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Abstract: Component failures can lead to performance degradation or even failure in multi-agent
systems, thus necessitating the development of fault diagnosis methods. Addressing the distributed
fault diagnosis problem in a class of partial differential multi-agent systems with actuators, a fault
estimator is designed under the introduction of virtual faults to the agents. A P-type iterative learning
control protocol is formulated based on the residual signals, aiming to adjust the introduced virtual
faults. Through rigorous mathematical analysis utilizing contraction mapping and the Bellman–
Gronwall lemma, sufficient conditions for the convergence of this protocol are derived. The results
indicate that the learning protocol ensures the tracking of virtual faults to actual faults, thereby
facilitating fault diagnosis for the systems. Finally, the effectiveness of the learning protocol is
validated through numerical simulation.

Keywords: multi-agent systems; distributed fault diagnosis; partial differential equations; iterative
learning control
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1. Introduction

In the past decade, research on multi-agent systems (MASs) has garnered widespread
attention [1–6]. MASs consist of intelligent entities with sensing and execution capabilities,
collaborating through network coupling to collectively solve problems, thereby enhancing
the efficiency of problem solving [1,2]. Due to their advantages, MASs find extensive
applications in collaborative research areas such as unmanned ground vehicles [3], un-
manned boats [4], and drones [5]. A detailed survey of the application domains of MASs is
conducted in [6].

The successful completion of complex tasks through cooperation in MASs is contingent
upon the normal operation of each agent and the maintenance of regular communication
connections between agents [7]. However, unlike the single intelligent system described by
ordinary differential equations (ODEs) in [8–10], with an increase in the number of agents,
the long-term operation of MASs becomes more susceptible to the influence of failures
in practice [11]. Suppose that faults should be promptly diagnosed and addressed after
occurrence, the distributed nature of MASs makes faults prone to propagating among their
networks, leading to MAS paralysis and causing severe economic losses [12]. Consequently,
considering the reliability and security of MASs in real-world scenarios, issues related to
fault diagnosis have garnered widespread attention [13–17]. For instance, in [13], a sliding
mode observer addressed the fault detection issue in MASs subject to disturbances. In [14],
a distributed fault diagnosis approach for MASs was proposed based on a belief rule base.
Furthermore, in [15], a novel iterative learning control scheme was developed to mitigate
the impact of uncertainties and actuator failures in MASs. In contrast, the scheme relied on
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estimating both the self-state and the neighboring states. Additional research reports on
fault diagnosis in MASs can be found in references [16,17].

Iterative learning control (ILC) represents an effective intelligent control strategy for
achieving the high-precision tracking of an unknown system with accurate models within a
finite time interval [18]. It is particularly well suited to systems exhibiting repetitive cyclic
tracking characteristics. ILC, initially proposed by Arimoto and others, is a significant
branch of learning control [19,20]. The core idea of ILC involves utilizing the input–output
data obtained from previous iterations, continuously refining the control input from the
previous iteration, and achieving the complete tracking of the desired trajectory within a
finite time interval [21,22]. Compared to some traditional control methods, ILC requires
minimal prior knowledge and computations, making it suitable for straightforwardly
handling dynamic systems with high uncertainty [23]. Consequently, ILC has been widely
researched in both practical and theoretical analyses of MASs [24,25]. In recent years,
ILC has made significant strides in system fault diagnosis [26–28]. For example, in [26],
an investigation was conducted on iterative learning fault diagnosis for stochastic repeat
systems with Brownian motion. In [27], a novel fault detection and estimation algorithm
based on ILC was proposed to address the challenges of detecting and estimating faults
in time-varying uncertain network systems. Subsequently, an effective data-driven ILC
scheme was designed for a specific class of network systems with potential faults [28].
Thus, the objective of diagnosing system faults can be achieved by iteratively adjusting the
introduced virtual faults through the residual signal using ILC methods. Unfortunately, as
evident from the mentioned references [13–17,26–28], these studies primarily address fault
diagnosis issues in the time domain for MASs.

Despite this, recent research has yielded novel findings on MASs described by
ODEs [29–31], with ample consideration given to the temporal evolution of agent states.
However, in the real world, the state of MASs is not only time-dependent but also spatially
influenced, as observed in examples such as flexible robotic arms, the axial movement of
motors, and spacecraft surfaces, as referenced in [32–35]. Consequently, in recent years,
significant efforts have been dedicated to addressing the control issues of MASs modeled
by partial differential equations (PDEs) [36–39]. In [36], considering the spatiotemporal
dynamic evolution of agents, the partial differential MAS dynamic model was established
through PDEs to describe this behavior. In [37], the consensus problem of a class of non-
linear pulse partial MASs was addressed by applying ILC methods. Furthermore, [38]
and [39] employed ILC schemes to solve the consensus control problem of discretized
partial differential MASs, respectively. This indicates that ILC can effectively address
the coordinated control issues of partial differential MASs. Compared to the previously
mentioned ordinary differential MASs, partial differential MASs are more prone to faults
due to the spatiotemporal complexity of their states. More preliminary research on the
fault diagnosis problem in spatiotemporal partial differential MASs must be conducted,
presenting an open and challenging field. In this context, developing reliable fault detection
methods specifically tailored to partial differential MASs becomes a critical and urgent
challenge hindering their advancement.

