network as a hybrid of a bipartite graph network and a
multiplex network. In the network, there are intralayer edges of a multiplex network and
interlayer edges of a bipartite graph network, so an intralayer adjacency matrix and an
interlayer adjacency matrix are introduced in this method. And considering the connectiv-
ity between intralayer communities and interlayer communities, its objective function is
as follows:
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minJ = min
Bα∈Rnα×rα , Uα∈Rnα×rα ,

S12∈Rrαβ×rαβ

2

∑
α=1
∥Aα −UαU⊤α ∥2,1︸ ︷︷ ︸

Intralayer low-rank approximation

+ µ1 ∥A12 − B1S12B⊤2 ∥2,1︸ ︷︷ ︸
Interlayer low-rank approximation

+ µ2

2

∑
α=1
∥UαU⊤α − BαB⊤α ∥2

F︸ ︷︷ ︸
Pairwise Similarity

,

s.t. Uα ≥ 0, Bα ≥ 0, S12 ≥ 0,

(4)

where the coefficient matrices are Bα and Uα. The first one corresponds to intralayer
adjacency matrices. The second one represents interlayer adjacency matrices. The A12

low-rank embedding is denoted by S12.
Ref. [30] proposed an orthogonal non-negative matrix tri-factorization approach for

community discovery in multiplex networks. The algorithm decomposes the adjacency
matrix A of each layer into two terms, each of which is an orthogonal non-negative matrix
tri-factorization. The first item represents the common community of all levels, and the
second item represents the private community of each level. The algorithm is as follows:

min
H≥0,Hl≥0,Sl≥0,Gl≥0

L

∑
l=1
∥Al − HSl HT − HlGl HT

l ∥
2
F

s.t. HT H = I, HT
1 H1 = I, l ∈ {1, 2, . . . , L}

(5)

assuming that l ∈ {1, 2, . . . , L}. The community membership matrices are H ∈ Rm×kc and
Hl ∈ Rm×kpl . One represents a common community, and the other corresponds to a private
community. Sl and Gl are symmetric matrices. This method performs community detection
on a multiplex network with L layers, where the number of private communities in each
layer is denoted by kpl . And the number of common communities is indicated by kc.

Multilayer network connection is taken into account in the model presented in [29].
However, the approach is limited to networks with two layers. When the number of
layers in the network increases, the adjacency matrix between the adjacent layers also
increases. This will lead to the model becoming more and more complex. For a multiplex
network, the model in [30] only divides the community in a multiplex network into common
communities and private communities. However, it does not perform a separate study of
the separate common and private communities.

3. Notations

Some notations are described in Table 1.

Table 1. Notations and definitions.

Notations Meaning

Al Layer l’s adjacency matrix
Hcl The shared community membership matrix of layer l
Hpl The private community membership matrix of layer l
Hc The shared community member matrix integrating

the shared community member matrix of each layer
Sl The symmetric matrix of the shared community membership matrix
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Table 1. Cont.

Notations Meaning

Gl The symmetric matrix of the private community membership matrix
αl The weight factor added to the shared community membership

matrix for every stratum
Tr(·) The traces of a matrix

4. The Proposed Method

ONMTF breaks down the adjacency matrix of each layer Al into the sum of the low-
rank representations of exclusive communities and shared communities. Then, considering
that the common communities of all layers are the same, the shared communities obtained
in each layer are summed by weight. The private communities are independent of each
other, and the independence between any two private communities is constrained by the
HSIC. Finally, graph regularization is added for each layer’s private community.

