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Abstract: Long Short-Term Memory (LSTM) is an effective method for stock price prediction. How-
ever, due to the nonlinear and highly random nature of stock price fluctuations over time, LSTM
exhibits poor stability and is prone to overfitting, resulting in low prediction accuracy. To address
this issue, this paper proposes a novel variant of LSTM that couples the forget gate and input gate
in the LSTM structure, and adds a “simple” forget gate to the long-term cell state. In order to
enhance the generalization ability and robustness of the variant LSTM, the paper introduces an
attention mechanism and combines it with the variant LSTM, presenting the Attention Mechanism
Variant LSTM (AMV-LSTM) model along with the corresponding backpropagation algorithm. The
parameters in AMV-LSTM are updated using the Adam gradient descent method. Experimental
results demonstrate that the variant LSTM alleviates the instability and overfitting issues of LSTM,
effectively improving prediction accuracy. AMV-LSTM further enhances accuracy compared to the
variant LSTM, and compared to AM-LSTM, it exhibits superior generalization ability, accuracy, and
convergence capability.

Keywords: LSTM; attention mechanism; stock price prediction

MSC: 37N99

1. Introduction

Stock price prediction has always been a significant research topic in the field of
finance. Researchers have proposed various algorithms to forecast the trends of stock
prices, which are highly volatile, complex, and nonlinear [1–4]. Traditional forecasting
methods include Multivariable Linear Regression, Exponential Smoothing, Autoregressive
Integrated Moving Average (ARIMA), etc. However, these models are often relatively
simple and may not achieve satisfactory prediction accuracy. In recent years, with the
development of big data and artificial intelligence, machine learning and deep learning
methods have been widely applied to stock price prediction research [5–7]. Examples
include Random Forest, Extreme Gradient Boosting (XGBoost), and Support Vector Machine
(SVM), among others. Compared to traditional methods, these approaches have effectively
improved prediction accuracy.

Deep learning is a machine learning concept based on artificial neural networks. For
many applications, deep learning models outperform shallow machine learning models
and traditional data analysis methods [8]. There are various forms of neural networks, such
as BP neural networks, RNN recurrent neural networks, etc. Long Short-Term Memory
(LSTM), as an important research method in deep learning, has achieved significant success
in the field of financial forecasting and has become one of the cutting-edge research methods.
LSTM is an improvement on the structure of Recurrent Neural Networks (RNN), addressing
the issues of RNN gradient vanishing, gradient exploding, and insufficient long-term
memory by utilizing gate mechanisms when learning long-term dependencies [9]. It can
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more effectively utilize information previously present in time series and current input
data to make more accurate predictions about the future.

Applying LSTM for prediction on S&P 500 component stocks from 1992 to 2015, it was
found that the prediction performance was superior to Random Forest (RAF), Deep Neural
Networks (DNN), and Logistic Regression Classifier (LOG) [10]. While LSTM can produce
good predictions in some cases, it may still struggle with highly nonlinear time series [11].
One possible reason is that the time dependencies between elements in these time series are
not well exploited [12]. This point is evidenced by [12], where the use of LSTM and other
deep learning models for runoff prediction showed that the model’s predictive accuracy can
be demonstrated to some extent through temporal dependencies. In 2000, Felix Gers and
his colleagues found that if the internal state of LSTM is not updated when processing input
time series, the network would eventually collapse [13]. Therefore, they introduced the
forget gate mechanism to update and reset its state [14]. The introduction of the forget gate
mechanism somewhat effectively handles the time dependencies between elements, but
the forget gate in the LSTM unit acts on the input data xt and the hidden state ht, without
considering ct. Additionally, experiments by [15] also demonstrated that the forget gate is
the only crucial gate in LSTM. Meanwhile, Felix Gers and others [13] introduced peephole
connections, giving rise to peephole LSTM. However, it was pointed out in [14] that, in
most cases, peephole LSTM does not perform well compared to LSTM. Yet, experiments
indicate that the input gate and output gate mechanisms are crucial gating mechanisms
for finding better-performing LSTM units. The coupling of the forget gate and input gate
has a comparable performance with LSTM. Therefore, considering that the forget gate
is a key gating mechanism in LSTM, improving the input and output gates may lead to
better results. This paper redesigns the internal structure of LSTM units and introduces
a variant of the LSTM structure. Compared to existing LSTM and peephole LSTM, the
variant LSTM captures the idea that the forget gate is the key gate, retaining the original
forget gate while coupling the input gate with the forget gate for improvement. This
enhances the information utilization efficiency of the variant LSTM unit relative to the
LSTM unit. Additionally, although peephole LSTM performs poorly in many experiments,
its idea is still insightful. Therefore, considering the long-term state ct, but handling it
through a “simple” forget gate. As a result, compared to peephole LSTM, the variant LSTM
focuses structural improvements on the input gate and forget gate, making the structure
simpler. In the backpropagation process, the number of parameters that need to be learned
is also reduced, reducing the computational time of the model. Later, some scholars further
modified LSTM. In [16], LSTM was integrated with CNN and an attention mechanism was
introduced, discovering the feasibility of the model and improving its accuracy.

