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Abstract: Dynamic surface control (DSC) is a recognized nonlinear control approach for high-order
systems. However, as the complexity of the system increases and the first-order filter (FOF) is
introduced, there exists a singularity problem, i.e., the control input will reach infinity. This limits
the application of the DSC algorithm to a class of real-world systems with complex dynamics. To
address the problem of singularity, we present a novel DSC approach called nonsingular dynamic
surface control (NDSC), which completely avoids the singularity problem and significantly improves
the overall control performance. NDSC includes a nonsingular hypersurface, which is constructed
by the error between system states and virtual control inputs. Then the nonsingular hypersurface
will be applied to derive the corresponding control law with the aid of the DSC approach to ensure
the output of the system can track arbitrary desired trajectories. NDSC has the following novel
features: (1) finite time asymptotic stabilization can be guaranteed; (2) the performance of NDSC is
insensitive to the FOF’s parameter variation once the maximum tracking error of FOF is bounded,
which significantly reduces reliance on the control sampling frequency. We thoroughly evaluate
the proposed NDSC algorithm in an unmanned aerial vehicle (UAV) system with an underactuated
nature. Finally, the simulation results illustrate and highlight the effectiveness and superiority of the
proposed control algorithm.

Keywords: nonsingular dynamic surface control (NDSC); dynamic surface control (DSC); unmanned
aerial vehicle; nonsingular hypersurface

MSC: 93-10

1. Introduction

To date, backstepping control (BSC) is a well-known powerful tool for high-order
systems with essential nonlinearity [1,2]. The key idea behind BSC is decomposing the
complex high-order system into subsystems whose order is lower than that of the origin
system. And then for each subsystem, a virtual control law is defined based on the
Lyapunov method. However, performing the above approach under a nonlinear unmanned
aerial vehicle (UAV) system with under-actuated characteristics commonly poses the
following challenge problems: (1) the ”explosion of complexity” phenomenon arising
due to the repeated derivations of virtual control law; (2) the smoothness requirement
of UAV dynamic functions and the reference signal. To deal with the problems above,
dynamic surface control (DSC) is developed by introducing a first-order filter (FOF) in each
subsystem to track virtual control law and automatically obtain their derivatives, so that
the derivation of virtual control law will be unnecessary [3,4].

DSC avoids the “explosion of complexity” phenomenon and relaxes the smoothness
requirement on dynamic functions and reference signals. The effectiveness of DSC has
been increasingly demonstrated in various challenging applications, such as spacecraft
control [5], aircraft landing control [6], aircraft overspeed maneuver control [7], quadrotor
attitude control [8–10], morphing aircraft control [11], and containment control of multiple
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quadrotors [12–14]. However, the DSC controller has a singular issue, that is because, due
to the presence of an FOF tracking error, DSC loses its asymptotic stabilization property,
i.e., the state error can only converge to a bounded interval near the origin, thus resulting
in low robustness and high sensitivity to the system parameter variations. Swaroop has
proved that the state error can only be made infinitesimal by employing a high gain and
a sufficiently small time constant of the filter [3]. Furthermore, Pan Yongping proved
that a sufficiently small time constant (without the need for a high gain) ensures semi-
global exponential stabilization of the system using the singular ingress theory [4]. In
practical application, the time constant of FOF cannot be infinitely small, it is limited
by the sampling time of the system [15]. Additionally, manual tuning is hard and the
standards are obscure. To improve the performance of DSC, in addition to adjusting the
time constant, Bu Xiangwei et al. replaced FOF with the tracking differentiator (TD) [16].
Equivalently, Shao Xingling et al. used a sigmoid TD to estimate the virtual control law
and its derivatives [17]. However, despite its empirical success, there is no theoretical
understanding of its convergence and no theoretical guideline for key parameter tunning,
especially the time constant τ.

In this paper, we present a novel nonsingular dynamic surface control (NDSC) algo-
rithm, which has the following three properties:

(1) Firstly, the proposed NDSC overcomes the singularity problem by employing a
nonsingular hypersurface to replace the original linear error term. Then, finite time
convergence theory is adopted to derive the control law, ensuring the system state
converges to the origin in finite time.

