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Abstract: The α-fractional power moduli series are introduced as a generalization of α-fractional
power series and the structural properties of these series are investigated. Using the fractional
Taylor’s formula, sufficient conditions for a function to be represented as an α-fractional power
moduli series are established. Beyond theoretical formulations, a practical method to represent
solutions to boundary value problems for fractional differential equations as α-fractional power series
is discussed. Finally, α-analytic functions on an open interval I are defined, and it is shown that a
non-constant function is α-analytic on I if and only if 1/α is a positive integer and the function is real
analytic on I.
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1. Introduction

The power series method is a classical tool to approximate solutions to initial value
problems for ordinary differential equations. Since fractional calculus became an useful
instrument for modeling various phenomena in science and engineering, a lot of classical
notions were extended to the fractional case (see [1–5]). For example, the classical power
series were generalized to α-fractional power series (with α a positive number) and some
classical methods in calculus were extended to the fractional case (see [6]).

The α-fractional power series are used to approximate solutions to fractional ordinary
differential equations (FODE). For instance, in [7,8], the solutions to the Bagley–Torvik
equation and the fractional Laguerre-type logistic equation are approximated by using
α-fractional power series. Numerical approximations of solutions to fractional ordinary
differential equations using α-fractional power series can be found in [9–11] and references
therein. Results on the solutions to systems of fractional ordinary differential equations are
presented in [12]. A generalization of the α-fractional power series is studied in [13], and is
applied to obtain solutions to linear fractional order differential equations. The theoretical
background and the applications of the fractional-calculus operators which are based upon
the general Fox–Wright function and its special forms as Mittag–Leffler-type functions are
presented in [14,15].

The research in the field of fractional differential equations has focused mostly on initial
value problems, but there are also some papers dealing with boundary value problems
(see [16–19]). For instance, in [17,18], the existence and uniqueness of a solution to the
boundary value problems for fractional order differential equations and nonlocal boundary
condition are studied. In [19], the authors use the fractional central formula, based on the
generalized Taylor theorem [20], for approximating the fractional derivatives of order α
and 2α, respectively.
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In this paper, we introduce the α-fractional power moduli series as a generalization
of the α-fractional power series. We study the properties of these series in Section 2,
using sequential fractional derivatives (Theorems 1 and 2). Using the generalized Taylor’s
formula, sufficient conditions for a function to be represented as an α-fractional power
moduli series are established in Corollary 2.

A practical method to approximate solutions to boundary value problems for FODE
using the partial sums of α-fractional power series is presented in Section 3 and is applied
in some illustrative examples. The α-fractional analytic functions (on an open interval I)
are studied in Section 4. The real analytic functions (obtained for α = 1) seem to be a
particular case of α-fractional analytic functions, but it is proved (see [6]) that a function
representable as an α-fractional power series at a point x0, that is, f (x) = ∑

n≥0
an(x − x0)

nα

for all x ∈ [x0, x0 + r), must be a real analytic function on the open interval (x0, x0 + r). As
a consequence, non-constant α-analytic functions exist only for α = 1

m with m a positive
integer and they are exactly the real analytic functions on the interval I.

2. Fractional Power Series

A series of the form
∞

∑
n=0

an(x − x0)
nα, x ≥ x0, (1)

with an ∈ R and α ∈ (0, 1] is called an α-fractional power series about x0. We note that any

series of the form
∞

∑
n=0

a′n(x − x0)
nα′ with α′ > 1 is also a series of the form (1) with α = α′

⌈α′⌉ ,

where ⌈x⌉ = min{z ∈ Z : z ≥ x} denotes the ceiling function.
Similarly, a series of the form

∞

∑
n=0

an|x − x0|nα, (2)

with an ∈ R and α ∈ (0, 1] is called an α-fractional power moduli series about x0.
Fractional power series can be studied using the fractional differential and fractional

integral operators. We shortly present the most important definitions and results in frac-
tional calculus (see [1–5]). Moreover, starting from these classical results, we introduce a
general frame which is needed in the case of fractional power moduli series.