Additionally, when there is significant data noise, the predictive accuracy of LSTM for
stock prices is greatly affected. Inspired by the human visual system, attention mechanisms
in machine learning have been developed for a long time [17] and are now widely applied
in various deep learning tasks, such as natural language processing, speech recognition,
image recognition, and the processing of time series data. It is an information allocation
mechanism that simulates the human brain’s attention. The attention mechanism can assign
different weights to the input data of the model, highlighting the importance of useful
data and weakening the importance of less relevant data, reducing the impact of irrelevant
parts. It was initially proposed by Bahdanau et al. [18] and applied to machine translation,
giving a probability distribution of attention when seeking attention distribution. They later
proposed the soft attention mechanism and hard attention mechanism [19]. And others con-
structed an LSTM with a soft attention mechanism and applied it to the prediction of flow
in the Canadian basin, finding an improvement in accuracy; ref. [20] and others applied an
LSTM with a soft attention mechanism to the prediction of photovoltaic generation, finding
the new model to be more effective and robust compared to a multi-layer perceptron (MLP)
and traditional LSTM models. We also chose the soft attention mechanism because it is
a deterministic mechanism and fully differentiable. The hard attention mechanism is an
uncertain mechanism; its process is a random process, and during decoding, the system
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does not use all hidden states but randomly selects some [21]. In this way, when computing
gradients, it can effectively integrate with the algorithm to calculate directly.

In response to the issue of low prediction accuracy and poor model robustness in
current stock price forecasting methods, considering the high volatility of stock data,
the AMV-LSTM stock price prediction model is proposed. This paper improves upon the
traditional LSTM neural network variant by seamlessly integrating an attention mechanism.
The attention mechanism layer is placed in front of the variant LSTM, allowing data to
pass through weight layers and normalization layers to obtain scores. These scores are
then dot-producted with the original data vectors to assign weights, thereby forming
new data vectors. Finally, these new data vectors are used as inputs to the variant LSTM,
serving the purpose of noise reduction and forming a new neural network model. The
model emphasizes the importance of different features in stock data, not only learning the
temporal dependencies of input sequences but also effectively utilizing the interdependence
features among data sequences. This will help improve the accuracy and stability of stock
price prediction.

Based on the above description, the contributions of this paper are summarized
as follows:

1. To better utilize the temporal dependencies between elements in time series, this paper
improves the internal structure of LSTM. By coupling the forget gate with the input gate,
simplifying LSTM, and enhancing its efficiency. Also, a simple forget gate is applied to
forget the long-term state Ct, relieving the pressure on the LSTM to transmit long-term
state information by filtering new inputs and historical state elements.

2. To enhance the model’s robustness, an attention mechanism is integrated into the im-
proved LSTM, proposing a variant LSTM model with integrated attention mechanism
(AMV-LSTM). This improves the accuracy of stock price prediction by mitigating the
impact of significant data noise. Compared to LSTM with integrated attention mecha-
nism (AM-LSTM), it further improves the model’s generalization ability, robustness,
and convergence speed.

3. Applying AMV-LSTM to stock price prediction yields higher accuracy, providing
valuable references for predicting stock prices in the financial market.

2. Related Work

Since the design idea of AMV-LSTM is based on classical LSTM, peephole LSTM,
and attention mechanism, this section will first review the relevant contents of these
three aspects.

2.1. Typical LSTM Model

The long short-term memory (LSTM) is a variant of the recurrent neural network (RNN) [22].
For time series data, it is more convenient for extracting various information features due to
the addition of storage units capable of holding historical data. The LSTM network structure
employs a special gate mechanism, consisting of a forget gate, an input gate, and an output gate
in each LSTM neuron. The structure of the neuron is shown in Figure 1.

Where ft is the remaining amount of data information of the previous LSTM neuron
after passing the forgetting gate, it is the input amount of data information of the current
LSTM neuron, c̃t is the candidate state value of the cell, and ct is the output amount of data
information of the LSTM neuron. The calculation formula for each gate of each LSTM cell
and ct and ht is as follows:
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ft = σ(Wx f · xt + Wh f · ht−1 + b f )

it = σ(Wxi · xt + Whi · ht−1 + bi)

ct = ft ⊙ ct−1 + it ⊙ c̃t

c̃t = tanh(Wxc · xt + Whc ⊙ ht−1 + bc)

ot = σ(Wxo · xt + Who · ht−1 + bo)

ht = ot ⊙ tanh(ct).

(1)

where σ is the sigmoid activation function; ⊙ is the Hadamard product, and xt is the current
input vector; Wx f , Wxi, Wxc, Wxo are related to input the corresponding weight vector; ht−1
is the state vector of the previous cell unit’s hidden layer; Wh f , Whi, Whc, Who, respectively,
are about the hidden layer weights of state vector; b f , bi,bc, bo are respective corresponding
doors on the bias vector.

Figure 1. LSTM unit structure.

2.2. Peephole LSTM

In Graves et al.’s study in 2005 [23], they introduced precise time feedback and peep-
hole connection counting. Peephole connections provide direct inputs to the three gates
from the cell state to the LSTM, essentially containing information about the importance of
past events. In Figure 2, peephole connections at time t − 1 are represented by blue dashed
lines, while solid lines represent peephole connections at time t.

The peephole connecting each LSTM door and ct and ht are calculated by the follow-
ing formula:

ft = σ(Wx f · xt + Wh f · ht−1 + W f c · ct−1 + b f )

it = σ(Wxi · xt + Whi · ht−1 + Wic · ct−1 + bi)

ct = ft ⊙ ct−1 + it ⊙ c̃t

c̃t = tanh(Wxc · xt + Whc ⊙ ht−1 + bc)

ot = σ(Wxo · xt + Who · ht−1 + Woc · ct + bo)

ht = ot ⊙ tanh(ct).

