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Abstract: As an information granulation technology, clustering plays a pivotal role in unsupervised
learning, serving as a fundamental cornerstone for various data mining techniques. The effective
and accurate classification of data is a central focus for numerous researchers. For a dataset, we
assert that the classification performance of a clustering method is significantly influenced by un-
certain data, particularly those situated at the cluster boundaries. It is evident that uncertain data
encapsulate richer information compared with others. Generally, the greater the uncertainty, the
more information the data holds. Therefore, conducting a comprehensive analysis of this particular
subset of data carries substantial significance. This study presents an approach to characterize data
distribution properties using fuzzy clustering and defines the boundary and non-boundary character-
istics (certainty and uncertainty) of the data. To improve the classification performance, the strategy
focuses on reducing the uncertainty associated with boundary data. The proposed scheme involves
inserting data points with the cloud computing technology based on the distribution characteristics
of the membership functions to diminish the uncertainty of uncertain data. Building upon this, the
contribution of boundary data is reassigned to the prototype in order to diminish the proportion
of uncertain data. Subsequently, the classifier is optimized through data label (classification error)
supervision. Ultimately, the objective is to leverage clustering algorithms for classification, thereby
enhancing overall classification accuracy. Experimental results substantiate the effectiveness of the
proposed scheme.

Keywords: information granulation; fuzzy c-means (FCM); uncertain data; interpolation function;
partition matrix; prototypes

MSC: 68T30; 68T42

1. Introduction

Clustering, fuzzy clustering (soft computing), and classification are fundamental
techniques in data analysis and pattern recognition [1,2]. Clustering involves grouping
similar data points, providing insights into inherent structures within datasets [3]. Fuzzy
clustering, a subset of soft computing, extends traditional clustering methods by intro-
ducing the concept of membership function used for quantifying the extent to which data
points belong to multiple clusters, thus capturing the inherent ambiguity present in many
real-world scenarios [4]. In recent years, clustering has been recognized as an information
granulation technology, and the clustering process is referred to as a granulation mecha-
nism. This technology has found application in various fields. Classification, on the other
hand, assigns predefined labels to data points based on their characteristics [5].

As we delve into the realm of uncertainty in data analysis, it becomes crucial to
explore the significance of uncertain data. Unlike certain data, uncertain data encapsulate
a greater volume of information due to their inherent variability and imprecision [6].
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Understanding and effectively analyzing uncertainty in data have become essential in
addressing the complexities of real-world applications [7]. In recent decades, a plethora of
fuzzy set-based approaches [8] has emerged to effectively model the inherent uncertainty
(granularity) present in various real-world phenomena. These methodologies aim to
quantify information granularity by employing membership functions [9]. Among the
many excellent algorithms in fuzzy clustering, fuzzy c-means (FCM) stands out as a
popularly embraced soft partitioning algorithm, and is extensively applied across diverse
domains. FCM plays a pivotal role in partitioning a given input space into distinct regions
(groups, categories) based on a predefined similarity/dissimilarity measure [10]. Within the
FCM algorithm, the dataset’s underlying structure is articulated through partition matrices
and prototypes (clusters) [11].

FCM utilizes membership function to measure the extent to which each data point (pat-
tern) belongs to various clusters. From its origin, this technique has garnered considerable
attention due to its application studies and conceptual developments [12]. It has proven
to significantly enhance the quality of clustering and classification compared with the
traditional hard partitioning methods. A plethora of enhanced clustering approaches have
been developed over time. Among these alternatives, kernel-based FCM (KFCM) [13–15]
has risen as an intriguing and widely adopted approach. KFCM employs various kernel
functions that magically create nonlinear transformations, mapping the data from its native
space into a higher-dimensional feature space. In this new space, the data are expected to
exhibit greater separability. By positioning the data in this augmented space, KFCM aims
to achieve superior classification performance [16]. The implicit nonlinear transformations
provided by the kernel function contribute to capturing complex relationships within the
data, potentially leading to more accurate and nuanced cluster assignments.

In summary, the KFCM algorithm extends the traditional FCM method by incorporat-
ing a kernel function. The key aspects to consider in the analysis of KFCM include the inte-
gration of the kernel function, its impact on nonlinear transformations and data separability
in higher-dimensional spaces, and the resulting improvement in classification performance
compared with conventional algorithms. A comprehensive analysis involves examining
the specific kernel function employed, evaluating how nonlinear mappings contribute
to enhanced data separability, and assessing the algorithm’s robustness to varying data
characteristics [17]. Additionally, investigating the computational complexity introduced
by the kernel-based approach and exploring practical applications and use cases provide
valuable insights into the algorithm’s theoretical foundations and real-world effectiveness.