For a given multiplex network Gl = (Vl , El , Al) [20] with l layers, the adjacency matrix
for each layer is Al . One way to formulate the resultant objective function is as follows:

min
Hcl≥0,Hpl≥0,Sl≥0,Gl≥0

L

∑
l=1
∥Al − HclSl HT

cl − HplGl HT
pl∥

2
F

+ µ1αlTr(Hcl HT
cl) + ∑

l ̸=m
βHSIC(Hpl , Hpm) + λTr(HT

pl LHpl),

s.t. HT
cl Hcl = I, HT

pl Hpl = I, l ∈ {1, 2, . . . , L}

(6)

where Hcl ∈ Rm×kc and Hpl ∈ Rm×kpl , l ∈ {1, 2, . . . , L} are the community membership
matrices. One represents a shared community, and the other corresponds to an exclusive
community. Sl and Gl are symmetric matrices. The second term is used to sum the
weights of the common communities of all the obtained layers, where αl is the weight factor.
The predefined private matrices are not related to each other, and the third part uses the
HSIC to impose correlation constraints on the private matrices of each layer. λ denotes
the regularization constant, and L is the Laplacian matrix. For each layer, L = D −W ,
where D is a diagonal matrix that is defined by Dii = ∑

l
Wil , and W is a weight matrix. The

Laplacian matrix L depends on the definition of W . Should nodes i and j be linked, Wij = 1.
Otherwise, Wij = 0. We have W = A. For each layer, due to the differences in the adjacent
matrix, we have L = D− Al .

5. Optimization

To resolve the updating rules for Hcl , Hpl , Hc, Sl , and Gl , Lagrange multipliers Λ and
Λl are introduced. The Lagrangian function is minimized:

L
(

Hcl , Hpl , Sl , Gl
)
=

L

∑
l=1
∥Al − HclSl HT

cl − HplGl HT
pl∥2

F

+
L

∑
l=1

tr(Λ(HT
cl Hcl − I)) +

L

∑
l=1

tr
(

Λl

(
HT

pl Hpl − I
))

+ µ1αlTr(Hcl HT
cl) + β ∑

l ̸=m
βHSIC(Hpl , Hpm) + λTr(HT

pl LHpl).

(7)

αl =
1

2
√

Tr(Hcl HT
cl) + Γ

, Γ = µ2Tr(HT
cl LHcl). (8)

To update Hcl , ∇HclL is found as follows:
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∇HclL =
L

∑
l=1

(4HclSl
T HT

cl HclSl + 4HplG
T
l HT

pl HclSl − 4Al HclSl) + 4HclΛ + 4µ1αl Hcl . (9)

∇HclL = 0 and ∇ΛL = 0 are applied. We acquire

Λ =
L

∑
l=1

(−ST
l Sl − HT

cl HplGl
T HT

pl HclSl + HT
cl Al HclSl). (10)

HT
cl Hcl = I. (11)

Substituting (10) and (11) into (9), we obtain

∇HclL =
L

∑
l=1

(4HplG
T
l HT

pl HclSl − 4Al HclSl + 4Hcl HT
cl Al HclSl

− 4Hcl HT
cl HplG

T
l HT

pl HclSl) + 4µ1αl Hcl .

(12)

Finally, the updated rule for Hcl is obtained:

Hcl ← Hcl ∗
Al HclSl + Hcl HT

cl HplGT
l HT

pl HclSl

HplGT
l HT

pl HclSl + Hcl HT
cl Al HclSl + µ1αl Hcl

, (13)

For every l ∈ {1, 2, . . . , L}, we also derive the update rules for Hpl , Sl , and Gl :

Hpl ← Hpl ∗
Al HplGl + Hpl HT

pl HclSl HT
cl HplGT

l

Hpl HT
pl Al HplGl + HclSl HT

cl HplGT
l + λLHpl + βHpl HHT

pmHpmH + λLHpl
, (14)

Sl ← Sl ∗
HT

cl Al Hcl

HT
cl HclSl HT

cl Hcl + HT
cl HplGl HT

pl Hcl
, (15)

Gl ← Gl ∗
HT

pl Al Hpl

HT
pl HplGl HT

pl Hpl + HT
pl HclSl HT

cl Hpl
, (16)

The updated Hcl of each layer is fused with the corresponding weights, and finally,
the common community member matrix Hc is obtained:

Hc =
L

∑
l=1

αl Hcl
L
∑

l=1
αl

.
(17)

Since NMF algorithms are initialized with random matrices and different runs may
return different results, we repeat the algorithm 100 times. As shown in Algorithm 1, for
each random initialization of Hcl , Hpl , Sl and Gl , they all follow the update rules described
in the corresponding formula. Finally, we choose the maximum performance value of
different running results for calculation. According to the NMI value, the difference of
community detection effect is judged.
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Algorithm 1 MX-ONMTF based on graph regularization and diversity.

