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Abstract: The rapid growth of edge devices and mobile applications has driven the adoption of
edge computing to handle computing tasks closer to end-users. However, the heterogeneity of
edge devices and their limited computing resources raise challenges in the efficient allocation of
computing resources to complete services with different characteristics and preferences. In this
paper, we delve into an edge scenario comprising multiple Edge Computing Servers (ECSs), multiple
Device-to-Device (D2D) Edge Nodes (ENs), and multiple edge devices. In order to address the
resource allocation challenge among ECSs, ENs, and edge devices in high-workload environments,
as well as the pricing of edge resources within the resource market framework, we propose a Risk
Assessment Contract Algorithm (RACA) based on risk assessment theory. The RACA enables ECSs
to assess risks associated with local users by estimating their future revenue potential and updating
the contract autonomously at present and in the future. ENs acquire additional resources from ECSs
to efficiently complete local users’ tasks. Simultaneously, ENs can also negotiate reasonable resource
requests and pricing with ECSs by a Stackelberg game algorithm. Furthermore, we prove the unique
existence of Nash equilibrium in the established game, implying that equilibrium solutions can
stably converge through computational methods in heterogeneous environments. Finally, through
simulation experiments on the dataset, we demonstrate that risk assessment can better enhance the
overall profit capability of the system. Moreover, through multiple experiments, we showcase the
stability of the contract’s autonomous update capability. The RACA exhibits better utility in terms of
system profit capabilities, stability in high-workload environments, and energy consumption. This
work provides a more dynamic and effective solution to the resource allocation problem in edge
systems under high-workload environments.

Keywords: mobile edge computing; resource allocation; resource pricing; risk assessment; Stackelberg
game; Nash equilibrium

MSC: 91-10

1. Introduction

Due to the rapid growth of edge devices and mobile applications, wireless networks
have been facing unprecedented data traffic pressures in recent years. Consequently, edge
computing has emerged as a new paradigm to complement cloud computing, bringing com-
puting capabilities closer to end-users to meet the demands of fast and flexible computing
and communication-enhanced services [1,2]. Network operators or cloud service providers
can utilize Edge Computing Servers (ECSs) deployed at base stations and edge devices
as edge nodes (ENs) by Device-to-Device (D2D) communication to assist in offloading.
The edge nodes, which could be idle mobile devices, may exhibit high heterogeneity in
computing capabilities and costs, providing complementary services. It provides edge com-
puting with many significant functionalities, including local data processing and analysis,
distributed caching, localization, resource pooling, scaling, enhanced privacy and security,

Mathematics 2024, 12, 983. https://doi.org/10.3390/math12070983 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12070983
https://doi.org/10.3390/math12070983
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0009-0007-9293-3957
https://orcid.org/0000-0002-2197-2285
https://orcid.org/0000-0003-1438-7018
https://doi.org/10.3390/math12070983
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12070983?type=check_update&version=1


Mathematics 2024, 12, 983 2 of 29

and reliable connectivity [3,4]. Therefore, edge computing is crucial for meeting stringent
requirements of emerging systems and low-latency applications such as embedded artificial
intelligence, virtual/augmented reality (VR/AR), and the future Internet.

However, edge computing also faces numerous challenges that need to be addressed.
For instance, in the context of regional services, resource pooling composed of ECSs and
multiple ENs introduces challenges of edge resource allocation and resource sharing among
edge devices. ECSs have tasks to provide scheduling services for computing resources,
while ENs, which are assumed to be idle edge devices, primarily focus on executing the
computational tasks. Unlike the capacity of traditional clouds, the computational capability
of regional resource-sharing centers, ECSs, is limited. Additionally, around an ECS, there
may be numerous distributed ENs with different capacities and configurations. Due to the
heterogeneity of these ENs in terms of location, specifications, reliability, and reputation, the
ECS services may exhibit different preferences towards them. For example, in the context
of edge home robots, the accuracy of tasks like object manipulation possesses higher
significance, while a slight compromise in processing speed is acceptable. Conversely, in
the realm of connected vehicles, data transmission speed often outweighs the precision
of location data, enabling the system to swiftly respond to traffic conditions for effective
traffic management.

Therefore, considering service priorities and fairness, the primary focus is on effec-
tively allocating limited edge resources to complete services with different characteristics
and preferences. The challenges we face can be summarized as follows:

1. In a resource pool composed of multiple ECSs and ENs, when an EN receives requests
from edge devices, it sometimes needs to request computing resources from an ECS to
complete the tasks according to its computing capabilities and the demands of edge
devices. It is important to learn how to determine whether an EN should request
computing resources from the ECS and how to determine the appropriate amount of
requested resources to maximize the service quality for the edge devices in the region.

2. Edge devices are often different with heterogeneity in terms of location, specifica-
tions, reliability, and the reputation of edge devices and/or ENs. The allocation
of computing resources is profoundly influenced. For instance, from a reputation
perspective, within a resource pool, certain edge devices and ENs might frequently
engage in resource monopolization, excessively occupying computing resources or
requesting computing resources from an ECS at a high frequency. In such cases, the
ECS tends to allocate resources to the edge devices with lower risk profiles or might
raise the resource prices for high-demand ENs, while the ECS itself possesses specific
resource preferences. For instance, in an edge hospital setting, online clinics often
prioritize image data and tend to allocate more computing resources to image-related
tasks compared to audio data. The heterogeneity of computational demands and the
preferences of the ECS constitute significant challenges in edge resource allocation.

3. Since the usage of user data is increasing day by day, the data usage of users can be
enormous. In some environments that are highly sensitive to computational latency
and have strong requirements for real-time information, known as high-workload
resource scheduling environments, the computing resources of an ECS could be fully
occupied for extended periods. In such cases, the scheduling algorithms often lead to
issues like energy waste and scheduling delays. Designing more efficient allocation
schemes to reduce energy waste, scheduling delays, and edge service failure rates in
high-workload resource scheduling environments is crucial.

4. The computing resource allocation for edge devices needs to consider a joint optimiza-
tion model of resource allocation and task offloading, which often involves NP-hard
optimization problems. If the algorithms cannot meet the required time complexity for
optimization problems, facing an exponential growth trend in data volume, significant
delays may occur. Therefore, the algorithms must be capable of fast convergence.

In this paper, we propose a resource trading mechanism based on Stackelberg game
and risk assessment contracts. This approach leverages the principles of market economy
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theory, where sellers assess the risk of buyers and formulate transaction contracts, to
address the challenges of resource pricing and scheduling within a resource pool consisting
of multiple ECSs and ENs in the edge system. In the considered model, a portion of edge
devices act as ENs and assist in offloading through D2D connections. The ECSs and ENs
have different levels of computing capabilities, and the edge devices within the resource
pool region issue demand the subscribed ECS or ENs in their vicinity. The ENs have their
own computing capabilities and, to better serve the edge devices, they analyze network
traffic and resource utilities before purchasing a portion of computing resources from
the ECS, which, as a resource operator or provider, determines how to coordinate the
requested tasks from the ENs to match its computing resources. Following the Stackelberg
game model, the ECS is considered the leader in the resource market, while the ENs are
considered followers. The edge devices, as the initiators of computing tasks, become
local task demanders once they establish subscription relationships. Furthermore, the
resource allocation issue resembles an investment behavior in financial markets, where the
preference of the ECS on edge resource allocation signifies the preference of investors or
venture capital for investment in the financial market.

In this paper, we combine the heterogeneity of edge devices with risk assessment
theory in investments. By enabling the ECS and ENs to sign edge contracts, the ECS
exhibits superior performance in dealing with resource allocation preferences and the
heterogeneity of edge devices, making the market model more realistic to provide new
solutions for the edge resource allocation and task offloading problems. Finally, using the
Lagrange multiplier method, we transform the joint optimization problem of multi-to-multi
resource allocation and task offloading based on risk assessment edge contracts into a
convex optimization problem. We design a heuristic algorithm with a quick convergence to
solve the optimization problem.

The major contributions in this paper are as follows:

1. We develop a resource trading model based on the Stackelberg game for solving
task offloading problems in a resource pool composed of ECSs and ENs. The model
allocates computing resources according to the proportion of EN requests determined
by the game, while the existence of Nash equilibrium in the game is proved by using
fixed-point theory.

2. By incorporating risk assessment theory, we introduce the concept of edge risk to
evaluate the profits and benefits based on the contracts with edge devices. The data
usage follows a generalized Wiener process, and the ECS predicts the future edge risk
value that edge devices will possess based on their current data volume. It provides
a unified standard for heterogeneous edge devices. A novel edge contract based on
the edge risk assessment is proposed, aiming to reduce transaction delays and energy
losses in high-workload environments for resource allocation and task offloading.
The contract allows edge devices to autonomously update two contract elements:
the limit of local computation resource request and the computation resource price,
in real time.

