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Abstract: The Hidden Markov Model (HMM) is a crucial probabilistic modeling technique for
sequence data processing and statistical learning that has been extensively utilized in various en-
gineering applications. Traditionally, the EM algorithm is employed to fit HMMs, but currently,
academics and professionals exhibit augmenting enthusiasm in Bayesian inference. In the Bayesian
context, Markov Chain Monte Carlo (MCMC) methods are commonly used for inferring HMMs, but
they can be computationally demanding for high-dimensional covariate data. As a rapid substitute,
variational approximation has become a noteworthy and effective approximate inference approach,
particularly in recent years, for representation learning in deep generative models. However, there has
been limited exploration of variational inference for HMMs with high-dimensional covariates. In this
article, we develop a mean-field Variational Bayesian method with the double-exponential shrinkage
prior to fit high-dimensional HMMs whose hidden states are of discrete types. The proposed method
offers the advantage of fitting the model and investigating specific factors that impact the response
variable changes simultaneously. In addition, since the proposed method is based on the Variational
Bayesian framework, the proposed method can avoid huge memory and intensive computational
cost typical of traditional Bayesian methods. In the simulation studies, we demonstrate that the
proposed method can quickly and accurately estimate the posterior distributions of the parameters
with good performance. We analyzed the Beijing Multi-Site Air-Quality data and predicted the PM2.5
values via the fitted HMMs.

Keywords: Hidden Markov Models; high-dimensional data; shrinkage prior; variational inference

MSC: 62F15; 65K10; 62M05

1. Introduction

Hidden Markov Models (HMMs) are a statistical model used to describe the evolu-
tion of observable events that depend on internal factors or states, which are not directly
observable and called hidden states. Each hidden state can transition to another hidden
state, including itself, with a certain probability, while we cannot observe them directly, we
infer their presence and transitions between them based on observable outputs. HMMs
have been widely used in various applications, including speech recognition, bioinfor-
matics, natural language processing, and financial markets. In practice, HMMs often face
high-dimensional issues, that is, a large number of covariates (or high-dimensional co-
variates) and multiple states result in high-dimensional parameters existing in the HMMs.
The high-dimensional issue may result in the overfitting for the HMMs. The challenge then
becomes identifying important variables or parameters in different hidden states. Thus,
efficient parameter estimation and hidden Markov chain recovering are significant for the
high-dimensional HMMs.
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Currently, there have been many methods for estimating parameter estimation and
recovering hidden Markov chains, including recursive algorithms [1–4] and traditional
Bayesian methods [5,6]. Bayesian inference [7,8] is a versatile framework that utilizes
sophisticated hierarchical data models for learning and consistently quantifies uncertainty
in unknown parameters through the posterior distribution [9]. However, computing the
posterior is demanding even for moderately intricate models and frequently necessitates
approximation. Moreover, traditional Bayesian methods (e.g., Markov chain Monte Carlo
(MCMC)) for the HMMs is often considered a black-box method by many statisticians due to
its reliance on simulations to produce computable results, which is generally inefficient and
unnecessary. Traditional Markov Chain Monte Carlo (MCMC) methods may also exhibit
slow convergence and extended running times, as documented in prior studies [10–12].

The Variational Bayesian approach is an alternative to traditional MCMC algorithm
in high-dimensional issue. Variational inference (VI) based on Bayesian method [13–16]
can approximate posterior distributions quickly [17], since VI uses the Kullback–Leibler
(KL) divergence to measure the difference between the variational posterior and the true
posterior, and transforms the statistical inference problem into a mathematical optimization
problem by minimizing the KL divergence. Therefore, the variational approach is as close
as possible to the true posterior distribution according to the KL divergence. Wang and
Blei [17] have proved that the variational posterior is consistent to the true posterior distri-
bution. Moreover, there have been many efficient optimization algorithms to approximate
complex probability densities such as coordinate-ascent (CAVI) [18] and gradient-based
methods [15,19]. Currently, there exist many VI research studies for the HMMs [20–24].
For example, MacKay [20] was the pioneering proponent of the application of variational
methods to HMMs, with a focus only on cases with discrete observations. Despite the
limited comprehension of the state-removal phenomenon, which is that removing certain
states from an HMM for simplifying the HMM while preserving its essential statistical
properties does not significantly affect the the ability of the HMM to represent the underly
stochastic process, variational methods are gaining popularity for HMMs within the ma-
chine learning community. C. A. McGrory [21] extended the deviance information criterion
for Bayesian model selection within the Hidden Markov Model framework, utilizing a
variational approximation. Nicholas J. Foti [22] devised an SVI algorithm to learn HMM
parameters in settings of time-dependent data. Since VI can be seen as a special instance
of the EM algorithm [23], Gruhl [23] integrates both approaches and uses the multivariate
Gaussian output distribution of VI to train the HMM. Ding [24] employed variational
inference techniques to investigate nonparametric Bayesian Hidden Markov Models built
on Dirichlet processes. These processes enable an unbounded number of hidden states and
adopt an infinite number of Gaussian components to handle continuous observations. How-
ever, variational inference has not been fully explored in HMMs, especially in HMMs with
a high-dimensional covariate. It is important to note that research frequently entails using
high-dimensional covariate datasets in real-world applications. When high-dimensional
HMMs contain a large number of parameters, there is a possibility of overfitting the given
data set. The challenge then becomes identifying which covariates have a substantial im-
pact on the interpretation of observations and state shifts in each hidden state of the model,
and which covariates have a negligible effect. This process is important for improving
the predictive accuracy of the model, reducing the risk of overfitting, and improving the
interpretability of the model.

In this article, we develop a Variational Bayesian method for variable selection. We
utilize the double-exponential shrinkage prior [25–28] as the prior of coefficients in each
hidden state models, to screen vital variables that affect each hidden state and obtain hidden
Markov regression models. We use mean-field variational inference to identify variational
densities for approximating complex posterior densities, via minimizing the difference
between the approximate probability density and the actual posterior probability density.
Moreover, we adopt the Monte Carlo Co-ordinate Ascent VI (MC-CAVI) [29] algorithm to
compute the necessary expectations within the CAVI. Since the variational inference is a fast
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alternative to the MCMC method and can avoid large memory and intensive computational
cost compared to traditional Bayesian methods, the proposed approach inherits the good
properties of variational inference, and can quickly and accurately estimate the posterior
distributions and the unknown parameters. In the simulation studies and real data analysis,
the proposed method outperforms the common methods in term of variable selection
and prediction.

The main contributions of this article are as follows: First, the proposed method can
perform variable selection for high-dimensional HMMs, and offer the advantage of fitting
the model and investigating specific factors that impact the response variable changes
simultaneously. Since the proposed method uses double-exponential shrinkage prior,
which has the feature of being able to select important variables, the proposed method
can simultaneously select important variables to the response variable and estimate the
corresponding parameters. Second, since the proposed method is based on the Variational
Bayesian framework, the proposed method can avoid huge memory and intensive compu-
tational cost of the traditional Bayesian methods, especially for the high-dimensional issue.
Finally, we demonstrate that the proposed method can quickly and accurately estimate the
posterior distributions of the parameters with good performance in the simulation studies.
Moreover, we analyze Beijing Multi-Site Air-Quality data and predict the PM2.5 values
well via the fitted HMMs.

The rest of the article is organized as follows: Section 2 introduce the Hidden Markov
Model with high-dimensional covariate and shrinkage priors in the Bayesian inference.
In Section 3, we propose an efficient Variational Bayesian estimation method with the
double-exponential shrinkage prior for variable selection of the high-dimensional HMMs
(HDVBHMM). In Section 4, we conduct simulation studies to investigate the finite sample
performances of the proposed method. In Section 5, Beijing Multi-Site Air-Quality data are
analyzed and the efficiency of the proposed method is verified. Section 6 concludes our
work. Technical details are presented in the Appendix A.