Definition 1. Let I be a real interval, I = (x0, b]. A function f : I → R is said to be of class
Cρ,x0+(I) if f (x) = (x − x0)

ρg(x), where g : [x0, b] → R is a continuous function. If there exists

f (n)(x), for every x ∈ I and f (n) ∈ Cρ,x0+(I), then the function f is said to be of class C(n)
ρ,x0+

(I).
Similarly, if I = [a, x0), then f : I → R is said to be a function of class Cρ,x0−(I) if

f (x) = (x0 − x)ρg(x), where g : [a, x0] → R is a continuous function. If there exists f (n)(x), for
every x ∈ I and f (n) ∈ Cρ,x0−(I), then the function f is said to be of class C(n)

ρ,x0−(I).
If I = [a, b] is a real interval and x0 ∈ (a, b), then f : I → R is said to be a function of class

Cρ,x0±(I) if f (x) = |x − x0|ρg(x), where g : [a, b] → R is a continuous function. If there exists

f (n)(x), for every x ∈ I and f (n) ∈ Cρ,x0±(I), then the function f is said to be of class C(n)
ρ,x0±(I).

Definition 2. Let I be a real interval, I = (x0, b] and f : I → R be a function of class Cρ,x0+(I),
with ρ > −1. Then, for any x ∈ I, the left-sided Riemann–Liouville fractional integral of order
α > 0 of f is defined as

(
Jα
x0+ f

)
(x) =

1
Γ(α)

x∫
x0

f (t)dt
(x − t)1−α

.

If I = [a, x0) is a real interval and f : I → R is a function of class Cρ,x0−(I), with ρ > −1,
then the right-sided Riemann–Liouville fractional integral of order α > 0 of f is defined as
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(
Jα
x0− f

)
(x) =

1
Γ(α)

x0∫
x

f (t)dt
(t − x)1−α

.

Lemma 1. Let I = [a, b] be a real interval, x0 ∈ (a, b), α > 0, and f : I → R be a function of
class Cρ,x0±(I), where ρ > −1 and ρ ≥ −α. Then, there exist the following limits, and they are
finite and equal: (Jα

x0+
f )(x0) := lim

x→x0
(Jα

x0+
f )(x), (Jα

x0− f )(x0) := lim
x→x0

(Jα
x0+

f )(x). Thus, the

Riemann–Liouville fractional integral of order α can be defined on both sides of x0 by the following
continuous function:

(
Jα
x0± f

)
(x) :=

{
(Jα

x0+
f )(x), if x ≥ x0

(Jα
x0− f )(x), if x < x0.

Proof. Since f (x) = |x − x0|ρg(x), where g(x) is a continuous function, we can write:

(
Jα
x0+ f

)
(x) =

1
Γ(α)

x∫
x0

(t − x0)
ρg(t)dt

(x − t)1−α
=

(x − x0)
ρ+α

Γ(α)

1∫
0

τρ(1 − τ)α−1g(x0 + τ(x − x0))dτ.

From the Mean Value Theorem, it follows that there exists ξx ∈ (x0, x) such that

(
Jα
x0+ f

)
(x) =

(x − x0)
ρ+α

Γ(α)
g(ξx)

1∫
0

τρ(1 − τ)α−1dτ = (x − x0)
ρ+αg(ξx)

Γ(ρ + 1)
Γ(α + ρ + 1)

and we obtain

(Jα
x0+ f )(x0) = lim

x→x0
(Jα

x0+ f )(x) =
{

0 if ρ > −α,
g(x0)Γ(1 − α) if ρ = −α.

In a similar way, it can be proved that the limit (Jα
x0− f )(x0) = lim

x→x0
(Jα

x0− f )(x) exists

and is equal to (Jα
x0+

f )(x0).

Introduced by M. Caputo in 1967 (see [21]), the fractional derivative operator expressed
by Definition 3 can definitely share some similarities with the fractional derivatives consid-
ered by J. Liouville in 1832 (see [22], p. 10, formula (B)). That is why recent studies refer
to the Caputo fractional derivative as the Liouville–Caputo fractional derivative (see [14–17]).
We thank the reviewer who brought this issue to our attention.

Definition 3. Let α > 0 and m = ⌈α⌉. Consider the interval I = (x0, b], and f : I → R a
function of class C(m)

ρ,x0+
(I) with ρ > −1. For any x ∈ I, the left-sided Liouville–Caputo fractional

derivative of order α of f is defined as

(Dα
x0+ f )(x) =


1

Γ(m−α)

x∫
x0

f (m)(t)dt
(x−t)α−m+1 , if α ̸∈ N

f (α)(x), if α ∈ N.