3. To address the resource allocation problem between the ECSs and the ENs, we design
a low-complexity risk assessment contract algorithm (RACA). Furthermore, we prove
the strict convexity of the subgame problem and solve it using the Lagrange multiplier
method to find the equilibrium point in the game model. The heuristic algorithm
demonstrates the capability of swift convergence, guided by the proportion of user-
requested resources to the overall requested resources, allocating the computing
resources acquired by the ENs to their respective edge devices.

4. We conduct simulation experiments to validate the convergence efficiency of the
designed algorithm under high-workload conditions. Furthermore, we evaluate the
performance of the ECS, utilizing the proposed RACA algorithm, which demonstrates
its superiority compared to other similar algorithms. Additionally, the simulation
results show the advantages of the proposed request ratio allocation scheme when the
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ENs receive specific requested resources. The performance of the RACA algorithm in
terms of game convergence is demonstrated, too.

The remaining parts of this paper are summarized as follows: In Section 2, a review of
related works is presented. Section 3 describes the edge resource pool model composed
of multiple ECSs, ENs, and edge devices in a high-workload environment and introduces
the edge contract framework based on risk assessment. In Section 4, specific problems are
formulated, and the convexity of the subgame problem is verified. The Lagrange multiplier
method is introduced, and the equilibrium points of the game between the ECS and ENs
are derived using the backward induction method. Section 5 presents and discusses a
heuristic algorithm called RACA based on risk assessment edge contracts and explores
the game algorithm for finding the Nash equilibrium point between the ECS and ENs. In
Section 6, simulation experiments to evaluate the performance of the RACA algorithm
and the game allocation algorithm are presented. Finally, in Section 7, a comprehensive
summary of the proposed framework and algorithms is provided along with a discussion
of potential future improvements.

2. Related Work

Researchers have explored various aspects to effectively allocate limited edge resources
to computing services with different characteristics and preferences. Bozkaya [5] proposed
a digital twin framework to simulate real-world edge environments based on minimizing
processing time and access latency costs. Luo [6] introduced a small-scale edge caching
scheme by removing duplicate data through an edge caching system. However, these works
focus on optimizing edge devices or content delivery without considering the interactions
among the participants in an edge ecosystem.

To address the competition among edge devices with different characteristics and
preferences, market theory has been applied to simulate the differences among edge devices.
By modeling the market competition, edge devices can make better resource allocation
decisions to maximize social welfare. Market pricing mechanisms have been widely used
to solve edge resource allocation problems, directing the allocations of limited resources
that maximize social benefits. They enable edge devices to autonomously choose resource
allocation and scheduling strategies to cope with the overwhelming information volume.
Yuan [7] considered a decentralized blockchain edge solution based on a market framework,
but it lacked comprehensive consideration for computing latency and energy consumption.
Additionally, some researchers have devised several resource allocation mechanisms to en-
sure user QoS, such as convex optimization-based approaches [8] and coordination through
composite tables [9]. Additionally, some joint optimization models have been developed for
task offloading and resource allocation [10] with several scheduling algorithms including
deep Q-learning [11,12] and ADMM [13]. However, these joint optimization models work
based on nonlinear programming and are typically NP-hard, being difficult to find optimal
solutions in polynomial time [14,15].

On the other hand, for edge devices participating in resource allocation in a market
environment, challenges arise in terms of the leakage of privacy information and unfair
resource allocation. Some allocation methods based on edge risk have been proposed. Rui
Chen, Ganesh Neelakanta Iyer [16,17], and others considered the interactions among market
participants with different risk attitudes and incorporated risk-neutral computation with
given weights. Kai Peng [18] studied the privacy risk of different edge devices to propose a
privacy-preserving game without considering the impact of risk on the allocation. Jianbo
Du [19] used the asynchronous advantage actor-critic (A3C) deep reinforcement learning
algorithm to obtain resource pricing and allocation and explored the risk coefficients that
may exist using reinforcement learning. However, the required computational complexity
remains significant for more lightweight edge devices. Minghui Liwang [20] introduced
the concept of financial futures in unmanned aerial vehicles and vehicular networks and
designed a mutually beneficial and risk-tolerant forward contract to facilitate pricing and
gaming. Vladimir Marbukh [21] replaced user rate/throughput with risk entropy rate (ERaR)
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and incorporated risk pricing into the overall system optimization for users with different risk
tolerance levels. However, issues such as a lack of generality and inefficiency still persist.

A comparison of related work is presented in Table 1. In conclusion, our proposed
approach draws on valuable insights from existing research on edge resource allocation in
the academic community. Our solution aims to address some of the challenges present in
the current studies, particularly in high-workload edge environments.

Table 1. Comparison of related works.

Paper Edge-
Cloud D2D Economic Delay Energy Prediction High

Workload

[5,6,10] ✓ ✓ ✓

[7] ✓ ✓ ✓ ✓

[8,9] ✓ ✓ ✓

[11] ✓ ✓

[12] ✓ ✓

[13] ✓ ✓ ✓ ✓

[14] ✓ ✓ ✓

[15] ✓ ✓ ✓ ✓

[16] ✓ ✓ ✓

[17] ✓ ✓ ✓ ✓

[18] ✓ ✓ ✓ ✓

[19] ✓ ✓ ✓ ✓

[20] ✓ ✓ ✓ ✓ ✓

[21] ✓ ✓ ✓ ✓

Ours ✓ ✓ ✓ ✓ ✓ ✓

3. System Model

In this section, we first describe the operational mechanism of contracts, followed by a
discussion on the changes in the data from edge devices and the profit models for ECSs and
ENs, drawing reference from the D2D model proposed by C. Yi and P. Dai [22,23]. Finally,
we present the problem of risk assessment.

Initially, we consider a high-workload area with multiple edge devices as users (User),
denoted as I = {1, 2, . . . , I}, where i represents the index of I . User requests are sent to
the surrounding ENs and the corresponding ECS. J = {1, 2, . . . , J} is used to represent
ECSs and K = {1, 2, . . . , K} is to represent the ENs, where j and k are the indices of J and
K, respectively. The notations and descriptions are shown in Table 2. Due to the limited
availability of resources at an EN, when an EN has received tasks beyond its acceptable
resource threshold or existing resources, it is insufficient to meet real-time user requests.
The EN has to purchase additional computing resources from the nearby ECS to cater to
the needs of subscribed users. As illustrated in Figure 1, in the resource pool, multiple
ECSs (Edge Computing Servers) and multiple users communicate with each other, with
users communicating via D2D (Device-to-Device) communication. Users with more (or
idle) computing resources may act as ENs (Edge Nodes) to assist in task offloading. ECSs
and ENs have different levels of computing capabilities, and users within the resource
pool area send demands to subscribed ECSs or ENs in the vicinity. ENs have their own
computing capabilities, and to better serve users, they combine channel networking and
resource utility analysis to purchase a portion of computing resources from ECSs. The ECS
serves as a seller of computing resources, while the ENs act as buyers of resources. The
ECS handles requests from the ENs while simultaneously handling the requests from the
local users subscribed to the ECS. Each user can send a request to either an ECS or an EN,
and each EN purchases a specific amount of computing resources from its nearby ECS.
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3.1. Problem Overview and Contract Model

In low-workload scenarios, the computing resources of an ECS are able to meet
the computational demands of the entire resource pool. However, in high-workload
environments, the local requests received by the ECS along with the purchasing requests
from ENs can surpass its total capacity of computing resources. To efficiently utilize all
computational resources, the ECS needs to strike a balance between the local users and
the ENs while minimizing energy consumption and latency due to on-site transactions
in high-workload conditions. Additionally, the ECS should exhibit self-adaptability and
self-optimization to handle various situations including prolonged high-demand periods,
sudden bursts of demand, and the presence of malicious user requests in the system.

Figure 1. Regional resource pool model with multiple ECSs, ENs, and users.

To address these challenges, we design an edge contract mechanism based on risk
assessment. As shown in Figure 2, the ECS has a large computing resource capacity denoted
by Q. Upon receiving local user resource requests ( f l) and computing resource requests
from the ENs ( f en), the ECS makes allocations based on its own computing resources
(Q) and the pre-defined local resource allocation limit (L) specified in the contract. The
actual allocated resources for local users and ENs are represented by Fl (shown in blue)
and Fen (shown in white), respectively, with Cp indicating the amount of resources to be
compensated to local users. To maximize the utilization of the resources, the sum of the
allocated resources for local Fl and EN Fen always equals Q in each allocation, ensuring
that all computing resources are allocated.