2. Model and Notation
2.1. Hidden Markov Model

In this section, we first introduce Hidden Markov Models (HMMs). The HMMs are
a type of doubly stochastic process that occurs over discrete time intervals and includes
observations yt and latent states zt. In a traditional Hidden Markov Model without co-
variates, the observation yt depends only on the current potential state zt. The conditional
distribution of the observation yt when given the potential state zt = k can be expressed as:

yt | zt = k ∼ Fk(θk),

where Fk(θk) denotes a certain family of distributions, such as the normal distribution
N
(
µk, σ2

k
)
. Extended HMM models can include covariates xt ∈ Rp . That is, the set of

observations is y = (y1, . . . , yT) and x = (x1, . . . , xT). Specifically, for y = (y1, . . . , yT),
z = (z1, . . . , zT) and x = (x1, . . . , xT), the model expression is as follows:

yt | xt, zt = k, β, σ2 ∼ N
(

x⊤t βk, σ2
)

for t = 1, . . . , T,

where the symbol N represents the normal distribution, σ2 denotes the variance of yt,
and β = (β1, . . . , βK)

⊤ is the coefficient of the covariate at all hidden states. In the article,
we consider the high-dimensional issue of the covariate. We denote the dummy variable
corresponding to zt as the vt = (vt1, . . . , vtK)

⊤, where vtk = 1 and other elements being
zero if zt = k. Thus,

P
(

yt | xt, β, σ2
)
=

K

∏
k=1

P
(

yt | xt, zt = k, β, σ2
)vtk

=
K

∏
k=1

P
(

yt | xt, βk, σ2
)vtk

.
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In hidden Markov chains, each hidden state zt is independent from z1, . . . , zt−2 and
zt+1, . . . , zT conditionally on zt−1. Therefore, we can assume that the probability distribu-
tion of z1 is given by z1 ∼ P(z1|π) = (π1, π2, . . . , πK)

⊤, where ∑K
k=1 πk = 1 and πk > 0.

The conditional probability of zt given zt−1 is assumed as:

P(zt | zt−1, A) =
K

∏
k=1

K

∏
j=1

A
vt−1,j vtk
jk ,

where A is the transition matrix with elements Aij for i, j = 1, . . . , K, ∑K
j=1 Aij = 1 and

Aij > 0, and Aij represents the probability of transitioning from state i to state j. Thus,
the joint distribution is as follows:

P
(
y, z | x, π, A, β, σ2)

= P(z1|π)∏T
t=2 P(zt | zt−1, A)∏T

t=1 P
(
yt | xt, β, σ2)

=
(

∏K
k=1 π

v1k
k

)(
∏T

t=2 ∏K
k=1 ∏K

j=1 A
vt−1,j vtk
jk

)(
∏T

t=1 ∏K
k=1 P

(
yt | xt, β, σ2, zt = k

)vtk
)

.

(1)

2.2. Prior Selection in the HMMs

To make Variational Bayesian inference, we require specifying the prior of the parame-
ters π, A, β and σ2. Based on the characteristics of π = (π1, π2, . . . , πK), ∑K

k=1 πk = 1 and
πk > 0, Dirichlet distribution is applied to the prior distribution of π as follows:

π ∼ Dir
(

α(π)
)

, (2)

where α(π) =
(

α
(π)
1 , . . . , α

(π)
K

)⊤
, ∑K

k=1 α
(π)
k = 1, and α

(π)
k > 0. In the model, A denotes the

transition matrix of the hidden state z and can be expressed as follows:

A =

 A11 . . . A1K
...

. . .
...

AK1 . . . AKK

.

Like Nicholas [22], we specify the prior of the jth row of the transition matrix A as:

Aj ∼ Dir
(

α
(A)
j

)
for j = 1, . . . , K, (3)

where α
(A)
j =

(
α
(A)
j1 , α

(A)
j2 , . . . , α

(A)
jK

)⊤
, ∑K

k=1 α
(A)
jk = 1, and α

(A)
jk > 0. Since σ2 is variance of

the y, we specify the prior of the σ2 as

σ2 ∼ f
(

σ2
)
=

1
σ2 . (4)

In a high-dimensional and sparse issue, we consider the double-exponential shrinkage
prior [25,27] as the prior of β, defined as follows:

βk | σ2, τ1, . . . , τ2
p ∼ Np

(
0, σ2Dτ

)
,

Dτ = diag
(

τ2
1 , . . . , τ2

p

)
,

τ2
m ∼ Exp

(
λ2

2

)
for m = 1, 2, . . . , p,

λ2 ∼ Γ(r, δ),

(5)
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where Γ represents gamma distribution and Exp(·) represents the exponential distribu-
tion. The above prior can select important variables of the HMMs in each hidden state.
Bayesian approaches can be used to solve the parameter estimation question with the
above prior information. However, in high-dimensional data, the traditional Bayesian
methods (e.g., MCMC) require huge memory and intensive computational cost. The
Variational Bayesian approach is an alternative to the traditional MCMC algorithm in
high-dimensional issue. Next, we introduce the proposed Variational Bayesian inference
for high-dimensional HMMs.

3. Variational Bayesian Inference for the HMMS
3.1. Mean Field Variational

Mean-field Variational Bayesian inference is a prevalent approach in variational infer-
ence, and aims to identify an approximate density by minimizing the difference between
the approximate probability density and the actual posterior probability density, while
being bounded by the Kullback–Leibler divergence. In this subsection, we proposed the
mean-field variational inference for HMMS with the high-dimensional covariates.

Let D be an observed data set, D = {y, x} with response set y = {yi | i = 1, . . . , n}
and covariate set x = {xi | i = 1, . . . , n}, and θ = {π, A, β, σ2, τ2

m, λ2}. The θ and z include
all parameters in the HMMs. We focus on the posterior distribution of parameters θ and the
hidden state zt. Assume that there is an approximate density family Q containing possible
densities over the parameters θ, z. Minimizing the Kullback–Leibler (KL) divergence
between the member of the family q(θ, z) and the true posterior P(θ, z | D) is to obtain the
optimal density approximation of the true posterior, with variational inference prioritizing
optimization rather than sampling. That is,

q∗(θ, z) = arg min
q(θ,z)∈Q

KL(q(θ, z)∥P(θ, z | D)),

where the KL-divergence is:

KL(q(θ, z)∥P(θ, z | D)) =
∫

q(θ, z) log
{

q(θ, z)
P(θ, z|D)

}
d(θ, z).

The KL-divergence can be further written as:

KL(q(θ, z)∥P(θ, z | D))

=Eq[log q(θ, z)]− Eq[log P(θ, z | D)]

=Eq[log q(θ, z)]− Eq[log P(θ, z, D)] + log P(D),

where log P(D) is a constant, Eq denotes the expected value of θ and z drawn from the
distribution q. Thus, minimizing the KL divergence is equivalent to maximizing the
following evidence lower bound (ELBO):

ELBO(q) = Eq[log P(θ, z, D)]− Eq[log q(θ, z)]. (6)

From another perspective, the ELBO comprises the negative KL divergence and
log P(D).

According to the mean-field variational framework [30,31], the parameters are as-
sumed to be posterior independent of each other and to be controlled by a separate factor
in the variational density. In the HMMs, q(θ, z) is decomposed as:

q(θ, z) = q(π)q(A)q
(

σ2
)

q
(

τ2
m

)
q
(

λ2
) T

∏
t=1

q(zt). (7)
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Each parameter θi and latent state z is governed by its own variational factor. The
forms of q(θi) and q(z) are unknown, but the form of the hypothesized factorization is
determined. In the optimization process, the optimal solutions of these variational factors
q(θi) and q(z) are obtained by maximizing the ELBO of Equation (6) by the coordinate
ascent method. Based on the consistency of the Variational Bayesian [17], the variational
densities over the mean-field family are still consistent to the posterior densities, even
though the mean field approximating family can be a brutal approximation. More generally,
one can consider structured variational distributions involving partial factorizations that
correspond to tractable substructures of parameters [32]. In this article, we only consider
the mean field framework. To express the variational posterior formula concisely, we define
ϕ = {θ, z} and rewrite q(θ, z) as q(ϕ).