If I = [a, x0) is an interval, and f : I → R is a function of class C(m)
ρ,x0−(I) with ρ > −1, then,

for any x ∈ I, the right-sided Liouville–Caputo fractional derivative of order α of f is defined as

(Dα
x0− f )(x) =

 (−1)m

Γ(m−α)

x0∫
x

f (m)(t)dt
(t−x)α−m+1 , if α ̸∈ N

(−1)α f (α)(x), if α ∈ N
.
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If x0 is an interior point of an interval I and f is a function of class C(m)
α−m,x0±(I), then there ex-

ist (Dα
x0+

f )(x0) := lim
x→x0

(Dα
x0+

f )(x), (Dα
x0− f )(x0) := lim

x→x0
(Dα

x0− f )(x) and they are finite and

equal. The Liouville–Caputo derivative of f is defined on both sides of x0 by the continuous function:

(Dα
x0± f )(x) :=

{
(Dα

x0+
f )(x), if x ≥ x0

(Dα
x0− f )(x), if x < x0.

A remarkable property of the Riemann–Liouville fractional integral operators is the
“semigroup property” ([1], Theorem 2.4): if Jα

x0
is any one of the operators Jα

x0+
, Jα

x0−, and
Jα
x0±, then, for any α, β > 0 and for any suitable function f , we have

Jα
x0

Jβ
x0 f = Jβ

x0 Jα
x0

f = Jα+β
x0 f .

It follows that, for any α > 0 and n ∈ N, one can write Jα
x0

Jα
x0

. . . Jα
x0︸ ︷︷ ︸

n−times

f = Jnα
x0

f .

The equality above does not hold in the case of Liouville–Caputo fractional differential
operators. Let us take, for instance, the function f (x) =

√
x:

D
1
2
0+D

1
2
0+

√
x = D

1
2
0+

(
D

1
2
0+

√
x
)
= D

1
2
0+

(√
π/2

)
= 0,

D
1
2+

1
2

0+
√

x = D1
0+

√
x =

(√
x
)′

=
1

2
√

x
.

Let Dα
x0

be one of the Liouville–Caputo fractional differential operators Dα
x0+

, Dα
x0−,

and Dα
x0±, and n be a positive integer. We denote by D̂nα

x0
f the sequential fractional derivative

of order n of the function f :

D̂nα
x0

f := Dα
x0

Dα
x0

. . . Dα
x0︸ ︷︷ ︸

n−times

f .

As noted above, D̂nα
x0

f ̸= Dnα
x0

f for n > 1.
For any positive integer n and α ∈ (0, 1), we denote by Ĉn,α

x0±(I) (resp. Ĉn,α
x0+

(I)) the
set of all the functions possessing sequential fractional derivatives of order k, D̂kα

x0± f (resp.
D̂kα

x0+
f ), which are continuous on Ī, for every k ≤ n.

Lemma 2. Let f : I = (x0 − r, x0 + r) → R be a function continuous on I\{x0} such that

f (x0 − x) = f (x0 + x), for all x ∈ (0, r), (3)

that is, the graph of f is symmetric with respect to the straight line x = x0. Then, for any ρ > −1
and α ∈ (0, 1) we have:

(i) f ∈ Cρ,x0+(x0, x0 + r) if and only if f ∈ Cρ,x0−(x0 − r, x0), and

(Jα
x0− f )(x0 − x) = (Jα

x0+ f )(x0 + x), for all x ∈ (0, r);

(ii) f ∈ C(1)
ρ,x0+

(x0, x0 + r) if and only if f ∈ C(1)
ρ,x0−(x0 − r, x0), and

(Dα
x0− f )(x0 − x) = (Dα

x0+ f )(x0 + x), for all x ∈ (0, r).

Proof. (i) First of all, we notice that the function f satisfies (3) if and only if there is a
continuous function h : (0, r) → R such that

f (x) = h(|x − x0|), for all x ∈ (x0 − r, x0 + r). (4)

Obviously, we have
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f ∈ Cρ,x0+(x0, x0 + r) ⇔ h ∈ Cρ,0+(0, r) ⇔ f ∈ Cρ,x0−(x0 − r, x0)

and
(Jα

x0+ f )(x0 + x) = (Jα
0+h)(x) = (Jα

x0− f )(x0 − x), for all x ∈ (0, r).