Figure 2. Edge contracts based on risk assessment of contract value L and several examples.
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The contract, denoted as (L, p), consists of two components including the pre-defined
local request limit (L) and the resource contract price for the ENs (p). The ECS utilizes this
contract to handle different scenarios, efficiently avoiding on-site transaction drawbacks.

In the first scenario, when f l > L and f en > Q − L, it signifies that the total user
demand surpasses the contract limit, and the ENs are also inclined to acquire a substantial
amount of computing resources. To expedite transactions and mitigate the wastage of
resources and the challenges arising from mutual bargaining, we employ the contract
mechanism. Guided by the specified local resource upper limit (L) in the contract, we
allocate LL resources to the local users and Q− L resources to the ENs. This allocation
strategy ensures efficient and swift trading to prevent the drawbacks of resource wastage
and negotiation challenges among the parties involved.

In the second scenario, when f l > L and f en < Q − L, it implies that due to the
contract limits, the ECS has only allocated its resources to local users, yet ENs do not have
as much demand at the contract price (p). In such cases, the contract becomes less effective
due to the mismatch between user demands and the allocated resources. In this case, the
ECS updates the contract (L∗, p∗) based on the risk measurement, where the new local
resource limit L∗ < f l. The ENs evaluate the new contract price p∗ and generate a new
computing resource demand f en∗. If f en∗ > Q− L∗, similar to the first scenario, the ECS
allocates f en∗ resources to the ENs and the remaining to local users, ensuring that the ENs
obtain the desired computing resources. Meanwhile, local allocation remains the same
based on the original contract.

In the third scenario, when f l < L and f en > Q− L, the situation arises where the
demand for computing resources from local users ( f l) does not exceed the contract’s upper
limit (L), but the ENs desire a substantial amount of computing resources. It is prioritized to
satisfy the local users’ needs. If the requests from the ENs have not reached the upper limit
Q− f l, on-site transactions can be conducted based on the contract avoiding additional
consumption. Ultimately, the local users receive max( f l, Q− f en) resources, while the ENs
are allocated min(Q− f l, f en) resources.

In the fourth scenario, when f l < L and f en < Q− L, both local users and ENs are
requesting only a small amount of the computing resources resembling a low-workload
environment. Generally, this situation is rarely encountered in high-workload systems. In
this situation, the contract is ineffective, and the ECS needs to re-establish a new contract
similar to the second scenario. By determining risk measurements, a new contract limit L∗

(L∗ < f l) can be obtained, and a new contract and resource allocation can be formulated as
in the second scenario.

In conclusion, with the impact of the contract mechanism (L, p) or (L∗, p∗) in each
scenario, the ECS allocates Fl = max(min(L, f l), Q− f en) resources to local requests, and
the ENs can purchase Fen = min(max(Q− L, Q− f l), f en) resources. Based on this contract
mechanism, the RACA algorithm is developed, which will be further detailed in next section.

Table 2. Notations and descriptions

Notations Descriptions
I, J, K Sets of users, ECSs, and ENs
i, j, k Indices for users, ECSs, and ENs

locali,j Subscription of Useri to ECSj
locali,k Subscription of Useri to ENk
subj,k Subscription of ENk to ECSj

Si Data generated by Useri
ui , σi Wiener process drift and volatility of Useri

αi Task request rate of Useri
Dli Task request amount of Useri
Dli,j Task request amount from Useri to ECSj
λli Expected task completion time of Useri
plj Unit gain for handling local tasks by ECSj
pj Unit price of computing resources

cpj Unit price of compensatory resources
f lj, f enj Local/EN computing resource requests to ECSj
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Table 2. Cont.

Notations Descriptions
Flj, Fenj Final resource allocation by ECSj to local/EN

UEj, UNk Final revenue of ECSj/ENk
Dtotalk Local task volume of ENk

qlk Computing resources held by ENk
plk Unit gain after ENk saves time

Wj,k Channel bandwidth between ENk and ECSj
Pj,k Transmission power between ENk and ECSj
Hj,k Channel gain between ENk and ECSj
ωj,k Loss weight between ENk and ECSj
Ej,k Energy loss between ENk and ECSj

Uui,j Revenue contribution of Useri to ECSj
λuj Threshold for acceptable contribution increase
Ri,j Risk of Useri for ECSj
λrj Threshold for acceptable risk for ECSj

3.2. User Model

The unpredictable nature of the task requests from edge devices received by the ECS
at different times poses significant challenges for the ECS to devise contracts and promote
future transactions. In this subsection, we start with a user model to predict the quantities
of future user task requests.

We assume that the data generated by each user, denoted by S, follow a log-normal
distribution and the variation in the user exhibits Markovian properties. In a relatively
stable system, the variation in data quantities follows a generalized Wiener process. Hence,
the rate of change of data quantity with time can be expressed as follows:

dS = µ · S · dt + σ · S · dz, dz = ϵ
√

dt (1)

where ϵ ∼ N(0, 1) represents the standard Wiener process and µ and σ are the drift and
volatility coefficients of the Wiener process, respectively.

Considering Dl as the computational workload generated by a user which will request
computational resources from either the ECS or an EN depending on the specific physical
location of the user, we have:

Dl = αln S (2)

where α ∼ U(A, B) represents the task request rate, following a uniform distribution,
indicating the ratio of data generation to task requests during system operation. Let ST be
the data quantity at time T. Then, the computational workload generated by the tasks at
time T, denoted as DlT , is given by:

DlT = αlnST (3)

where Dl0 represents the initial computational workload and S0 represents the initial data
quantity at the user. They are related as follows:

Dl0 = αlnS0 (4)

According to the theory of Ito processes [24], we can obtain the expression
d(Dl) = α

(
u− 1

2 σ2
)

dt + ασdz, which still satisfies the properties of a Wiener process.
For the detailed derivation process, please refer to the Appendix A. We can express (3) as:

DlT = Dl0 + d(Dl)

= αlnS0 + d(αlnS)

= αlnS0 + α

(
u− 1

2
σ2
)

dt + ασdz

(5)
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Furthermore, we can obtain the mean and variance of the quantity DlT as follows:

E
(

DlT
)
= αlnS0 +

(
u− 1

2
σ2
)

αT (6)

Var
(

DlT
)
= α2σ2T (7)

where E(DlT) represents the mean of DlT and Var(DlT) represents its variance. The ECS
can utilize this process to predict the local workload variation and assess the computational
efficiency risks of each user, which will be further elaborated upon in the risk assessment
of contracts.

3.3. ECS Revenue Model

For ∀j ∈ J, the local computational resource requests f lj, received by ECSj, can be
represented as:

f l j =
I

∑
i=1

Dli,j

λli
locali,j (8)

where λlj represents the expected task completion time of Useri. If the completion time
exceeds this limit, the task efficiency will decrease. Dli,j represents the computational
request quantity from Useri received by ECSj. locali,j ∈ {0, 1} is a binary variable,
where locali,j = 1 indicates that Useri is a local user subscribing to ECSj. The final
amount of computational resources allocated by ECSj to local users, Flj, is calculated
as Flj = max(min( f lj, L), Q− f enj). The f enj represents the total computational resources
that ENs need to purchase from ECSj.

Let plj represent the unit benefit that ECSj gains from processing tasks for Useri. Then,
the local revenue Ulj for ECSj is given by:

Ul j = Fl j pl j (9)

Now, let us consider all ENk nodes denoted by K = {1, 2, . . . , K}. The total computa-
tional resources f enj requested by ECSj from ENs can be represented as:

f enj =
K

∑
k=1

f j,ksubj,k (10)

where f j,k represents the amount of computational resources ENk requests from ECSj and
subj,k ∈ {0, 1} is a binary variable, where subj,k = 1 indicates that ECSj is a subscribing
node for ENk.

We assume pj is the unified price set by ECSj for the computational resources allocated
to each ENk node. Then, the revenue Usj received by ECSj from ENs is given by:

Usj = Fenj pj (11)

where Fenj represents the actual total amount of computational resources purchased by
ENs, and its specific allocation strategy is determined by the edge contract, which satisfies
Fenj = min(max(Q− f lj, Q− L), f enj).

By this model, the pre-signed resource contracts are adaptive to reduce connection
failures, transaction failures, inadequate information timeliness, and high communication
overhead during communication. The contract specifies the local resource upper limit L for
each transaction. If the local request f lj exceeds the upper limit L, ECSj is responsible for
completing the part that should be performed locally. However, if the computational task is
not completed or delayed, ECSj needs to compensate the local users. Considering that after
the final allocation, if there are remaining computational resources, i.e., Q− f enj > L, the
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final computational resources allocated to the local users Flj are given by Flj = Q− Fenj.
Then, the compensation Clj provided by ECSj to its local subscribers can be calculated as:

Cl j = max
(

f l j − Fl j, 0
)

cpj (12)

where cpj represents the unit price that ECSj compensates to local users for each unit of
computational resources. The compensation unit price cpj should not exceed the local
request benefit plj. If the actual computational resources allocated to the local users Flj are
greater than their requested amount f lj, then ECSj does not need to compensate its local
users, i.e., Clj = 0.