This study investigates the distributed fault diagnosis problem of a class of linear
partial differential MASs with actuators using the ILC method. Firstly, a fault estimator
is designed by introducing virtual faults to the agents. Secondly, a P-type ILC protocol is
formulated based on the error between the actual systems’ output and the fault estimator’s
(residual signal) output. After this control protocol is applied, the introduced virtual faults
converge to the actual faults, achieving the goal of fault diagnosis for the partial differential
MASs. Finally, the effectiveness of the learning protocol is validated through numerical
simulation examples.

The main contributions of this work are summarized in the following key points:

(1) Unlike the fault diagnosis for ordinary differential MASs discussed in [13–17], this
work addresses the fault diagnosis problem for a class of partial differential MASs over
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a continuous spatiotemporal period. The aim is to tackle the limitations hindering the
in-depth development of partial differential MASs.

(2) Based on the ILC method, a distributed P-type ILC protocol with high-precision
tracking performance is constructed to address the fault diagnosis problem of partial
differential MASs with actuators. This learning process exhibits strong resistance to
disturbances compared to traditional observers.

(3) The necessary and sufficient conditions for fault diagnosis in partial differential
MASs are derived through the application of contraction mapping and the Bellman–
Gronwall lemma. Despite the intricate spatiotemporal dynamics of the agents, this
derivation further enriches the theoretical achievements in fault diagnosis for MASs.

The remaining sections of the article are organized as follows: In Section 2, fundamen-
tal knowledge will be provided, problem will be formulated under certain assumptions,
and a description of the MASs is presented. Section 3 will focus on the design of a suitable
fault estimator and ILC protocol. The analysis of the convergence conditions for estimating
MAS faults will be presented in Section 4. Simulation results and conclusions will be
provided in Sections 5 and 6, respectively.

2. Preliminaries and Problem Statement
2.1. Preliminaries

Algebraic graph theory is frequently employed to depict the communication relation-
ships among agents in MASs. Let G = (V, E, A) describe the directed graph of the network
consisting of N agents in the system. Here, V = {v1, v2, · · · , vN} is the set of nodes in
graph G, and E ⊆ V × V is the set of its edges. Moreover, ej.i ∈ E implies that there is
a communication link from node j to node i. A = [aj,i] ∈ RN×N is the adjacency matrix,
where aj,i > 0 ⇔ ej,i ∈ E . Define D = diag(d1, d2, · · · , dN) as the degree matrix of graph
G, then the degree of node j is dj = ∑i∈Nj

aji, where Nj is the set of neighbors for agent j.

The Laplacian matrix of graph G is L = D − A. Additionally, ⊗ is the Kronecker product,
IN is the identity matrix, and the transpose of matrix C is CT .

Furthermore, for the n-dimensional vector X = (x1, x2, · · · , xn)
T , its norm is defined

as ∥X∥ =
√

∑n
l=1 x2

l , and the norm of the corresponding n × n-dimensional matrix A is

∥A∥ =
√

λmax(AT A), where λmax(·) denotes the maximum eigenvalue. Let L2(Ω) be the
function space consisting of all measurable functions satisfying ∥p∥2

L2 =
∫

Ω|p(s)|ds < ∞.
If pl(s) ∈ L2(Ω), l = 1, 2, · · · , n, then P = (p1, p2, · · · , pn) ∈ Rn ∩ L2(Ω) holds,

and ∥P∥L2 =
{∫

Ω PT(s)P(s)ds
} 1

2 . For a given positive constant λ, (L2, λ) is defined as

∥P∥(L2,λ) = sup
0≤t≤T

{
∥P(·, t)∥2

L2 e−λt
}

.

The following lemma lays the foundation for the convergence analysis of the subse-
quent main results, and the lemma used is as follows:

Lemma 1. (Contraction mapping principle [40]). For a non-negative real sequence pk satisfying
pk+1 ≤ θpk + ωk, where 0 ≤ θ < 1 and lim

k→∞
ωk = 0, it holds that lim

k→∞
pk = 0.