(ii) We notice that

f ′(x) =
{

h′(x − x0) if x > x0
−h′(x0 − x) if x < x0,

and

f ∈ C(1)
ρ,x0+

(x0, x0 + r) ⇔ h ∈ C(1)
ρ,0+(0, r) ⇔ f ∈ C(1)

ρ,x0−(x0 − r, x0).

We prove that

(Dα
x0− f )(x0 − x) = (Dα

x0+ f )(x0 + x) = (Dα
0+h)(x), (5)

for any x ∈ (0, r). We can write

(Dα
x0− f )(x0 − x) =

−1
Γ(1 − α)

x0∫
x0−x

f ′(t)dt
(t − x0 + x)α

=
1

Γ(1 − α)

x∫
0

− f ′(x0 − τ)dτ

(x − τ)α
= (Dα

0+h)(x).

In a similar way, it can be proved that (Dα
x0+

f )(x0 + x) = (Dα
0+h)(x) for all x ∈ (0, r)

and so the lemma is proved.

The generalized Taylor’s formula using sequential fractional derivatives was intro-
duced in [20]. The next result shows how this formula can be extended on both sides of x0
for functions satisfying (3).

Theorem 1. Consider α ∈ (0, 1), I = (x0 − r, x0 + r), and f ∈ Ĉn+1,α
x0 ( Ī) a function satisfying

(3). Then, for all x ∈ I, there exists ξ ∈ I such that

f (x) = Tn(x, x0) + Rn(x, x0),

where

Tn(x, x0) =
n

∑
k=0

(D̂kα
x0± f )(x0)

Γ(kα + 1)
|x − x0|kα (6)

and

Rn(x, x0) =
(D̂(n+1)α

x0± f )(ξ)
Γ((n + 1)α + 1)

|x − x0|(n+1)α.

Proof. For x ≥ x0, the theorem is proved in [20]. Thus, there exists ξ ∈ [x0, x0 + r)
such that

f (x) =
n

∑
k=0

(D̂kα
x0+

f )(x0)

Γ(kα + 1)
(x − x0)

kα +
(D̂(n+1)α

x0+
f )(ξ)

Γ((n + 1)α + 1)
(x − x0)

(n+1)α.

For x < x0, the theorem follows by Lemma 2.

By Lemma 2, it follows that

Dα
x0±|x − x0|nα =

{
Γ(nα+1)

Γ((n−1)α+1) |x − x0|(n−1)α, if n ≥ 1
0, if n = 0.

(7)
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The following theorem establishes the basic properties of the α-fractional power
moduli series and extends the results from [6,23] regarding fractional power series.

Theorem 2. Let (2) be an α-fractional power moduli series, with α ∈ (0, 1], and R = 1
lim sup

n→∞

n
√

|an |
.

Then, r =

{
R

1
α , if R < ∞

∞, if R = ∞
is called the radius of convergence of the series (2). If r > 0, then

(i) For any b ∈ (0, r), the series (2) converges absolutely and uniformly on [x0 − b, x0 + b],
and there exists a positive integer n(b) such that |an| ≤ b−nα, for all n ≥ n(b). If

f (x) =
∞

∑
n=0

an|x − x0|nα, x ∈ (x0 − r, x0 + r), (8)

then f is a continuous function and the equality (3) holds for all x ∈ [0, r).
(ii) There exists the fractional derivative Dα

x0± f : (x0 − r, x0 + r) → R. Moreover, the series

of the fractional derivatives
∞
∑

n=0
anDα

x0±|x − x0|nα =
∞
∑

n=1
an

Γ(nα+1)
Γ((n−1)α+1) |x − x0|(n−1)α converges

absolutely and uniformly on [x0 − b, x0 + b], for any b ∈ (0, r), and

(Dα
x0± f )(x) =

∞

∑
n=0

anDα
x0±|x − x0|nα =

∞

∑
n=1

an
Γ(nα + 1)

Γ((n − 1)α + 1)
|x − x0|(n−1)α, (9)

for all x ∈ (x0 − r, x0 + r).

Proof. (i) Let us consider the power series v(t) =
∞
∑

n=0
antn, where t = |x − x0|α. Then, the

statement follows by the well-known properties of the power series and the definition of f .
(ii) Let h : [0, r) → R be the sum of the fractional power series

h(x) =
∞

∑
n=0

anxnα.