Therefore, the final revenue UEj of ECSj is given by:

UEj = Ul j + Usj − Cl j (13)

3.4. EN Revenue Model

For each ENk, ∀k ∈ K, the total local request received from Useri is represented as
Dtotalk, and it is given by:

Dtotalk =
I

∑
i=1

Dli,klocali,k (14)

where Dli,k represents the local request received by ENk from Useri and locali,k ∈ (0, 1) is a
binary variable, where locali,k = 1 indicates that Useri is a local user subscribing to ENk.

Let plk represent the unit benefit that ENk gains by using computational resources
purchased from ECSj compared to processing users’ tasks using its own computational
resources. The unit benefit plk should be higher than the unit price pj,k, at which ENk
purchases computational resources from ECSj, i.e., plk ≥ pj,k. Then, the computation
revenue Ubk for ENk is given by:

Ubk = (
Dtotalk

qlk
− Dtotalk

qlk + ∑J
j=1 f j,ksubj,k

)plk (15)

where qlk represents the computational resources that ENk possesses and qlk should be
less than the computational resources of ECSj, i.e., qlk < Qj. f j,k represents the amount of
computational resources ENk requests from ECSj. By the model, ENk can only make one

request to an ECSj in the same round, i.e., ∑J
j=1 subj,k ≤ 1. If ENk can complete user tasks

without requesting assistance, then ENk does not send a request. In other words, when

∑I
i=1

Dli,k
λli

locali,k ≤ qlk, f j,k = 0.
The cost Csk for ENk to subscribe computational resources from ECSj is given by:

Csk =
J

∑
j=1

f j,k pjsubj,k (16)

When ENk and ECSj conduct resource transactions, they will incur additional delay
consumption and energy consumption. The delay consumption Ack for ENk is given by:

Ack =
J

∑
j=1

 f j,k

Wj,klog
(

1 + Pj,k Hj,k

) + Ej,k

subj,kωj,k (17)

where Wj,k represents the communication bandwidth. Pj,k represents the transmission
power. Hj,k represents the channel gain, which includes fast fading gain and slow fading
gain. Ej,k represents additional fixed losses, and ωj,k represents the weight of the loss.

Therefore, the final revenue UNk for ENk is given by:

UNk = Ubk − Csk − Ack (18)
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3.5. Contract Risk Assessment

In the proposed system, risks primarily arise from the uncertainty associated with the
total local request, denoted as f lj, and the prices of computing resources pj, determined by
the game between ECSs and ENs and the uncertainty of the resource purchase quantity of
ENs, represented as f j,k Since the ECS, as the contract designer, cannot predict the resource
purchase quantity of ENs, the prices pj and resource purchase quantities ( f j,k) will be
determined through a game algorithm. However, the ECS can utilize the local user requests
fi,j to formulate the contracts.

Specifically, in order to assess the risk brought by the stochastic nature of local requests
in future transactions, it is necessary to predict the future contribution of revenue from
each local user. Let us denote the number of local users who apply for computing resources
from ECSj as Nj = ∑I

i=1 locali,j. Then, the revenue contribution UuT
i,j of Useri to ECSj at

time T is represented as:

UuT
i,j = min

(
L
Nj

, f T
i,j

)
pl j −max

(
f T
i,j −

L
Nj

, 0

)
cpj (19)

Here, ECSj allocates a computing resource upper limit, L, to Useri, where L
Nj

represents

the average resource upper limit that each participating user can be allocated. f T
i,j denotes

the computing resources requested by Useri at time T. The term min( L
Nj

, f T
i,j)plj represents

the revenue that Useri brings to ECSj at time T, while max( f T
i,j −

L
Nj

, 0)cpj represents the

compensation that ECSj pays to Useri at time T. When f T
i,j <

L
Nj

, meaning that the requested

computing resources f T
i,j of Useri do not exceed the average resource upper limit, there is

no need for compensation, i.e., max( f T
i,j −

L
Nj

, 0)cpj = 0.
In the contract formulation process, ECSj assumes that each user can be allocated

the requested computing resources, i.e., L = f l0
j . Therefore, the upper limit of computing

resources that each user can be allocated, denoted as f 0
j , is calculated as f 0

j =
f l0

j
Nj

. Based

on the value of f T
i,j, the requested computing resources of Useri at time T, we can rewrite

Equation (19) as:

UuT
i,j =

 f T
i,j pl j, 0 ≤ f T

i,j ≤ f 0
j

f 0
j pl j −

(
f T
i,j − f 0

j

)
cpj, f 0

j < f T
i,j

(20)

Furthermore, for ECSj in the initial state, it cannot predict the specific request quantity
f T
i,j in the future. Thus, we represent the computing resource quantity requested by Useri at

time T, E( f T
i,j) = E(DlT

i,j)/λli, where E( f T
i,j) is the expected value. And E(DlT

i,j) represents

the expected value of the local task request. According to Equations (4) and (6), UuT
i,j can

be written as:

UuT
i,j =


E
(

DlT
i,j

)
λli

pl j, 0 ≤
E
(

DlT
i,j

)
λli

≤ f 0
j

f 0
j pl j −

(
E
(

DlT
i,j

)
λli

− f 0
j

)
cpj, f 0

j <
E
(

DlT
i,j

)
λli

(21)
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UuT
i,j =



αi
lnS0

i,j+(ui− 1
2 σ2

i )T
λli

pl j,

0 ≤ αi
lnS0

i,j+(ui− 1
2 σ2

i )T
λli

≤ αi
lnS0

j
λli

αi

(
lnS0

j
λli

(
pl j + cpj

)
−

lnS0
i,j+(ui− 1

2 σ2
i )T

λli
cpj

)
,

αi
lnS0

j
λli

< αi
lnS0

i,j+(ui− 1
2 σ2

i )T
λli

(22)

where the task request quantity α follows a uniform distribution αi ∼ U(A, B).
To mitigate the potential loss risk in each transaction, we incorporate risk assessment

into the contract formulation process. We define the risk probability Ri,j as the probability

that the expected revenue UuT
i,j of ECSj is less than an acceptable threshold value λuj.

Therefore, the expression for risk probability Rj is given by:

Ri,j = Pr
(

UuT
i,j < λuj

)
(23)

A higher revenue risk probability Ri,j indicates a greater level of risk for ECSj from
Useri. For ease of representation, let us define R as:

R =


lnS0

i,j+(ui− 1
2 σ2

i )T
λli

pl j, 0 ≤ lnS0
i,j +

(
ui − 1

2 σ2
i

)
T ≤ lnS0

j
lnS0

j
λli

pl j −
lnS0

j−lnS0
i,j−(ui− 1

2 σ2
i )T

λli
cpj,

lnS0
j < lnS0

i,j +
(

ui − 1
2 σ2

i

)
T

(24)

Then, the expression for Ri,j can be written as:

Ri,j = Pr
(

UuT
i,j < λuj

)
=


0, λuj ≤ AR
λuj−AR
(B−A)R , AR < λuj < BR

1, BR ≤ λuj

(25)

Finally, the contract L is formulated as:

L =
I

∑
i=1

fi,jlocali,jLri,j (26)

Here, Lri,j is a binary variable indicating whether the risk probability Ri,j for ECSj
from Useri satisfies the acceptable risk threshold λrj. Specifically, when Ri,j > λrj, then
LrT

i,j = 0; when Ri,j ≤ λrj, then Lri,j = 1.

4. Problem Description

In this section, we describe the transaction details between the ECS and the ENs
along with some constraints and challenges they face. We prove that the Stackelberg
game subproblem is a strict convex optimization problem and use the Lagrange multiplier
method to find the solution to the subproblem for the game. By using backward induction,
we obtain a new Stackelberg game upper-level subproblem and prove it to be a strict
convex optimization problem as well. By maximizing their respective expected utilities, we
determine the resource quantities and prices for the ECSs and the ENs, ultimately obtaining
the price update function for the ECS and the request update function for the ENs. Finally,
we demonstrate the existence of a Nash equilibrium point in the game.

4.1. Stackelberg Game Model

The Stackelberg game model is used to describe the interactions between a leader
and a follower. By the model described in the previous section, the ECS with more edge
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computing resources acts as the leader to provide computing resource support to the users
and the ENs subscribing to it. The ECS influences the behavior of other participants by
adjusting the resource prices. The ENs, on the other hand, are depicted as followers. They
have local users subscribing to their computing resources but often need to request some
computing resources from the ECS to better complete their services. As followers, the ENs
observe the ECS’s resource pricing status to decide on the amount of computing resources
they would like to purchase.