(2)

Compared with LSTM, the forward propagation formula of peephole connection
LSTM has three more weight matrices: W f c, Wic, Woc.
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Figure 2. LSTM with peephole connection.

2.3. Attention Mechanism

The attention mechanism involves paying temporal attention to multiple inputs, and
its core principle is that the values are weighted by a weighted average, with the weights
determined by learnable functions. The basic function of this mechanism is to form a
memory by focusing on multiple inputs at different points in time. Its main goal is to
extract the characteristics of the input data and help the model comprehensively describe
the traffic dynamics in the input data. The key point is that the model has the ability to
focus on features based on specific aspects, which helps solve bottlenecks in the model’s
processing [24].

The Figure 3 illustrates the operational structure of the attention mechanism. Assum-
ing the input data has m features, the dimension of each vector xt (t = 1, 2 . . . , n) is m,
where the time steps are represented by n. Consequently, at each step, n vectors xt first
undergo processing through the attention layer and then each vector xt is input to each
variant of the LSTM unit. Therefore, the initial step involves inputting the input vector xt
into the first attention layer, obtaining the weighted value vector at through Formula (3).
Since Formula (3) has two learnable weight matrices Wax and Va, Wax can project the vector
xt into an attention vector space, while Va can calculate the weighted values. This process
effectively provides different focuses on the input vector xt, thereby reducing the noise
in the data. Subsequently, vector at is normalized through the second layer to obtain the
score of each element in each vector, i.e., vector pt according to Formula (4). Finally, the
score vector pt is subject to the Hadamard product with the input vector xt according to
Formula (5), resulting in the output x̃t, which serves as the input vector for the variant of
the LSTM.

at = Va · tanh(Wax · xt + ba), (3)

pt = So f tmax(at), (4)

x̃t = pt ⊙ xt. (5)
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Figure 3. Attention mechanism layer.

3. AMV-LSTM Model

In this section, the structure and algorithm of the AMV-LSTM model will be fully
introduced.

3.1. Variational LSTM

The structure of the variant LSTM unit is shown in Figure 4.

Figure 4. Variational LSTM unit.
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The design of the variant LSTM was inspired by the classic LSTM and the peephole
LSTM. Since the classic LSTM is relatively sensitive and has poor noise-handling capabili-
ties, the variant LSTM initially couples the forget gate and the input gate on the basis of
the classic LSTM model. This coupling establishes a fixed connection between the input
gate and the forget gate, enabling the model to no longer make separate decisions when
handling old and new information, but to consider both simultaneously. In other words,
information is only forgotten when new input is available, and vice versa. This means that
input and forget operations occur simultaneously until the information is transmitted to
the cell state. When the input gate and the forget gate make independent decisions, the
input gate needs to input and transmit all the information without the ability to filter the
information. However, the structure after coupling reduces the input information for the
input gate, thereby alleviating the processing pressure on the input gate. This reduction
is achieved through the filtering by the forget gate and is not a blind random filtration
of information. This approach helps to some extent in reducing noisy data and utilizing
useful information more effectively, considering the substantial impact of noisy data on
stock prices. Furthermore, compared to the LSTM, the coupled structure also reduces the
number of parameters, which benefits model training, aids convergence, and ultimately
helps improve the accuracy of stock price predictions.

Furthermore, a “simplified” forget gate is established for the long-term cell state ct,
enabling selective forgetting of long-term memory during the information transmission
process, thereby enhancing the data noise handling capability. The reason it is referred to
as a “simplified” forget gate is because the forget gate here is slightly different from the
classic forget gate ft, as it does not contain a bias term in the sigmoid activation function.
This results in learning one less parameter when updating the model’s parameters and
speeds up the convergence rate of the model.

Due to the findings from previous researchers’ experiments indicating that the perfor-
mance of peephole LSTM is often not as effective as that of the classic LSTM, the design of
the variant LSTM separates the forget gates for ct and ht, not sharing them. However, draw-
ing on the concept of peephole LSTM, the ct from the “simple” forget gate is input into the
input gate. This design of the variant LSTM takes into account the information of ct during
the propagation process, thereby enhancing the efficiency of information transmission in
each unit.

3.2. AMV-LSTM Structure

The structure of AMV-LSTM consists of an attention mechanism layer and a variant
LSTM. In the model, the attention mechanism layer is located at the front of the variant
LSTM, meaning that the input data first passes through the attention mechanism layer.
After being processed by the attention mechanism layer, each element of the input data is
effectively assigned weights. The processed vector x̃t is then input into the variant LSTM
layer, entering each variant LSTM unit. Finally, the prediction values are obtained through
a fully connected layer.

The structure of AMV-LSTM model is shown in Figure 5.
The combination of the variant LSTM with the attention mechanism is aimed at

enhancing the robustness and generalization capability of the variant LSTM. Additionally,
compared to AM-LSTM, the structure of AMV-LSTM becomes simpler, primarily due to the
design of the variant LSTM. The information transmission is more efficient, and the number
of parameters that need to be learned during the backpropagation process is reduced. This
effectively addresses the shortcomings of AM-LSTM.



Mathematics 2024, 12, 945 8 of 20

Figure 5. AMV-LSTM structure.