Require: Al , kc, kpl , l ∈ {1, 2, . . . , L};
1: for r = 1 to 100 do
2: Randomly initialize Hcl , Hpl , Sl , Gl > 0;
3: for 1000 iterations or until convergence do
4: for every l ∈ {1, 2, . . . , L}, update Hcl using Equation (13)
5: for every l ∈ {1, 2, . . . , L}, update Hpl using Equation (14)
6: for every l ∈ {1, 2, . . . , L}, update Sl using Equation (15)
7: for every l ∈ {1, 2, . . . , L}, update Gl using Equation (16)
8: for every l ∈ {1, 2, . . . , L} update αl using Equation (8)
9: update Hc according to Equation (17)

10: end for
11: Compute NMI.
12: end for

6. Experiments
6.1. Datasets

Real-World Multiplex Network:
Lazega Law Firm Multiplex Social Network [31]: The Lazega Law Firm is a complex

social network consisting of 71 nodes. It has three layers. Each layer represents different
types of relationships within the firm. Additionally, the dataset includes various attributes
for each node. There is no ground-truth community in this network, but the detected
community structure and node attributes of each type can be used to calculate the NMI
and analyze the performance of the community detection by this metric. The calculation
method of NMI comes from [8]. For each attribute, the nodes are divided into different
communities based on specific attributes.

3sources: The 3sources dataset comprises data from three distinct network layers (BBC,
Reuters, and The Guardian) that represent different types of relationships or interactions
among entities. It provides valuable insights for studying complex networks [32].

BBCSport: The BBCSport dataset is a collection of data that encompass various sports
articles published by the British Broadcasting Corporation (BBC). It includes articles cover-
ing a wide range of sports, such as football, cricket, rugby, and tennis [32].

Wikipedia: The Wikipedia dataset is a comprehensive collection of data extracted
from the Wikipedia website. The Wikipedia website is a vast online encyclopedia covering
a wide range of topics in multiple languages. It includes articles, images, metadata, and
other types of content contributed by users from around the world. The dataset provides
valuable resources for various research tasks, including natural language processing (NLP),
information retrieval, knowledge extraction, and data mining [33].

Table 2 shows the basic information of the three datasets. For each dataset, N is the
number of nodes, k is the number of layers, and c is the number of communities. The last
line represents the size of each community.

Table 2. The information of real-word datasets.

3Sources BBCSport Wikipedia

N 169 544 693
k 3 2 2
c 6 5 10

|Ci| 54, 21, 11, 18, 51, 12 62, 104, 193, 124, 61 34, 88, 96, 85, 65, 58, 51,
41, 71, 104

Benchmark Multiplex Networks:
The generated multiplex networks based on the model in [34] are used. It suggests

creating multilayer networks with community structures in two steps. First, it is necessary
to manually define the parameters in the multilayer network, including the number of
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layers, the number of nodes, and an interlayer dependency tensor. The interlayer depen-
dency tensor outlines the interlayer dependency structure. Then, there will be a partition
of the multilayer network. Next, according to a degree-corrected block model, edges are
generated within each layer. They are generated by constraints on the distribution of
expected degrees and the community mixing parameter µ ∈ [0, 1]. The modularity of the
network is governed by the mixing parameter µ. When µ = 0, all edges are contained in
communities. Therefore, the closer µ is to 1, the denser the distribution of nodes in the
community, and the closer µ is to 0, the higher the independence of edges. For multiplex
networks, the interlayer dependency tensors of all layers are uniform. Their range of values
is from 0 to 1. When p = 0, the partitions of all layers are independent. p = 1 indicates
identical cross-layer partitions.