According to Equation (13), we can describe the profit strategy of the leader ECS as follows:

[P1] : argmax
pT

UE( f , p) = argmax
pT

J

∑
j=1

Ul j + Usj − Cl j (27)

s.t.
J

∑
j=1

locali,j ≤ 1, ∀i ∈ I (28)

0 ≤ ∥p∥∞ ≤ pmax (29)

Ri,j ≤ λrj, ∀i ∈ I, j ∈ J (30)

where f = { f j,k|j ∈ J, k ∈ K} represents the amount of resources allocated to the ENs and
p = {pj|j ∈ J} represents the vector of resource prices. The resource price is limited by an
upper bound pmax, and Ri,j must be less than or equal to an acceptable risk level λrj for
each user and the ECS.

According to Equation (18), we can describe the profit maximization problem for the
leader ECS as follows:

[P2] : argmax
f

UN( f , p) = argmax
f

K

∑
k=1

Ubk − Csk − Ack (31)

s.t.
I

∑
i=1

locali,k ≤ 1, ∀k ∈ K (32)

J

∑
j=1

subj,k ≤ 1, ∀k ∈ K (33)

0 ≤ ∥ f ∥∞ ≤ f max (34)

K

∑
k=1

f j,ksubj,k ≤ max
(

Qj − f l j, Qj − Lj

)
, ∀j ∈ J (35)

where f = { f j,k|j ∈ J, k ∈ K} represents the amount of resources allocated to the ENs and
p = {pj|j ∈ J} represents the vector of resource prices. The constraints (34) and (35) impose
an upper limit on the amount of computing resources that ENs can request, ensuring that
each EN’s application does not exceed the allowed limit f max and the total requested
resources by all ENs do not exceed the remaining computing resources of the ECS after
delivering to local users.

4.2. Subgame Model Solution

Theorem 1. [P2] is a strictly convex optimization problem with at most one optimal solution.

Proof. If the feasible set R is convex and (31) is a strictly concave function with respect to
f , then [P2] is a strictly convex optimization problem with at most one optimal solution.
The feasible set R is a closed and bounded subset of R, making it convex. (16) and (17)
are continuous functions, and (15) is continuous over the feasible set. Hence, (31) is a
continuous function with respect to f . To determine the convexity of (31), we examine its
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Hessian matrix. Taking the partial derivative of (31) with respect to f , where f = { f j,k|j ∈ J,
k ∈ K}:

∂UN( f , p)
∂ f j,k

=
Dtotalk plksubj,k(
qlk + f j,ksubj,k

)2

− pjsubj,k −
subj,kωj,k

Wj,klog
(

1 + Pj,k Hj,k

) (36)

∂2UN( f , p)(
∂ f j,k

)2 = −
2Dtotalk plk

(
subj,k

)2

(
qlk + f j,ksubj,k

)3 < 0 (37)

∂2UN( f , p)
∂ f j,k∂ f j′ ,k

=
∂2UN( f , p)
∂ f j,k∂ f j,k′

= 0 (38)

We observe that the main diagonal elements of the Hessian matrix are negative, which
means that the Hessian matrix is negative definite to make the original function be a strictly
concave function with respect to f . Thus, Theorem 1 is proven.

In order to obtain the optimal requested quantity for ENs, they need to obtain the
latest resource price p from their leader, ECS. Since ENs cannot directly determine the
resource price, they can only follow the edge computing resource prices set by the leader to
formulate their purchasing strategy. Therefore, we use the method of Lagrange multipliers
to construct the Lagrangian function L( f , λ) for [P2]. Then, the maximization problem for
ENs’ maximum revenue becomes:

L( f , λ) = max
(

UN − λ
J

∑
j=1

K

∑
k=1

f j,ksubj,k

−max
(
Qj − f lj, Qj − Lj

)) (39)

From this, we construct the dual problem:

ming(λ) = in f L( f , λ) (40)

s.t.λ > 0 (41)

According to the Karush–Kuhn–Tucker (KKT) conditions, we obtain the optimal solu-
tion satisfying the original convex optimization problem [P2], where f ∗ = { f ∗j,k|j ∈ J, k ∈ K}:

f ∗j,k =min

(
max

(
0,√√√√ Dtotalk · plk

pj + λ +
ωj,k

Wj,k log(1+Pj,k Hj,k)

− qlk

)
, f max

) (42)

Then, we determine the update strategy for λ as:

λ(t + 1) = λ(t) + σ
∂g(λ)

∂λ
(43)

where σ is the step size determined by using the Armijo method [25].
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By backward induction, we substitute the optimal solution f ∗ determined by ENs at
the current value of λ into [P1]. It leads to a new problem:

[P3] : argmax
p

UE( f ∗, p)

= argmax
p

J

∑
j=1

subj,k

((
Qj −

K

∑
k=1

f ∗j,k

)
plj+

K

∑
k=1

f ∗j,k pj −max

(
f l j +

K

∑
k=1

f ∗j,k −Qj, 0

)
cpj

) (44)

s.t.
J

∑
j=1

locali,j ≤ 1, ∀i ∈ I (45)

0 ≤ ∥p∥∞ ≤ Pmax (46)

Ri,j ≤ λrj, ∀i ∈ I, j ∈ J (47)

where p = {pj|j ∈ J}. By backward induction, after the ECS obtains the resource requests
from the follower ENs, it has the knowledge of the total amount of resources to be used.
Then, it adjusts the price of computing resources for a new round, allowing the ECS group’s
revenue to achieve higher expectations.

Theorem 2. Within a feasible region, [P3] is a strictly convex optimization problem.

Proof. Similar to the proof of Theorem 1, the feasible region is a closed and bounded subset
of R, making it a convex set. If [P3] is a strictly concave function with respect to p, then
Theorem 2 holds.

In the feasible region, (44) is a continuous function with respect to p. Let us calculate
the partial derivative of (44) with respect to p. For convenience, we define
C =

ωj,k
Wj,k log(1+Pj,k Hj,k)

, and we have:

∂UE
∂pj

=
K

∑
k=1

subj,k

(√
Dtotalk plk

(
pj + λ + C

)− 1
2

×
(

1−
pj − plj − cpj

2
(

pj + λ + C
))− qlk

) (48)

∂2UE(
∂pj
)2 =

K

∑
k=1

subj,k
√

Dtotalk plk
(

pj + λ + C
)− 3

2

×

3
(

pj − plj − cpj

)
4
(

pj + λ + C
) − 1

 < 0

(49)

∂2UE
∂pj∂pj′

= 0 (50)

From the Hessian matrix of [P3], it is negative definite, indicating that (44) is a strictly
concave function with respect to p. Thus, the proof of Theorem 2 is complete.

Given the updated function for the quantity of the resources requested by ENs (42),
we set ∂UE

∂pj
= 0 for [P3] within the feasible region and rearrange to obtain the new price

updating function:
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p∗j =min

max

plj + cpj −
∑K

k=1 f j,ksubj,k

∑K
k=1

∂ f j,k
∂pj

subj,k

, 0

, pmax


=min

(
max

( 2∑K
k=1 f j,ksubj,k

∑K
k=1

√
Dtotalk · plk

(
pj + λ + C

)− 3
2 subj,k

+ plj + cpj, 0
)

, pmax
)

(51)

where C =
ωj,k

Wj,k log(1+Pj,k Hj,k)
.

4.3. Nash Equilibrium Proof

Based on the problem functions (31) and (44), we construct the standard form of the game:

G = N, P, F, UE, UN (52)

N = J ∪ K and J ∩ K = ∅ (53)

The strategy spaces P and F for both players are defined as follows:

P = ∏
j∈J

Pj (54)

F = ∏
j∈J

∏
k∈K

Fj,k (55)

where Pj and Fj,k represent individual strategy sets. Pj represents the strategy set for ∀j ∈ J,
with 0 ≤ pj ≤ pmax. Fj,k represents the strategy set for ∀j ∈ J, k ∈ K, with 0 ≤ f j,k ≤ f max.
Here, pj and f j,k represent individual action strategies.

The payoff functions UE and UN for both players are defined as follows:

UE(p, f ) : P× F → R2, max∑
j∈J

Ul j + Usj − Cl j (56)

UN(p, f ) : P× F → R2, max ∑
k∈K

Ubk − Csk − Ack (57)

where pj represents the action strategy for leader j, and the strategy vector for all leaders is
represented as p = (p1, p2, ..., pJ). For ∀k ∈ K, the action strategy chosen by follower k is
represented as fk = ( f1,k, f2,k, ..., f J,k), and the strategy vector for all followers is represented
as f = ( f1, f2, ..., fK).

