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Abstract: Oscillations in option price convergence have long been a problematic aspect of tree
methods, inhibiting the use of repeated Richardson extrapolation that could otherwise greatly
accelerate convergence, a feature integral to some of the most efficient modern methods. These
oscillations are typically caused by the fluctuating positions of nodes around the discontinuities in
the payoff function or its derivatives. Our paper addresses this crucial gap that typically prohibits
the use of lattice methods when high efficiency is needed. Focusing on double barrier options, we
develop a trinomial tree in which the positions of the nodes are precisely adjusted to align with
these discontinuities throughout the option’s lifespan and across various time steps. This alignment
enables the use of repeated extrapolation to achieve high order convergence, including near barriers,
a well-known challenge in many tree methods. Maintaining the inherent simplicity and adaptability
of tree methods, our approach is easily applicable to other models and option types.
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1. Introduction

Significant interest and numerous recent papers have focused on the pricing of double
barrier and discrete double barrier options in the Black–Scholes framework. Various
methods have been proposed for this purpose, many of which demonstrate high efficiency,
often due to their capability to utilize repeated Richardson extrapolations. Although tree
methods are among the simplest, most popular, and versatile for option pricing, their
convergence speed is typically slow, reaching an order of 1/

√
n, or at best, 1/n in the case

of double barrier options. Additionally, oscillations in convergence hinder and limit the use
of linear extrapolation. To our knowledge, repeated Richardson extrapolation has not been
achieved for barrier options evaluated with lattice methods. This paper seeks to bridge
this gap.

The primary issue that impedes smooth convergence, and prevents the use of repeated
extrapolation when evaluating options with trees, stems from the fact that, in the log-space,
the spacing between two nodes is constant, regardless of the price of the underlying asset,
and solely depends on the number of time steps. Consequently, barriers and/or the strike
price often fall between grid nodes. As the number of time steps changes, the distance to
the nearest node fluctuates. As shown in prior studies (e.g., [1,2]), this triggers oscillations
in the convergence of option prices, thereby preventing repeated extrapolation. To address
this challenge, we introduce the Boyle–Romberg trinomial tree, an extension of Boyle’s
original model (see [3,4]). This tree enables repeated Richardson extrapolation with an
approximate Romberg sequence. In our tree, both barriers, the strike, and the stock price
can be positioned at the exact location of a node throughout the life of the option. This is
achieved by constructing the grid corresponding to the position of the underlying asset
in the log-space in such a way that the spacing between two consecutive nodes varies,
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being stretched differently across various regions. The stretching parameters can remain
constant, even when the number of time-steps changes. This ensures smooth convergence
and enables repeated extrapolation, resulting in a high-order convergence speed.

Now we review some recent papers on the pricing of double barrier options in the
Black–Scholes (BS) setting. We first consider articles that do not rely on tree-based ap-
proaches. In [5], a finite element method is applied to obtain highly accurate numerical
values of the price of discrete double barrier options under the Black–Scholes model. In [6],
a numerical method is proposed to compute the price of barrier options in the BS model
where the parameters are time dependent. In [7], four different recombining quadrature
methods are introduced. In [8], an accelerated Monte Carlo method is presented using
a novel variance reduction technique. In [9], an efficient and fast numerical method for
pricing the discrete double barrier option by the projection method is developed. In [10], a
numerical method for pricing the discrete double barrier option by Legendre multiwavelet
is proposed. In [11], a numerical method for pricing the discrete double barrier option by
Chebyshev polynomials is developed. In [12], an orthogonal projection method is used.
In [13], it is shown that the finite difference method for double barrier option pricing can
be strongly enhanced by applying both a repeated Richardson extrapolation technique and
a mesh optimization procedure in the Black–Scholes model. In [14,15], numerical methods
are presented for pricing, respectively, double piecewise linear barrier options and step
barrier options. The methods are based on probabilities that an underlying process does not
cross the given barriers. In [16], a continuity correction method is established to provide an
analytical approximation for the price of discrete barrier options under the Black–Scholes
model. In [17], Lagrange interpolation on the Jacobi polynomials node is used to price
discrete barrier options.

For tree methods, the literature is broad, and a variety of trees have been introduced.
The convergence of tree-computed option prices to their limits has long been established
in [18] for European/American and path-dependent options. See also [19] for a different
approach. On the one hand, the computation of these option prices can be made more
efficient by employing combinatorial techniques, as shown in [20,21], leveraging Catalan
numbers as explored in [22], or using spectral methods, as demonstrated in [23,24]. On the
other hand, for barrier options, the convergence speed of option prices is typically of order
1/

√
n for most tree-based models, where n is the number of time steps. Yet, a convergence

speed of 1/n is achieved in [20,25] and a convergence speed of 1/n3/2 is obtained in [26]
for single barrier options. Certainly, this is a far cry from the efficiency that can result from
using repeated extrapolation.