Then, h is continuous and there exists the fractional Liouville–Caputo derivative
Dα

0+h : [0, r) → R (see [23], Theorem 1). Moreover, the series of the fractional derivatives
∞
∑

n=0
anDα

0+xnα is absolutely and uniformly convergent on [0, b], for any b ∈ (0, r) and

(Dα
0+h)(x) =

∞

∑
n=0

anDα
0+xnα =

∞

∑
n=1

an
Γ(nα + 1)

Γ((n − 1)α + 1)
x(n−1)α, for all x ∈ [0, r).

Since f (x) = h(|x − x0|), for all x ∈ (x0 − r, x0 + r), the theorem follows by (5).

We note that the operator Dα, defined for power series v(t) =
∞
∑

n=0
antn as

Dαv(t) =
∞

∑
n=1

an
Γ(nα + 1)

Γ((n − 1)α + 1)
tn−1

is known as the Gelfond–Leontiev operator with respect to the Mittag–Leffler function

Eα(t) =
∞
∑

n=0

tn

Γ(nα+1) [1,24]. Using this operator, the Liouville–Caputo fractional derivative

of the function (8) can be written as (Dα
x0± f )(x) = Dαv(|x − x0|α).

Corollary 1. Assume that the series (2) has a positive radius of convergence r. Then, for every
non-negative integer k, there exists the sequential fractional derivative of order k (D̂kα

x0± f ), which is
a continuous function on I = (x0 − r, x0 + r) and
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(D̂kα
x0± f )(x) =

∞

∑
n=k

an
Γ(nα + 1)

Γ((n − k)α + 1)
|x − x0|(n−k)α. (10)

Moreover, an =
(D̂nα

x0± f )(x0)

Γ(nα+1) , for every n ≥ 0.

Proof. The relation (10) follows by applying Theorem 2 k times. By taking x = x0 in (10),
we get the last statement.

The following corollary provides a sufficient condition for a function satisfying (3) to
be represented as a fractional power moduli series.

Corollary 2. Assume that α ∈ (0, 1), I = [x0 − r, x0 + r] is a real interval, and f ∈ Ĉn,α
x0±(I), for

every n, is a function satisfying (3). If Mn = o
(

Γ(nα+1)
rnα

)
, where Mn = sup

x∈I
|(D̂nα

x0± f )(x)|, then

f is represented as an α-fractional power moduli series on I:

f (x) =
∞

∑
n=0

(D̂nα
x0± f )(x0)

Γ(nα + 1)
|x − x0|nα, for all x ∈ I.

Proof. By Theorem 1, we get∣∣∣∣∣ f (x)−
n

∑
k=0

(D̂kα
x0± f )(x0)

Γ(kα + 1)
|x − x0|kα

∣∣∣∣∣ =
∣∣∣∣∣∣ (D̂(n+1)α

x0± f )(ξ)
Γ((n + 1)α + 1)

|x − x0|(n+1)α

∣∣∣∣∣∣,
which implies the corollary.

Remark 1. If α ∈ (0, 1], I = [x0, x0 + r) (resp. I = (x0 − r, x0 + r)) and f ∈ Ĉn,α
x0±( Ī), for every

n, is a function represented as an α-fractional power series (1) (resp. an α-fractional power moduli
series (2)) at x0 on I, then, by Theorem 2 and Corollary 2, it follows that the coefficients an are
uniquely determined. Moreover, if f can be also represented as a β-fractional power series with
β ∈ (0, 1], then α

β must be a rational number.

3. Boundary Value Problems for Fractional Differential Equations

In this section, we present a method to study the existence and the uniqueness of
solutions to boundary value problems for fractional linear differential equations, solutions
which are representable as α-fractional power series. This is based on the result below.

Let us consider α ∈ (0, 1] and the fractional linear differential equation

(D̂nα
0+y)(x) + a1(x)(D̂(n−1)α

0+ y)(x) + . . . + an(x)y(x) = f (x), x ∈ [0, b]. (11)

Theorem 3 (see [23], Theorem 3). Suppose that b′ > b and f , aj, j = 1, 2, . . . , n, are repre-

sentable as α-fractional power series at 0 on [0, b′). If y(0)i , i = 0, 1, . . . , n − 1, are arbitrary real
numbers, then there exists y = y(x) representable as an α-fractional power series at 0 on [0, b],
which is a solution to Equation (11), uniquely determined such that

(D̂iα
0 y)(0) = y(0)i , i = 0, 1, ..., n − 1.