Lemma 2 (Bellman–Gronwall Inequality [41]). Assuming r1(t) and r2(t) are the real-valued
continuous function in the interval [0, T] , and ς1 ≥ 0, if r1(t) ≤ ς3 +

∫ t
0 (ς1r1(τ) + ς2r2(τ))dτ,

then r1(t) ≤ ς3eς1t +
∫ t

0 eς1(t−τ)ς2r2(τ)dτ.
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2.2. Problem Statement

Consider the parabolic partial differential MAS composed of N actuators that performs
repeatable tasks. Among them, the dynamic model of the j-th agent actuator is as follows:{

∂pj(s,t)
∂t = H∆pj(s, t) + Apj(s, t) + Buj(s, t) + E f j(s, t),

yj(s, t) = Cpj(s, t) + Duj(s, t) + F f j(s, t),
(1)

where j = 1, 2, · · · , N denotes the label of the actuator agent, and (s, t) ∈ Ω× [0, T], while Ω
represents a smooth and bounded region. The state, input, and output of the actuator agent
j are, respectively, denoted by pj(s, t) ∈ Rn, uj(s, t) ∈ Rm and yj(s, t) ∈ Rp. The matrix H is
a positive and bounded diagonal matrix, specifically with H = diag[h1, h2, · · · , hn] ∈ Rn×n

and 0 < hl < ∞. The matrices A ∈ Rn×n, B, E ∈ Rn×m, C ∈ Rp×n and D, F ∈ Rp×m are all
bounded matrices. f j(s, t) ∈ Rm represents the fault signal for actuator agent j, and ∆ is

the Laplace operator defined on the region Ω, i.e., ∆ =
p
∑

l=1

∂2

∂s2
l
. Meanwhile, the initial and

boundary conditions for MAS (1) are as follows:

σpj(s, t) + β
∂pj(s, t)

∂v
= 0, (s, t) ∈ ∂Ω × [0, T], (2)

pj(s, t) = φj(s), s ∈ Ω, j ∈ {1, 2, · · · , N}, (3)

where σ = diag[σ1, σ2, · · · , σn], σl ≥ 0, β = diag[β1, β2, · · · , βn], βl > 0, and ∂
∂v represents

the outward normal vector on the boundary ∂Ω of the region.
Building upon the strategies outlined in the literature above [15,26–28], which utilize

the ILC scheme for system fault diagnosis, to diagnose faults in MAS (1), an appropriate
ILC is designed to design a suitable fault estimator. Simultaneously, while ensuring the
convergence of the designed learning protocol, the following assumptions need to be
satisfied for the fault diagnosis of the actual output and fault estimation output of the
MAS (1):

Assumption 1. The communication graph G is a spanning tree.

Assumption 2. Throughout the learning process, the initial and boundary conditions are consis-
tently satisfied:

σpj,k(s, t) + β
∂pj,k(s, t)

∂v
= 0, (s, t) ∈ ∂Ω × [0, T], (4)

pj,k(s, t) = φj,k(s), s ∈ Ω, j ∈ {1, 2, · · · , N}, k ∈ Z+, (5)

where the function φj,k(s) satisfies the following:
∥∥∥φj,k+1(s)− φj,k(s)

∥∥∥2

L2
≤ lrk, r ∈ [0, 1), l > 0.

Remark 1. The mathematical symbols and lemmas in the Preliminaries lay the foundation for
subsequent analysis and description. Based on references [13–17,36–39], the dynamic model is
constructed in the problem statement, addressing the fault diagnosis problem for a class of partial
differential MASs. Furthermore, appropriate ILC protocols are designed to diagnose faults within
the MAS. To prove the convergence of this learning protocol, mathematical tools such as λ-norms,
widely utilized in the convergence proof process, are employed, as seen in reference [36–39].

Remark 2. Assumption 1 ensures no isolated actuator agent is in MAS (1), guaranteeing the
ability to estimate potential faults for each actuator agent. Assumption 2 serves as a fundamental
condition in the design of the ILC, ensuring optimal tracking and estimation performance. This
aligns with the approach taken in many ILC references [26–28], avoiding the sacrifice of tracking
performance to eliminate this situation.
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3. Design of Fault Estimation Tracker and Learning Control Protocol

To estimate the magnitude of fault when MAS (1) experiences a fault, and under
the fulfillment of the aforementioned Assumptions 1–2, it is necessary to first design the
following virtual fault tracking estimator:{

∂ p̂j,k(s,t)
∂t = H∆ p̂j,k(s, t) + Ap̂j,k(s, t) + Buj(s, t) + E f̂ j,k(s, t) + V(yj(s, t)− ŷj,k(s, t)),