Now, we review recent papers using trees to price barrier options in the Black–Scholes
model or its generalizations. In addition to the papers previously referenced, we men-
tion [27], where a Lagrange four-point interpolation technique is employed to price barrier
options and address the near-barrier problem. In [28], probabilities are chosen to match lo-
cal densities in trees capable of evaluating barrier options in local volatility models. In [29],
willow trees are used to efficiently calculate moving average barrier option prices. In [30],
multinomial trees based on saddle-point approximation are used to value barrier options in
Lévy models. In [31], double-barrier options are priced using a bino-trinomial tree adapted
to local volatility models. In [32], barrier option prices in stochastic volatility models are
evaluated using a willow tree. In [33], a lattice-based approach is developed to price barrier
options under mean-reverting regime-switching models. In [34], the bino-trinomial tree is
used to price implied barriers and moving-barrier options.

In this paper, we introduce a tree method designed to precisely match the values of the
barrier(s), the strike, and, indeed, any number of points of interest A1, . . . , AF, which we
refer to as the fixed points of the tree. The fixed points typically consist of those values where
the payoff function or its derivatives are discontinuous. Our approach allows stretching
parameters ∆0, . . . , ∆F to modulate the spacing between option prices over the various
regions determined by these fixed points. These stretching parameters remain constant for
varying numbers of time steps N0, . . . , NM approximating the Romberg sequence. Through
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numerical illustrations, we verify that repeated Richardson extrapolation can then be
effectively employed, yielding high-order convergence. To the best of our knowledge, this
is the first instance of achieving high-order option price convergence with trees, excluding
the case of plain vanilla European options (see [35,36]). Our method is characterized by
its simplicity and flexibility, and it can be extended to other options and models. We also
address the well-known near-barrier problem, where the convergence speed of numerical
methods is significantly dampened when the value of the spot price S0 is near a barrier.

2. Description of the Model

First, we define the generalized Boyle trinomial model to be used. In each period in the Boyle
trinomial model, the current stock price S changes to Su, Sm, Sd with respective probabilities

pu = md−M(m+d)+M2V
(u−d)(u−m)

, pd = um−M(m+u)+M2V
(u−d)(m−d) , pm = 1 − pu − pd, (1)

where
m = 1, M = exp(rT/n), V = exp

(
σ2T/n

)
.

In the generalized model the quantities u and d depend on S, as

u = e∆u(S)
√

∆t, d = e−∆d(S)
√

∆t,

where ∆t = T/n and ∆u(S), ∆d(S) ≥ λσ for some λ > 1.
In our case, let A1 < . . .< AF be the points that we want to be nodes in the tree. We

call these points the fixed points. Then, we take

∆u(S) =


∆0 if S < A1
∆i if Ai ≤ S < Ai+1, i = 1, . . . , F − 1
∆F if AF ≤ S

and

∆d(S) =


∆0 if S ≤ A1
∆i if Ai < S ≤ Ai+1, i = 1, . . . , F − 1
∆F if AF < S

where the stretching parameters ∆0, . . . , ∆F are determined as follows:

1. Set ∆0 = ∆F = λσ where λ > 1.
2. For i = 1, . . . , F − 1, let ni be the smallest integer value of n such that

√
n ≥ γi, where γi =

λσ
√

T
ln(Ai+1/Ai)

.

3. Let

α =

(
F−1

∑
i=1

ln(Ai+1/Ai)

λσ
√

T

)2

. (2)

Choose any integer number of time steps N0 ≥ max(α, n1, ..., nF−1), and for i =
1, . . . , F − 1, set

∆i =
λσ

√
N0

γiℓi
where ℓi = floor(

√
N0/γi) ≥ 1. (3)

Now, we explain the choice of the ∆i and the requirement that the number of time
steps, N0, is at least as large as max(α, n1, . . . , nF−1). Note that the ∆i depend on the choice
of N0. Note also that integer ni is the smallest integer n such that

Ai+1 ≥ Aieλσ
√

T/n.
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Our aim is to have all the Ai as nodes, and we want the spacing between nodes in the
log-space to be at least λσ

√
T/N0. Then, if Ai is already a node and we want Ai+1 to be

a node, then N0 must be at least as large as ni and thus, n must be at least as large as
max(n1, . . . , nF−1). Next, since ℓi is the integer satisfying

Aieℓiλσ
√

T/N0 ≤ Ai+1 < Aie(ℓi+1)λσ
√

T/N0 ,

we replace λσ by ∆i in such a way that

Ai+1 = Aieℓi∆i
√

T/N0 .

The requirement that N0 must be at least as large as α ensures that all the Ai are nodes
of the N0-period tree, as demonstrated in Theorem 1 below. Furthermore, Theorem 1 proves
that for any integer k ≥ 1, if we increase the number of time steps from N0 to Nk = N0k2,
while maintaining the stretching parameters ∆i unchanged, then the Ai continue to be
nodes of the Nk-period tree.

Observe that in the tree with Nk time steps, the nodes smaller than A1 can be expressed

as A1e−j∆0
√

T/Nk for j = 1, 2, . . . . Those between A1 and AF have the form Aiej∆i
√

T/Nk

for j = 0, . . . , ℓik or equivalently Ai+1e−j∆i
√

T/Nk for j = 0, . . . , ℓik. Those larger than AF

can be written as AFej∆F
√

T/Nk for j = 1, 2, . . . . These points create a grid (not equally
spaced), and the definition of u, m and d ensures that each node connects to itself as well
as its two immediate neighbors on the grid. Figure 1 illustrates the structure of the
Boyle-Romberg tree.