Example 1. Let us consider the boundary value problem for the inhomogeneous fractional Airy
Equation (see ([25], 10.4) and ([2], Example 7.10))

(D̂2α
0+y)(x)− xαy(x) = 1 − xα + x2α, x ∈ [0, b], α ∈ (0, 1], (12)

y(0) = δ1, y(b) = δ2, (13)

where δ1 and δ2 are arbitrary real numbers.
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In order to prove that the boundary value problem (12), (13) has a (unique) solution repre-
sentable as an α-fractional power series at 0 on the interval [0, b], we firstly solve an initial value
problem for the same equation (see, for example, [26], p. 88).

Le us assume that y = y(x) is represented as a fractional power series at x0 = 0 on an interval
I = [0, b′), with b′ > b. Thus, by Theorem 2, we can write for all x ∈ I:

y(x) =
∞

∑
n=0

anxnα, (14)

(D̂α
0+y)(x) =

∞

∑
n=0

an+1
Γ((n + 1)α + 1)

Γ(nα + 1)
xnα,

(D̂2α
0+y)(x) =

∞

∑
n=0

an+2
Γ((n + 2)α + 1)

Γ(nα + 1)
xnα. (15)

If the function y given by (14) is a solution to the fractional differential Equation (12), then

an+2 = (an−1 + cn)
Γ(nα + 1)

Γ((n + 2)α + 1)
, for all n ≥ 0, (16)

where a−1 = 0, c0 = c2 = 1, c1 = −1, and cn = 0, for all n ≥ 3.
Let us consider the initial value problem for Equation (13) with the initial conditions

y(0) = δ1, (D̂α
0+y)(0) = s, (17)

where s is a real parameter.
By Theorem 3, it follows that, for any fixed s, the initial value problem (12), (17) has a unique

solution ỹ = ỹ(x, s) which can be represented as an α-fractional power series at 0 on [0, b′):

ỹ(x, s) =
∞

∑
n=0

ãn(s)xnα, x ∈ [0, b′). (18)

As shown above, the coefficients ãn(s) must verify (16), and, from the initial conditions (17),
we have ã0(s) = δ1 and ã1(s) = s

Γ(α+1) . Thus, by (16), we find

ã2(s) =
1

Γ(2α + 1)
, ã3(s) = (δ1 − 1)

Γ(α + 1)
Γ(3α + 1)

, ã4(s) =
Γ(2α + 1)
Γ(4α + 1)

(
s

Γ(α + 1)
+ 1

)
,

and

ãn(s) = ãn−3(s)
Γ((n − 2)α + 1)

Γ(nα + 1)
, for all n ≥ 5. (19)

Hence, for every k ≥ 1, it follows that

ã3k(s) = (δ1 − 1)
k−1

∏
j=0

Γ((3j + 1)α + 1)
Γ((3j + 3)α + 1)

,

ã3k+1(s) =
(

s
Γ(α + 1)

+ 1
) k−1

∏
j=0

Γ((3j + 2)α + 1)
Γ((3j + 4)α + 1)

,

and

ã3k+2(s) =
1

Γ(2α + 1)

k−1

∏
j=0

Γ((3j + 3)α + 1)
Γ((3j + 5)α + 1)

.

We notice that the coefficients ã3k(s) and ã3k+2(s) do not depend on s. For every n ≥ 3,
we denote
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dn =


k−1
∏
j=0

Γ((3j+2)α+1)
Γ((3j+4)α+1) if n = 3k + 1

ãn(s) otherwise,

and d1 = 1, d2 = ã2(s) = 1
Γ(2α+1) , d3 = ã3(s) = (δ1 − 1) Γ(α+1)

Γ(3α+1) . By (19), we get

dn = dn−3
Γ((n − 2)α + 1)

Γ(nα + 1)
, for all n ≥ 4.

By replacing in (18), we obtain

ỹ(x, s) = δ1 +
∞

∑
n=2

dnxnα +
s

Γ(α + 1)

∞

∑
k=0

d3k+1x(3k+1)α, x ∈ [0, b′). (20)

It can be easily proved that the fractional power series in the formula (20) have the radius of
convergence r = ∞ (hence, they are uniformly convergent on [0, b]). We denote the sum of the series

by g(x) =
∞
∑

n=2
dnxnα and h(x) =

∞
∑

k=0
d3k+1x(3k+1)α. To obtain a solution to the boundary value

problem (12), (13), we need to find the value of s for which ỹ(b, s) = δ2, that is, to solve the equation

δ1 + g(b) +
s

Γ(α + 1)
h(b) = δ2.