3.2. The Coordinate Ascent Algorithm for Optimizing the ELBO

Based on the variational density decomposition, we can obtain each factor of the
variational density via maximizing the ELBO. Let qi(ϕi) for i = 1, 2, . . . , b be the ith factor of
the variational density in .The common approaches to maximize the ELBO mainly include
a Coordinate Ascent Variational Inference (CAVI) and a gradient-based approach [33].
The CAVI approach sequentially optimizes each factor of the variational density of the
mean field to obtain a local maximizer for the ELBO, while keeping the others fixed. Based
on the CAVI approach, we can obtain the optimal variational density q∗i (ϕi) as follows:

q∗i (ϕi) ∝ exp
{

E−i
[
log P

(
ϕi− , ϕi, ϕi+ , D

)]}
, (8)

where i− (or i+) refers to the ordered indexes that are less than (or greater than) i. Let
ϕ−i := (ϕi− , ϕi+). The vector ϕ−i represents the vector ϕ with the ith component ϕi removed.
The E−i denotes the expectation with respect to ϕ−i.

Based on the joint distribution (1), the priors (2)–(5) and Formula (8), we can derive all
variational posteriors (see Appendix A for details). The variational posterior of the π is:

q∗(π) ∼ Dir
(

α(π)

)
, (9)

where α(π) = E(z1) + α(π). The variational posterior of the Aj is:

q∗
(

Aj
)
∼ Dir

(
α(Aj)

)
for j = 1, . . . , K, (10)

where α(Aj)
= ∑T

t=2 E
(
vt−1,jvtk

)
+ α

(A)
jk . The variational posterior of the βk is:

q∗(βk) ∼ Np(βk; µk, Σk), (11)

where
Σk =

(
E
(

1
σ2

)
∑T

t=1 E(vtk)xtx⊤t + E
(

1
σ2

)
E
(

D−1
τ

))−1
,

µk = Σk

(
E
(

1
σ2

)
∑T

t=1 yt · E(vtk) · xt

)
.

The variational posterior of the σ2 is:

q∗
(

σ2
)
∼ Inverse-Gamma

(
α(σ2), β(σ2)

)
, (12)
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where α(σ2) =
T
2 and β(σ2) =

1
2 ∑T

t=1 ∑K
k=1 E(vtk)

[(
yt − x⊤t µk

)2
+ x⊤t Σkxt

]
. The variational

posterior of the τ2
m is:

q∗
(

τ2
m

)
∼ Generalized-Inverse–Gaussian (Cτm , aτm , bτm), (13)

where aτm = E(λ2), bτm = E(1/σ2)∑K
k=1 E(β2

km), and Cτm = 1 − K/2. The variational
posterior of the λ2 is:

q∗
(

λ2
)
∼ Γ

(
α(λ2), β(λ2)

)
, (14)

where α(λ2) = p + r and β(λ2) = δ + 1
2 ∑

p
m=1 E

(
τ2

m
)
.

Based on the dependencies of hidden states, we divide the posterior of z into three
parts. The variational posterior of the z1 is:

q∗(z1) ∼ Mult
(

P(z1)

)
, (15)

where the Mult represents multinomial distribution, P(z1)
= (P(z1)1, . . . , P(z1)K)

⊤ and

P(z1)k = exp{E[log πk]} exp
{

E
[
log P

(
y1 | x1, βk, σ2

)]} K

∏
j=1

exp
{

E
[
v2j
]
E
[
log Akj

]}
.

The variational posterior of the zt for t = 2, . . . , T − 1 is:

q∗(zt) ∼ Mult
(

P(zt)

)
for t = 2, . . . , T − 1, (16)

where P(zt) = (P(zt)1, . . . , P(zt)K)
⊤ and

P(zt)k = exp
(
E
[
log P

(
yt | xt, βk, σ2)]) · ∏K

j=1 exp
{

E
[
log Ajk

]
E
(
vt−1,j

)}
·∏K

j=1 exp
{

E
[
log Akj

]
E
(
vt+1,j

)}
.

The variational posterior of the zT is:

q∗(zT) ∼ Mult
(

P(zT)

)
, (17)

where P(zT) = (P(zT)1, . . . , P(zT)K)
⊤ and

P(zT)k = exp
{

E
[
log P

(
yT | xT , βk, σ2

)]}
·

K

∏
j=1

exp
{

E
[
log Ajk

]
E(vT−1, j)

}
.

The expectation E
[
log P

(
yt | xt, βk, σ2)] in the above variational posteriors (15)–(17) is

expressed as follows:

E
[
log P

(
yt | xt, βk, σ2

)]
= −1

2
log(2π)− 1

2
E[log(σ2)]− 1

2
E(

1
σ2 )
[
(yt − x⊤t µk)

2 + x⊤t Σkxt

]
.
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Note that the expectation part of some parameter posterior formulas is difficult to
derive analytically. One feasible method is to use Monte Carlo (MC) sampling to approx-
imate the expectation part that cannot be derived analytically, that is, the Monte Carlo
Coordinate Ascent VI (MC-CAVI) [29] algorithm. The MC-CAVI recursion approaches
have been proved to be convergent to the maximizer of the ELBO with arbitrarily high
probability under regularity conditions. In the article, we also use MC-CAVI to obtain the
intractable expectations.

3.3. Implementation

Assume that the expectations E−i[log P(ϕi−, ϕi, ϕi+, D)] for i ∈ I within an index set I
can be analytically obtained across all updates of the variational density q∗(ϕ), and cannot
be analytically obtained for i /∈ I. For the MC-CAVI method, intractable integrals can be
approximated using the MC methods if i /∈ I. Specifically, for i /∈ I, the samples with
the sample size N ≥ 1 are drawn from the current q∗−i(ϕ−i) to obtain the expectation
estimations as follows:

Ê−i[log P(ϕi−, ϕi, ϕi+, D)] =
∑N

n=1 log P
(

ϕ
(n)
i− , ϕ

(n)
i , ϕ

(n)
i+ , D

)
N

.

The Algorithm 1 summarizes the implementation of MC-CAVI, where the qi,k(ϕi)
denotes the density of the ith density factor after it has undergone the kth updates,
and q−i,k(ϕ−i) refers to the density of all density factors except the ith factors after the
kth updates to the factors preceding the ith factor and the k − 1 updates to the blocks
following it.

Algorithm 1 Main iteration steps of MC-CAVI
Necessary: Number of iteration cycles T.
Necessary: Quantity of Monte Carlo samples denoted as N.
Necessary: E−i

[
log P

(
ϕi− , ϕi, ϕi+ , D

)]
in closed form for i ∈ I .

1. Initialize qi,0(ϕi) for i = 1, . . . , b.
2. for k = 1 . . . T :
3. for i = 1 . . . b :
4. If i ∈ I :
5. Set qi,k(ϕi) ∝ exp

{
E−i,k

[
log P

(
ϕi− , ϕi, ϕi+ , x, y

)]}
;

6. If i /∈ I :
7. Obtain N samples

(
ϕ
(n)
i− ,k, ϕ

(n)
i+ ,k−1

)
from q−i,k(θ−i) for n = 1, 2, . . . , N;

8. Set qi,k(ϕi) ∝ exp

{
∑N

n=1 log p
(

ϕ
(n)
i− ,k ,ϕi ,ϕ

(n)
i+ ,k−1,D

)
N

}
;

9. end
10. end.