(2) When the FOF tracking error is limited, we prove the global stability of the proposed
NDSC method. Based on such analysis, we find NDSC is insensitive to the variation
in the time constant τ. This enables a great deal of flexibility in choosing parameters.

(3) We thoroughly evaluate the proposed NDSC method in an underactuated UAV control
task. In particular, the NDSC has been shown to be superior to the standard DSC
approach in terms of convergence rate, robustness, and trajectory tracking accuracy.

2. Problem Statement
2.1. UAV Dynamics

We aim to improve the robustness and trajectory tracking accuracy of the UAV through
the NDSC method. The UAV is modeled as a 6-degree-of-freedom (DOF) rigid body in
two frames: the inertial frame I and the body frame B, which are denoted by superscripts n
and b, respectively. The dynamic of the UAV is given by [18]:

.
pn

= Rn
b vb

.
vb

= 1
m Fb − Y

(
wb
)

vb + 1
m u1

J
.

wb
= Mb − Y

(
wb
)

Jwb + Au2

.
qnb = Γ(qnb)

[
0
wb

]
,

(1)

where pn ∈ R3 is the position of UAV in I, vb ∈ R3 is the velocity in B, Rn
b ∈ R3×3 is the

rotation matrix from B to I, wb ∈ R3 is the angular velocity in B, and qnb is the quaternion
denoting the attitude of B with respect to I. m ∈ R+ and J ∈ R3×3 are the mass and the
inertia matrix of the UAV, respectively. Fb and Mb are the joint force and joint moment of
gravity and aerodynamic forces depicted in B. Symbolic Y(·) denotes the skew-symmetric
operator and Γ(·) the quadratic multiplication operator. Usually, thrust only contains the
component of the x-axis: u1 := [T, 0, 0]T . u2 := [τ1, τ2, τ3]

T represents the torques produced
by the rudder deflection. The applied thrust T and torques τ1, τ2, τ3 will be designed to
drive the UAV to realize the trajectory tracking task. However, the underactuated nature
of the UAV system (i.e., the number of actuators is less than the degrees of freedom of the
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UAV system) generally complicates the dynamic of the controlled UAV and exacerbates the
difficulty of controller design [19].

2.2. Control Objective

Given a reachable trajectory pd = [pd,x, pd,y, pd,z]
T and its derivation

.
pd = [

.
pd,x,

.
pd,y,

.
pd,z]

T,
to realize the trajectory tracking control of an underactuated UAV system, a common practice is
to consider the hierarchical strategy [20,21]. Specifically, a nominal command un is first derived
to track pd and

.
pd. In particular, we have:

lim
t→∞

(pn(t)− pd(t)) = 0, lim
t→∞

(
vn(t)− .

pd(t)
)
= 0 (2)

.
The desired thrust T and torque u2 are then extracted from un to stabilize the transla-

tion and rotation loop of the UAV, respectively. Next, based on the state-of-the-art NDSC
approach, we develop an algorithm for calculating online control commands to track the
desired trajectory with a fast dynamic response.

3. Nonsingular Dynamic Surface

Considering the general N-th-order time invariant system{ .
xi = fi(ξi) + xi+1 (i = 1, 2, . . . , N − 1)
.
xN = fN(ξN) + u

(3)

where ξi := [x1, . . . , x2]
T ∈ Ri is defined as the state sequence, fi(ξi) :∈ Ri 7→ R (i = 1, 2,

. . ., N) can be a generally nonlinear function, and u and x1 are the control input and system
output, respectively. The task of NDSC is to design a control input u so that x1 tracks the
desired output xd in finite time.