We employ the Boyle–Romberg tree method in conjunction with repeated extrap-
olation techniques to achieve high efficiency. Typically, for such purposes, one would
calculate the option price for varying numbers of time steps along the Romberg sequence
N0, 2N0, . . . , 2M N0. However, this approach would necessitate adjustments to the values
of ∆i for each time step. Since the coefficients in the price error expansion depend on
the values of the ∆i, changing these values would hinder the applicability of repeated
extrapolation because it requires those coefficients to remain constant.

Given the parameters r, σ, T, λ and the fixed points A1, . . . , AF, we choose an initial
number of time steps N0 ≥ max(α, n1, . . . , nF−1) and determine the stretching parameters
∆1, . . . , ∆F accordingly. With all parameters held constant, we compute the option prices
CN0 , . . . , CNM for a various number of time steps N0, . . . , NM approximating the Romberg
sequence. The Nj are chosen to have the form N0k2 to ensures that the Ai always remain
nodes of the tree. The specific values of the Nj and the repeated extrapolation procedure
will be detailed in Section 3 below.

Theorem 1. Let integer N0 ≥ max(α, n1, . . . , nF−1). Consider the Boyle–Romberg tree starting
at S0 = Aq ∈ {A1, . . . , AF} when the number of time steps is n = N0k2 for some integer k ≥ 1
and the stretching parameters ∆i are determined by N0 as in Equation (3). Then, all of the values
A1, . . . , AF are nodes in the n-period tree.

Proof. Recall that, when n = N0, the number of up movements needed to reach Ai+1
starting from Ai is ℓi. Now let Nk = N0k2, and consider the tree with Nk time steps. The
number of up movements needed to reach Ai+1 starting from Ai is ℓik since

Ai+1 = Aieℓi∆i
√

T/N0 = Aieℓik∆i
√

T/Nk .

In the same manner, the number of down movements needed to reach Ai starting from
Ai+1 is ℓik. Since S0 = Aq, the node AF can be reached after ℓqk+. . .+ℓF−1k up movements
when starting from S0. Analogously, the node A1 can be reached after ℓq−1k+. . .+ℓ1k down
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movements when starting from S0. Certainly, starting from S0, fewer than Nk movements
are needed to reach any of the Ai if

F−1

∑
i=1

ℓik ≤ N0k2.

This condition holds whenever

k ≥ ∑F−1
i=1 ℓi

N0
.

However,
∑F−1

i=1 ℓi

N0
≤

∑F−1
i=1

1
γi√

N0
=

1√
N0

F−1

∑
i=1

ln(Ai+1/Ai)

λσ
√

T
≤ 1,

because

N0 ≥ α =

(
F−1

∑
i=1

ln(Ai+1/Ai)

λσ
√

T

)2

.

Thus, the fixed points A1, . . . , AF are nodes in the Nk-period tree for any integer k ≥ 1.

2.1. Positivity of the Probabilities

In our generalized Boyle trinomial model, at each node S in the tree the probabilities
are as in (1) with u = e∆u(S)

√
∆t, d = e−∆d(S)

√
∆t. Then,

pu =
σ2

∆u(S)(∆u(S) + ∆d(S))
+ O(

√
∆t),

pd =
σ2

∆d(S)(∆u(S) + ∆d(S))
+ O(

√
∆t),

pm = 1 − pu − pd = 1 − σ2

∆u(S)∆d(S)
+ O(

√
∆t).

Because
∆u(S) ≥ λσ, ∆d(S) ≥ λσ for all S,

for some λ > 1, we see that for n large the three probabilities are positive.

2.2. Consistency with Black–Scholes Model

The probabilities pu, pm and pd in (1) are defined so that

pu + pm + pd = 1, puu + pmm + pdd = M = er∆t,

puu2 + pmm2 + pdd2 = M2V = e(2r+σ2)∆t.

Then, if St is the stock price at the current node, and St+∆t is the stock price at the end of
the period,

E(St+∆t) = puStu + pmStm + pdStd = Ster∆t,

E(S2
t+∆t) = puStu2 + pmStm2 + pdStd2 = Ste(2r+σ2)∆t.

Now, if St satisfies dSt = rStdt + σStdWt, as in the risk-neutral Black–Scholes model, then
log(St+∆t/St) is normally distributed with mean (r − σ2/2)∆t and variance σ2∆t so that

E(St+∆t) = Ster∆t, E(S2
t+∆t) = Ste(2r+σ2)∆t.

So, the generalized Boyle’s model matches the first and second moments of the risk neutral
Black–Scholes model at any time j∆t for j = 1, 2, . . . , n. This happens regardless of how ∆u
and ∆d are defined.
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The Boyle–Romberg trinomial tree in log-space

Figure 1. Following customary practice, we depict the Boyle–Romberg trinomial tree in log-space.
The illustration above features four fixed points L < S0 < K < U and seven time steps. Furthermore,
at maturity, it displays three up movements of the price from L to S0, a single up movement from S0

to K, and four up movements from K to U. Conversely, this can be viewed as three down movements
of the price from S0 to L, a single down movement from K to S0, and four down movements from U
to K. We also see that there are four down movements from L, and two up movements from U. The
stretching parameters ∆0, . . . , ∆4 are adjusted in each region to ensure that the tree’s nodes align with
the fixed points.