This research focused on the intersection of fuzzy clustering and uncertainty analysis.
We aimed to investigate the meaningful application of fuzzy clustering in the context of
uncertainty, leveraging its ability to model and accommodate imprecision and ambiguity
in data. By incorporating fuzzy clustering into uncertainty analysis, we anticipated gaining
valuable insights into the nuanced patterns and relationships within uncertain datasets, thus
enhancing our ability to make informed decisions in the face of complexity and variability.

In the design process, we divided the data into certain and uncertain data based on
the membership functions of each datum to all prototypes, and then inserted data with
the cloud computing technology [18] based on the membership functions to reduce the
proportion of uncertain data. Subsequently, reallocating the contribution of boundary
data to the prototype was achieved to reduce the proportion of uncertain data. In this
optimization process, we employed the classification error (data label) to supervise the
insertion of data. Ultimately, the classification performance was improved by leveraging
the enhanced partition matrix.

This paper is structured as follows: Section 2 provides a brief review of FCM and
KFCM methods. In Section 3, we elucidate the principle behind the proposed scheme.
Section 4 details the experimental studies over synthetic and publicly available data. Finally,
Section 5 summarizes the study.
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2. A Brief Overview of Fuzzy Set-Based Clustering
2.1. FCM Clustering Algorithm

FCM clustering comprises two primary phases: the computation of prototypes (cluster
centers) and assigning points to the prototypes by utilizing a variation of Euclidean distance.

This iterative process continues until the prototypes reach a state of stabilization [19].
The method assigns membership values to data items for the clusters within a range of 0 to
1 by incorporating a fuzzification factor dictating the level of fuzziness within the clusters.
The method aims to minimize the following objective function [20]

JFCM =
N
∑

i=1

C
∑

j=1
µm

ij ∥xi − vj∥2

µij ≥ 0,
C
∑

j=1
µij = 1, 0 <

N
∑

j=1
µij < N

(1)

where xi represents the ith data point from the dataset X(X ∈ Rn), vj stands for the cluster’s
jth prototype, µij denotes the membership grade of the individual data point xi that belongs
to vj, and m(m > 1) is a scalar used to represent the fuzzification factor (coefficient) [21].
The fuzzification factor m plays a crucial role in shaping the clusters formed during the
process. The symbol ∥•∥ denotes a distance function. The aforementioned objective
function presented is minimized by iteratively calculating updates to the membership
degree and prototypes [22], namely,

µij =
1

C
∑

k=1
(
∥xi−vj∥
∥xi−vk∥

)
2

m−1
(2)

vj =

N
∑

i=1
(xiµ

m
ij )

N
∑

i=1
µm

ij

(3)

2.2. Kernel-Based Fuzzy Clustering Approaches

Kernel-based fuzzy clustering (KFCM) is an algorithm that introduces kernel tech-
niques into fuzzy clustering, aiming to overcome the limitations of traditional fuzzy clus-
tering in handling nonlinear structures and high-dimensional data [23]. This algorithm
incorporates a kernel function into the FCM framework, employing a nonlinear transfor-
mation to map data into a higher-dimensional feature space to better capture complex
data structures.

One of the key innovations of the KFCM algorithm is the introduction of a kernel
function. With the use of this function in fuzzy clustering, one can achieve a nonlinear
transformation between the original data with a higher-dimensional feature space. This con-
tributes to improving the separability of data, making clustering more effective in the new
space. Through the nonlinear mapping provided by the kernel function, KFCM can flexibly
handle nonlinear structures and intricate data relationships. Compared with traditional
linear fuzzy clustering, this makes KFCM more suitable for datasets exhibiting nonlinear
features. The KFCM algorithm constructs a fuzzy partition by defining the concept of
membership grades of samples to each cluster. This consideration of fuzziness enhances
the algorithm’s tolerance to data uncertainty, facilitating a more comprehensive capture
of data characteristics. KFCM demonstrates excellent nonlinear mapping capabilities in
high-dimensional datasets. This advantage becomes particularly pronounced when dealing
with datasets that have a large number of features. Similar to many other kernel methods,
the selection of the kernel function and different parameter tuning will have significant
influence on the performance of KFCM. When applying the KFCM algorithm, researchers
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often need to carefully select a kernel function that suits the characteristics of the data and
adjust parameters to achieve optimal performance.