Review the design of the BSC, where xi of each subsystem in (3) is considered as
a virtue control input Φi(i = 1, 2, . . . , N − 1), which is utilized to ensure a state of
xi(i = 1, 2, . . . , N − 1) asymptotic stability. Since the solution of the state cannot fully
satisfy xi = Φi(i = 1, 2, . . . , N − 1) all the time. Therefore, variable zi := xi − Φi is defined
to formulate the tracking error for i = 1, 2, . . ., N − 1. The error system is given by:

z1 = x1 − xd
z2 = x2 − Φ1(x1)

...
zN = xN − ΦN−1(ξN−1)

(4)

where Φi(i = 1, 2, . . . , N − 1) can be designed according to:
Φ1 = −k1z1 +

.
xd − f1(ξ1)

Φi = −kizi +
.

Φ̂i−1 − fi(ξi)− zi−1 (i = 2, 3, . . . , N − 1)

u = −kNzN +
.

Φ̂N−1 − fN(ξN)− zN−1

(5)

where ki(i = 1, 2, . . . , N) are control parameters.

Theorem 1. For system (3), if u is given by (5), then the closed-loop tracking error dynamics (4) is
globally exponentially stable.

In (5), we can observe the repeated derivation of Φi for i = 1, . . ., N can increase
the complexity as the system order N increases, which is the well-known “explosion of
complexity” phenomenon. This can be overcome by simply introducing a first-order
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filter (FOF): τ
.

Φ̂i(t) = −Φ̂i(t) + Φi(t), (i = 1, . . . , N), where τ is the time constant, and
Φ̂i(0) = Φi(0). Combining, and following the design ideas of DSC, (5) can be redefined as:

Φ1 = −k1z1 +
.
xd − f1(ξ1)

Φi = −kizi +
.

Φ̂i−1 − fi(ξi)− zi−1 (i = 2, 3, . . . , N − 1)

u = −kNzN +
.

Φ̂N−1 − fN(ξN)− zN−1

(6)

Theorem 2. For system (3), if u is designed as (6), (4) can be proved to be semi-global uniformly
ultimately bounded stability when parameters ki ∈ R+, (i = 1, . . ., N) are suitably large and
τ ∈ R+ is sufficiently small.

As shown in (6), the original differential term of the virtual control in (5) is replaced
with the output of the filter. However, the closed-loop stability and tracking performance
heavily rely on the selection of ki (i = 1, . . ., N) and τ, which usually require significant
efforts and expert knowledge to tune. In addition, these conservative stability results of
DSC cannot fully meet the requirements of a highly dynamic system. Motivated by these
facts, we develop the NDSC method, which can guarantee the error system (4) converges
in finite time and eliminates the singular phenomenon that appears in DSC. The following
assumption is needed for NDSC synthesis:

Assumption 1. The tracking error εi := Φi − Φ̂i is bounded for i = 1, . . ., N, and satisfied:∥∥ .
εi(t)

∥∥ ≤ η (i =1, 2, . . . , N − 1
)

where η > 0 is the bound of tracking error of FOF. For error system (4), a nonsingular hypersurface
is first presented as:

s = zN + γ

(∫ t

0
zNdt

)p/q
(7)

whereγ ∈ R+ is a design parameter, and p and q are positive odd numbers and satisfied: 1 < p/q < 2.

Letli := −γ
(∫ t

0 zidt
)p/q

. Then the NDSC method is given by:


Φ1(ξ1) = ii − f1(ξ1) +

.
xd

Φi(ξi) = ii − fi(ξi) +
.

Φ̂i−1 (i = 2, 3, . . . , N − 1)

u = iN − fN(ξN) +
.

Φ̂N−1 − (K + η)sgn(s)

(8)

where K ∈ R+ is a design parameter.

Theorem 3. For system (3), if the hypersurface is designed as (7), and u is designed as (8), then the
output x1(t) of (3) can track the desired output xd(t) in finite time.

Proof. Define a Lyapunov function candidate:

V =
1
2

s2 (9)

Substituting (7) and (8) into the time derivative of (9), one has
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.
V = s

.
s

= s
[

fN(ξN) + u −
.

