
Citation: Li, J.; Liu, Y.; Zhao, W.; Zhu,

T. Application of Dandelion

Optimization Algorithm in Pattern

Synthesis of Linear Antenna Arrays.

Mathematics 2024, 12, 1111. https://

doi.org/10.3390/math12071111

Academic Editor: José Antonio Sanz

Received: 7 March 2024

Revised: 26 March 2024

Accepted: 3 April 2024

Published: 7 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Application of Dandelion Optimization Algorithm in Pattern
Synthesis of Linear Antenna Arrays
Jianhui Li, Yan Liu *, Wanru Zhao and Tianning Zhu

School of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, China;
ljhkybs2022@163.com (J.L.); zhaowanru316@126.com (W.Z.); zhutn_oceancurrent@163.com (T.Z.)
* Correspondence: liuyan1@ynnu.edu.cn

Abstract: This paper introduces an application of the dandelion optimization (DO) algorithm in
antenna arrays. This is the first time that the DO algorithm has been used for optimizing antenna
arrays. For antenna array optimization, sidelobe level (SLL) and deep nulls are key technical
indicators. A lower SLL can improve the signal-to-noise ratio and reduce the impact of clutter
signals outside the main beam. Deep nulls need to be aligned with the direction of interference to
eliminate the influence of interference sources. The combination of the two can effectively improve
the anti-interference ability of the entire system. Therefore, antenna arrays with ultra-low sidelobes
and ultra-deep nulls are currently hot in the field of antenna array design and are also some of the
key technologies needed to achieve modern high-performance radar systems. As a new type of
evolutionary algorithm inspired by nature, the DO algorithm is inspired by the wind propagation
behavior of dandelions in nature. This algorithm iteratively updates the population from three stages
of ascent, descent, and landing, ultimately finding the optimal position. It has good optimization
ability in solving complex problems such as those involving nonlinearity, discreteness, and non-
convexity, and the antenna array pattern synthesis optimization problem belongs to multivariate
nonlinear problems. Therefore, the DO algorithm can be effectively applied in the field of antenna
array optimization. In this work, we use the following method to obtain an optimized pattern of
a linear array with the lowest sidelobe level (SLL), null placement in particular directions, and a
lower notch in particular directions: by controlling the antenna array’s element spacing and leaving
the phase unchanged to optimize the current amplitudes and by controlling the excitation current
and phase fixation of the antenna array and changing the element spacing. In the first and second
examples, different algorithms are used to reduce the SLL of the antenna. In the first example, the
DO algorithm reduces the SLL to −33.37 dB, which is 2.67 dB, 2.67 dB, 3.77 dB, 2.74 dB, and 2.52 dB
lower than five other algorithms. In the second example, the SLL optimized by the DO algorithm
is −42.56 dB, which is 5.04 dB and 1.48 dB lower than two other algorithms. In both examples, the
DO algorithm reduces the SLL lower than other algorithms when the main lobe of the antenna is not
significantly widened. Examples 3, 4, and 5 use the DO algorithm to optimize the amplitude of the
current, generating deep nulls and deep notches in specific directions. In Example 3, the DO algorithm
obtains a depth of nulls equal to −187.6 dB, which is 66.7 dB and 44.3 dB lower than that of the
flower pollination algorithm (FPA) and the chaotic colony predation algorithm (CCPA), respectively.
In Example 4, the deep null obtained by the DO algorithm is as low as −98.69 dB, which is 6.67 dB
lower than the deep null obtained by the grey wolf optimization (GWO) algorithm. In Example
5, the deep notch obtained by the DO algorithm is as low as −63.1 dB, which is 6.4 dB and 1.9 dB
lower than the spider monkey optimization (SMO) algorithm and the grasshopper optimization
algorithm (GOA), respectively. The data prove that the DO algorithm produces deeper nulls and
notches than other algorithms. The last two examples involve reducing sidelobe levels and generating
deep nulls by optimizing the spacing between elements. In Example 5, the SLL obtained using the
DO algorithm is −22.8766 dB, which is 0.1998 dB lower than the lowest SLL of −22.6768 dB among
other algorithms. In Example 6, the SLL obtained using the DO algorithm is −20.1012 dB, and the
null depth is −125.1 dB, which is 1.592 dB lower than the SLL obtained by the cat swarm optimization
(CSO) algorithm and 19.1 dB lower than the deep null obtained by the GWO algorithm, respectively.

Mathematics 2024, 12, 1111. https://doi.org/10.3390/math12071111 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12071111
https://doi.org/10.3390/math12071111
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math12071111
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12071111?type=check_update&version=1

Mathematics 2024, 12, 1111 2 of 24

In summary, the results of six simulation experiments indicate that the DO algorithm has better
optimization ability in linear array optimization than other evolutionary algorithms.