Hence, for

s =
Γ(α + 1)(δ2 − δ1 − g(b))

h(b)
, (21)

the series (18) is a solution to the boundary value problem (12), (13).
Let us suppose that y1(x) is another solution to the boundary value problem (12), (13) which

can be represented as an α-fractional power series at 0 on [0, b] and denote s1 = (D̂α
0+ỹ)(0). Then,

the function y1(x), is the solution to the initial value problem

ỹ(0) = δ1, (D̂α
0+ỹ)(0) = s1,

for Equation (12). Since y1(x) satisfies the boundary condition (13) and s0 is uniquely defined by
(21), it follows that s1 = s0. Hence y1(x) = ỹ(x, s0), which implies the uniqueness of the solution
to the boundary value problem (12), (13).

As a numerical example, if we take b = 2, δ1 = −1, and δ2 = 5, the solutions to the BVP
(12), (13), for α = 0.2, α = 0.5, and α = 1 are presented in Figure 1 by using red, blue, and black
lines, respectively.

Example 2. Let us consider the inhomogeneous fractional differential equation

(D̂3α
0+y)(x)− xα(D̂α

0+y)(x)− y(x) = 1 − 2xα; x ∈ [0, b], α ∈ (0, 1]. (22)

and the boundary value problem

y(0) = δ1, (D̂α
0+y)(0) = δ2, y(b) = δ3, (23)

where δ1, δ2, and δ3 are arbitrary real numbers.
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Figure 1. Solutions to BVP in Example 1 for different values of α.

As in Example 1, let us assume that the function y = y(x) of the form (14) is a solution to the
fractional differential Equation (22). Then, for n ≥ 1, we find

an+3 =
Γ(nα + 1)

Γ((n + 3)α + 1)

(
an

(
Γ(nα + 1)

Γ((n − 1)α + 1)
+ 1

)
+ cn

)
(24)

and a3 = a0+c0
Γ(3α+1) , where c0 = 1, c1 = −2, and cn = 0, for all n ≥ 2.

Let ỹ be a solution to the fractional differential Equation (22) satisfying the initial conditions

ỹ(0) = δ1, (D̂α
0+ỹ)(0) = δ2, (D̂2α

0+ỹ)(0) = s, (25)

where s is a real parameter. Then, by Theorem 3, the initial value problem (22), (25) has a unique
solution ỹ(x, s), given by (18), where the coefficients ãn satisfy (24) and ã0 = δ1, ã1 = δ2

Γ(α+1) ,

ã2 = s
Γ(2α+1) , and ã3 = δ1+c0

Γ(3α+1) . Hence, for k ≥ 1, we find

ã3k =
δ1 + c0

Γ(3kα + 1)

k−1

∏
j=1

(
Γ(3jα + 1)

Γ((3j − 1)α + 1)
+ 1

)
,

ã3k+1 =
Γ(α + 1)(δ2(1 + 1

Γ(α+1) ) + c1)

Γ((3k + 1)α + 1)

k−1

∏
j=1

(
Γ((3j + 1)α + 1)

Γ(3jα + 1)
+ 1

)
and

ã3k+2 =
s

Γ((3k + 2)α + 1)

k−1

∏
j=0

(
Γ((3j + 2)α + 1)
Γ((3j + 1)α + 1)

+ 1
)

. (26)

Thus, we notice that only the coefficients of the form ã3k+2 depend on s. We denote ã3k+2 =
sd3k+2 and ã3k = d3k, ã3k+1 = d3k+1, for every k = 0, 1, . . . and

g(x) =
∞

∑
k=0

d3kx3kα +
∞

∑
k=0

d3k+1x(3k+1)α, h(x) =
∞

∑
k=0

d3k+2x(3k+2)α.
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The series above have the radius of convergence ∞, so they are absolutely convergent [0, b] and
we have

ỹ(x, s) = g(x) + sh(x). (27)

To obtain a solution to the boundary value problem (22), (23) we have to find s such that

ỹ(b, s) = g(b) + sh(b) = δ3,

so

s =
δ3 − f (b)

g(b)
.

The uniqueness of the solution follows as in Example 1.
As a numerical example, we take b = 2, δ1 = 1, δ2 = 2, and δ3 = 3. The solutions to the BVP

(22), (23), for α = 0.2, α = 0.5, and α = 1 are presented in Figure 2, by using red, blue, and black
lines, respectively.