ΦN−1 +
p
q γ
(∫ t

0 zndt
)p/q−1

zN

]
= s
[

.̂
ΦN−1 −

.
Φn−1 − (K + η)sgn(s)

]
= s
[ .
εN−1 − (K + η)sgn(s)

]
≤ |s|

[∣∣ .
εN−1

∣∣− (K + η)
]
= −K|s|,

(10)

which can be made negative definite for a choice of K ∈ R+. Thus s will converge to 0 in
finite time, which indicates zN and

∫ t
0 zN dt reach zero in finite time. □

Remark 1. As shown in (10), K ∈ R+ is chosen to make (10) a negative definite. Since the upper
bound η on the error of the FOF is known, NDSC does not depend on a sufficiently large value of K,
and this is where we have an advantage over traditional DSCs.

In addition, the selection of constants p, q has been discussed extensively in refer-
ence [22].

Now, we differentiate z1:

.
z1 =

.
x1 −

.
xd

= x2 + f1(ξ1)−
.
xd

= z2 + Φ1(ξ1) + f1(ξ1)−
.
xd

= z2 + i1

(11)

Let us integrate both sides of (11); one has∫ t

0
z2dt = z1 − l1 (12)

Reviewing the definition of l1 := −γ
(∫ t

0 z1dt
)p/q

, one immediately obtains that l1,

z1 → 0 in finite time as
∫ t

0 z2 dt → 0 in finite time.
Furthermore, differentiating z2, one has

.
z2 =

.
x2 −

.
Φ1(ξ1)

= x3 + f2(ξ2)−
.

Φ1(ξ1)

= z3 + Φ2(ξ2) + f2(ξ2)−
.

Φ1(ξ1)

(13)

Defining Φ2(ξ2) as (8) and applying to (13) yields:

.
z2 = z3 + i2 (14)

Integrating both sides of (14), one has∫ t

0
z3dt = z2 − l2 (15)

which indicates if
∫ t

0 z3dt → 0 in finite time, then z2 and
∫ t

0 z2dt converge to zero in fi-
nite time.

Repeating this process for the derivation of zi with (2 < i ≤ N − 2), until the derivation
of zN−1:

.
zN−1 =

.
xN−1 −

.
ΦN−2(ξN−2)

= xN + fN−1(ξN−1)−
.

ΦN−2(ξN−2)

= zN + ΦN−1(ξN−1) + fN−1(ξN−1)−
.

ΦN−2(ξN−2)

(16)
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Constructing ΦN−1(ξN−1) as (8) and applying to (16):

zN−1 = zN + iN−1 (17)

Integrating both sides of (17) yields:∫ t

0
zNdt = zN−1 − lN−1 (18)

It is known from (10) that
∫ t

0 zNdt → 0 in finite time; thus,
∫ t

0 zN−1dt and zN−1 can
reach zero in finite time. Consequently, it can be inductively shown that zi with i = 1, . . ., N
− 1 reach zero in finite time. Therefore, the output x1 of (3) can track the desired output xd
in finite time. This completes the proof for Theorem 3.

4. An Illustrative Example

We evaluate NDSC in the UAV system (1). To demonstrate the efficiency of NDSC,
we compare it with the standard DSC method. To further understand the insensitivity of
NDSC to the parameter τ, we test the tracking performance with different τ.

As stated in Section 2.2, the control objective is to synthesize the nominal command
un to track the desired trajectory pd; to this end, a simple nominal system is given by:

.
pn

= vn,
.
vn

= un (19)

where pn is the output of (19), and the reachable trajectory is defined as: pd = 1000
[cos(0.05t), sin(0.05t), 0.001t]T . The details of designing a DSC and an NDSC controller un
for the nominal system are omitted here for simplicity.

To address the control problem of an underactuated system, one important step is
mapping the nominal control command un into a desired velocity, angular velocity, and
attitude. To track these desired states, thrust and torque control laws (i.e., T, u2) belonging
to the transaction loop and rotation loop are then derived.