ŷj,k(s, t) = Cp̂j,k(s, t) + Duj(s, t) + F f̂ j,k(s, t),
(6)

where k represents the iteration count, and p̂j,k(s, t) and ŷj,k(s, t) are the state and out-
put estimation values of actuator agent j, respectively. For the sake of convenience, the
corresponding symbols are denoted as follows:

⌣
p j,k(s, t) = pj(s, t)− p̂j,k(s, t), (7)

⌣
f j,k(s, t) = f j(s, t)− f̂ j,k(s, t), (8)

ej,k(s, t) = yj(s, t)− ŷj,k(s, t), (9)

where
⌣
f j,k(s, t) represents the fault error of actuator agent j, while ej,k(s, t) corresponds

to the difference between the output of actuator agent j and the output of the fault
estimator (6), namely, the residual signal. V ∈ Rn×p is a predefined gain matrix.

To ensure that the virtual faults of the actuator agents approximate the actual faults
through iteration, a P-type ILC protocol is designed based on the aforementioned residual
signal ej,k(s, t), as follows:

f̂ j,k+1(s, t) = f̂ j,k(s, t) + γ
N

∑
i=1

aj,i[(yj(s, t)− ŷj,k(s, t))− (yi(s, t)− ŷi,k(s, t))], (10)

where γ is the learning gain matrix. In the actual learning process, the correction of virtual
faults by the fault estimator ceases when the actual output and estimator output of actuator

agent j satisfy
∥∥∥yj(s, t)− ŷj,k(s, t)

∥∥∥2

L2
≤ ε, where ε is a given performance metric. The

correction of virtual faults stops when the estimate
∥∥∥yj(s, t)− ŷj,k(s, t)

∥∥∥2

L2
≤ ε is satisfied.

Inspired by references [15,26–28], the corresponding fault estimator and ILC protocol
are designed. The core idea is as follows: within the selected optimization region, the
residual signal is utilized between the actual output of actuator agent j in MAS (1) and the
fault tracking estimation output. Further, the ILC protocol (10) is leveraged to adjust the
introduced virtual faults. This adjustment is performed in such a way that the virtual faults
gradually approach the true faults of actuator agent j in the MAS along the iteration axis.

The ultimate goal is to achieve the estimation of this fault, i.e., lim
k→∞

∥∥∥ f j(·, t)− f̂ j,k(·, t)
∥∥∥2

L2
= 0.

Simultaneously, this implies lim
k→∞

∥∥∥yj(·, t)− ŷj,k(·, t)
∥∥∥2

L2
= 0.

For the convenience of the subsequent convergence analysis of the fault estimator and
control protocol, the corresponding compact forms are provided as follows:

∂ p̂k(s,t)
∂t = (IN ⊗ H)∆ p̂k(s, t) + (IN ⊗ A) p̂k(s, t) + (IN ⊗ B)u(s, t)

+(IN ⊗ E) f̂k(s, t) + (IN ⊗ V)(y(s, t)− ŷk(s, t)),
ŷk(s, t) = (IN ⊗ C) p̂k(s, t) + (IN ⊗ D)u(s, t) + (IN ⊗ F) f̂k(s, t),

(11)

where p̂k(s, t) = [p̂T
1,k(s, t), p̂T

2,k(s, t), · · · , p̂T
N,k(s, t)]T ∈ RNn, u(s, t) = [uT

1 (s, t), uT
2 (s, t), · · · , uT

N(s, t)]T

∈ RNm,
y(s, t) = [yT

1 (s, t), yT
2 (s, t), · · · , yT

N(s, t)] ∈ RNp, ŷ(s, t) = [ŷT
1,k(s, t), yT

2,k(s, t), · · · , yT
N,k(s, t)] ∈

RNp,
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f̂ (s, t) = [ f̂ T
1,k(s, t), f̂ T

2,k(s, t), · · · , f̂ T
N,k(s, t)] ∈ RNm.

f̂k+1(s, t) = f̂k(s, t) + (L ⊗ γ)ek(s, t), (12)

where ek(s, t) = y(s, t)− ŷk(s, t) represents the residual signal of the actuator agent in MAS
(1), and L ∈ RN×N is the Laplacian matrix.

4. Convergence Analysis of Control Protocol

In order to ensure that the virtual fault estimator’s faults approximate the actual
faults of the MAS through the previously designed ILC protocol, it is necessary to satisfy
Theorem 1:

Theorem 1. Under the Assumptions 1–2 for MASs (1) and utilizing the designed fault estimator,
when estimating faults occurring in the system through the designed P-type iterative learning
control (ILC) protocol, if the learning gain γ satisfies condition

∥∥IN − (L ⊗ γ)(IN ⊗ F)
∥∥

2 < 0.5,
accompanied by condition k → ∞ , then the faults of the virtual fault estimator approach the faults
of the actual MASs (1), i.e., lim

k→∞

∥∥∥ f j(·, t)− f̂ j,k(·, t)
∥∥∥

L2
= 0, j = 1, 2, · · · , N, t ∈ [0, T].