3. Repeated Extrapolation with an Approximate Romberg Sequence

Let K represent the strike price and S, the underlying asset’s price at expiration.
Throughout this paper, we will use the term vanilla options to refer to options with payoff
functions max(S − K, 0) for calls and max(K − S, 0) for puts. In contrast, digital options
describe options with payoff functions 1[K,∞)(S) for calls and 1(−∞,K](S) for puts. Hence,
in this paper, the terminology ’vanilla option’ and ’digital option’ precisely delineates two
broad categories of options, encompassing sub-types like double knock-out vanilla call
options, double knock-in digital put options, etc. This paper is mainly interested in double
barrier vanilla options and double barrier digital options. The former are equipped with vanilla
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payoff functions, characterizing traditional options within the double barrier framework,
with max(S − K, 0) for calls and max(K − S, 0) for puts. Conversely, the latter employ
digital payoff functions, integrating the distinct binary outcome feature of digital options
within the double barrier condition, with 1[K,∞)(S) for calls and 1(−∞,K](S) for puts.

Suppose we consider, for example, a double barrier call or put option with strike K,
lower barrier L, and upper barrier U. Then, if, for instance, S0 < K < U, we would take
A1 = L < A2 = S0 < A3 = K < A4 = U. For a single barrier call or put there would be
A1 < A2 < A3 and for a standard call or put there would be A1 < A2.

Note that in our description above of the Boyle–Romberg tree, the choice of ∆0 and ∆F
is arbitrary, and we could have selected ∆0 = ∆1 and ∆F = ∆F−1 instead of ∆0 = λσ = ∆F.
In the case where F = 2, this gives ∆0 = ∆1 = ∆2. This is Boyle’s model [3,4]. Then, for call
options, the conjecture below follows from the Edgeworth expansions described in [2].

Conjecture 1. Consider vanilla and digital calls and puts, vanilla and digital single barriers calls
and puts, and vanilla and digital double barrier calls and puts in the Black–Scholes world with
interest rate r, volatility σ and maturity T. In the n-period Boyle–Romberg trinomial model, where
n = N0k2 for integer k = 1, 2, . . . there exist constants c1, c2, . . . such that for all M ≥ 1, the price
Cn calculated by this model satisfies

Cn = CBS +
c1

nγ1
+

c2

nγ2
+ · · ·+ cM

nγM
+ o(

1
nγM

), (4)

where γj = γ + (j − 1)β with γ = 1, β = 1/2 for vanilla options, and γ = β = 1/2 for
digital options. The constants ci depend only r, σ, T, and the parameters of the trinomial tree,
λ, A1, . . . , AF, ∆0, . . . , ∆F.

Following Schmidt’s [37], we can re-write Equation (4) as

x(h) = z + c1hγ1 + c2hγ2 + · · ·+ cMhγM + o(hγM ), (5)

where z = CBS and h = 1/n. Schmidt has the parameter h run through a strictly decreasing
sequence h0, . . . , hM−1 such that 0 < hi+1 ≤ bhi, where 0 < b < 1. Then, he calculates two
triangular arrays xi,m, yi,m, m = 0, . . . , M − 1, i = 0, . . . , M − m − 1, as follows. First, he
calculates the first column of each array:

xi,0 = x(hi), yi,0 = hβ−γ
i , i = 0, . . . , M − 1.

Then, he calculates the succeeding columns recursively. That is, for m = 1, . . . , M − 1,
he calculates

xi,m = xi+1,m−1 +
xi+1,m−1 − xi,m−1

yi+1,m−1h1/β
i − yi,m−1h1/β

i+m

yi,m−1h1/β
i+m,

yi,m = yi+1,m−1 +
yi+1,m−1 − yi,m−1

h1/β
i − h1/β

i+m

h1/β
i+m, i = 0, . . . , M − m − 1.

Note that the y-array is used just to calculate the x-array. Schmidt shows the estimate

xi,m = z + h̃γm
i

cm+1 + o(1)
(−α

m )
,

where hi+m < h̃i < hi, α = γ/β and (−α
m ) = (−1)mα(α + 1) · · · (α + m − 1)/m!. In

particular,

x0,M−1 = z + h̃γM
0

cM + o(1)
( −α

M−1)
,
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where hM−1 < h̃0 < h0. Hence,

|x0,M−1 − z| ≤ hγM
0

|cM|+ o(1)
|( −α

M−1)|
= O

(
hM/2+1/2

0

)
.

For the Boyle–Romberg tree, we set xi,0 = CNi , z = CBS, and choose hi = 1/Ni, where
Ni = N0k2

i , ensuring that the sequence N0, N1, N2, . . . approximates the Romberg sequence
N0, 2N0, 4N0, . . .. For this purpose, we set (k0, . . . , k4) = (1, . . . , 5), and for i > 4 we choose
ki to be the nearest integer to 2i/2. The first values of ki are: 1, 2, 3, 4, 5, 6, 8, 11, 16, 23.
Certainly

∣∣∣ki − 2i/2
∣∣∣ ≤ 1/2 for i > 4 and, therefore,

hi+1

hi
=

(
ki

ki+1

)2
≤
(

2i/2 + 1/2
2(i+1)/2 − 1/2

)2

→ 1
2

as i → ∞. It is easy to see that
hi+1

hi
≤
(

5
6

)2

for all integer i ≥ 0.