Desired states are defined in the desired frame, which is denoted by the superscript
d and defined by formulating the relation between two different reference frames. For
instance, the relation between I frame and the desired frame can be given by:

vd := [∥vn∥, 0, 0]T = Rd
nvn (20)

where we project the velocity in I frame onto the desired xd axis. Then the rotation angle
and rotation axis can be computed as follows:

θnd = cos−1

(
vd · vn

∥vn∥2

)
, knd =

vd × vn∥∥vd × vn
∥∥ (21)

Based on (21), quaternion qnd between I frame and the desired frame can be constructed
in the following method:

qnd =
[
ηnd εT

nd
]T

=
[
cos
(

θnd
2

)
knd

T sin
(

θnd
2

)]T (22)

where qnd is computed to construct Rd
n = I + 2ηndY(εnd) + 2Y2(εnd). To obtain the desired

angular velocity, we take the derivation of (20), resulting in:

.
vd

= −Y
(

wd
)

Rd
nvn + Rd

nun

= −Y
(

wd
)

vd + Rd
nun

(23)
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which can be solved for the angular velocity as:

wd = −Y†
(

vd
)

Rd
nun (24)

wd is derived based on the fact that Y†
(

vd
) .

vd
= 0. In practice, a thrust controller T

will be designed to make ∥vn∥ → ∥vd∥ , and an attitude controller u2 will be constructed to
make wb → wd , Γ(qdn)qnb → [1, 0, 0, 0]T . Several control approaches can be applied, such
as tracking trajectories under DSC and NDSC approaches represented in Figure 1. It is
clearly shown that both controllers can make the UAV track its desired trajectory, and the
tracking trajectory by NDSC is smoother.
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Figure 2a,b show that NDSC reduces the convergence time significantly, which can be
viewed as a consequence of employing the finite time convergence theory to derive the
nominal control laws.
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Figure 3 compares the control performance of both DSC and NDSC. As shown in
Figure 3a,c, NDSC’s convergence speed is significantly faster than that of DSC. Figure 3b,d–f,
show DSC has serious singularities, thus diminishing the tracking performance. In contrast,
NDSC shows excellent asymptotic performance and completely avoids singularity.
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Figure 4 shows the corresponding nominal control command of DSC and NDSC, where
we can observe that the NDSC controller possesses bounded and smooth properties, while
singularity can be detected for the DSC approach, which is not conducive to implementing
stable control.

Overall, NDSC exhibits higher control performance and eliminates singularity better
than the traditional DSC.
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To illustrate the influence of the time constant parameter τ on the perfor-
mance of the overall system, a set of time constants chosen for simulation is
{τ1 = 0.01, τ2 = 0.05, τ3 = 0.1, τ4 = 0.5, τ5 = 1}.

Figure 5 shows the position response of NDSC under different time constants. It can
be seen that the trajectory for all parameters τi, (i = 1, 2, 3, 4, 5) are very similar.
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Furthermore, position and velocity tracking errors are depicted in Figure 6. It is clearly
shown that when τ = 0.5, 1 the tracking error epx , epy , evx and evy oscillates around zero.
This is because when the time constant is set to be too large (e.g., τ > 0.5), FOF’s tracking
error is beyond a predetermined range (e.g., η); thus, tracking convergence will not occur.
In contrast, it can be seen that when τ < 0.5, the tracking error of both position and velocity
converge to zero, and the amplitude of the tracking errors under τi, (i = 1, 2, 3) are similar.
observations from the simulations indicate the proposed NDSC is insensitive to the time
constant parameter τ when FOF’s tracking error is limited within a predetermined range.
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5. Conclusions

In this paper, we present a nonsingular dynamic surface control method based on dy-
namic surface control. Our approach involves utilizing a nonsingular hypersurface, which
is designed to construct the corresponding control law. We have shown that NDSC can
guarantee asymptotic stability by the assumption that the filter tracking error is bounded
and the systematic error can converge to the origin in a finite time. In contrast, DSC can only
guarantee that the tracking error is bounded. In addition, it is shown that NDSC eliminates
the singularity observed in high-complexity systems and systematizes the selection of the
time constant for filters. The tracking error of the filter can be used to guide the selection
of the time constant, where a larger time constant can be selected within the assumed
filter tracking error. Our simulations indicate that compared to DSC, NDSC significantly
improves the control performance in terms of eliminating the singularity and accelerating
convergence speed [23].
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