Proof . From the above learning control protocol (12), the following is obtained:

f (s, t)− f̂k+1(s, t) = f (s, t)− f̂k(s, t)− (L ⊗ γ)ek(s, t). (13)

Then, Equations (7), (8) and (11), Equation (13) can be further expressed as follows:

⌣
f k+1(s, t) =

⌣
f k(s, t)− (L ⊗ γ)(IN ⊗ C)

⌣
p k(s, t)− (L ⊗ γ)(IN ⊗ F) fk(s, t)

= (IN − (L ⊗ γ)(IN ⊗ F)) fk(s, t)− (L ⊗ γ)(IN ⊗ C)
⌣
p k(s, t)

= (IN − γF⊗) fk(s, t)− (γC⊗)
⌣
p k(s, t),

(14)

where γF⊗ = (L ⊗ γ)(IN ⊗ F), γC⊗ = (L ⊗ γ)(IN ⊗ C).
With Equations (8) and (11), through Equation (14), the following inequality holds:

⌣
f

T

k+1(s, t)
⌣
f k+1(s, t) =

⌣
f

T

k (s, t)(IN − γF⊗)
T(IN − γF⊗)

⌣
f k(s, t)−

⌣
f

T

k (s, t)(IN − γF⊗)
T(γC⊗)

⌣
p k(s, t)

−⌣
p

T
k (s, t)(γC⊗)

T(IN − γF⊗)
⌣
f k(s, t) +

⌣
p

T
k (s, t)(γC⊗)

T(γC⊗)
⌣
p k(s, t)

≤ 2
⌣
f

T

k (s, t)(IN − γF⊗)
T(IN − γF⊗)

⌣
f k(s, t) + 2

⌣
p

T
k (s, t)(γC⊗)

T(γC⊗)
⌣
p

T
k (s, t).

(15)

Integrating the inequality (15) with respect to s over Ω, one obtains the following:∥∥∥∥⌣f k+1(·, t)
∥∥∥∥2

L2
≤ 2µ

∫
Ω

⌣
f

T

k (s, t)
⌣
f k(s, t)ds + 2ϑ

∫
Ω

⌣
p

T
k (s, t)

⌣
p k(s, t)ds

≤ 2µ

∥∥∥∥⌣f k(·, t)
∥∥∥∥2

L2
+ 2ϑ

∥∥∥⌣p k(·, t)
∥∥∥2

L2
,

(16)

where µ =
∥∥IN − (L ⊗ γ)(IN ⊗ F)

∥∥2, ϑ =
∥∥(L ⊗ γ)(IN ⊗ C)

∥∥2.
Next, from Equations (1) and (11), we can obtain the following:

∂p(s,t)
∂t − ∂ p̂k(s,t)

∂t = (IN ⊗ H)∆(p(s, t)− p̂k(s, t)) + (IN ⊗ A)(p(s, t)− p̂k(s, t))
+(IN ⊗ E)( f (s, t)− f̂k(s, t)) + (IN ⊗ V)(y(s, t)− ŷk(s, t)).

(17)

By rearranging Equation (17) using the indices from Equation (7), one can obtain the
following:
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∂
⌣
p k(s,t)

∂t = (IN ⊗ H)∆
⌣
p k(s, t) + (IN ⊗ A)

⌣
p k(s, t) + (IN ⊗ E)

⌣
f k(s, t)

−(IN ⊗ V)(IN ⊗ C)
⌣
p k(s, t)− (IN ⊗ V)(IN ⊗ F)

⌣
f k(s, t)

= (IN ⊗ H)∆
⌣
p k(s, t) + [(IN ⊗ A)− (INN ⊗ VC)]

⌣
p k(s, t) + [(IN ⊗ E)− (INN ⊗ VF)]

⌣
f k(s, t)

= (IN ⊗ H)∆
⌣
p k(s, t) + A⊗

⌣
p k(s, t) + E⊗

⌣
f k(s, t),

(18)

where A⊗ = (IN ⊗ A)− (INN ⊗ VC), E⊗ = (IN ⊗ E)− (INN ⊗ VF).