3.3. Forward Propagation Algorithm of AMV-LSTM

So far, the forward propagation formula of the AMV-LSTM model becomes

ft = σ(Wx f · x̃t + Wh f · ht−1 + b f ) (6)

it = (1 − ft)⊙ gt (7)

gt = σ(Wcg ⊙ ct−1) (8)

c̃t = tanh(Wxc · x̃t + Whc ⊙ ht−1 + bc) (9)

ct = ft ⊙ ct−1 + it ⊙ c̃t (10)

ot = σ(Wxo · x̃t + Who · ht−1 + bo) (11)

ht = ot ⊙ tanh(ct) (12)

at = Va · tanh(Wax · xt + ba) (13)

pt = So f tmax(at) (14)

x̃t = pt ⊙ xt. (15)

Using the Formulas (6)–(15) to pass the calculated hτ through the fully connected layer,
the predicted value is

ŷτ = W f · hτ + by. (16)

The loss function L is calculated using the mean square error (RMSE) as follows:

L =
1
2
· (ŷτ − y)2. (17)

The total error Lall is calculated as

Lall =
1
2
·

n

∑
i=1

(ŷi − yi)
2. (18)
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3.4. Backpropagation Algorithm of AMV-LSTM

Backpropagation Through Time (BPTT) is a backpropagation algorithm based on time
series, also known as gradient descent [25]. By iterating the parameters to be updated, it
minimizes the error and finds the optimal parameter value. In the process of backprop-
agation to solve the gradient, the loss function L is required to calculate the gradient of
each parameter, in which LSTM involves 14 parameters to be updated, including: Weight
matrices Wx f , Wxi, Wxc, Wxo, Wh f , Whi, Whc, Who, Wy, and offset vectors b f , bi, bc, bo,by.
AMV-LSTM needs to update parameters by adding three weight matrices, Wax, Wcg, Va;
one parameter vector, ba; and reducing one weight vector and one parameter vector, Wxi
and bi, respectively. AMV-LSTM needs to update a total of 16 parameters.

3.4.1. Variant Gradient Formula for LSTM Layer Parameters

The sensitivity of the loss function to the hidden variable h at the time of t is
∂L
∂ht

,

expressed by δt. Then, the backpropagation formula of the weight matrix and the parameter
vector of the loss function L to the output gate ot is (19)–(21)

∂L
∂Woh,t

= [δt ⊙ tanh(ct)⊙ ot ⊙ (1 − ot)]hT
t−1 (19)

∂L
∂Wox,t

= [δt ⊙ tanh(ct)⊙ ot ⊙ (1 − ot)]x̃T
t (20)

∂L
∂bo

= δt ⊙ tanh(ct)⊙ ot ⊙ (1 − ot). (21)

The backpropagation formula of the loss function L to the weight matrix and the
parameter vector of the forgetting gate ft is (22)–(24).

∂L
∂W f h,t

= [δt ⊙ ot ⊙ (1 − tan2(ct))⊙ ct−1 ⊙ ft ⊙ (1 − ft)]hT
t−1 (22)

∂L
∂W f x,t

= [δt ⊙ ot ⊙ (1 − tan2(ct))⊙ ct−1 ⊙ ft ⊙ (1 − ft)]x̃T
t (23)

∂L
∂b f

= δt ⊙ ot ⊙ (1 − tan2(ct))⊙ ct−1 ⊙ ft ⊙ (1 − ft). (24)

The backpropagation formula of the loss function L to the weight matrix of the “simple”
forgetting gate gt is (25)

∂L
∂Wcg,t

= [δt ⊙ ot ⊙ (1 − tan2(ct))⊙ c̃t ⊙ (1 − ft)⊙ gt ⊙ (1 − gt)](ct−1)
T . (25)

Loss function L to c̃t backpropagation formula of weight matrix and parameter vector
for (26)–(28)

∂L
∂Wch,t

= [δt ⊙ ot ⊙ (1 − tan2(ct))⊙ it ⊙ (1 − c̃2
t )]h

T
t−1 (26)

∂L
∂Wcx,t

= [δt ⊙ ot ⊙ (1 − tan2(ct))⊙ it ⊙ (1 − c̃2
t )]x̃

T
t (27)

∂L
∂bc

= δt ⊙ ot ⊙ (1 − tan2(ct))⊙ it ⊙ (1 − c̃2
t ). (28)

The partial derivative of the loss function L with respect to the weight matrix and bias
vector of the output layer is the Formula (29) and (30)

∂L
∂Wy

= (ŷτ − yτ) · hT
τ (29)
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∂L
∂by

= ŷτ − yτ . (30)

3.4.2. Derivation of the Parameter Gradient Formula of the Attention Mechanism Layer

For the three parameters involved in the attention mechanism layer, according to
the loss function L and the parameter relationship, the formula for obtaining the partial
derivative of Wax is as follows:

∂L
∂Wax

= δt · {[ξt · WT
ox(tanh(ct)⊙ ot ⊙ (1 − ot))⊙ xt]

T · ϑt

+ [ξt · WT
f x(ot ⊙ (1 − tanh(ct)

2)⊙ ct−1 ⊙ ft ⊙ (1 − ft))⊙ xt]
T · ϑt

+ [ξt · WT
f x(ot ⊙ (1 − tanh(ct)

2)⊙ c̃t ⊙ (−gt)⊙ ft ⊙ (1 − ft))⊙ xt]
T · ϑt

+ [ξt · WT
cx(ot ⊙ (1 − tanh(ct)

2)⊙ it ⊙ (1 − c̃2
t ))⊙ xt)]

T · ϑt}.