Remark 1. For a vanilla option, Equation (5) can be reformulated as:

x(h) = z + a1h1 + a2h3/2 + · · ·+ aMh(M+1)/2 + o(h(M+1)/2).

For a digital option, it simplifies to:

x(h) = z + a1h1/2 + a2h1 + · · ·+ aMhM/2 + o(hM/2).

The constants ai differ between the vanilla and digital cases. Note that, in Schmidt’s algorithm,
when γ = β, the quantities yi,m are all equal to 1, making the algorithm identical to that described
in [38,39].

4. Numerical Experiment

Here, we consider both a digital and a vanilla double knock-out call option with
a strike K = 105, lower barrier L = 90, upper barrier U = 115, risk-free rate r = 0.05,
volatility σ = 0.2, and time to maturity T = 1. We analyze the option price errors resulting
from using the Boyle–Romberg trinomial tree, with values of S0 ranging from 91 to 114.
The number of time steps, N0, is determined by max(m0, α, n1, n2, n3), and the number of
repeated extrapolations varies from 3 to 5. The value of λ is set to 1.2. For the vanilla option,
we set a minimum of m0 = 25 time steps, whereas for the digital option, a minimum of
m0 = 100 time steps is targeted.

Note that the case N0 > m0 typically occurs when S0 is near a barrier or the strike.
Concretely, in our example, N0 is as high as 30 when the distance between S0 and {L, K, U}
is 5, it is as high as 42 when the distance is 4, 83 when it is 3, and, respectively, 188 and
756 for a distance of 2 and 1. In the other cases, N0 = m0. The reason for this behavior
is that ni ≈ (λσ

√
T/ ln(Ai+1/Ai))

2. Practically, this means that N0 is proportional to the
inverse of the square of the distance between S0 and its closest fixed point neighbor in
the log-space. Certainly, this makes the computations impracticable when S0 is very close
yet distinct from the strike or a barrier. This is the near strike/barrier problem, which we
address in the next section.

We observe in Figure 2 that for certain values of S0, the error is very small and nearly
indistinguishable from the x-axis. The most significant errors are observed when S0 = 112.
In this case, N0 = 83, and the errors are approximately −3.7 × 10−5, 6.2 × 10−6, and
−8.9 × 10−7 when the number of repeated extrapolations is 3, 4, and 5, respectively. These
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results are consistent with the findings of Schmidt [37] discussed earlier, where the errors
are determined to be of magnitude 1/832, 1/832.5, and 1/833, respectively, which is of
magnitude approximately 10−4, 10−5, and 10−6. Unsurprisingly, the greater the number of
extrapolations, the smaller the error. Implemented in C++, each computation is completed
in a fraction of a second. In Figure 3, we illustrate the price error for the same option in the
digital case. Furthermore, we specify a minimum of m0 = 100 time steps. The behavior
observed here corresponds to that reported in the vanilla case.
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Figure 2. Here, L = 90, U = 115, K = 105, r = 0.05, σ = 0.2, T = 1. We plot the error of the
Boyle–Romberg trinomial tree with λ = 1.2 against the BS value for various values of S0. The
number of time steps N0 is equal to max(m0, α, n1, n2, n3) with m0 = 25, and the number of repeated
Richardson extrapolations (RRE) varies from 3 to 5.

Remark 2. Typically, a double-precision floating-point number has a precision of approximately
15 to 17 decimal digits. It can naturally be assumed that a few dozen ordinary calculations would
not significantly compromise this precision. However, in the specific case where u = exp(λσ

√
∆t),

d = exp(−λσ
√

∆t), λ = 1.10075, σ = 0.2, r = 0.05, and ∆t = 0.0001, the computation of
pm ≈ 0.17 using the formula pm = 1 − pu − pd or its equivalent

pm =
M(d + u)− du − M2V

(m − d)(u − m)
,

yields results in C++ that differ by approximately 3 × 10−10. We bear in mind that, as pointed
out in [40], in the typical scenario of numerical approximations with finite decimal precision, the
computation error tends to decrease until it reaches an optimal value, and then it starts to increase as
the roundoff and condition errors dominate. Our calculations suggest that, for the Boyle–Romberg
tree, the optimal error is typically of a magnitude of 10−9 to 10−11, depending on the values of the
parameters. Near a barrier or the strike, this can sometimes slightly deteriorate to 10−8.
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Figure 3. Here, L = 90, U = 115, K = 105, r = 0.05, σ = 0.2, T = 1. We plot the error of the
Boyle–Romberg trinomial tree with λ = 1.2 against the BS value for various values of S0. The
number of time steps N0 is equal to max(m0, α, n1, n2, n3) with m0 = 100, and the number of repeated
Richardson extrapolations (RRE) varies from 3 to 5.