Multiplying both sides of Equation (18) by
⌣
p

T
k (s, t), one can obtain the following:

⌣
p

T
k (s, t)

∂
⌣
p k(s, t)

∂t
=

⌣
p

T
k (s, t)(IN ⊗ H)∆

⌣
p k(s, t) +

⌣
p

T
k (s, t)A⊗

⌣
p k(s, t) +

⌣
p

T
k (s, t)E⊗

⌣
f k(s, t). (19)

Transposing Equation (18), multiplying both sides by
⌣
p k(s, t), and combining this

with Equation (19), one obtains the following:

∂(
⌣
p

T
k (s,t)

⌣
p k(s,t))

∂t

= 2
⌣
p

T
k (s, t)(IN ⊗ H)∆

⌣
p k(s, t) +

⌣
p

T
k (s, t)(A⊗ + AT

⊗)
⌣
p k(s, t) + 2

⌣
p

T
k (s, t)E⊗

⌣
f k(s, t).

(20)

Integrating Equation (20) with respect to s over Ω yields, one obtains the following:

∂(
∥∥∥⌣p k(·,t)

∥∥∥2

L2 )

dt

= 2
∫

Ω
⌣
p

T
k (s, t)(IN ⊗ H)∆

⌣
p k(s, t)ds +

∫
Ω

⌣
p

T
k (s, t)(A⊗ + AT

⊗)
⌣
p k(s, t)ds + 2

∫
Ω

⌣
p

T
k (s, t)E⊗

⌣
f k(s, t)ds.

(21)

Using Green’s formula, Equation (21) can be further written as follows:

∂(
∥∥∥⌣p k(·,t)

∥∥∥2

L2
)

dt ≤ 2
∫

∂Ω
⌣
p

T
k (s, t)(IN ⊗ H) ∂

∂v
⌣
p k(s, t)− 2

∫
Ω ∇⌣

p
T
k (s, t)(IN ⊗ H)∆

⌣
p k(s, t)ds

+λmax(A⊗ + AT
⊗)

∥∥∥⌣p k(·, t)
∥∥∥2

L2
+ λmax(E⊗)[

∥∥∥⌣p k(·, t)
∥∥∥2

L2
+

∥∥∥∥⌣f k(·, t)
∥∥∥∥2

L2
].

(22)

From the MAS (1) boundary conditions, ∂p(s,t)
∂v = − 1

β σp(s, t) is held, and from inequal-
ity (22), one obtains the following:

∂(
∥∥∥⌣p k(·,t)

∥∥∥2

L2 )

dt

≤ 2
∫

∂Ω
⌣
p

T
k (s, t)(IN ⊗ H)(− 1

β σ)
⌣
p k(s, t)ds + λmax(A⊗ + AT

⊗)
∥∥∥⌣p k(·, t)

∥∥∥2

L2

+λmax(E⊗)[
∥∥∥⌣p k(·, t)

∥∥∥2

L2
+

∥∥∥∥⌣f k(·, t)
∥∥∥∥2

L2
] ≤ η1

∥∥∥⌣p k(·, t)
∥∥∥2

L2
+ η2

∥∥∥∥⌣f k(·, t)
∥∥∥∥2

L2
,

(23)

where η1 = λmax(A⊗ + AT
⊗) + λmax(E⊗), η2 = λmax(E⊗).

Integrating both sides of inequality (23) with respect to t, and utilizing Lemma 2, one
can obtain the following:

∥∥∥⌣p k(·, t)
∥∥∥2

L2
≤

∥∥∥⌣p k(·, 0)
∥∥∥2

L2
+
∫ t

0 (η1

∥∥∥⌣p k(·, t)
∥∥∥2

L2
+ η2

∥∥∥∥⌣f k(·, t)
∥∥∥∥2

L2
)ds

≤ eη1t
∥∥∥⌣p k(·, 0)

∥∥∥2

L2
+
∫ t

0 η2eη1(t−s)
∥∥∥∥⌣f k(·, t)

∥∥∥∥2

L2
ds.

(24)

By choosing λ(λ > η1) as appropriately large and multiplying both sides of the
inequality (24) by e−λt, one obtains the following:∥∥∥⌣p k(·, t)

∥∥∥2

L2
e−λt ≤ eη1t

∥∥∥⌣p k(·, 0)
∥∥∥2

L2
+

η2

λ − η1

∥∥∥∥⌣f k

∥∥∥∥
(L2,λ)

. (25)
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From the MAS (1) initial conditions,
∥∥∥⌣p k(·, 0)

∥∥∥2

L2
≤ lrk is held. Therefore, inequality

(25) can be further written as follows:∥∥∥⌣p k(·, t)
∥∥∥2

L2
e−λt ≤ lrk +

η2

λ − η1

∥∥∥∥⌣f k

∥∥∥∥
(L2,λ)

. (26)

By multiplying both sides of the previous inequality (16) by e−λt and substituting it
into inequality (26), one obtains the following:∥∥∥∥⌣f k+1(·, t)