(31)

The formula for finding the partial derivative of the loss function L with respect to
Va is

∂L
∂Va

= [ξt · WT
ox(tanh(ct)⊙ ot ⊙ (1 − ot)⊙ δt)⊙ xt] · [tanh(Wax · xt + ba)]

T

+ [ξt · WT
f x(ot ⊙ (1 − tanh(ct)

2)⊙ ct−1 ⊙ ft ⊙ (1 − ft)⊙ δt)⊙ xt] · [tanh(Wax · xt + ba)]
T

+ [ξt · WT
f x(ot ⊙ (1 − tanh(ct)

2)⊙ c̃t ⊙ (−gt)⊙ ft ⊙ (1 − ft))⊙ xt] · [tanh(Wax · xt + ba)]
T

+ [ξt · WT
cx(ot ⊙ (1 − tanh(ct)

2)⊙ it ⊙ (1 − c̃2
t ))⊙ xt] · [tanh(Wax · xt + ba)]

T .

(32)

The formula for finding the partial derivative of the loss function L with respect to
ba is

∂L
∂ba

= [diag(tanh(ct)) · diag(ot ⊙ (1 − ot)) · Wox

+ diag(ot ⊙ (1 − tanh(ct)
2)) · diag(ct−1) · diag(( ft ⊙ (1 − ft)) · W f x)

+ diag(ot ⊙ (1 − tanh(ct)
2)) · diag(c̃t) · diag(−(gt)) · diag(( ft ⊙ (1 − ft)) · W f x)

+ diag(ot ⊙ (1 − tanh(ct)
2)) · diag(it) · diag((1 − c̃2

t )Wcx)] · ζt · δt.

(33)

In the Formula (33), diag(a) represents the diagonal matrix with the elements of the
vector a as diagonal elements, and ξt is the partial derivative of pt with respect to the
attention weight at obtained from the Softmax layer. The formula is as follows:

ξt =
∂pt

∂at
=



∂p1
t

∂a1
t

∂p2
t

∂a1
t

· · · ∂pxdim
t

∂a1
t

∂p1
t

∂a2
t

∂p2
t

∂a2
t

· · · ∂pxdim
t

∂a2
t

...
... · · ·

...
∂p1

t
∂axdim

t

∂p2
t

∂axdim
t

· · · ∂pxdim
t

∂axdim
t



=


p1

t ∗ (1 − p1
t ) −p2

t ∗ p1
t · · · −pxdim

t ∗ p1
t

−p1
t ∗ p2

t p2
t ∗ (1 − p2

t ) · · · −pxdim
t ∗ p2

t
...

... · · ·
...

−p1
t ∗ pxdim

t −p2
t ∗ pxdim

t · · · pxdim
t ∗ (1 − pxdim

t )



(34)

The calculation formulas for ϑt in Equation (31) and ζt in Equation (33) are, respectively,
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ϑt = Va · (1 − tanh(Wax · xt + ba)
2) · (xt)

T (35)

ζt = diag(xt) · ξt · [Va(diag(1 − tanh(Wax · xt + ba)
2))]. (36)

In Equation (34), pi
t denotes the i-th element of vector pt, ai

t denotes the i-th element of
vector at, and xdim refers to the dimension of the input vector x.

At this point, all backpropagation formulas of AMV-LSTM are derived. After the
corresponding gradient of each parameter is obtained, the Adam gradient descent method
is used to update the parameters.

Taking Wax as an example: Let ( ∂L
∂Wax,t

)Adam denote the gradient of ∂L
∂Wax,t after Adam

updates. The calculation formula is as follows:

qt = δ · qt−1 + (1 − δ)
∂L

∂Wax,t
(37)

rt = γ · rt−1 + (1 − γ)(
∂L

∂Wax,t
)2 (38)

q̂t =
qt

1 − δt (39)

r̂t =
rt

1 − γt (40)

(
∂L

∂Wax,t
)Adam =

ϖ · q̂t√
r̂t + ϵ

. (41)

In Equation (37),
∂L

∂Wax,t
is computed based on Equation (31). The initial values q0 and

r0 are both set to 0. The parameters ϖ, δ, γ, and ϵ are experimentally set values. Usually,
δ = 0.9 and γ = 0.999 are the exponential decay rates for the matrices, while ϵ = 1 × 10−8

is a very small number to prevent division by zero. ϖ = 0.64 is the learning rate for Adam,
which is equal to the global learning rate in this paper [26].

The iterative formula for Wax,t+1 at time step t + 1 is

Wax,t+1 = Wax,t − (η ∗ 0.9i) · ( ∂L
∂Wax,t

)Adam. (42)

In Equation (42), i represents the number of iterations, η is a constant, set to 0.64 in
this case. By utilizing Equations (37)–(42),the iterative update of the gradient Wax,t can be
achieved, and similar methods are applied for updating other parameters.

3.5. Algorithm: AMV-LSTM Model

The algorithmic process of the AMV-LSTM model is as follows:
Step 1: Set the batch size, dimension of the hidden layer, time steps, Adam learning

rate for AMV-LSTM, and determine the dimension of the input feature vectors. Partition
the experimental data into training and testing samples and preprocess the data. Provide
the training samples X = x1, x2, x3, . . . , xτ along with their corresponding labels y.

Step 2: Involves feeding the training samples X = x1, x2, x3, . . . , xτ into the attention
mechanism layer, obtaining X̃ = x̃1, x̃2, x̃3, . . . , x̃τ according to Equations (3)–(5).