5. The Near Strike/Barrier Problem

It has long been observed that numerical methods for pricing barrier options often
exhibit poor convergence speed when the spot price S0 is in close proximity to a barrier.
For a discussion on this topic, see [27], among others. In the trinomial tree described above,
the minimal number of time steps required by the method, N0, increases as S0 approaches,
yet remains distinct from a barrier or the strike price. Indeed, the minimum value of N0 is
given by max(α, n1, . . . , nF−1), where

ni ≈
(

λσ
√

T
ln(Ai+1/Ai)

)2

, α =

(
F−1

∑
i=1

ln(Ai+1/Ai)

λσ
√

T

)2

≈
(

F−1

∑
i=1

1√
ni

)2

≤ F2.

Given that 1 < λ is an arbitrary constant, the term λ2σ2T does not significantly contribute
to the minimal value of N0. For practical purposes, we assume that neither L/U ≈ 1 nor
K/L ≈ 1 or K/U ≈ 1 holds, unless K coincides with a barrier. The other cases are not
considered very realistic. However, over the life of the option, the price of the underlying
asset may become very close to a barrier or the strike, thereby causing a significant increase
in the value of N0, when the option’s price needs to be evaluated in such scenarios. This is
known as the near barrier/strike problem. We explain here how to address this issue.

In the classical Boyle model and the Boyle–Romberg model introduced herein, an
additional parameter, λ > 1, is required for the construction of the tree. It can be observed
that λ should not be too close to 1, as otherwise, pm ≈ 0. Conversely, large values of
λ compromise the tree’s precision. Apart from these considerations, the value of λ > 1
is arbitrary. Boyle obtained good results with λ = 1.2, a value we have adopted in our
calculations. Here, we confine our Boyle–Romberg tree to values of λ in the interval
1.16 ≤ λ < 2. This interval is chosen for a specific purpose: it ensures that probabilities p̃i,d,
p̃i,m, and p̃i,u defined below are all greater than 0.

We assume that time steps N0, N1, . . . , NM have been selected with a low or moderate
value of N0 ≥ α, where α is as in (2). Let X be the strike price or one of the barriers. The
problem to address here is that, when S0 is very close to X, yet distinct from X, the number
of time steps required to evaluate the option can become excessive. We assume that S0 ̸= X
and, as we address the scenario where S0 is near X, that the ratio Ai+1/Ai is minimized
for the pair {Ai, Ai+1} = {S0, X}. Define i0 such that {Ai0 , Ai0+1} = {S0, X}, and let qi be
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the real number satisfying X/S0 = exp(qiλσ
√

∆ti), where ∆ti = T/Ni. We say that S0 is
near X if |qM| ≤ 0.5. This means that, in the log-space with NM time steps, log S0 is closer
to log X than any other node of the tree. Because 0 < |q0| < |q1| < . . . < |qM|, the same is
true for all i = 0, . . . , M.

In this definition, any S0 that is very close to X will be considered near X. Conversely,
if S0 is not near X according to this definition, then Ai0 exp

(
λσ
√

T/N∗
0
)
≤ Ai0+1, where

N∗
0 = 4NM. This leads to

λσ
√

T
ln(Ai0+1/Ai0)

≤
√

N∗
0 ,

resulting in ni0 ≤ N∗
0 . Given that Ai+1/Ai is minimized for Ai0+1/Ai0 , it follows that

ni ≤ ni0 for i = 1, . . . , F − 1. Hence, the minimum number of time steps required to
construct the Boyle–Romberg tree is ni0 ≤ N∗

0 . Considering that N0 is either low or
moderate, we regard the upper bound N∗

0 as not excessive, thereby enabling the application
of the method described in Section 3. For instance, in the example treated earlier where
the parameters are λ = 1.2, σ = 0.2, K = 105, L = 90, U = 115, and N0 = 25, seeking three
repeated extrapolations results in a worst-case scenario of N∗

0 = 1600.

5.1. The Near Strike Case

Now suppose that S0 is near the strike and S0 ̸= K. To calculate the value of the option
at S0 and prevent the explosion of the minimal number of time steps N0 when S0 → K, we
first construct a Boyle–Romberg trinomial tree, for which the root is set exactly at K. Then,
we introduce a new root, S0, which at time ∆t connects to the nodes Kd, K, and Ku of this
tree with specially defined probabilities p̃d, p̃m, and p̃u, described below.

To be specific, for i = 0, . . . , M, we construct a Boyle–Romberg trinomial tree with
Ni time steps when the underlying asset value at time zero is equal to K, and we denote
by CNi (∆ti, x) the option’s value calculated by this Boyle–Romberg trinomial tree at time
∆ti = T/Ni, when there are Ni time steps and the underlying asset price is x. Recall that
Ni = N0k2

i , where k2
i approximate the Romberg sequence. Then, the value CNi (0, S0) of the

option at time zero, when the underlying asset value is S0, is obtained as

CNi (0, S0) = e−r∆ti E
(
CNi

(
∆ti, S∆ti

))
,

where S∆ti takes the values S0ũi, S0m̃i, S0d̃i with respective probabilities

p̃i,u =
m̃d̃i − M

(
m̃i + d̃i

)
+ M2V(

ũi − d̃i
)
(ũi − m̃i)

, p̃i,d =
ũim̃i − M(m̃i + ũi) + M2V(

ũi − d̃i
)(

m̃i − d̃i
) ,

p̃i,m = 1 − p̃i,u − p̃i,d,

where
m̃i =

K
S0

, d̃i =
K
S0

e−∆d(K)
√

∆ti , ũi =
K
S0

e∆u(K)
√

∆ti .