∥∥∥∥2

L2
e−λt ≤ 2µ

∥∥∥∥⌣f k(·, t)
∥∥∥∥2

L2
e−λt + 2ϑ{lrk + η2

λ−η1

∥∥∥∥⌣f k

∥∥∥∥
(L2,λ)

}

≤ 2ϑlrk + (2µ + 2ϑη2
λ−η1

)

∥∥∥∥⌣f k

∥∥∥∥
(L2,λ)

,
(27)

where ρ = 2µ + 2ϑη2
λ−η1

. On one hand, since 0 ≤ r < 1, it implies that when k → ∞ , rk → 0 .
On the other hand, it is known that 2µ < 1. Based on the continuity of real numbers, it
can be inferred that for a sufficiently large λ, ρ < 1 holds. Therefore, by Lemma 1, one can
conclude the following:

lim
k→∞

∥∥∥∥⌣f k

∥∥∥∥
(L2,λ)

= 0. (28)

For ∀t ∈ [0, T], one can obtain the following:∥∥∥∥⌣f k(·, t)
∥∥∥∥2

L2
= (

∥∥∥∥⌣f k(·, t)
∥∥∥∥2

L2
e−λt)eλt ≤

∥∥∥∥⌣f k

∥∥∥∥
(L2,λ)

e−λT . (29)

From Formulas (28) and (29), the following expression holds:

lim
k→∞

∥∥∥∥⌣f k(·, t)
∥∥∥∥

L2
= 0. (30)

Since the aforementioned
⌣
f k(·, t) is the compact form of

⌣
f j,k(·, t), Equation (30) implies

the following:

lim
k→∞

∥∥∥∥⌣f j,k(·, t)
∥∥∥∥

L2
= 0, j = 1, 2, · · · , N, t ∈ [0, T]. (31)

In conclusion, it can be deduced that the L2 norm of the fault regulation error of
actuator agent j will gradually converge to zero along the iteration axis. The proof of
Theorem 1 is completed. □

In addition to Theorem 1, to ensure that the output of the virtual fault estimator
approximates the system’s actual output through the previously designed ILC protocol, it
is necessary to satisfy Theorem 2.

Theorem 2. Under the same conditions as Theorem 1, the output of the fault estimator approximates
the actual output, i.e., lim

k→∞

∥∥∥yj(·, t)− ŷj,k(·, t)
∥∥∥

L2
= 0, j = 1, 2, · · · , N, t ∈ [0, T].
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Proof . Next, to analyze the convergence of the output error, one can derive the following
from Equation (9):

eT
k (s, t)ek(s, t)

=
⌣
f

T

k (s, t)(IN ⊗ F)T(IN ⊗ F)
⌣
f k(s, t) +

⌣
f

T

k (s, t)(IN ⊗ F)T(IN ⊗ C)
⌣
p k(s, t)

+
⌣
p

T
k (s, t)(IN ⊗ C)T(IN ⊗ F)

⌣
f k(s, t) +

⌣
p

T
k (s, t)(IN ⊗ C)T(IN ⊗ C)

⌣
p k(s, t)

≤ 2λmax[(IN ⊗ F)T(IN ⊗ F)]
⌣
f

T

k (s, t)
⌣
f k(s, t) + 2λmax[(IN ⊗ C)T(IN ⊗ C)]

⌣
p

T
k (s, t)

⌣
p k(s, t)

≤ 2χ1
⌣
f

T

k (s, t)
⌣
f k(s, t) + 2χ2

⌣
p

T
k (s, t)

⌣
p k(s, t),

(32)

where χ1 = λmax[(IN ⊗ F)T(IN ⊗ F)], χ2 = λmax[(IN ⊗ C)T(IN ⊗ C)].
By integrating inequality (32) with respect to s over Ω, one can obtain the following:

∥ek(·, t)∥2
L2 ≤ 2χ1

∫
Ω

⌣
f

T

k (s, t)
⌣
f k(s, t)ds + 2χ2

∫
Ω

⌣
p

T
k (s, t)

⌣
p k(s, t)ds

≤ 2χ1

∥∥∥∥⌣f k(·, t)
∥∥∥∥2

L2
+ 2χ2

∥∥∥⌣p k(·, t)
∥∥∥2

L2
.