Step 3: Involves computing ỹ̂ by applying the forward propagation algorithm to X̃
based on Equations (6)–(16), and obtaining Equation (17).

Step 4: Compute the gradients of the loss function with respect to the parameters of
the LSTM layer using Equations (19)–(30), and obtain the gradients of the loss function
with respect to the parameters of the attention mechanism layer using Equations (31)–(36).

Step 5: Employs the Adam gradient descent method to iteratively update each param-
eter based on Equations (37)–(42).
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Step 6: According to the set number of iterations, determine the termination condition.
If the number of iterations is less than or equal to the specified number, return to Step 4;
otherwise, terminate the iteration.

Step 7: Train the pre-trained AMV-LSTM model using the training data, make predictions
on the test set, and then denormalize the predicted data to obtain the final prediction results.

4. Experiments

In this section, to validate the superiority of AMV-LSTM, a simple comparison is first
conducted by comparing the variant LSTM with the classical LSTM model. Subsequently,
a comparison is made between AMV-LSTM and LSTM models incorporating attention
mechanisms. The precision of AMV-LSTM in predicting the stock price for the next 1 day,
the accuracy in predicting the next 2 days, and the convergence speed of AMV-LSTM
are studied separately. Ultimately, it is concluded that the performance of AMV-LSTM is
more outstanding.

The data used in the experiment are from China Ping An Bank, sourced from the
Uminer platform. It is a representative stock in the financial industry. The time span of the
dataset is from 19 January 2007, to 12 April 2022, comprising a total of 3590 data points.
Fourteen dimensions of stock features were selected, including the opening price, highest
price, lowest price, closing price, as well as 5-day, 10-day, 20-day, 60-day, and 120-day
exponential moving average indicators, and 5-day, 10-day, 20-day, 60-day, and 120-day
simple moving average lines. The time step is set to 10, predicting the stock price for the
11th day based on the stock prices of the preceding 10 days.

During preprocessing, we first checked whether there were missing values or anoma-
lies among the 3590 data points. Since the opening price of stocks is zero during non-trading
hours, we removed data points with opening prices of zero to ensure data integrity. Sub-
sequently, considering the practical scenario where the actual opening price of a stock
on a given day may not be exactly the same as the previous day’s closing price due to
factors such as stock dividends, we adjusted the stock data. Two methods, namely forward
adjustment and backward adjustment, are commonly used for stock price adjustments.
Forward adjustment maintains the stock price while lowering the pre-adjustment closing
price below the stock price; backward adjustment increases the adjusted stock price. Both
methods effectively correct stock prices. In this study, we applied backward adjustment to
correct the stock prices.

The specific steps are as follows:

(1) Determine the ex-dividend date of the stock, which is the date on which the company
announces the ex-dividend date.

(2) Calculate the ex-dividend factor for each day prior to the ex-dividend date. The
ex-dividend factor is the ratio of the stock price before the ex-dividend date to the
price after the ex-dividend date. The calculation formula is

EDF = 1 − CD
BTED

. (43)

In Equation (43), EDF refers to the ex-dividend factor, CD refers to cash dividends,
and BTED refers to the stock price on the day before the ex-dividend date.

(3) Use ex-dividend factors to adjust all prices after the ex-dividend date. For each
day’s stock price, multiply it by the corresponding ex-dividend factor to obtain the
adjusted price.

(4) Based on the stock’s ex-dividend status, repeat steps 2 and 3 until all ex-dividend
factors have been applied to their respective dates.

Afterwards, the dataset was split into a training set and a test set. In this study,
3000 data points were selected as the training set, and 500 data points were chosen from
the remaining data as the test set. After the dataset division, due to the impact of measure-
ment units and variance among stock features, it is necessary to normalize the data. The
normalization formula is as follows:
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x∗n =
x
′
n − min(xn)

max(xn)− min(xn)
. (44)

The evaluation criteria for the model include Mean Squared Error (MSE), Mean Abso-
lute Error (MAE), and the Coefficient of Determination (R2). MSE, MAE, and R2 are metrics
used to gauge the fitting degree and prediction accuracy of the model. For MSE and MAE,
smaller values are better, while for the Coefficient of Determination (R2), a value closer to
1 is preferable. Market volatility affects the model’s predictive performance, as reflected
in these metrics. When the model exhibits stronger robustness, even in the presence of
significant market volatility, it can still capture the nonlinear relationship in stock price
data. Consequently, MSE and MAE decrease, while R2 increases. Comparing models, the
more significant the reductions in MSE and MAE, the stronger the model’s robustness and
its ability to capture nonlinear data relationships, resulting in higher predictive accuracy of
stock prices and greater increases in R2. The formulas for calculating these three evaluation
metrics are as follows:

MSE =
1
n

n

∑
i=1

(ŷi − yi)
2 (45)

MAE =
1
n

n

∑
i=1

|ŷi − yi| (46)

R2 = 1 − ∑n
i=1(yi − ŷ)2

∑n
i=1(yi − ȳ)2 . (47)

4.1. Comparison between Variant LSTM and Classic LSTM

The classic LSTM is highly unstable when predicting stock prices based on
14-dimensional stock features. It is prone to generating ineffective prediction results
due to the influence of data noise. Even when capable of handling data, it tends to suffer
from overfitting issues. In contrast, modified versions of LSTM demonstrate more stability
in predicting stock prices and offer some relief in situations of overfitting (Figure 6).