We suppose that an asymptotic expansion of CNi (∆ti, x) in powers of 1/
√

Ni exists.
Note that in the framework of vanilla European options in Boyle’s model, this can be
proved through the use of Edgeworth expansions as described in [2]. Specifically, the
expansion is given by

CNi (∆ti, x) = CBS(∆ti, x) +
M

∑
k=1

ak(∆ti, x)
√

Ni
k + o

(
1

√
Ni

M

)
,

where the coefficient ak(∆ti, x) of 1/
√

Ni
k is an infinitely differentiable function of (∆ti, x)

for which a Taylor expansion exists around any point (∆ti, x) such that 0 ≤ ∆ti < T and
0 < x. Furthermore, for double barrier vanilla options, a1(∆ti, x) = 0. The o-term is
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also assumed to be valid uniformly over closed bounded subsets of these intervals. Let
a0(∆ti, x) = CBS(∆ti, x). Taking the Taylor expansions of the functions ak(∆ti, x) around
the point (0, S0) and collecting like terms, we obtain a sum of terms of the form

bj,ℓ
√

Ni
ℓ
(x − S0)

j,

where bj,ℓ is a constant depending only on λ, r, σ, T, A1, . . . , AF and ∆0, . . . , ∆F. Note that
b0,0 = CBS(0, S0). Then CNi (0, S0) is a weighted sum of expectations of the form

e−r∆ti E
((

S∆ti − S0
)j
)

/
√

Ni
ℓ
,

plus the o-term. Note that, for double barrier vanilla options, ℓ ̸= 1. Additionally, since
all components of these expectations have expansions in powers of 1/

√
Ni, with constant

coefficients, it is clear that the same holds true for CNi (0, S0).
In order to use Schmidt’s algorithm for repeated extrapolation as described above,

we need to show that, for double barrier vanilla options, the smallest non-zero power of
1/

√
Ni in the expansion of CNi (0, S0) is 1/Ni. Since S∆ti − S0 = O(

√
∆ti), we only need to

consider the term e−r∆ti E(S∆ti − S0). However, risk neutrality gives

e−r∆ti E
(
S∆ti − S0

)
= S0

(
1 − e−r∆ti

)
= O(∆ti),

as wanted.
It remains to prove the positivity of the probabilities p̃i,d, p̃i,m, and p̃i,u. Note that

∆i = λσ + O
(√

∆t0
)

and recall that 1.16 ≤ λ < 2 and K/S0 = eqiλσ
√

∆ti with | qi | ≤ 1/2.
Then, it is easy to see that

p̃i,u =
q2

i λ2 − qiλ
2 + 1

2λ2 + O(
√

∆t0), p̃i,d =
q2

i λ2 + qiλ
2 + 1

2λ2 + O(
√

∆t0),

p̃i,m = 1 − q2
i −

1
λ2 + O(

√
∆t0).

Suppose that qi ≥ 0. The case qi < 0 follows by symmetry. We can see that q2
i λ2 − qiλ

2 + 1 > 0
for every value of qi unless λ2 − 4 ≥ 0. However, the requirement 1.16 ≤ λ < 2 guarantees that
this cannot happen. Next, q2λ2 + qλ2 + 1 > 0, because qi, λ ≥ 0. Finally, 1− q2

i − 1/λ2 > 0
providing that |qi| <

√
1− 1/λ2. However, this always holds since 1.16 ≤ λ and |qi| ≤ 0.5.

Thus, when ∆t0 is sufficiently small, p̃i,d, p̃i,m, and p̃i,u are all greater than 0, as desired.
In Table 1, we analyze a double knock-out vanilla call option and a double knock-out

digital call option, respectively, reporting the error of the Boyle–Romberg tree method
against the Black–Scholes model when S0 approaches the strike. We use N0 = 25 time steps
for the vanilla option and N0 = 100 time steps for the digital option, with different RRE
counts ranging from 3 to 5. All calculations were completed in a fraction of a second.

5.2. The Near Barrier Case

Now, let X be a barrier and assume that S0 is near X. For the purpose of this section,
consider that Ni = 2i N0. The method described above may not work very well because
the Taylor expansions may not be valid across the barrier. However, the price can still be
efficiently calculated as described below. For simplicity, we will suppose that X = L, as the
case X = U can be treated in an analogous manner.

We wish to use the Boyle–Romberg tree with N0 time steps and M ≥ 1 repeated
extrapolations. First, we construct a Boyle–Romberg trinomial tree with N0 time steps,
setting the root of the tree at X. We denote by XN0 the immediate upper neighbor of X in
this tree. We utilize the Boyle–Romberg trinomial tree with R0 repeated extrapolations
to estimate the barrier option’s price CBS(XN0) when the underlying asset price is XN0 .
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Note that the error in Schmidt’s algorithm is O(∆t(R0+1)/2
0 ). Therefore, we choose R0 to

be the smallest integer such that ∆t(R0+1)/2
0 ≤ ε, where ε is a specified precision level.

We then repeat this procedure, substituting N0 with N1, N2, . . ., thereby obtaining option
prices CBS(XNi ) corresponding to the spot prices XNi , for i = 0, . . . , M. However, when
calculating CBS(XNi ), we reduce the number of repeated extrapolations from R0 to Ri.