Combining with the MC-CAVI algorithm, we can summarize the implementation
algorithm for variational posteriors for all parameters as follows in Algorithm 2. Based
on the Algorithm 2, we can adopt the variational posterior means of the parameters as
the estimators.
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Algorithm 2 Variational Bayesian Algorithm for the high-dimensional HMMs
Data Input: {(xt, yt)}, t = 1, . . . , T;
Hyperparameter Input: α(π), r > 0, δ > 0, and α

(A)
jk for k, j = 1, . . . K;

Initialize: α(π), α(Aj)
, α(σ2), β(σ2), β(λ2), Σk and µk for k = 1, . . . K,

aτm and bτm for m = 1, . . . , p, iteration-index ℓ = 1, a sufficiently small ϵ = 10−6

and a maximum iteration times M = 1000;
While the absolute change of the iterated ELBO |Lℓ − Lℓ−1| > ϵ and ℓ < M do:

Update α(π) and q∗(π) according to Equation (9);
Estimate E[log πk] by the MC method;
for j = 1, . . . , K :

Update α(Aj)
and q∗(Aj) according to Equation (10);

Estimate E
[
log Ajk

]
by the MC method;

end
for k = 1, . . . , K :

Update Σk, µk and q∗(βk) according to Equation (11);
end
Update α(σ2), β

(
σ2) and q∗(σ2) according to Equation (12);

Estimate E
[
log(σ2)

]
by the MC method;

for m = 1, . . . , p :
Update aτm , bτm and q∗(τ2

m) according to Equation (13);
end
Update β(λ2) and q∗(λ2) according to Equation (14);
Update P(z1)

and q∗(z1) according to Equation (15);
Update P(zt) and q∗(zt) according to Equation (16);
Update P(zT) and q∗(zT) according to Equation (17);
Compute the ELBO using the formula (6), denoted as Lℓ,
and the absolute change of the iterated ELBO |Lℓ − Lℓ−1|;
ℓ → ℓ+ 1;

Output: the variational densities q∗(π), q∗(Aj) for j = 1, . . . , K, q∗(βk) for k = 1, . . . , K,
q∗(σ2), q∗(λ2), q∗(τ2

m) for m = 1, . . . , p, and q∗(zt) for t = 1, . . . , T;
and the posterior modes of parameters βk for k = 1, . . . , K.

4. Simulation Studies

In this section, we carry out simulation studies to investigate the finite sample per-
formances of the proposed method, denoted as HDVBHMM. To evaluate the prediction
performance, we compare the proposed method with some commonly used and popular
methods, including Back Propagation Neural Network (BP), Long Short-Term Memory
(LSTM), and Random Forest. The experimental code can be found via the github link
(https://github.com/LiuWei-hub/VBHDHMM, accessed on 23 March 2024).

We consider the dataset {xt, yt : t = 1, . . . , T}, where T is the number of the discrete
time intervals, the covariate xt is generated from the Gaussian distribution Np

(
0, 2Ip

)
,

and yt = x⊤t βzt + εt, in which the random error εt ∼ N
(
0, σ2), and zt is hidden state. Here,

the initial hidden state z1 is generated from Mult(π), where π = (π1, π2, . . . , πK). For
t = 2, . . . , T, the hidden state zt is generated from Mult

(
Aj
)
, where Aj = (A1i, A2i, . . . AKi)

and Ajk = P(zt = k | zt−1 = j). We set the number of hidden states K = 3, σ = 0.4,
and (π1, π2, . . . , πK) = (0.6, 0.3, 0.1)⊤.

To assess the predictive performance, we use the samples in the last m time intervals as
the testing set and the samples in the first T − m time intervals as the training set. In addi-
tion, we use four criteria: (1) the mean absolute percentage error MAPE = 100%

m ∑m
t=1

∣∣∣ ŷt−yt
yt

∣∣∣,
where yt is the true value and ŷt represents the predicted value; (2) the root mean square

error RMSE =
√

1
m ∑m

t=1(yt − ŷt)
2; (3) the mean absolute error MAE = 1

m ∑m
t=1|yt − ŷt|;

https://github.com/LiuWei-hub/VBHDHMM
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and (4) R2 = 1 − ∑m
t=1(ŷt−yt)

2

∑m
t=1(y−yt)

2 , where y represents the sample mean, ∑m
t=1(ŷt − yt)

2 is the

error caused by the prediction, and ∑m
t=1(ȳ − yt)

2 is the error caused by the mean. The
smaller the MAPE, RMSE and MAE values are, the better the performance of the method
is. The larger the R2 is, the better the performance of the method is. To evaluate the
performance of the parameter estimation, we use two criteria: (1) the root mean square

error loss RMSE =
√

1
n ∑n

i=1
(
θ̂i − θ

)2
, where n is the number of repeated experiments, θ̂i

is the estimated value of the parameter obtained in the ith experiment, and θ is the true
parameter value; and (2) Bias(θ̂) = 1

n ∑n
i=1 θ̂i − θ. The RMSE and Bias values closer to zero

imply better performance for the method. We repeat 10 simulation examples and calculate
the average values of the above metrics for each method.

4.1. Experiment 1

In experiment 1 , we consider different dimensions p = 20, 30 and 40. In addition,
the state transition matrix A is set as follows:

A =

 0.2 0.3 0.5
0.1 0.6 0.3
0.5 0.4 0.1

.

Due to K = 3, we have three regression coefficients β1, β2, β3. We set the coefficient as
follows:

β = (β1, β2, β3)
⊤ =



0.5 1 1.5
−2 −2 −1.5
2 1.5 1
−1 −1.5 −2
0 0 0
...

...
...

0 0 0


p×3

where the first four rows are nonzero and other elements are zero. We set the number of the
discrete time intervals T = 300 and the sample size in the testing set m = 10. In addition,
the hyperparameters r, δ in the HDVBHMM method are set to 1. The results are shown in
Tables 1 and 2.

In Table 1, the smaller MAPE, RMSE, and MAE index values, the better the algorithm
performance. The larger the R2 index, the better the algorithm performance. Bold indicates
the optimal result in each scenario. It is clear that our method is optimal in all cases
(bold), especially for p = 20, p = 30, and p = 40. In the small sample case, the prediction
performance of the LSTM method decreases significantly as the dimensionality of the
covariates increases. The prediction performance of the Random Forest and BP methods
is not stable with increasing covariate dimensions. Although the performance of our
method decreases as the covariate dimension increases, it is still significantly better than
the other methods. Table 2 shows the RMSE and Bias of the estimated values of β and
A. From Table 2, we can see that the proposed method performs well. Two metrics are
small when the covariate dimension is 20 and 30. When the dimension is increased to 40,
the value of the RMSE index increases, but it is still within the acceptable range.
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Table 1. Average values of four metrics of all approaches with standard deviation in each parenthesis
based on 10 simulations under T = 300.

p Method
Estimate Performance

MAPE RMSE MAE R2

p = 20

LSTM 0.957 (1.109) 1.183 (0.132) 1.416 (0.316) 0.871 (0.057)
BP 0.948 (1.018) 1.210 (0.175) 1.492 (0.436) 0.826 (0.117)

Random Forest 1.215 (1.844) 1.430 (0.194) 2.081 (0.531) 0.741 (0.119)
HDVBHMM 0.467 (0.325) 1.008 (0.152) 1.038 (0.329) 0.887 (0.082)

p = 30

LSTM 0.949 (0.485) 1.354 (0.266) 1.898 (0.740) 0.789 (0.144)
BP 1.312 (0.685) 1.524 (0.198) 2.358 (0.615) 0.659 (0.169)

Random Forest 1.081 (0.641) 1.568 (0.223) 2.505 (0.717) 0.595 (0.252)
HDVBHMM 0.876 (0.919) 1.186 (0.244) 1.461 (0.629) 0.861 (0.073)

p = 40

LSTM 1.471 (1.121) 1.404 (2.471) 2.026 (0.716) 0.763 (0.131)
BP 1.555 (1.218) 1.427 (0.156) 2.060 (0.412) 0.772 (0.117)

Random Forest 1.210 (0.718) 1.457 (0.231) 2.173 (0.736) 0.754 (0.115)
HDVBHMM 1.023 (0.759) 1.155 (0.264) 1.398 (0.619) 0.822 (0.202)

In the Long-Term and Short-Term Memory methods, the learning rate is lr = 0.001, the number of training cycles
(Epochs) is set to 50, and the size of the hidden layer is set to 10. The hidden layer of the BP method consists
of 20 neurons, and the maximum number of iterations is set to 10,000. In the random forest regression model,
the number of trees is set to 100. The bold results are the optimal ones among four methods.

Table 2. Average values of the RMSE and Bias of A and β based on 10 replications in Experiment 1.

p Parameter
Estimate Performance

RMSE Bias

p = 20 β 0.001 0.001
A 0.002 0.001

p = 30 β 0.002 0.001
A 0.005 0.001

p = 40 β 0.004 0.001
A 0.011 0.001

To better illustrate the performance of parameter estimation, Figure 1 shows box plots
of the estimator values of A, β1, β2, β3 under p = 30, where the horizontal coordinate
is the index of the variables and the vertical coordinate is the values of estimators. The
corresponding figures on p = 20 and p = 40 are shown in Appendix A.2. For the estimators
β1, β2 and β3, we can see the first four elements are estimated close to the true value, and the
remaining values are estimated clear to zero; This implies that the proposed method can
achieve good variable selection performance. In addition, all elements of the state increment
matrix A are estimated close to the true values, which also confirms the good performance
of our method.