When follower k is given with the leader’s strategy vector p∗, its optimal strategy fk∗
is determined as follows:

UN(p∗, f ∗k ) = max
fk∈Fk

UN(p∗, fk) (58)

When leader j is given with the follower’s strategy vector f ∗, its optimal strategy pj∗
is determined as follows:

UE

(
p∗j , f ∗

)
= max

pj∈Pj
UE
(

pj, f ∗
)

(59)

Therefore, if (p∗, fk∗) is a Nash equilibrium strategy, then ∃(p∗, fk∗) ∈ P× F such that (58)
and (59) hold. According to the Kakutani fixed-point theorem, we have Theorem 3 as below.

Theorem 3. If the strategy spaces P and F are non-empty, compact, and convex, and for a given
f ∗, for ∀j ∈ J, the function UE(pj, f ∗) is non-empty, compact, and convex on Pj. Similarly, for a



Mathematics 2024, 12, 983 17 of 29

given p∗, for ∀k ∈ K, the function UN(p∗, fk) is non-empty, compact, and convex on Fk. Then,
this Stackelberg game model G has an equilibrium solution (p∗, fk∗) ∈ P× F.

Proof. (1) Properties of P and F: It is evident that the strategy spaces P and F are non-empty
since both leaders and followers will make at least one action during the game. Since Pj is
defined as a closed bounded interval on R, i.e., Pj = pj : 0 ≤ pj ≤ pmax, j ∈ J, it follows
that Pj is compact and convex. Similarly, Fk is compact and convex. Since P and F are the
Cartesian products of Pj and Fk, respectively, they are compact and convex.

(2) Given a follower’s strategy f ∗, the optimal strategy set for the leader is non-
empty, compact, and convex: Since P is non-empty, for any given follower’s strategy f ∗,
the leader has at least one strategy to choose from, so it is non-empty. For ∀j ∈ J, the
function UE(pj, f ∗) : P× F → R2 is continuous. Therefore, on the compact set P, there
must exist a maximum and minimum value, which implies that the optimal strategy set
UE(pj, f ∗) is compact. As UE is a continuous function, for any two strategies pj1 ∈ Pj and
pj2 ∈ Pj, any linear combination pj3 = µpj1 + (1− µ)pj2 , µ ∈ [0, 1], will also belong to this
optimal strategy set. That means UE(pj1 , f ∗) ≤ UE(p∗j , f ∗), UE(pj2 , f ∗) ≤ UE(p∗j , f ∗). Then,
UE(pj3 , f ∗) ≤ UE(p∗j , f ∗). Hence, the optimal strategy set is convex.

(3) Given a leader’s strategy p*, the optimal strategy set for followers is non-empty,
compact, and convex. The proof is consistent with (2).

Therefore, this Stackelberg game model G has a Nash equilibrium strategy (p∗, fk∗) ∈
P× F.

5. Algorithm Analysis

In high-workload environments, the ECS needs to find an optimal strategy for allocat-
ing computing resources among its subscribed local users and ENs to maximize resource
utilization. At the same time, the ECS-EN game model requires determining suitable re-
source request quantities and prices. Traditional multi-objective optimization algorithms such
as weighted methods and multi-objective genetic algorithms are difficult to apply in this
model. Reinforcement learning-based algorithms may result in higher energy consumption
and computational delays, which are not suitable for high-workload environments. We need
the ECS to assess the risk of transactions and use it as a benchmark for contract signing. The
goal is to ensure that the local subscribed users and ENs can avoid issues such as connection
failures, transaction failures, inadequate information timeliness, and excessive communication
overhead during the contract period. Algorithm 1 is the implementation of the RACA.

Specifically, Algorithm 1 starts by obtaining the subscription relationships locali,j, locali,k,
subj,k based on the positional information of all ECSs, ENs, and users in the region. By
this algorithm, each user can only purchase resources from the ECS or EN they have sub-
scribed to. After obtaining the user’s task amount Dli under the generalized Wiener process
(Step 2), the computing resource requests received by the ECS from its subscribed local
users and ENs will be calculated (Steps 3, 4). Each leader ECS then processes the requests it
holds based on risk contracts (Steps 6, 9, 13, 16). In particular, when f enj < Qj − Lj, the
contract is considered to be unreasonable, because the follower ENs will not buy more
computing resources than they intend. In this case, re-measurement on the risk for the
users will be conducted to obtain a new contract Lj∗ (Steps 17, 18). Using the Stackelberg
game, the new computing resource request { f enj∗, pj∗} for the ENs at the new contract
price pj∗ set by the ECS can be obtained.

In the context of contract changes, after obtaining new contracts, both the leader ECS
and the follower ENs need to reach a consensus through one round of communication to
reach the Nash equilibrium. As we have proven the existence of the Nash equilibrium
in this model, it implies that leaders and followers require one round of communication
to achieve the Nash equilibrium point. Algorithm 2, presented below, demonstrates the
process of finding the Nash equilibrium point through iterative updates of f j,k, λj, pj.
During the game process, if the current prices remain consistent with the prices from 10 and
20 rounds ago (Step 6), it is assumed that the algorithm has converged to the equilibrium
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solution. Simulation experiments have demonstrated the superior performance of the
game, with convergence usually achieved within 20 rounds.

Algorithm 1 Risk Assessment Contract Algorithm (RACA).

Input: I, J, K, Si, λli, Qj, λuj, cpj, plj, λrj, qlk, plk,
ωj,k, Wj,k, Pj,k, Hj,k, Ej,k, f max, pmax, A, B
Output: Flj, Fenj, Clj, Lj
Initialization:
Assign subscription information locali,j, localik, subj,k for i, j, k.
User data sets Si and randomly generates user task request rates αi from the uniform
distribution [A, B].
Initialize prices pj ← cpj and contract parameters Flj, Fenj, Clj, Lj ← ∅.
Dli ← αi, Si // User’s task amount.
f lj ← Dli, locali,j, λli // Calculate ECS’s local computing resource requests.
f enj ← Dli, localik, plk, pj, qlk, ωj,k,
Wj,k, Pj,k, Hj,k, Ej,k, subj,k // Calculate the computing resource requests received by the
ECS from ENs.
for j = 1 to J do

if locali,j ∪ subj,k = ∅ then
Go to Step 5 // No subscribed users or ENs.

end if
if locali,j = ∅ then

Fenj ← min(Fenj, Qj)// No subscribed users but has ENs.
Go to Step 5

end if
if subj,k = ∅ then

Go to Step 21 // No subscribed ENs but has users; directly process according to
contract.

end if
if f enj < Qj − Lj then

Ri,j ← Si, λli, A, B, plj, ωj,k, Wj,k, Pj,k, Hj,k,
Ej,k, λuj, locali,j // Risk measurement for user.
Lj ← Ri,j, λrj, Dli, Qj, λli, locali,j // Calculate the new contract.
f enj, pj ← Calculate the new computing resource request f enj∗, pj∗ using Stackel-
berg game.

end if
Flj, Fenj, Clj ← Lj, f lj, Qj, f enj // Actual allocation based on the contract.
if Flj = Qj then

Clj ← ∅
end if

end for

Algorithm 2 Finding Nash equilibrium between ECS and ENs based on convex optimization.

Input: J, K, Dtotalk, qlk, plk, f enj, pj, cpj, plj, ωj,k, Wj,k,
Pj,k, Hj,k, Ej,k, subj,k, f max, pmax
Output: f ∗j,k, p∗j
Initialization: λ← ∅
while Nash equilibrium point not found do

Update resource price p∗j (t) based on formula (51).
Update Lagrange multiplier λ∗j (t) based on formula (43).
if p(t) = p(t− 10) and p(t) = p(t− 20) then

Exit while loop
end if
t← t + 1

end while
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6. Simulation Results

In this section, we evaluate the performance of the Risk Assessment Contract Algo-
rithm (RACA) under the risk contract mechanism for ECS resource allocation and the game
algorithm for ECS pricing and EN resource request volume. We provide some explanations.
We utilized the publicly available MAWI dataset for Internet traffic tracking trajectories
(https://mawi.wide.ad.jp/mawi/ditl/ditl2018-G/, accessed on 20 November 2023). These
traces have been demonstrated to exhibit a log-normal distribution [26–28] and comprise
IP-level traffic observed in favorable positions within WIDE from 14:00 to 14:15 each day.
The traces include anonymized IP and MAC headers. We randomly selected 10 traces as
users and divided each trace into 100 time slots, as depicted in Figure 3. Each trace consists
of 70 million packets, with an average capture data rate of 422 Mbps. The monitored link
capacity is set to 1 Gbps. The number of data generated by users, denoted as S, follows
a log-normal distribution, and the variations at the user end nodes are assumed to be
Markovian. In a relatively stable system, changes in data volume follow a generalized
Wiener process. Most of the traffic remains stable over time. To demonstrate the special
case of sudden changes in data traffic, as illustrated by User4 in Figure 3, we ensured the
presence of one data stream with high variance among the 10 randomly selected traffic
datasets to reflect a more realistic traffic environment.