6.2. Experimental Settings
6.2.1. Comparison Algorithm Models

In this study, five comparison models were used for community detection in multi-
plex networks. The methods include Generalized Louvain (GL), Co-Regularized Spectral
Clustering (CoReg), Multi-view clustering via Adaptively Weighted Procrustes (AWP), and
Multi-view Consensus Graph Clustering (MCGC).

MX-ONMTF [30] operates by simultaneously factorizing multiple layers of the net-
work data into three non-negative matrices. A shared basis matrix captures common
structural patterns across layers. Two layer-specific coefficient matrices reflect the partici-
pation of nodes in each layer’s communities. By enforcing orthogonality constraints on
the shared basis matrix, MX-ONMTF effectively disentangles the intertwined community
structures present in multiplex networks.

Generalized Louvain (GL) [35] is an algorithm designed for community detection in
complex networks. The core idea of GL is to iteratively optimize a quality function that
measures the modularity of the network partitioning. GL efficiently identifies communities
that exhibit strong internal connections. And it allows nodes to belong to multiple com-
munities simultaneously. Overall, GL offers a flexible and effective approach for detecting
communities in a wide range of network structures.

Co-Regularized Spectral Clustering (CoReg) [36] is a clustering algorithm designed to
handle data with multiple views or modalities. Co-Regularized Spectral Clustering jointly
clusters data from multiple views while leveraging the shared information across views.

Multi-view clustering via Adaptively Weighted Procrustes (AWP) [37] is an innovative
clustering algorithm. AWP tackles the challenge of integrating information from diverse
views by employing an Adaptively Weighted Procrustes analysis.

Multi-view Consensus Graph Clustering (MCGC) [38] is an algorithm designed to
cluster data that come from multiple sources or views. Differing from traditional clustering
methods, MCGC combines information from different views by constructing a consensus
graph that captures the common structure across views.

Notably, all of these algorithms, except for GL and MX-ONMTF, require the user to
specify the number of communities to look for a priori. It is usually denoted by k. This is a
potential drawback in practice, as we usually do not have information about the community
structure of the graph and would have to make some (possibly unjustified) assumptions
about the number of clusters.

In experiments, the co-regularization parameter λ in CoReg [36] is set to 0.01. In
AWP [37], the number of neighbors used in graph construction is fixed to 20. For MCGC [38],
there is one parameter β in the objective function. We fix β = 0.6 for all the datasets.
For MX-ONMTF [30], there are no parameters in the algorithm. The community can be
detected directly.

6.2.2. Evaluation Metrics

The performance of community discovery techniques is analyzed in this study using
Normalized Mutual Information (NMI). Let the ground-truth community label set be
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represented by Cg . The one that a detector predicts is shown by Cr. Ultimately, the NMI
is ascertained:

NMICg ,Cr =

∑K
i=1 ∑K

j=1 nij log nijn

n(1)
i n(2)

j√√√√(∑K
i=1 n(1)

i log n(1)
i
n

)(
∑K

j=1 n(2)
j log

n(2)
j
n

) (18)

where n represents the number of nodes, and K is the number of communities. nij is the
number of nodes that are assigned to community j by a detector, but nij actually belongs to

community i. n(1)
i is the node count in the ground-truth community i. n(2)

j is the number of
nodes. It is allocated to community j by a detector. The larger the NMI value, the better the
performance of the community detector [24].

6.3. Analysis

The proposed algorithm is first used to perform community detection on the generated
multiplex reference network. Each layer of the resulting multiplex network has common
communities. The proposed model is first used to detect two-layer generative networks.
The interlayer dependence tensor p is fixed to 1. In cases where nodes = 64 and nodes = 128,
respectively, the value of the mixed parameter µ increases from 0.1 to 0.8. The NMI values
corresponding to different µ values are shown in Figure 1. When the mixing parameter µ
is closer to 0, the NMI value is closer to 1. The results show that the algorithm has good
performance for community detection under certain conditions. As the µ value increases,
the corresponding NMI in both cases decreases.

(a) (b)

Figure 1. When nodes = 64 and nodes = 128, respectively, (a,b) depict the NMI corresponding to
different µ values with p = 1 and L = 2.