In addition, to further verify that the algorithm is sensitive to the choice of hyperparam-
eters r, δ, we conduct experiments on data with a covariate dimension of 30. Consider the
following three experiments, the first with r = 0.5, δ = 0.5; the second with r = 1.0, δ = 1.0;
and the third with r = 1.5, δ = 1.5. The experimental results show that the estimation
results are not sensitive to the choice of the two hyperparameters r and δ. The images of
the Gamma distributions for the three different hyperparameter settings are very similar in
shape. This similarity may contribute to the reason why, for a certain range of variations in r
and δ values, the model’s performance may not show sensitivity to these hyperparameters.
We show the results in Appendix A.4.
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Figure 1. Box plots of the estimator values of A, β1, β2, β3 based on 10 experiments under p = 30
and T = 300. The horizontal coordinate is the index of the variables and the vertical coordinate is the
value of the estimators.

4.2. Experiment 2

In experiment 2, we consider the higher dimension cases: p = 60, 90, 120. We set the
same A as experiment 1 and the coefficient as follows:

β = (β1, β2, β3)
⊤ =



0.5 1 1.5
−2 −2 −1.5
2 1.5 1
−1 −1.5 −2

...
...

...
0 0 0


p×3

where the first four rows are nonzero and other elements are zero. We set the number of
discrete time intervals T = 600 and the sample size in the testing set m = 10. In addition,
the hyperparameters r and δ in the HDVBHMM method are set to 1. The results are shown
in Tables 3 and 4.

As can be seen in Table 4, when the covariate dimensions are increased and the
sample size reaches 600, our method still performs well among the four methods. It
should be noted that when the covariate dimension is 90 and 120, the MAPE metric of the
random forest method is slightly smaller than our method. In addition, as the covariate
dimension increases from p = 60 to P = 120, the performance of the LSTM method decreases
significantly, which is the worst performance among the four methods. This shows that
LSTM does not perform well on such small-sample high-dimensional datasets. As the
dimensionality of the covariates increases, although the BP and Random Forest methods
show better prediction performance than the LSTM method, they are also poorer than the
prediction performance of the HDVBHMM method. Overall, our method outperforms the
other three methods in terms of prediction performance as the dimensionality increases,
suggesting that our method performs better on small-sample high-dimensional datasets.

Figure 2 shows box plots of the estimator values of A, β1, β2, β3 under p = 90.
The corresponding figures on p = 60 and p = 120 are shown in Appendix A.3. From
Figure 2, we can see that the regression coefficients β1, β2, and β3 are accurately estimated.
the first four elements are estimated close to the true value, and the remaining values
are estimated clear to zero. It implies that the proposed method can successfully achieve
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variable screening even as the covariate dimension increases. In addition, all elements of
the state increment matrix A are estimated close to the true values, which also confirms the
good performance of the proposed method.

Table 3. Average values of four metrics of all approaches with standard deviation in each parenthesis
based on 10 simulations under T = 600.

p Method
Estimate Performance

MAPE RMSE MAE R2

p = 60

LSTM 1.608 (1.826) 1.524 (0.104) 2.332 (0.304) 0.722 (0.126)
BP 1.511 (1.326) 1.513 (0.209) 2.328 (0.662) 0.725 (0.143)

Random Forest 1.236 (1.748) 1.459 (0.175) 2.159 (0.525) 0.728 (0.151)
HDVBHMM 0.851 (0.871) 1.091 (0.218) 1.235 (0.489) 0.884 (0.078)

p = 90

LSTM 1.690 (2.046) 1.725 (0.152) 2.998 (0.542) 0.523 (0.282)
BP 2.780 (5.010) 1.606 (0.225) 2.626 (0.706) 0.636 (0.239)
RF 0.718 (0.365) 1.374 (0.246) 1.942 (0.694) 0.797 (0.091)

HDVBHMM 0.878 (0.887) 1.156 (0.249) 1.392 (0.617) 0.862 (0.135)

p = 120

LSTM 1.941 (1.839) 1.884 (0.372) 3.677 (1.389) 0.463 (0.323)
BP 1.235 (1.023) 1.651 (0.274) 2.792 (0.854) 0.684 (0.181)

Random Forest 0.832 (0.679) 1.571 (0.193) 2.502 (0.621) 0.718 (0.154)
HDVBHMM 0.910 (0.717) 1.321 (0.253) 1.804 (0.718) 0.763 (0.393)

In the Long-Term and Short-Term Memory methods, the learning rate is lr = 0.001, the number of training cycles
(Epochs) is set to 50, and the size of the hidden layer is set to 10. The hidden layer of the BP method consists
of 20 neurons, and the maximum number of iterations is set to 10,000. In the random forest regression model,
the number of trees is set to 100. The bold results are the optimal ones among four methods.
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Figure 2. Box plots of the estimator values of A, β1, β2, β3 based on 10 experiments under p = 90
and T = 600. The horizontal coordinate is the index of the variables and the vertical coordinate is the
value of the estimators.
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Table 4. Average values of the RMSE and Bias of A and β based on 10 replications in Experiment 2.

p Parameter
Estimate Performance

RMSE Bias

60 β 0.001 0.001
A 0.002 0.001

90 β 0.001 0.001
A 0.005 0.001

120 β 0.015 0.007
A 0.034 0.009

5. Application to Real Datasets

In this section, we focus on Beijing Multi-Site Air-Quality data, which include 6 major
air pollutants and 6 related meteorological variables at multiple locations in Beijing. These
air-quality measurements are created by the Beijing Municipal Environmental Monitoring
Center. In addition, meteorological data at each air quality location are paired with the
nearest weather station provided by the China Meteorological Administration. The data
span from 1 March 2013 to 28 February 2017. In our study, we consider PM2.5 concentration
as response variable, and PM10 concentration, SO2 concentration, NO2 concentration,
CO concentration, O3 concentration, Temperature (TEMP), Pressure (PRES), Dew point
temperature (DEWP), Precipitation (RAIN), and Wind speed (WSPM) as covariates; that is,
p = 10. In order to study the performance on small sample datasets, we delete the missing
values in the data and select the data samples in the first 200 time intervals from the Shunyi
observation point in Beijing in 2017 for analysis. To assess the predictive performance, we
use the first 140 samples as the training set, and the remaining 60 samples as the testing set.
We compare the proposed method with the BP neural network, LSTM and Random Forest
method similar to Section 4.

One of the main challenges in implementing the HMM is to determine the optimal
number of hidden states. The Akaike Information Criterion (AIC) and the Bayesian In-
formation Criterion (BIC) are two common model selection techniques, which select the
best model by balancing the fitting accuracy and complexity of the model. In selecting
the number of hidden states for a Hidden Markov Model, both AIC and BIC evaluate
multiple models containing different numbers of states and select an optimal model that
balances fitting accuracy and complexity. Multiple HMMs are trained separately using
different numbers of hidden states, then the AIC or BIC values are calculated for each
model, and finally the model with the smallest AIC or BIC value is selected [34]. Similar
to the work of Dofadar et al. [34], we use AIC and BIC to select the number of the hidden
states. The AIC equation used in this study is given by AIC = 2k − 2L, where k is the
number of free parameters in the model and L is the log probability value. The formula for
k used in this research is k = n2 + 2n − 1, where n is the current value of the hidden state.
The BIC equation used in this study is expressed as BIC = ln(T)k − 2L, where T is the total
number of observations. To find the best number of hidden states, we calculate AIC and
BIC values based on the different numbers of hidden states: 2, 3, 4, and 5. The results are
shown in Figure 3. Figure 3 shows that when the number of hidden states is 3, the AIC and
BIC values are the smallest, indicating that choosing the number of hidden states as 3 is the
closest to the real model. Therefore, we set the the number of hidden states K = 3.