Figure 3. Wiener process data plot of 10 randomly, log-normally distributed datasets divided into
100 time slots.

The location distribution is based on the network topology optimization dataset
provided by China Mobile (https://jiutian.10086.cn/open, accessed on 20 November 2023),
which includes network topology connectivity data for three cities and element attribute
data for a period of time. This dataset contains 20 sets of element data and 1 set of
topology connection data. For the topology connection data we used, each piece of location
information includes longitude, latitude, and different element capacity values, with an
element topology capacity unit of 1 Gbps. The selected distance between each element
is less than or equal to 500 m. If the distance were too large, it would not be consistent
with the real-world edge environment studied in this paper. By combining the traffic
dataset with the element topology relationship data, we reconstructed the real network

https://mawi.wide.ad.jp/mawi/ditl/ditl2018-G/
https://jiutian.10086.cn/open
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environment and topology relationship. We randomly selected 2 ECSs, 3 ENs, and 10 users
from these nodes, with all edge devices and user locations randomly distributed within
the region. Their binding relationships were determined by the initialization algorithm
based on positional relationships. All users were preferentially bound to the nearest EN or
ECS and existed as subscribers to them. The computing resources of edge devices were
consistent with the capacity of the network elements. Communication was conducted using
WiFi technology, with data referenced from the documents [23,29–35]. Refer to Table 3 for
specific parameter details.

Table 3. Main simulation parameters.

Parameter Value
Expected task completion time λlj 1 s

Transmission bandwidth 30 Mhz
Transmit power 150 mW

Channel gain 5 DB
ECS computing resource Qj 20G CPU cycles/s
ECS compensation price cpj 1
ECS local task unit value plj 1
Acceptable risk threshold λrj 0.5
EN computing resource qlk 4G CPU cycles/s

EN task value per second plk 5
Delay loss value Cj,k 1

Resource purchase and pricing [99 G CPU cycles/s, 50 ]upper limits fmax , pmax
Task request rate limits A, B [0.2; 0.6]

6.1. Performance Evaluation of Risk Assessment

In the edge contracts proposed by us, risk assessment plays a crucial role. The risk
assessment for each edge node directly affects the updating of the contract value L. Different
contract values L represent different allocation methods faced by ECSs when handling
resource allocation. Therefore, we describe the impact of risk assessment on edge contracts
by examining the system’s final revenue and energy consumption. To investigate the impact
of risk assessment on the system, we designed several methods to obtain the contract value
L: three fixed contract values (L5, L10, L15), obtaining the contract value L without risk
assessment (NoRiskL), and obtaining the contract value L through risk assessment (RiskL)
as proposed by us. The fixed contract values (L5, L10, L15) were determined according to
the proportion of ECS computing resources. Obtaining the contract value L without risk
assessment (NoRiskL) refers to dividing the ECS computing resource Q based on the ratio
of the computing resources requested by each user and EN. All methods are based on game
algorithms, and the subsequent allocation of EN resources adopts a proportional allocation
method. The results are shown in Figures 4–6.

We compared the total revenue of the ECS (Figure 4a), total revenue of the ENs
(Figure 4b), and total revenue of the system (Figure 4c) with the number of transactions.
Here, the total revenue of the system represents the sum of the total revenue of the ECS
and EN. In Figure 4a, we can observe that with the increase in the number of transactions,
the edge contracts with risk assessment consistently outperform others in ECS revenue.
Figure 4b demonstrates that with the increase in the number of transactions, due to the
limitation of local users’ access to computing resources, the methods with fixed contract
values perform better in the revenue part of EN. This indicates that edge contracts with
risk assessment are more inclined towards the revenue performance of EN. On the other
hand, as shown in Figure 4c, in terms of the total revenue of the system, dynamic contract
values L perform better than fixed contract values L. Moreover, the contract values obtained
through risk assessment outperform the contract values allocated proportionally in terms
of the total revenue of the system.
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(a) The benefit of the ECS

(b) The benefit of the EN (c) The benefit of the system

Figure 4. Comparison and evaluation of risk assessment under different transaction times.

Figure 5 depicts the performance comparison evaluation of risk assessment and other
methods under different ECS computing resources Q. From Figure 5a–c, we can observe
that under conditions of insufficient ECS computing resources or high load in the edge
resource pool, risk assessment can effectively improve the revenue of the ECS and the
total revenue of the system. In Figure 5a, as ECS computing resources gradually become
sufficient, we observe that the performance of risk assessment and other methods in ECS
revenue begin to converge, indicating that the risk assessment method performs better
under high load conditions. Figure 5b shows that as the computing resources Q increase,
the impact on the total revenue of the EN is not significant, as the contract mechanism itself
ensures the EN’s resource acquisition capability. In terms of the total revenue of the system
(Figure 5c), risk assessment demonstrates better performance in assisting the system to
achieve revenue effects under various computing resource scenarios.

For edge devices, limited energy is a significant characteristic distinguishing them
from traditional cloud devices. Using algorithms with lower computational consumption
implies that edge devices can have longer battery life in adaptive environments. In this
section, we mainly investigate the energy consumption of the three methods discussed in
the previous section during computational allocation. Because it is difficult to quantify the
additional energy expenditure and battery consumption during the transaction process
(for example, estimating the battery consumption for each quotation), we use the number
of game rounds to describe it [20]. As shown in Figure 5d, under the condition of other
parameters being unchanged, increasing the computing resource capacity Q of the ECS will
also increase the energy consumption of the risk assessment method until, eventually, the
energy consumption of all methods becomes consistent. When ECS computing resources are
low or the load is particularly high, dynamic contract values are more energy-saving than
static contract values. Among fixed contract values, L15 is more energy-efficient than other
fixed contract values, indicating that an appropriate contract value L can effectively reduce
resource waste. The risk assessment method has lower energy consumption compared to
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other methods, indicating that contract values obtained through risk assessment can help
ECSs reduce energy consumption during allocation, eliminating the process of ECS and
EN bargaining to find the best allocation method. When the ECS’s computing resources
increase or it is in a low-load situation and the ECS’s computing resources are sufficient to
meet all nodes, the ECS increases the number of game rounds to pursue better performance,
and energy consumption tends to be consistent.

(a) The benefit of the ECS (b) The benefit of the EN

(c) The benefit of the system (d) The amount of energy loss

Figure 5. Comparison and evaluation of risk assessment under different ECS computing resources.

Figure 6 illustrates the performance of the ECS, the EN, the system, and the losses
under different EN profit efficiencies in the risk assessment method. As shown in Figure 6b,
with the increase in the EN’s unit profit, the system tends to allocate more computing
resources to the EN. There is no significant difference between the risk assessment method
and other methods in terms of the EN’s profit, but as shown in Figure 6a,c, the risk
assessment method outperforms other methods in terms of the ECS’s profit and overall
system profit. In Figure 6d, as the EN’s profit increases, the energy loss under fixed contract
values also increases, but in some cases, the energy loss may decrease, such as the energy
loss of L15, which first increases and then decreases. This is because fixed contract values
cannot adapt to the changing EN conditions, and different EN unit profits should have
different contract values to adapt. This leads to the possibility of both increasing and
decreasing energy losses under fixed contract values. However, the RiskL and NoRiskL
methods formulate contract values more suitable for different EN unit profits. Finally, we
can also see that the risk assessment method significantly reduces energy consumption
compared to all other methods.



Mathematics 2024, 12, 983 23 of 29

(a) The benefit of the ECS (b) The benefit of the EN

(c) The benefit of the system (d) The amount of energy loss

Figure 6. Comparison and evaluation of risk assessment under different EN unit profits.

6.2. Performance Evaluation of RACA

In these experiments, the amount of computing resources purchased by ENs ( f j,k)
from the ECS and the price of computing resources (pj) are determined by a game-theoretic
approach, which is employed by the ENs to allocate computing resources, which are
proportionally distributed, to their subscribed local users. Each game incurs its associated
delays and energy consumption. After determining f j,k and pj for the ECS and ENs,
to address the resource allocation problem between the ECS’s local users and the ENs,
we compare RACA with some of the latest studies incorporating incentive mechanism
designs. However, the models and problems in these works differ from ours, making direct
comparisons challenging. Therefore, we tailored the basic ideas of these algorithms and
carefully designed three comparative mechanisms: GAME + Risk Assessment Contract
Algorithm (RACA) + Equal Share (ES), GAME + Local First (LF) + ES, and GAME + EN
First (EN) + ES. The results are shown in Figures 7–9.