Keywords: dandelion optimization algorithm; antenna array; pattern synthesis; antenna current
amplitude; antenna array element spacing

MSC: 78-10

1. Introduction

Antennas are an indispensable part of wireless communication systems, and the qual-
ity of antenna design determines the quality of wireless communication. Modern antenna
system design requirements are often quite strict and must meet the strict performance
standards specified in specific application requirements [1–3], which usually consider
characteristics such as antenna gain [4] and radiation pattern [5]. There are also many
design methods for modern antenna systems, such as using swarm intelligence optimiza-
tion algorithms to optimize antenna models or using electromagnetic (EM) simulation
software for modeling and analysis, and so on. Although EM simulation tools have become
important tools in contemporary antenna design, the high cost of antenna optimization
methods based on EM simulation is a challenge, and a single full-wave simulation may take
tens of seconds or several hours, making the time cost of solving design tasks involving
multiple EM analyses potentially enormous [6–8]. Therefore, in many cases, designers
choose to change their thinking and no longer use EM simulation design but instead turn
to metaheuristic intelligent optimization algorithms to optimize antenna design, especially
when dealing with multiple objectives such as sidelobe level and null depth of antennas.
Using metaheuristic intelligent optimization algorithms to solve optimization problems
in the antenna field becomes very efficient. In real life, wireless communication systems
are mostly used for remote communication. However, for remote communication, a single
antenna does not have sufficient gain and may be interfered with by buildings or other
nearby obstacles, which seriously reduces its performance. Therefore, it cannot meet the
requirements of high quality and efficiency for remote communication. Antenna arrays
have advantages that a single antenna does not have, including high directionality, high
gain, high anti-interference ability, and beam control ability, which can achieve the above
requirements for remote communication. Therefore, the design of antenna arrays is crucial
for remote wireless communication systems. An antenna array is a special type of antenna
composed of no less than two regular or randomly arranged antenna elements, which
obtain predetermined radiation characteristics through appropriate excitation. For antenna
arrays, when the main lobe width remains unchanged, the lower the SLL, the deeper the
null, and the more concentrated the radiation energy, the better its performance. The
performance of antenna arrays varies through different optimization techniques. As is well
known, the design optimization or synthesis of antennas and antenna arrays in electromag-
netics is a complex nonlinear problem, and traditional methods such as the Chebyshev
technique, the Taylor method [9], and gradient-based optimization often find it difficult to
achieve ideal results when dealing with such problems. However, with the emergence of
more and more metaheuristic intelligent optimization algorithms, they are very effective in
solving multi-dimensional nonlinear, discrete, and non-convex problems in engineering
applications. Therefore, they have replaced traditional optimization methods and are cur-
rently widely used in the field of antenna array optimization. For example, the ant colony
optimization (ACO) algorithm [10], particle swarm optimization (PSO) algorithm [11],
genetic algorithm (GA) [12], differential evolution (DE) algorithm [13], artificial bee colony
(ABC) algorithm [14], ACO algorithm [15], SMO algorithm [16], DE algorithm [17], CSO al-
gorithm [18], fruit fly optimization algorithm (FFOA) [19], and invasive weed optimization
(IWO) algorithm [20] have also been effectively used for linear antenna array optimization.

Mathematics 2024, 12, 1111 3 of 24

In general, each algorithm has its own advantages and disadvantages, and there is no
perfect algorithm in the world that can solve all optimization problems [21]. However, in
the field of smart antenna optimization, with the increasing demand for anti-interference
in information transmission, discovering and researching a new algorithm or innovating
based on existing algorithms to achieve better optimization performance has become a hot
topic for some researchers recently.

However, this is the first time that the DO algorithm has been used for pattern syn-
thesis of antenna arrays. The DO algorithm is an evolutionary type of algorithm that
simulates the growth and reproduction behavior of dandelions in nature; the optimization
of the algorithm is divided into a total of four steps, which are as follows: initializing the
population, ascending phase evolution, descending phase evolution, and landing phase
evolution. The solution space is continuously updated, and the optimal solution is eventu-
ally found. Moreover, the DO algorithm has the advantages of fast convergence speed and
high convergence accuracy, which can better find the optimal solution. In this paper, the
DO algorithm is applied to two types of pattern synthesis problems for linear arrays; one
type is an equidistant symmetric array, which obtains the desired directional pattern by
optimizing the amplitudes of excitation currents of the array elements while maintaining
the phases of the element excitation currents to be zero; the other type is to optimize
the spacing of array elements for non-equidistant arrays to obtain the desired directional
pattern while maintaining the amplitudes and phases of the excitation currents of the array
elements unchanged.

The rest of the paper is organized as follows: The DO algorithm is described in detail
in Section 2. Then, in Section 3, various examples of linear array synthesis are presented
and the DO algorithm is adopted to optimize the amplitudes of excitation currents for
equidistant symmetric arrays and the spacing of array elements for non-equidistant arrays.
The results are compared with other natural evolution algorithms to assess the effectiveness
of the DO algorithm in synthesizing linear arrays. Finally, in Section 4, a summary is given.