In conclusion, KFCM provides a more flexible and powerful tool for fuzzy clustering
by introducing kernel techniques, enabling better adaptation to nonlinear structures and
high-dimensional data. In practical applications, researchers need to carefully balance
the choice of the kernel function and parameter tuning to ensure the algorithm performs
optimally for specific tasks. The objective function of the KFCM-F is mathematically
designed in Equation (4) [24,25], and the associated constraints are the same as those in the
FCM approach, as specified in (1).

JKFCM−F =
N

∑
i=1

C

∑
j=1

um
ij ∥Φ(xi)− Φ(vj)∥2 (4)

The key merit of the KFCM-F lies in the placement of prototypes within the feature
space, which are magically mapped to a space with higher-dimensional features by the
utilization of a suitable kernel function [26]. Then, Equation (4) can be computed in the
following way:

∥Φ(xi)− Φ
(
vj
)
∥2

= Φ(xi)
TΦ(xi)− 2Φ(xi)

TΦ
(
vj
)
+ Φ

(
vj
)TΦ

(
vj
)

= K(xi, xi)− 2K
(
xi, vj

)
+ K

(
vj, vj

) (5)

With the use of the technique of Lagrange multipliers, one can execute the optimizing
of the membership degree and prototypes, and can obtain the form below:

µij =
1

C
∑

k=1

[
1−K(xi ,vj)
1−K(xi ,vk)

] 1
m−1

(6)

vj =

N
∑

i=1
µm

ij K
(
xi, vj

)
xi

N
∑

i=1
µm

ij K
(
xi, vj

) (7)

The algorithm for KFCM-F closely resembles the original form of FCM. It initiates
with a random membership matrix and iteratively updates with the prototypes until a
specified stopping criterion is met.

3. Enhancing Fuzzy Clustering through Innovative Interpolation Techniques

As previously highlighted, when being used to deal with classification tasks, an algo-
rithm’s performance is particularly influenced by the presence of uncertain data situated at
the clusters’ boundaries. This part of the data affects the position of the prototype, which
in turn affects the partition matrix and ultimately affects the algorithm’s classification
performance. Therefore, our focus is on optimizing these cluster boundaries.

In fuzzy clustering, the focus is traditionally placed on the maximum values within
each column of the membership matrix, as these values play a crucial role in determining
the clustering (classification) results. However, we should recognize that non-maximal
values also carry valuable information. For instance, these non-maximal values can provide
insights into data points situated at the boundaries of clusters, contributing to a more
comprehensive understanding of the clustering structure. While the maximum values
heavily influence the overall outcome, acknowledging the significance of non-maximal
values enhances the nuanced interpretation of the clustering results.

Let µimaxj represent the jth largest value of µi(µi = [µi1, µi2, · · · , µiC]). We use the
standard deviation of membership values to partition the data into two parts, namely
certain (non-boundary) data Xc and uncertain (boundary) data Xu.
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To enhance the optimization of cluster boundaries, we aim to decrease the propor-
tion of data within these boundaries (considered uncertain data). This can be effectively
accomplished by increasing the proportion of certain data. Consequently, we incorporate
additional data into the set of certain data. The method we adopted in this study is to
insert data XI with the cloud computing technology into the certain data according to the
membership functions, and modify the prototype matrix based on the new dataset. During
the interpolation process, we used the one-dimensional normal membership cloud model
to determine the distribution of the interpolated data of each feature.

The cloud model serves as an uncertainty conversion framework that translates a spe-
cific qualitative concept expressed through natural language values. It primarily comprises
both the forward and backward cloud generators. In this study, our focus lies on data
generation for interpolation, primarily driven by the principles underlying the forward
cloud generators.

The forward cloud generator functions as a mapping tool that translates qualitative
information into quantitative data by utilizing three numerical characteristic parameters
of the cloud, namely, expectation (Ex), entropy (En), and super-entropy (He), along with
the count of cloud droplets (N). The output of this process provides the quantitative
positioning of N cloud droplets within the numerical field space, accompanied by the
confidence level associated with each droplet, representing the underlying concept. Given
the widespread applicability of normal clouds, the screening process primarily revolves
around their utilization.

A specific method for the one-dimensional forward cloud generator is outlined
as follows:

Input: Digital parameters (Ex, En, He) embodying the quality concept of weight and
the enumeration of cloud droplets (N).

Output: N cloud droplets (Xi) and the association of each cloud droplet with the
conceptual framework.

a. In the initial phase, a normal random number (Eni) is produced, where the expecta-
tion is set to En and the standard deviation to He.

b. Subsequently, a normally distributed random number (X) is generated with Ex as
the mean and Eni as the standard deviation.

c. In the third phase, the degree of X’s association with the specified concept is deter-
mined through:

ui = exp

[
(x − Ex)2

2En2
i

]
(8)

The process is iteratively repeated through steps a to c until N cloud droplets have
been successfully generated.