Figure 7 illustrates the distribution of earnings for the three algorithms over 100 transactions.
We compare the ECS’s total revenue (Figure 7a), the EN’s total revenue (Figure 7b), the
system’s total revenue (Figure 7c), and the total revenue of users (Figure 7d). The total
revenue of users consists of three components: revenue from the computational resources
provided by the ECS, compensation revenue from the ECS, and revenue from the computa-
tional resources provided by the EN. In Figure 7a,b, we observe that RACA outperforms
other methods in ECS revenue, while its performance in EN revenue is mostly consistent
with the other two methods, with RACA occasionally falling short compared to EF. It can
be seen that RACA is a distribution method advantageous to the ECS, reducing the energy
and latency costs incurred during the game, enabling the ECS to make faster decisions on
how to allocate computational resources to local users and ENs to maximize ECS’s revenue.
In Figure 7c, the system’s total revenue demonstrates a significant advantage for RACA.
In Figure 7d, although users incur losses exceeding the contract value in RACA, the ECS
provides some compensation to users, and users at ENs receive more revenue. Therefore,
RACA still performs well in terms of user revenue.
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As shown in Figure 8a–c, under unchanged conditions, increasing the computational
resource capacity Q of ECSs will enhance the revenue of both ECSs and ENs. With the
continuous increase in Q, the revenue capability of the RACA algorithm will gradually
become comparable to that of LF and EF. This is because when an ECS has sufficient
computational resources to meet the demands of all ENs and user nodes, the revenue
capabilities of RACA become equivalent. However, in low-computational-resource or high-
load scenarios, RACA demonstrates superior performance in terms of ECS and system
revenue capabilities. Figure 8d illustrates the energy consumption of the three algorithms
under the influence of the ECS’s computational resources. In scenarios of computational
resource scarcity or high loads, the energy consumption of RACA may decrease to zero.
This indicates that in high-load scenarios, RACA tends to directly utilize contracts for
transactions to avoid further resource waste. However, when an ECS’s computational
resources increase or the reduced demands from ENs and users allow the ECS to respond
adequately, RACA may increase the number of games played to pursue superior outcomes.

Figure 9 illustrates the performance of the ECS, the EN, the system, and losses under
RACA for different EN unit profits. As shown in Figure 9a,c, RACA demonstrates superior
performance in terms of ECS revenue and system revenue. Figure 9b shows that as the unit
profit of ENs increases, the total revenue of ENs also increases. However, when the unit
profit of ENs is too small, ENs incur no revenue under all three methods. This is because the
unit profit of ENs is too small, resulting in ENs being unwilling to request computational
resources from ECSs, as the revenue obtained from requesting resources from ECSs is lower
than the communication cost. This also explains the phenomenon observed in Figure 9a,
where the total revenue of ECSs increases as the unit profit of ENs decreases. Figure 9d
reflects the significant advantage of RACA in reducing energy consumption. Overall,
RACA demonstrates superior performance across different unit profits of ENs.

(a) The benefit of the ECS (b) The benefit of the EN

(c) The benefit of the system (d) The benefit of the User

Figure 7. Comparison and evaluation of RACA under 100 transactions.
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(a) The benefit of the ECS (b) The benefit of the EN

(c) The benefit of the system (d) The amount of energy loss

Figure 8. Comparison and evaluation of RACA under different ECS computing resources.

(a) The benefit of the ECS (b) The benefit of the EN

(c) The benefit of the system (d) The amount of energy loss

Figure 9. Comparison and evaluation of RACA under different different EN unit profits.

6.3. Comparison of EN Resource Allocation

The computing resources allocated to the ENs need to be further distributed to their
users. In this experiment, each EN has a Nash equilibrium solution obtained by the game
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convergence for resource allocation among its local users. We compare this equilibrium-
based proportional allocation (ES) with other allocation methods. Specifically, we compare
the ES scheme with the following schemes, including the Equal Share (ES), the User Equal
Distribution (ED), the Buyer Quality First (BQF), the Buyer Number Most (BNM), the
Sequential Allocation (SA), and the Random Allocation (RA) schemes. In the BQF scheme,
priority is given to allocating resources to high-quality users with more requests, while the
BNM prioritizes users with fewer requests to benefit more users overall.

The results in Figure 10 show that when the computing resources purchased by the
ENs are equal to the requested resources, the ES, the BQF, the BNM, and the SA schemes can
achieve consistent profits, outperforming the ED and the RA schemes in terms of revenue.
When the purchased computing resources are less than the requested resources, the ES
outperforms all other allocation methods due to its reliance on the equilibrium solution
obtained from the game. It demonstrates the superiority of using the equilibrium solution
obtained by the game algorithm and distributing resources according to the game ratio.

Figure 10. Comparison and evaluation of EN resource allocation under 100 transactions.

7. Conclusions and Future Work

In this paper, we have addressed the resource allocation problem in edge computing
under high-workload conditions by using risk-based edge contracts and game algorithms
based on the Lagrange multiplier method. Specifically, we have formulated a resource
pool model for multiple ECSs and ENs using the Stackelberg game model to maximize
the overall revenue. This problem has been decomposed into two subproblems: ECS
computing resource allocation and ECS pricing along with ENs’ resource requests. We have
estimated the risk for all local users subscribed to the ECS and have used edge contracts to
solve the first subproblem. We have employed the game algorithm based on the Lagrange
multiplier method to find the solution to the second subproblem.

We have also conducted theoretical analysis to prove the convexity of both the upper
level and lower level of the master–slave game and established the Nash equilibrium
solutions. We have developed the RACA algorithm and game algorithm to solve the
problems involved. Simulation results demonstrated the superiority of the proposed
scheme under high-workload conditions.

The contribution of this work lies in the proposal of edge contracts based on risk
assessment metrics. By incorporating the concept of edge risk into edge traffic based
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on risk assessment theory from investment markets, it introduces a new perspective for
addressing profit relationships between edge devices using a market-based model. While
the edge devices autonomously update contract values, the Stackelberg game is used to
determine edge system resource pricing and task offloading, providing a more dynamic and
effective solution for resource allocation in edge environments. The autonomous update
of contracts based on risk assessment not only increases the overall revenue of the edge
system but also reduces energy consumption, with more significant effects in high-load or
low-computing-resource environments, addressing the challenge of resource scarcity in
high-load edge environments.

To enable the application of this work on a broader platform, further research will
be conducted on the model. The edge resource pricing in this paper adopts a uniform
pricing method, where the pricing of edge resources owned by the same ECS is the same.
However, in real life, resource providers often have differentiated pricing for resources
(such as network operators pricing traffic differently for different users). Therefore, future
analysis will examine the impact of ECSs’ differential pricing for different ENs on the
edge system. Additionally, although the data prediction in this paper is based on existing
log-normal distribution models, real-world networks are often more complex and variable.
Thus, there is a need to further improve the accuracy of network traffic prediction to
enhance its generalization and adaptability. For example, combining neural networks with
other methods to predict traffic changes can make contract values more accurate. Lastly,
we hope to expand edge user task scheduling beyond the EN or ECS they subscribe to.
Through graph theory models, we aim to establish a more decentralized many-to-many
matching scheduling object model, enabling the model to be applied in decentralized
complex environments, such as the autonomous control of drone clusters.
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Appendix A. The Derivation of dDl Using the Ito Process

As Dl is a function of S and t, based on the Taylor expansion, we have:

dDl =
∂Dl
∂S

dS +
∂Dl
∂t

dt +
1
2

∂2G
∂S2 (dS)2 +

1
2

∂2G
∂t2 (dt)2

+
∂2G
∂S∂t

dSdt + . . .

(A1)

Using Equation (1), we obtain:

(dS)2 = u2S2(dt)2 + 2uσS2(dt)
3
2 + σ2S2ϵ2dt (A2)

Substituting Equations (1) and (A2), and considering that (dt)2, (dt)
3
2 , and dSdt are

higher-order infinitesimals of dt, we can rewrite Equation (A1) as:
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dDl =
∂Dl
∂S

(uSdt + σSdz) +
∂Dl
∂t

dt +
1
2

∂2G
∂S2 σ2S2ϵ2dt

=
α

S
(uSdt + σSdz) + 0 · dt +

1
2

(
− α

S2

)
σ2S2ϵ2dt

= α

(
u− 1

2
σ2ϵ2

)
dt + ασdz

(A3)

As ϵ ∼ N(0, 1), the mean of E(ϵ2) = 1. Thus, Equation (A3) can be simplified to:

dDl = α

(
u− 1

2
σ2
)

dt + ασdz (A4)

From Equation (A4), it is evident that Dl also follows a Wiener process.
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