Here, Ri is defined as the smallest integer such that ∆t(Ri+1)/2
i ≤ ε. Finally, we utilize

Schmidt’s algorithm to calculate CBS(S0), setting γi = i, hi = ln(XNi /X)− ln(S0/X), and
x(hi) = CBS(0, XNi ), for i = 0, . . . , M. Observe that

ln(XNi /X) = ∆u(X)
√

∆ti = λσ
√

∆ti + O(∆t0).

It is not difficult to see that

hi+1

hi
≤

√
∆ti+1

∆ti
+ O(∆t0) ≤

√
1
2
+ O(∆t0) < 1,

for N0 sufficiently large, justifying the use of Schmidt’s method.

Table 1. Error near the strike for double knock-out vanilla and digital call options

Option Type RRE\S0 104.9 104.99 104.999 105.001 105.01 105.1

Vanilla 3 1.4 × 10−5 1.4 × 10−5 1.4 × 10−5 1.4 × 10−5 1.4 × 10−5 1.4 × 10−5

4 −9.4 × 10−7 −9.5 × 10−7 −9.5 × 10−7 −9.5 × 10−7 −9.5 × 10−7 −9.7 × 10−7

5 4.8 × 10−7 8.7 × 10−9 8.7 × 10−9 8.7 × 10−9 8.7 × 10−9 −2.0 × 10−9

Digital 3 −6.6 × 10−8 −6.9 × 10−8 −6.9 × 10−8 −7.3 × 10−8 −6.9 × 10−8 −6.9 × 10−8

4 3.9 × 10−9 7.7 × 10−10 7.7 × 10−10 −2.4 × 10−9 7.7 × 10−10 7.7 × 10−10

5 3.4 × 10−9 2.6 × 10−10 2.5 × 10−10 −2.9 × 10−9 2.5 × 10−10 2.5 × 10−10

Here, L = 90, U = 115, K = 105, r = 0.05, σ = 0.2, and T = 1. We report the error of the Boyle–Romberg trinomial
tree with λ = 1.2 against the BS price for various values of S0 near the barrier. For the vanilla option, we use
N0 = 25 time steps, and for the digital option, we use N0 = 100 time steps. We consider three, four, and five
repeated Richardson extrapolations (RRE).

In this context, we select ε = 10−10 as our precision level, since it approximates the
reliable precision of machine calculations and is sufficiently precise for our purposes. In
Table 2, we respectively analyze a double knock-out vanilla call option and a double knock-
out digital call option, comparing the price of the Boyle–Romberg tree method with the
Black–Scholes price when S0 approaches the barriers. All calculations were executed in a
fraction of a second.

Table 2. Error near the barriers for double knock-out vanilla and digital call options

Option Type RRE\S0 90.1 90.01 90.001 114.9 114.99 114.999

Vanilla 3 −2.4 × 10−5 −2.8 × 10−5 −2.8 × 10−5 −2.5 × 10−5 −2.7 × 10−5 −2.7 × 10−5

4 1.1 × 10−6 1.4 × 10−6 1.4 × 10−6 3.3 × 10−6 3.8 × 10−6 3.9 × 10−6

5 −7.0 × 10−9 −7.6 × 10−9 −7.6 × 10−9 8.7 × 10−9 1.1 × 10−8 1.1 × 10−8

Digital 3 −3.0 × 10−7 −2.9 × 10−7 −2.2 × 10−7 1.9 × 10−8 2.6 × 10−8 2.7 × 10−8

4 3.1 × 10−8 3.0 × 10−8 4.9 × 10−8 1.7 × 10−8 2.4 × 10−8 2.4 × 10−8

5 4.6 × 10−8 4.2 × 10−8 1.8 × 10−7 −1.8 × 10−9 −1.9 × 10−9 −1.9 × 10−9

Here, L = 90, U = 115, K = 105, r = 0.05, σ = 0.2, and T = 1. We report the error of the Boyle–Romberg trinomial
tree with λ = 1.2 against the BS price for various values of S0 near the barrier. For the vanilla option, we use
N0 = 25 time steps, and for the digital option, we use N0 = 100 time steps. We consider three, four, and five
repeated Richardson extrapolations (RRE).
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6. Conclusions

In this paper, we introduce the Boyle–Romberg trinomial tree, a new tree with the
property that, throughout the entire life of the option and for various numbers of time steps,
nodes can be precisely located at the points where the payoff function or its derivatives
exhibit discontinuities, providing that there are finitely many of these discontinuities. This
characteristic effectively eliminates the oscillations of the convergence commonly associated
with tree methods, thus allowing repeated extrapolation. In the case of double barrier
option valuation in the Black–Scholes model, a subject of several recent publications, we
have empirically demonstrated that option prices computed using our tree can be highly
efficient when used in conjunction with Schmidt’s algorithm for repeated extrapolation.
This is significant because it is a key component for achieving arbitrarily fast convergence,
a feature that, until now, had been realized with tree methods only in the case of European
vanilla options. Our tree method is simple and can readily be adapted to other models
and options. Our future work will focus on exploring this potential, aiming to harness the
inherent efficiency and simplicity of our tree in a variety of models and options.
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