Figure 2 shows the variation trend of the corresponding NMI value with µ in the
cases of three-layer, four-layer, and five-layer generation networks. In all three cases, the
NMI values decrease significantly with the increase in µ value. This shows that the effect
of the mixing parameter µ on the experimental results is independent of the number of
layers in the generated network. The smaller the mixing parameter, the more obvious
the community division in the generating network. Therefore, the model can detect the
generated network with small mixing parameters better.
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(a) (b) (c)

Figure 2. The graphs in (a–c) depict the NMI corresponding to different µ values in three-layer,
four-layer, and five-layer networks, with p = 1, nodes = 128.

In order to investigate the impact of the interlayer dependency tensor on the detection
outcomes, the number of produced network layers is kept at two. Then, the mixing
parameter µ is set to 0.1, and the number of nodes is set to 64. The interlayer dependence
tensor gradually increases from 0.3 to 1. The variation trend of the NMI value can be clearly
seen in Figure 3.

Figure 3. When µ = 0.1 and nodes = 64, NMI corresponds to different p values in 2-layer network.

In Figure 3, when the interlayer dependence tensor p is closer to 1, the corresponding
NMI value becomes larger and larger. This shows that the interlayer dependency tensor
controls the similarity of the common communities in different layers. The greater the inter-
layer dependence tensor, the higher the degree of community integration between different
layers. In this case, the algorithm is more accurate in detecting the shared communities
and exclusive communities in the multiplex network.

In Figure 4, the interlayer dependency tensor is fixed at 1. The mixing parameter µ
of the generated network is set to 0.3. In the case of a three-layer network, the number
of nodes is gradually increased. When the number of nodes in the generated network
increases, the corresponding NMI value remains basically unchanged. The experimental
results show that the number of nodes in the generated network has little effect on the
detection performance of the model. Therefore, the proposed algorithm shows excellent
performance in both small- and large-scale networks. For the Lazega Law Firm Multiplex
Social Network, the partitions detected by the proposed algorithm have a good effect
on each property. The proposed algorithm performs better than most algorithms in the
detection of this network.
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Figure 4. When p = 1 and µ = 0.3, NMI corresponds to different values of nodes in 3-layer network.

In Table 3, the proposed algorithm outperforms other algorithms on both the Status
and Wikipedia datasets. Under both the Gender and Law School datasets, the proposed
algorithm performs second only to MX-ONMTF. On several other datasets, the proposed
algorithm is unable to outperform the comparison algorithms. The GL model performs
well on the 3sources and BBCSport datasets, while the CoReg model performs best on
Seniority and Age. The experimental results show that no model performs optimally on
several datasets at the same time. The AWP and MCGC models do not outperform other
models on any of the datasets.

Table 3. NMI values for datasets based on six models.

Dataset GL CoReg AWP MCGC MX-ONMTF MX-GONMTF

Status 0.0350 0.0468 0.0115 0.0252 0.3902 0.4264
Gender 0.0312 0.0019 0.0042 0.0129 0.4100 0.1126
Office 0.5080 0.5828 0.3235 0.1029 0.7297 0.4216

Seniority 0.0727 0.6946 0.6368 NULL 0.2192 0.3565
Age 0.0395 0.7394 0.6997 NULL 0.3024 0.3363

Practice 0.5515 0.0676 0.1857 0.0207 0.5610 0.1143
Law School 0.0163 0.0051 0.0070 0.0444 0.3308 0.1249

3sources 0.7488 0.6584 0.6619 0.5948 0.5265 0.5414
BBCSport 0.7525 0.6168 0.7223 0.7951 0.5347 0.5082
Wikipedia 0.5435 0.4338 0.3249 0.1372 0.3912 0.5573

7. Conclusions

This study presents a multiplex network community discovery technique based on
ONMTF. The suggested technique can identify shared and unique communities spread
across many network tiers. An independence constraint and a graph regularity constraint
are added to the original model. The results show that for synthetic networks and real-
world networks, the algorithm can detect shared communities and exclusive communities
with different layer community structures and performs well on some datasets. This
is especially important for further exploring real networks with heterogeneity in cross-
layer relationships.
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