(a) (b)

Figure 6. The comparative analysis between Variant LSTM and LSTM in predicting. (a) Train set;
(b) Test set.

In the experiment, Adam’s learning rate is 0.64. And the model performs best when
the learning rate of Adam is at 0.64, with stable predictive performance observed between
0.6 and 0.75. Additionally, the optimal batch size is 500. The iterations are conducted for
a total of 100 rounds each. From the performance chart, it is evident that, compared to
the classic LSTM, the variant LSTM yields more accurate predictions on the test set. To
confirm that the “simple” forget gate indeed selectively forgets information, a heatmap of
the weights of the “simple” forget gate Wgc is plotted (Figure 7). This visualization provides
a more intuitive understanding of the distribution of numerical values.
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Figure 7. Wgc Weighted Heat Map.

From the graph, it is evident that the “simple” gate plays a role in the information
within ct; most of the information can be selectively forgotten, thus alleviating the burden
on the LSTM caused by an excess of information during transmission.

Furthermore, although the classic LSTM performs reasonably well in predicting stable
stock prices, it struggles to capture sudden spikes or drops in stock prices in a timely manner.
While the variant LSTM shows significant improvement in both stable and unstable stock
prices compared to the classic LSTM, its accuracy still does not reach a very high level.

4.2. Comparison Experiment of AMV-LSTM and AM-LSTM
4.2.1. Predicting Future Stock Prices for 1 Day

Due to the variant LSTM’s relatively low accuracy in predicting stock prices, an
attention mechanism layer is added in front of the variant LSTM. This forms the AMV-
LSTM, which first predicts the stock price for the next day.

In comparison with the variant LSTM shown in the predicted performance Figure 8, it
is evident that AMV-LSTM has significantly improved accuracy in both the training and
test sets.

(a) (b)

Figure 8. The comparative analysis between AMV-LSTM and AM-LSTM in predicting. (a) Train set;
(b) Test set.



Mathematics 2024, 12, 945 15 of 20

Comparing with Tables 1 and 2, it can be observed that, after 20 rounds of iteration, the
accuracy of the AMV-LSTM has increased by 6.7727% on the training set and by 18.8125%
on the testing set, compared to the variant LSTM. Additionally, when compared to the
AM-LSTM, the performance of AMV-LSTM remains superior, especially on the testing set,
where the accuracy has further increased by approximately 3%.

Table 1. Comparison of evaluation indicators.

Evaluation Indicators MSE
(Train)

MSE
(Test)

MAE
(Train)

MAE
(Test) R2 (Train) R2 (Test)

LSTM 0.001616 0.002551 0.031581 0.037447 0.776809 0.163586
Variant LSTM 0.000606 0.001328 0.017157 0.026679 0.845297 0.743773

Table 2. Evaluation index data comparison.

Evaluation Indicators MSE
(Train)

MSE
(Test)

MAE
(Train)

MAE
(Test) R2 (Train) R2 (Test)

AM-LSTM 0.000429 0.001060 0.012837 0.023940 0.898990 0.904071
AMV-LSTM 0.000412 0.000638 0.013507 0.017364 0.913024 0.931898

From Figures 9 and 10, it can be seen that when facing significant fluctuations in stock
prices, AMV-LSTM is more adaptable to such abrupt changes compared to AM-LSTM. This
demonstrates that the information utilization capability of AMV-LSTM is stronger.

Figure 9. AMV-LSTM and AM-LSTM train set partial prediction magnification results.

Figure 10. AMV-LSTM and AM-LSTM test set partial prediction magnification results.
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To verify the applicability of the model to data from different industries and highlight
the effect of integrating attention mechanisms into variant LSTMs, we used AMV-LSTM
to predict the stock prices of American companies such as IBM and Ford. We compared
these results with those obtained using LSTM and variant LSTMs and found that the
performance of the AMV-LSTM model remained superior. The comparative plot of the
model’s predictive performance is shown below (Figures 11 and 12):

(a) (b)

Figure 11. Comparison of FORD stock price prediction models. (a) Train set; (b) Test set.

(a) (b)

Figure 12. Comparison of IBM stock price prediction models. (a) Train set; (b) Test set.

Furthermore, the comparison between AMV-LSTM and the more advanced model
GRU is presented in the table below.

Table 3 shows that, compared to GRU, the overall performance metrics of AMV-LSTM,
including MAE, MSE, and R2, are still superior, both on the training and testing datasets.

Table 3. Evaluation index data comparison.

Evaluation Indicators MSE
(Train)

MSE
(Test)

MAE
(Train)

MAE
(Test) R2 (Train) R2 (Test)

AMV-LSTM 0.000412 0.000638 0.013507 0.017364 0.904071 0.931898
GRU 0.00111805 0.00579771 0.0257391 0.0582083 0.750927 −1.60025

4.2.2. Predicting Stock Prices for the Next 2 Days

To assess the generalization ability of AMV-LSTM, stock price predictions for the next
2 days were conducted using both AMV-LSTM and AM-LSTM (Figure 13). This involves
forecasting stock prices for the 12th days using the stock prices of the preceding 10 days.
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(a) (b)

Figure 13. The AMV-LSTM and AM-LSTM predict future stock prices for the next 2 days. (a) Train
set; (b) Test set.