During algorithm execution, the determination of the actual parameters of cloud
models is subject to the prototype and the standard deviation of the membership degrees.

Then, the prototypes can be adjusted based on the new dataset
–
X according to (3):

–
vj =

N
∑

i=1
(

–
xiµ

m
ij )

N
∑

i=1
µm

ij

(9)

Afterward, the partition matrix can undergo additional refinement utilizing the ad-
justed prototype matrix. During this optimization stage, we utilize the classification error
(original labels of the dataset) to supervise the interpolation process. This refinement of the
partition matrix ultimately leads to an enhancement in classification performance. Figure 1
illustrates the methodology of implementing the proposed scheme in detail.
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The total computational complexity of KFCM is O(CN2n), while for FCM and the pro-
posed method the computational complexities are respectively O(CNn) and O(C(N + NI)n)
(C is the number of prototypes, N is the total number of the original data instances in the
n-dimensional space, and NI stands for the number of inserted data in the n-dimensional
space). Typically, the number of uncertain data (NI) is much smaller than the total number
of data (N). Therefore, theoretically, our algorithm’s execution speed will be slower than
the FCM but much faster than the KFCM.

4. Experimental Studies

In what follows, we aimed to assess the effectiveness of the developed scheme by
comparing its performance with that of the FCM and Gaussian kernel function-based
FCM (KFCM-G) methods. The primary goal of this extensive series of experiments was
to discuss the classification performance of these clustering approaches. A variety of
experiments were conducted using both synthetic datasets and publicly available datasets
(http://archive.ics.uci.edu/ml, accessed on 3 March 2024) [27].

All data were normalized with the min-max scaling method, which is described
as follows:

x′ =
x − min(X)

max(X)− min(X)
(10)

where x and x′ represent the original and the preprocessed data values, respectively.
The goal was to thoroughly evaluate the proposed scheme’s effectiveness. To ensure
consistency, all data were normalized to [0, 1]. The classification rate [4] was utilized
as the primary metric in these experiments, given its widespread usage as an index for
performance evaluation.

In the experiments, we explored various values being positioned in the interval
[1.1, 3.1] for the fuzzification factor, and changed its value with a step size of 0.2. The
number of iterations was fixed at 500 to ensure the completion of clustering. We permitted
the methods to terminate if the following condition was met:

max
(
∥U − U’∥

)
≤ 10−5 (11)

http://archive.ics.uci.edu/ml
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where U’ represents the membership matrix coming from the previous iteration. In numer-
ous instances, Equation (10) was fulfilled before the maximum iteration had been reached.
We let the Gaussian kernel parameter σ2 vary from 10 to 100 in increments of 10 to mitigate
the computational intensity associated with KFCM(G).

To gauge the efficacy of the proposed approach, we employed 10-fold cross-validation [28],
a widely utilized technique for estimating and validating the classification performance
and stability of the fuzzy classification models.

4.1. Synthetic Data Experiments

The first experiment utilized a two-dimensional synthetic dataset comprising 450 in-
dividuals categorized into nine distinct classes. The dataset’s geometry is illustrated
in Figure 2. Figures 3–5 present the clustering outcomes along with the corresponding
partition matrix of the three approaches. The experimental results associated with the
classification rates and the model parameter values of the synthetic dataset are plotted in
Figure 6. It was evident that through the allocation of a judiciously chosen fuzzy factor
to each datum and the incorporation of the interpolation technology, the optimization of
prototypes occurred. This resulted in the refinement of class boundaries.

Mathematics 2024, 12, x FOR PEER REVIEW 7 of 14 
 

 

the primary metric in these experiments, given its widespread usage as an index for 

performance evaluation. 

In the experiments, we explored various values being positioned in the interval [1.1, 

3.1] for the fuzzification factor, and changed its value with a step size of 0.2. The number 

of iterations was fixed at 500 to ensure the completion of clustering. We permitted the 

methods to terminate if the following condition was met: 

( ) 5max 10−− U U  (11) 

where U  represents the membership matrix coming from the previous iteration. In 

numerous instances, Equation (10) was fulfilled before the maximum iteration had been 

reached. We let the Gaussian kernel parameter σ2 vary from 10 to 100 in increments of 10 

to mitigate the computational intensity associated with KFCM(G). 

To gauge the efficacy of the proposed approach, we employed 10-fold 

cross-validation [28], a widely utilized technique for estimating and validating the 

classification performance and stability of the fuzzy classification models. 