Similar to Section 4, we calculate MAPE, RMSE, MAE and R2 to evaluate the predictive
performance. Since the time series data are positively skewed, MAE and MASE are
the best evaluation metrics for evaluating the model performance [35]. The results are
shown in Table 5. From Table 5, we can see that the MAPE and MAE of the proposed
HDVBHMM method are smaller than ones of other methods, and the R2 value of the
proposed method is larger than one of other methods, indicating that the performance of
the HDVBHMM method is better than other methods. Among the other three competing
methods, the MAPE and MAE values of the Random Forest method are lowest among
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those of the three competing methods, but its MAPE and MAE are still much larger than
ones of the proposed method. The BP method is the worst performing among four methods
with MAE = 27.570 and MAPE = 1.025.

To better illustrate the predictive performance, Figure 4 shows the true data and
predicted values via four methods on the testing set. From Figure 4, we can see that in the
first 30 time points, the proposed method fits the true values very well. In the second set of
30 time points, as the prediction time period increases, the predicted values exhibit a slight
error, but they are still better than those of other methods. Overall, the prediction accuracy
of the proposed method is much better than ones of other methods in term of both short
and long time periods.

Figure 3. AIC and BIC values when the number of hidden states is 2, 3, 4, and 5 on the real dataset.

Figure 4. Comparison of observed hourly PM2.5 emissions (test set) with PM2.5 emissions predicted
by four methods.
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Table 5. Prediction Performance of Four Methods on the testing data.

Method MAPE RMSE MAE R2

Random Forest 1.043 4.039 16.318 0.941
BP 1.025 5.250 27.570 0.852

LSTM 0.462 4.924 24.249 0.876
HDVBHMM 0.317 2.249 5.058 0.993

In the Long-Term and Short-Term Memory methods, learning rate is lr = 0.001, the number of training cycles
(Epochs) is set to 50, and the size of the hidden layer is set to 40. the BP method contains 12 neuron hidden
layers and the maximum number of iterations is set to 10,000. The hyperparameters hyperparameters r, δ in the
HDVBHMM method were set to 1.0. The bold results are the optimal ones among four methods.

The estimated values of β corresponding to the three states are shown in Table 6. From
Table 6, we can see that PM10, SO2, TEMP (temperature), DEWP (dew point temperature),
RAIN (precipitation), and WSPM (wind speed) have the greatest influence on PM2.5
emissions in state 1. PM10, SO2, TEMP, and DEWP are the four factors that have a negative
effect on the presence of PM2.5 emissions in the area, and as these four factors increase,
PM2.5 emissions will decrease; meanwhile RAIN and WSPM have a positive effect on the
presence of PM2.5 in the area. Rainfall and high wind speed may have increased PM2.5
concentrations through physical effects (such as windblown dust). The prediction formula
of the PM2.5 in State 1 is as follows:

PM2.51 =− 0.833PM10 − 0.349SO2 + 0.003CO − 0.03NO2 − 0.09O3 − 2.625TEMP

− 0.017PRES − 3.552DEWP + 1.524RAIN + 3.547WSPM.

Table 6. Estimates of the regression coefficients β for each hidden state.

State PM10 SO2 NO2 CO O3 TEMP PRES DEWP RAIN WSPM

State 1 −0.833 −0.349 −0.030 0.003 −0.090 −2.625 −0.017 −3.552 1.524 3.547
State 2 0.965 −0.230 −0.189 −0.003 0.004 −2.154 −0.010 0.745 −4.227 3.891
State 3 −0.303 1.080 1.462 0.000 −0.279 18.55 −0.123 −0.127 9.057 19.217

In addition, PM10, Sulfur Dioxide, Nitrogen Dioxide, TEMP (temperature), DEWP
(dew point temperature), RAIN (precipitation), and WSPM (wind speed) have the largest
effect on PM2.5 in State 2. The results showed that in state 2, some chemical reactions led
to the depletion of gases such as SO2 and NO2, which reduced the production of PM2.5,
and rainfall also reduced the production of PM2.5. The high wind speed led to an increase
in PM2.5 concentration, probably because the wind speed increased the diffusion and
transport of particulate matter. The prediction formula of the PM2.5 in this State is as
follows:

PM2.52 =0.965PM10 − 0.23SO2 − 0.003CO − 0.189NO2 − 0.04O3 − 2.154TEMP

− 0.01PRES + 0.745DEWP − 4.227RAIN + 3.891WSPM.

PM10, SO2, NO2, O3, TEMP (temperature), PRES (pressure), DEWP (dew point tem-
perature), RAIN (precipitation), and WSPM (wind speed) have the greatest impact on
PM2.5 in state 3. It is worth noting that the increase in variables such as SO2 and NO2
leads to an increase in PM2.5 concentration. In addition, the significant positive coefficients
for temperature indicate that higher temperatures promote the formation of PM2.5, which
may be related to the acceleration of certain chemical reactions by high temperatures. The
increase in SO2 and NO2 may promote the formation of secondary particulate matter, which
in turn increases the PM2.5 concentration. Wind speed increases particulate dispersion,
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and rainfall may also promote the formation of secondary particulate matter from some
soluble substances. The prediction formula of the PM2.5 in this State is as follows:

PM2.53 =− 0.303PM10 + 1.08SO2 + 1.462NO2 − 0.279O3 + 18.55TEMP

− 0.123PRES − 0.127DEWP + 9.057RAIN + 19.217WSPM.

In summary, the regression coefficients for the three states reflect the effects of different
environmental factors on PM2.5 concentrations. The positive and negative signs and mag-
nitudes of these coefficients can provide scenarios on how to manage and predict PM2.5
concentrations by controlling these environmental factors under different environmental
conditions. In particular, the fact that temperature, rainfall and wind speed have differ-
ent effects on PM2.5 concentrations in different states suggests that PM2.5 management
needs to take into account complex meteorological conditions and interactions between
air pollutants.

6. Conclusions

In this paper, the variable selection for high-dimensional HMMs is studied based
on the variational inference. We develop a Variational Bayesian method with the double-
exponential shrinkage prior for variable selection. The proposed method can quickly
and accurately estimate the posterior distributions and the unknown parameters. In the
simulation studies and real data analysis, the proposed method outperforms the common
methods in term of variable selection and prediction. In the Beijing Multi-Site Air-Quality
analysis, we select the optimal number of the hidden stats based on the AIC and BIC
methods, and fit the HMMs of the response variable PM2.5. In the current research work,
we investigate variational inference for linear HMMs with high dimensional covariates;
that is, the mean of the response variable is linear with respect to the high dimensional
covariates. Many of the relationships between variables in practical applications may be
not linear, so variational inference for nonlinear HMMs is worth studying. In addition, it is
assumed that the variances in observations are the same in different hidden states in this
study, but in practical applications, heteroskedasticity may be more in line with real-world
data characteristics. For that reason, the heteroskedasticity issue for HMMs is also worth
exploring deeply. Moreover, Ivan Gorynin’s work [36] verifies that the Pairwise Markov
Model (PMM) outperforms the traditional HMM in terms of accuracy when the observed
variable y is highly autocorrelated or when the hidden chain is not Markovian. Unlike the
HMM, which assumes that the hidden chain z is Markovian, the PMM assumes that (z, y)
is Markovian. Since hidden chains are not necessarily Markovian in the PMM, it is more
general than the HMM. Parameter estimation of PMM models is done using Variational
Bayesian methods in the work of Katherine Morales [37]. However, the effect of including
the covariate x on the target variable y was not considered in their work. Therefore, as an
extension of the proposed method, which replaces the HMM with the PMM, the inclusion
of high-dimensional covariates in the PMM may yield more accurate predictions.
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Appendix A

Appendix A.1. Variational Posterior of Parameters

We derive the optimal variational densities based on Formula (8). The complete likeli-
hood function of the model is:

P
(

Y, z | X, π, A, β, σ2
)

= P(z1|π)
T

∏
t=2

P(zt | zt−1, A)
T

∏
t=1

P
(

yt | xt, zt, β, σ2
)

=

(
K

∏
k=1

π
v1k
k

)(
T

∏
t=2

K

∏
k=1

K

∏
j=1

A
vt−1,jvtk
jk

)(
T

∏
t=1

K

∏
k=1

P
(

yt | xt, βk, σ2
)vtk

)
.