Based on the effectiveness charts of stock price predictions for the next 2 days, both
AMV-LSTM and AM-LSTM show a certain decline in predictive capabilities (Table 4).
However, the predictive performance of AMV-LSTM is still superior to that of AM-LSTM.

Table 4. Predicting stock prices for the next 2 days.

Forecast the Next
2 Days

MSE
(Train)

MSE
(Test)

MAE
(Train)

MAE
(Test) R2 (Train) R2 (Test)

AM-LSTM 0.000652 0.003171 0.016602 0.046714 0.857474 0.745920
AMV-LSTM 0.000728 0.001219 0.018275 0.024840 0.864855 0.805888

The various evaluation indicators of AMV-LSTM, although showing a slight decrease
in predicting the next 2 days, still maintain an accuracy of over 80%. However, the impact on
the prediction accuracy of AM-LSTM is comparatively larger, especially in the performance
on the test set. This validates that the generalization ability of AMV-LSTM is stronger
compared to AM-LSTM. Overall, considering the comprehensive performance, AMV-LSTM
still outperforms AM-LSTM.

4.2.3. Comparison of Convergence Speed

In order to compare the convergence speed of AMV-LSTM and AM-LSTM, the Mean
Squared Error (MSE) in the testing set of both models is set to 0.0015. When the model’s MSE
reaches 0.0015, the iteration is terminated, and the number of iterations as well as the time
taken for both models are recorded. Experimental results show that AMV-LSTM requires only
11 iterations, taking 321.496 s, while AM-LSTM requires 13 iterations, taking 379.821 s.

Iterative error is shown in Figure 14:

Figure 14. Iterative error.
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To compare the computational complexity of the three models, we iterated LSTM,
AM-LSTM, and AMV-LSTM 10 times, respectively, and recorded the time taken by each
model for each iteration.

Table 5 shows that LSTM took a total of 47.2695 s for 10 iterations, with an average time
of 4.72695 s per iteration. AM-LSTM took 293.034 s for 10 iterations, averaging 29.3034 s
per iteration. AMV-LSTM took 291.576 s for 10 iterations, averaging 29.1576 s per iteration.
Compared to LSTM, AMV-LSTM took approximately 25 s more per iteration, but achieved
a nearly 77% improvement in prediction accuracy on the test set. Despite the increase in
time, there was a significant improvement in accuracy. Compared to AM-LSTM, AMV-
LSTM reduced the time per iteration by 0.2 s, showing a slight decrease in time, while still
achieving an approximately 3% increase in accuracy on the test set. This reflects that the
computational complexity of AMV-LSTM is higher than LSTM but lower than AM-LSTM.

Table 5. The time taken to iterate the number of rounds.

Running Time LSTM AM-LSTM AMV-LSTM

1 4.75585 31.0443 29.3056
2 9.46196 60.1404 58.4812
3 14.2038 89.2226 87.6172
4 18.9221 118.206 116.747
5 23.6535 147.254 145.9
6 28.3667 177.226 175.061
7 33.0821 206.187 204.266
8 37.8014 235.121 233.36
9 42.5604 264.067 262.461
10 47.2695 293.034 291.576

5. Conclusions

The prediction of stock prices has always been a complex and highly challenging
issue. In order to enhance the accuracy of stock price prediction as much as possible,
the AMV-LSTM model was developed in this study. We first improved the structure of
LSTM and designed a variant of LSTM, drawing inspiration from both classic LSTM and
peephole LSTM. The variant LSTM integrates the forget gate and input gate, and introduces
a “simplified” forget gate. Experimental results demonstrate that the robustness of the
variant LSTM has been enhanced. The added “simplified” gate effectively filters data
information, improving the efficiency of information utilization, and effectively addressing
LSTM overfitting. This will directly contribute to the improvement of stock price prediction
accuracy in real-world scenarios.

Additionally, an attention mechanism layer was added to the variant LSTM, result-
ing in the design of AMV-LSTM, for which the backpropagation formula was derived.
Compared to the variant LSTM, AMV-LSTM shows overall performance improvement.
Compared to AM-LSTM, AMV-LSTM demonstrates stronger robustness, excelling not
only in predicting the stock price for the next day but also maintaining superior over-
all performance in predicting the stock price for the next two days, indicating enhanced
generalization ability. This implies a longer-term reliability and predictive capability in
forecasting market trends. From a decision support perspective, providing forecasts for
the next two days’ stock prices helps investors reduce decision-making blindness and
randomness, thereby enhancing the accuracy and efficiency of investment decisions and
facilitating the formulation of investment strategies. In terms of managing trading risks, it
enables better avoidance of market risks, timely adjustment of investment portfolios, and
higher investment returns. Compared to other benchmark models and variant models,
AMV-LSTM exhibits lower Mean Squared Error (MSE) for stock price prediction than the
models LSTM-CNN and LSTM+CNN+CBAM presented in [16].

Finally, in terms of convergence speed, experimental results show that AMV-LSTM re-
quires fewer iterations than AM-LSTM to achieve the same level of accuracy, indicating that
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AMV-LSTM converges faster. A faster convergence speed implies that less computational
resources and time are required for real-time predictions, making investors’ decisions more
timely and enhancing the practicality of forecasting.

In the future, integrating the model with specific investment strategies could po-
tentially yield higher profits for investors and enhance risk management capabilities by
providing timely alerts. Additionally, applying this model to other similar fields such
as runoff prediction and short-term electricity forecasting is also a viable option worth
exploring. These avenues can be considered in future work.
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