Figure 2. Solutions to BVP in Example 2 for different values of α.

4. Fractional Analytic Functions

A function is said to be representable as an α-fractional power series at x0 if it is equal
to the sum of the fractional Taylor series about x0 on an interval [x0, x0 + r). Some authors
(see [2], Definition 7.8) call such functions α-analytic at x0. In the following, we define the
α-analytic functions on an open interval.

Definition 4. Let I be an open interval and α ∈ (0, 1]. A real function f defined on I is called
α-analytic on I, if, for every x0 ∈ I, there exists ε > 0 such that Jx0,ε = [x0, x0 + ε) ⊂ I and f can

be represented as an α-fractional power series at x0, f (x) =
∞
∑

n=0
an(x − x0)

nα, for all x ∈ Jx0,ε.

Remark 2. By Definition 4, it follows that f is an α-fractional analytic on I, if, for every x0 ∈ I,
there exists ε > 0 such that J̄x0,ε = (x0 − ε, x0 + ε) ⊂ I and the real function Sx0,ε( f ) defined by

Sx0,ε( f )(x) =
{

f (x) if x ∈ [x0, x0 + ε)
f (2x0 − x) if x ∈ (x0 − ε, x0),

can be represented as an α-fractional power moduli series (2) at x0 on J̄x0,ε.
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If α = 1 in Definition 4, then the classical real analytic functions are obtained. A
well-known result (see [27], Corollary 1.2.4) establishes that the sum of a power series,
f (x) = ∑

n≥0
an(x − x0)

n, is analytic on the interval (x0 − r, x0 + r), where r is the radius

of convergence of the series. In the following, we discuss the analyticity of the functions
representable as fractional power series.

Let f (x) = ∑
n≥0

an(x − x0)
nα, for all x ∈ (x0, x0 + r), α ∈ (0, 1) be a function repre-

sentable as an α-fractional power series at x0. Then, f can be written as f = g ◦ h, where
g : (−rα, rα) → R, g(y) = ∑

n≥0
anyn, and h : (x0, x0 + r) → R, h(x) = (x − x0)

α. By the

remark above, g is an analytic function. Since, for any x1 ∈ (x0, x0 + r), h(x) can be written
as h(x) = ∑

n≥0
(−1)nα(α − 1) . . . (α − n + 1)(x1 − x0)

α−n(x − x1)
n in a small neighbourhood

of x1, it follows that h(x) is also analytic on (x0, x0 + r), so the composite function f = g ◦ h
is also an analytic function (see [27], Proposition 1.4.2).

Theorem 4 ([6]). If f (x) can be represented as an α-fractional power series at x0,

f (x) = ∑
n≥0

an(x − x0)
nα, for all x ∈ [x0, x0 + r), (28)

where α ∈ (0, 1] and r > 0, then f is a real analytic function on the interval (x0, x0 + r).

Obviously, an (integer) power series can be also considered as an α-fractional power
series, for any α = 1

m , m ∈ N∗. Hence, any real analytic function on an open interval I is
also an α-analytic function on I (with α = 1

m ). By Theorem 4, it follows that any α-analytic
function on I is real analytic on I and, from Remark 1, we obtain that α must be a rational
number if f is non-constant. On the other hand, if α = k

m with k > 1, then, for any x0 ∈ I,

we have f (x) =
∞
∑

n=0

f (kn)(x0)
(kn)! (x − x0)

kn in a neighbourhood of x0, so f ′(x0) = 0 for all x0 ∈ I

and the next corollary follows.

Corollary 3. Let I be an open interval and f : I → R be a non-constant function. Then, f is an
α-analytic function if and only if α = 1

m , m ∈ N∗, and f is real analytic on I.

5. Conclusions

In this paper, we study the properties of the α-fractional power moduli series as a
generalization of the α-fractional power series. Using the generalized Taylor’s formula
with fractional derivatives, a sufficient condition for a function to be represented as an
α-fractional power moduli series is established.

Moreover, we present a practical method to solve the boundary value problems for frac-
tional differential equations, the solution being expressed as an α-fractional power series.

Finally, α-analytic functions are defined and we prove that a non-constant function
is α-analytic on an open interval I if and only if α = 1

m with m a positive integer, and the
function is real analytic on I.
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