We derive the conditional posterior distribution of A as:

P(A | ·) ∝ P(Y, z | X, π, A, β, σ2)P(A)

∝ P(z1|π)

[
T

∏
t=2

P(zt | zt−1, A)

][
T

∏
t=1

P(yt | xt, zt, β, τ)

]
P(A)

∝

(
T

∏
t=2

K

∏
k=1

K

∏
j=1

A
vt−1,j ·vtk
jk

)(
K

∏
j=1

K

∏
k=1

A
α
(A)
jk −1

jk

)

∝
K

∏
j=1

(
K

∏
k=1

A
∑T

t=2 vt−1,j ·vtk+α
(A)
jk −1

jk

)
.

So P
(

Aj | ·
)
∼ Dir

(
∑T

t=2 vt−1,j · vtk + α
(A)
jk

)
for j = 1, . . . K.

According to Equation (10), The variational posterior distribution of Aj is given by:

q∗
(

Aj
)

∝ exp
{

E
[
log P

(
Aj | ·

)]}
∝ exp

{
E

[
K

∑
k=1

(
T

∑
t=2

vt−1,j · vtk + α
(A)
jk − 1

)
log Ajk

]}

∝
K

∏
k=1

A
∑T

t=2 E(vt−1,jvtk)+α
(A)
jk −1

jk .

So q∗
(

Aj
)
∼ Dir

(
∑T

t=2 E
(
vt−1,jvtk

)
+ α

(A)
jk

)
.

https://archive.ics.uci.edu/dataset/501/beijing+multi+site+air+quality+data
https://archive.ics.uci.edu/dataset/501/beijing+multi+site+air+quality+data
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Similarly, we derive the conditional posterior distribution of σ2 as:

P
(

σ2 | ·
)

∝
T

∏
t=1

P
(

yt | σ2, xt, zt, β
)

P
(

σ2
)

∝
T

∏
t=1

K

∏
k=1

(
1√
2πσ

)vtk

exp
{
− 1

2σ2

(
yt − x⊤t βk

)2
}vtk

σ−2

∝
(

σ2
)−( T

2 +1)
exp

{
−∑T

t=1 ∑K
k=1 vtk

(
yt − x⊤t βk

)2

2σ2

}

∼ IGamma

(
T
2

,
1
2

T

∑
t=1

K

∑
k=1

vtk

(
yt − x⊤t βk

)2
)

.

The variational posterior distribution of σ2 is given by:

q∗
(

σ2 | ·
)

∝ exp

{
E

[
−
(

T
2
+ 1
)
· log

(
σ2
)
+

(
−∑T

t=1 ∑K
k=1 vtk

(
yt − xT

t βk
)2

2σ2

)]}

∝
(

σ2
)−( T

2 +1)
exp

{
−∑T

t=1 ∑K
k=1 E(vtk) · E

(
yt − x⊤t βk

)2

2σ2

}

∼ IGamma

(
T
2

,
1
2

T

∑
t=1

K

∑
k=1

E(vtk)E
(

yt − x⊤t βk

)2
)

.

We derive the conditional posterior distribution of λ2 as:

P
(

λ2 | ·
)

∝ P
(

τ2
1 , . . . , τ2

p | λ2
)

P
(

λ2
)

∝
p

∏
m=1

λ2

2
exp

{
−λ2τ2

m
2

}(
λ2
)r−1

exp
(
−δλ2

)
∝
(

λ2
)p+r−1

· exp

{
−
(

δ +
1
2

p

∑
m=1

τ2
m

)
λ2

}

∼ Γ

(
p + r, δ +

1
2

p

∑
m=1

τ2
m

)
.

The variational posterior distribution of λ2 is given by:

q∗
(

λ2 | ·
)

∝ exp
{

E
[
log P

(
λ2 | ·

)]}
∝ exp

{
E

[
(p + r − 1) · log λ2 +

{
−
(

δ +
1
2

p

∑
m=1

τ2
m

)
λ2

}}

∝
(

λ2
)p+r−1

· exp

{
−
(

δ +
1
2

p

∑
m=1

E
(

τ2
m

))
λ2

}

∼ Γ

(
p + r, δ +

1
2

p

∑
m=1

E
(

τ2
m

))
.
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We derive the conditional posterior distribution of τ2
m. Note that since the variational

posterior of τ2
m is difficult to obtain, we derive the variational posterior of 1

τ2
m

as:

P
(

τ2
m | ·

)
∝ P

(
β1m, β2m, . . . βKm | τ2

m

)
P
(

τ2
m

)
∝

K

∏
k=1

1√
2πστm

exp
{
− 1

2τ2
mσ2 β2

km

}
exp

{
−λ2τ2

m
2

}

∝
1

τK
m

exp

{
−1

2

(
∑K

k=1 β2
kmσ−2

τ2
m

+ λ2τ2
m

)}

∝ (τ2
m)

−K/2 exp

(
−1

2

(
∑K

k=1 β2
km

σ2 (τ2
m)

−1 + λ2τ2
m

))
.

The variational posterior distribution of τ2
m is given by:

q∗
(

τ2
m

)
∝ exp

{
E
[
log P

(
τ2

m | ·
)]}

∝ exp

{
E

[
−K

2
log τ2

m − 1
2

(
∑K

k=1 β2
km

σ2 (τ2
m)

−1 + λ2τ2
m

)]}

∝ (τ2
m)

− K
2 · exp

{
−1

2

(
E(

1
σ2 )

K

∑
k=1

E(β2
km)(τ

2
m)

−1 + E(λ2)τ2
m

)}
∼ Generalized-Inverse–Gaussian(Cτm , aτm , bτm),

where aτm = E(λ2), bτm = E(1/σ2)∑K
k=1 E(β2

km), and Cτm = 1 − K/2.

We derive the conditional posterior distribution of β as:

P(β | ·) ∝ P(Y, z | X, π, A, β, σ2)P(β)

∝
T

∏
t=1

P
(

yt | xt, zt, β, σ2
)

P(β)

∝

(
T

∏
t=1

K

∏
k=1

P
(

yt | xt, βk, σ2
)vtk

)(
K

∏
k=1

P
(

βk | σ2, τ2
1 , . . . τ2

p

))

∝
K

∏
k=1

[
exp

{
− 1

2σ2

T

∑
t=1

vtk

(
yt − x⊤t βk

)2
}

exp
{
− 1

2σ2 β⊤
k D−1

τ βk

}]

∝
K

∏
k=1

[
exp

{
−1

2

(
β⊤

k

(
1
σ2

T

∑
t=1

vtkxtx⊤t +
1
σ2 D−1

τ

)
βk − 2

1
σ2

T

∑
t=1

vtkytβ
⊤
k xt

)}]

∼
K

∏
k=1

Np(βk, µk, Σk),

where µk =

(
1
σ2

T

∑
t=1

vtkxtx⊤t +
1
σ2 D−1

τ

)−1(
1
σ2

T

∑
t=1

ytvtkxt

)
,

Σk =

(
1
σ2

T

∑
t=1

vtkxtx⊤t +
1
σ2 D−1

τ

)−1

.
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The variational posterior distribution of β is given by:

q∗(β) ∝ exp{E[log P(β | ·)]}

∝ exp

{
E

[
K

∑
k=1

{
− 1

2

(
β⊤

k

(
1

σ2

T

∑
t=1

vtkxtx⊤t +
1

σ2 D−1
τ

)
βk − 2

1
σ2

T

∑
t=1

vtkytβ
T
k xt

}]}

∝
K

∏
k=1

[
exp

{
− 1

2

(
β⊤

k

(
E
(

1
σ2

) T

∑
t=1

E(vtk)xtx⊤t + E
(

1
σ2

)
· E
(

D−1
τ

))
βk

− E
(

2
σ2

) T

∑
t=1

E(vtk)ytβ
⊤xt

)}]

∼
K

∏
k=1

Np(βk; µk, Σk),

where

µk =

(
E
(

1
σ2

) T

∑
t=1

E(vtk)xtx⊤t + E
(

1
σ2

)
E
(

D−1
τ

))−1(
E
(

1
σ2

) T

∑
t=1

yt · E(vtk) · xt

)
,

Σk =

(
E
(

1
σ2

) T

∑
t=1

E(vtk)xtx⊤t + E
(

1
σ2

)
E
(

D−1
τ

))−1

.