4.1. Synthetic Data Experiments 

The first experiment utilized a two-dimensional synthetic dataset comprising 450 

individuals categorized into nine distinct classes. The dataset’s geometry is illustrated in 

Figure 2. Figure 3, Figure 4 and Figure 5 present the clustering outcomes along with the 

corresponding partition matrix of the three approaches. The experimental results 

associated with the classification rates and the model parameter values of the synthetic 

dataset are plotted in Figure 6. It was evident that through the allocation of a judiciously 

chosen fuzzy factor to each datum and the incorporation of the interpolation technology, 

the optimization of prototypes occurred. This resulted in the refinement of class 

boundaries. 

 

Figure 2. Synthetic dataset. Figure 2. Synthetic dataset.

Mathematics 2024, 12, x FOR PEER REVIEW 8 of 14 
 

 

 

Figure 3. Clustering results of the synthetic dataset with FCM. 

 

Figure 4. Clustering results of the synthetic dataset with the proposed method. 

 

Figure 5. Clustering results of the synthetic dataset with KFCM. 

Figure 3. Clustering results of the synthetic dataset with FCM.



Mathematics 2024, 12, 975 8 of 13

Mathematics 2024, 12, x FOR PEER REVIEW 8 of 14 
 

 

 

Figure 3. Clustering results of the synthetic dataset with FCM. 

 

Figure 4. Clustering results of the synthetic dataset with the proposed method. 

 

Figure 5. Clustering results of the synthetic dataset with KFCM. 

Figure 4. Clustering results of the synthetic dataset with the proposed method.

Mathematics 2024, 12, x FOR PEER REVIEW 8 of 14 
 

 

 

Figure 3. Clustering results of the synthetic dataset with FCM. 

 

Figure 4. Clustering results of the synthetic dataset with the proposed method. 

 

Figure 5. Clustering results of the synthetic dataset with KFCM. 
Figure 5. Clustering results of the synthetic dataset with KFCM.

Mathematics 2024, 12, x FOR PEER REVIEW 9 of 14 
 

 

 

Figure 6. Classification rate results of the synthetic dataset. 

  

Figure 6. Classification rate results of the synthetic dataset.



Mathematics 2024, 12, 975 9 of 13

4.2. Publicly Available Data Experiments

We employed six publicly accessible datasets, detailed descriptions of which are
available in the UCI machine learning repository. Figures 7–12 show the experimental
results associated to the classification rates and the model parameter values of each dataset.
It is noteworthy that the classification quality of all these datasets was enhanced through
the application of the proposed method. The developed scheme exhibited substantial
merits over both FCM and KFCM methods.

The KFCM exhibited improvements on some specific datasets. Notably, the developed
approach consistently achieved higher classification rates compared with both the FCM
and other kernel-based clustering algorithms. This superiority can be attributed to the
optimization of the proposed method on the cluster boundaries through incorporating
specific data into the clustering process, thereby reducing the proportion of uncertain data
and refining the prototypes. Consequently, this optimization facilitated more accurate
cluster identification.

The observed enhancement in classification performance averaged approximately 6%,
with improvements ranging from a minimum of 3% to a maximum of 10%. This range
represents the most notable improvement achieved by our method.

In summary, our approach achieved the partitioning of uncertain and deterministic
data by utilizing membership degrees to delineate boundary and non-boundary data. Based
on this, we leveraged the cloud modeling technology for data interpolation and adjusted
the prototype to refine the partition matrix, further enhancing the model’s classification
performance. This not only enriched and advanced classifier models based on fuzzy
clustering technology but also offered valuable insights for uncertainty analysis research.

Figure 7. Classification rate results of the Iris dataset.
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5. Conclusions

This study developed a new interpolation technique with cloud computing aimed at
improving the efficacy of fuzzy clustering. In the design phase, we utilized the membership
functions of each data point concerning all prototypes to distinguish between uncertain data
(located at the cluster boundaries) and certain data. To optimize these cluster boundaries,
we established a function to insert specific data into the certain data, thereby reducing the
proportion of uncertain data. This new dataset enabled the modification of prototypes.
The interpolation principle here was implemented using cloud models. Subsequently,
the partition matrix of the original dataset was refined using these modified prototypes,
ultimately improving the performance of fuzzy clustering.

The theoretical works provided in this study are underpinned by a series of experi-
mental studies. The proposed method not only provides a unique avenue for improving the
quality of fuzzy clustering but also raises broader questions about interpolation techniques.

Author Contributions: The authors confirm contribution to the paper as follows: study conception
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