(33)

By multiplying both sides of inequality (33) by e−λt, using inequality (26), one obtains
the following:

∥ek(·, t)∥2
L2 e−λt ≤ 2χ2lrk + (2χ1 +

2χ2η2

λ − η1
)

∥∥∥∥⌣f k

∥∥∥∥
(L2,λ)

. (34)

Analysis reveals that both sides of inequality (34) are independent of time t. Therefore,
the following inequality holds:

∥ek∥ (L2,λ) ≤ 2χ′
2lrk + (2χ′

1 +
2χ′

2η2

λ − η1
+

2χ′
2η′

2
λ − η′

1
)

∥∥∥∥⌣f k

∥∥∥∥
(L2,λ)

. (35)

Similar to Formulas (27)–(31), one can obtain the following:

lim
k→∞

∥∥∥ej,k(·, t)
∥∥∥

L2
= 0, j = 1, 2, · · · , N, t ∈ [0, T], (36)

The proof of Theorem 2 is completed. □

5. Numerical Simulation

This section presents numerical simulations to demonstrate the effectiveness of the
proposed fault diagnosis method. A class of partial differential MASs with actuators
involving four actuator agents is considered, and the communication topology is shown in
Figure 1.
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Then, the corresponding Laplacian matrix of Figure 1 is as follows:

L =


3 −1 −1 −1
−1 2 0 −1
−1 0 2 −1
−1 −1 −1 3

.

The dynamic mathematical model and related parameters of the MASs are as follows:{
∂pj(s,t)

∂t = H∆pj(s, t) + Apj(s, t) + Buj(s, t) + E f j(s, t),
yj(s, t) = Cpj(s, t) + Duj(s, t) + F f j(s, t),

(37)

where j = 1, 2, 3, 4 denotes the label of the actuator agent, and (s, t) ∈ [0, 1]× [0, 1], while

H = 1. A =

[
0.2 1.5
1 −0.3

]
, B =

[
0 0.1

−0.5 −0.6

]
, E =

[
−0.1 0

0 −0.2

]
, C =

[
−0.3 0

0 −0.2

]
,

D =

[
0.3 0
0 0.2

]
, F =

[
0.3 0
0 0.2

]
.V =

[
0.8 0
0 0.5

]
.

After selecting an appropriate learning gain, with the initial parameter set to r = 0,
analysis and calculations reveal that these parameters satisfy the conditions of Theorems 1
and 2. Meanwhile, assuming the occurrence of fault in MAS (37), it is specified as follows:

f j(s, t) = f j,d = 6 sin(12t) sin(2s), j = 1, 2, 3, 4, (38)

where (s, t) ∈ [0, 1]× [0, 1]. Moreover, j = 1, 2, 3, 4 denotes the label of the actuator agent.
Utilizing the finite difference method for the differential equations and applying

the previously designed fault estimator (11) and ILC protocol (12), the corresponding
simulation results are illustrated in Figures 2–8.

Figure 1 depicts the connectivity among the actuator agents, noting that actuator
agents 2 and 3 cannot directly exchange information. Figure 2 depicts the surface of the
actual faults occurring in the actuator agents of MAS (37), while Figures 3 and 4 illustrate
the surface of the faults in the estimator after 20 and 40 iterations of iterative learning,
respectively. Combining Figures 2–4, it can be observed that the fault estimation in the
estimator is approaching the actual output of the actuator agents.
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Figures 5 and 6 present curves depicting the variations in the fault error and output
error in MAS (37) with the iteration count, respectively. Figures 7 and 8 present curves
depicting the variations in the actuator fault error and output error with the iteration count,
respectively. According to the varying curves in Figures 7 and 8, it can be observed that
the fault errors and output errors of the four actuator agents gradually converge along the
positive direction of the iteration axis. To further observe the variations in these errors,
localized zoom-in plots are provided for each of them in Figures 7 and 8, respectively. By the
50th iteration, the fault errors and output errors of all actuator agents can enter the preset
error band of 0.01. Therefore, Figures 7 and 8 show that with an increase in the number of
iterative learning cycles, the fault estimation in the actuator agent’s estimator gradually
converges to the actual fault, and the output also tends to approach the actual output.
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Figures 2–8 collectively demonstrate that the designed fault estimator can effectively
track the partial differential MASs and learn and approximate faults.

6. Conclusions

This study investigates the fault diagnosis problem for parabolic partial differential
MASs with actuators. A distributed virtual fault tracker and a p-type iterative learning
fault-tracking protocol based on local measurement information among actuator agents
are designed. A theoretical analysis of the learning protocol is rigorously conducted using
contraction mapping and the Bellman–Gronwall lemma, providing convergence conditions
for the protocol. The effectiveness of the proposed theory and learning protocol is validated
through numerical simulation. However, it is worth noting that the study is limited to
linear homogeneous MASs. Future research will address these limitations by considering
more realistic nonlinear and heterogeneous MASs. Additionally, the applicability of this
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protocol in fault diagnosis for multiple biomimetic robots and unmanned aerial vehicles
will also be explored.
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