We derive the conditional posterior distribution of π:

P(π | ·) ∝ P
(

Y, z | X, π, A, β, σ2
)

P(π)

∝ P(z1|π)P(π)

∝
K

∏
k=1

π
v1k
k ·

K

∏
k=1

π
α
(π)
k −1

k

∼ Dir
(

z1 + α(π)
)

.

The variational posterior distribution of π is given by:

q∗(π) ∝ exp{E[log P(π|·)]}

∝ exp

{
E

[
K

∑
k=1

(
v1k + α

(π)
k − 1

)
log πk

]}
∼ Dir

(
E(z1) + α(π)

)
.

Finally, we derive the variational posterior of z. Based on the dependencies of hidden
states, we divide the variational posterior of z into the following three parts.

We derive the conditional posterior distribution of z1 as:

P(z1 | ·) ∝ P
(

Y, z | X, π, A, β, σ2
)

∝ P(z1 | π)

[
T

∏
t=2

P(zt | zt−1, A)

][
T

∏
t=1

P
(

yt | xt, zt, β, σ2
)]

∝

(
K

∏
k=1

π
v1k
k

)(
K

∏
k=1

K

∏
j=1

A
v1jv2k
jk

)(
K

∏
k=1

P
(

y1 | x1, βk, σ2
)v1k

)

∝
K

∏
k=1

[
πkP

(
y1 | x1, βk, σ2

) K

∏
j=1

A
v2j
kj

]v1k

∼ Mult

(
πk · P

(
y1 | x1, βk, σ2

) K

∏
j=1

A
v2j
kj

)
.
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The variational posterior distribution of z1 is given by:

q∗(z1) ∝ exp{E[log P(z1 | ·)]}

∝ exp

{
K

∑
k=1

v1kE

[
log πk + log P

(
y1 | x1, βk, σ2

)
+

K

∑
j=1

v2j log Akj

]}

∝
K

∏
k=1

[
exp{E[log πk]} exp

{
E
[
log P

(
y1 | x1, βk, σ2

)]}
·

K

∏
j=1

exp
{

E
[
log Akj

]
· E
(
v2j
)}]v1k

∼ Mult

(
exp{E[log πk]} exp

{
E
[
log P

(
y1 | x1, βk, σ2

)]} K

∏
j=1

exp
{

E
[
v2j
]
E
[
log Akj

]})
.

We derive the conditional posterior distribution of zt for t = 2, . . . , T − 1 as:

P(zt | ·) ∝ P
(

Y, z | X, π, A, β, σ2
)

∝ P(z1 | π)

[
T

∏
t=1

K

∏
k=1

K

∏
j=1

A
vt−1,jvt,k
jk

][
T

∏
t=1

K

∏
k=1

P
(

yt | xt, βk, σ2
)vtk

]

∝
K

∏
k=1

[
K

∏
j=1

A
vt−1,j
jk Avt+1,j

kj P
(

yt | xt, βk, σ2
)]vtk

∼ Mult

(
k

∏
j=1

A
vt−1,j
jk

A
vt+1,j
kj P

(
yt | xt, βk, σ2

))
.

The variational posterior distribution of zt for t = 2, . . . , T − 1 is given by:

q∗(zt) ∝ exp{E[log P(zt | ·)]}

∝ exp

 K

∑
k=1

vtk · E

log P
(

yt | xt, βk, σ2
)
+

K

∑
j=1

vt−1,j log Ajk +
K

∑
j=1

vt+1,j log Akj


∝

K

∏
k=1

exp
{

E
[
log P

(
yt | xt, βk, σ2

)]} K

∏
j=1

exp
{

E
[
log Ajk

]
E
(

vt−1,j

)}

·
K

∏
j=1

exp
{

E
[
log Akj

]
E
(

vt+1,j

)}vtk

∼ Mult

exp
(

E
[
log P

(
yt | xt, βk, σ2

)])
·

K

∏
j=1

exp
{

E
[
log Ajk

]
E
(

vt−1,j

)}

·
K

∏
j=1

exp
{

E
[
log Akj

]
E
(

vt+1,j

)}.

We derive the conditional posterior distribution of zT as:

P(zT | ·) ∝
K

∏
k=1

(
K

∏
j=1

A
vT−1,j
jk P

(
yT | xT , βk, σ2

))vTk

∼ Mult

(
K

∏
j=1

A
vT−1,j
jk P

(
yT | xT , βk, σ2

))
.

The variational posterior distribution of zT is given by:
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q∗(zT) ∝ exp{E[log P(zT | ·)]}

∝ exp

{
K

∑
k=1

vTkE

[
log P

(
yT | xT , βk, σ2

)
+

K

∑
j=1

vT−1,j log Ajk

]}

∝
K

∏
k=1

[
exp

{
E
[
log
(

yT | xT , βk, σ2
)]}

·
K

∏
j=1

exp
{

E
[
log Ajk

]
E
(
vT−1,j

)}]vTk

∼ Mult

(
exp

{
E
[
log P

(
yT | xT , βk, σ2

)]}
·

K

∏
j=1

exp
{

E
[
log Ajk

]
E
(
vT−1,j

)})
.

Appendix A.2. Box Plots of the Estimator Values Based on 10 Experiments under p = 20, 40 and
T = 200
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Figure A1. Box plots of the estimator values of A, β1, β2, and β3 based on 50 experiments under
p = 20 and T = 200. The horizontal coordinate is the index of the variables and the vertical coordinate
is the values of the estimators.
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Figure A2. Box plots of the estimator values of A, β1, β2, and β3 based on 50 experiments under
p = 40 and T = 200. The horizontal coordinate is the index of the variables and the vertical coordinate
is the values of the estimators.
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Appendix A.3. Box Plots of the Estimator Values Based on 50 Experiments under p = 60, 120 and
T = 600
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Figure A3. Box plots of the estimator values of A, β1, β2, and β3 based on 10 experiments under
p = 60 and T = 600. The horizontal coordinate is the index of the variables and the vertical coordinate
is the values of the estimators.
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Figure A4. Box plots of the estimator values of A, β1, β2, and β3 based on 10 experiments under
p = 120 and T = 600. The horizontal coordinate is the index of the variables and the vertical
coordinate is the values of the estimators.

Appendix A.4. Sensitivity Analysis Results for Different Hyperparameter Settings

To further understand whether the algorithm is sensitive to the choice of hyperpa-
rameters r, δ, we conduct experiments on simulated data with a sample size of 300 and a
covariate dimension of 30 similar to Section 4. Consider the following experiments with
three different hyperparameter settings, the first r = 0.5, δ = 0.5; the second r = 1.0, δ = 1.0;
and the third r = 1.5, δ = 1.5.
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Table A1. The hyperparameters were set to r = 0.5, δ = 0.5; r = 1.0, δ = 1.0; and r = 1.5,
δ = 1.5 to compute the mean of the four metrics, with standard deviations in parentheses, based on
10 simulations under the conditions of T = 300, p = 30.

p Method
Estimate Performance

MAPE RMSE MAE R2

p = 30

r = 0.5, δ = 0.5 0.8766
(0.9195)

1.1861
(0.2441)

1.4605
(0.6291)

0.8617
(0.0739)

r = 1.0, δ = 1.0 0.8766
(0.9195)

1.1861
(0.2441)

1.4606
(0.6291)

0.8616
(0.0739)

r = 1.5, δ = 1.5 0.8766
(0.9195)

1.1861
(0.2440)

1.4606
(0.6290)

0.8616
(0.0739)

The experimental results show that the estimation results are not sensitive to the
choice of the two hyperparameters r and δ. The images of the Gamma distributions for
the three different hyperparameter settings are very similar in shape. It implies that the
performances of the proposed method are not sensitive to these hyperparameters for a
certain range of variations in r and δ values.
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