2. Dandelion Optimization Algorithm

This section describes the dandelion optimization algorithm in detail, including in-
spiration, mathematical models, expressions, time complexity, and pseudocode of the
DO algorithm [22]. Among them, the pseudocode of the DO algorithm is provided in
Table 1.

Table 1. Pseudocode for DO algorithm.

DO algorithm

Input: Population size (pop), maximum number of iterations (T), dimensionality of variables (Dim)

Output: Optimal dandelion (Xbest), fitness function value of optimal dandelion (fbest)

Initialization

1: Using the DO algorithm to initialize the dandelion (Xi) population

2: Calculate the fitness function value (fi) for each dandelion

3: Compare the fitness values and select the dandelion (Xbest) at the optimal position
corresponding to the minimum fitness value

4: while (t < T) do

~*Rising process*~

5: if randn < 1.5 do

6: Update the adaptive parameters for adjusting step size using Equation (8)

7: Update the position of dandelions using Equation (5)

8: else if do

9: Update the range of the search domain and adjust the step size using Equation (11)

Mathematics 2024, 12, 1111 4 of 24

Table 1. Cont.

10: Update the position of dandelions using Equation (10)

11: end if

~*Descending process*~

12: Update the position of dandelions using Equation (13)

~*Landing process*~

13: Update the position of dandelions using Equation (15)

14: Arrange dandelions from good to bad according to the order of fitness values from small
to large

15: Update Xelite

16: if f (Xelite) < f (Xbest)

17: Xbest = Xelite, fbest = f (Xelite)

18: end if

19: end while

20: return Xbest and fbest

2.1. Inspiration

As we all know, dandelions, in Figure 1, are a gift from nature; they are not very
common in life. As a plant, dandelion reproduction is carried out with the help of wind;
when the wind blows, dandelion seeds spread everywhere, to multiply. The inspiration for
the dandelion optimization algorithm is mainly based on the long flight of dandelion seeds
scattered in the wind. Wind speed is used to determine whether the dandelion seeds fly
long or short distances, and the weather conditions determine the flight of dandelion seeds.

Mathematics 2024, 12, x FOR PEER REVIEW 4 of 26

10: Update the position of dandelions using Equation (10)
11: end if

~*Descending process*~
12: Update the position of dandelions using Equation (13)

~*Landing process*~
13: Update the position of dandelions using Equation (15)
14: Arrange dandelions from good to bad according to the order of fitness values from
small to large
15: Update Xelite
16: if f (Xelite) < f (Xbest)
17: Xbest = Xelite, fbest = f (Xelite)
18: end if
19: end while
20: return Xbest and fbest

2.1. Inspiration
As we all know, dandelions, in Figure 1, are a gift from nature; they are not very

common in life. As a plant, dandelion reproduction is carried out with the help of wind;
when the wind blows, dandelion seeds spread everywhere, to multiply. The inspiration
for the dandelion optimization algorithm is mainly based on the long flight of dandelion
seeds scattered in the wind. Wind speed is used to determine whether the dandelion seeds
fly long or short distances, and the weather conditions determine the flight of dandelion
seeds.

Figure 1. Dandelion in nature.

An overview of the mathematical representation of the dandelion optimization algo-
rithm is given in the section that follows.

2.2. Mathematical Model
The mathematical model describing the dandelion optimization algorithm has four

stages: initialization, ascent process, descent process, and landing process.

2.2.1. Initialization
Each dandelion seed is thought to stand for a potential solution, whose population is

represented as

im

im
pop pop

x ... x
population

x ... x

1 D
1 1

1 D

 =

 (1)

Figure 1. Dandelion in nature.

An overview of the mathematical representation of the dandelion optimization algo-
rithm is given in the section that follows.

2.2. Mathematical Model

The mathematical model describing the dandelion optimization algorithm has four
stages: initialization, ascent process, descent process, and landing process.

2.2.1. Initialization

Each dandelion seed is thought to stand for a potential solution, whose population is
represented as

population =

 x1
1 . . . x1

Dim

.
xpop

1 . . . xpop
Dim

 (1)

Mathematics 2024, 12, 1111 5 of 24

where pop stands for population size and Dim for the variable’s dimension. Between the
specified problem’s upper bound (UB) and lower bound (LB), each candidate solution is
generated at random. The expression of the ith individual Xi is

Xi = rand × (UB − LB) + LB (2)

where lbi and ubi represent the dimensions of the lower and upper bounds of each popula-
tion of dandelions; i is an integer between 1 and pop, and rand refers to a number between 0
and 1. LB and UB are expressed as

LB = [lb1, . . . , lbDim]
UB = [ub1, . . . , ubDim]

(3)

During initialization, the DO algorithm takes the individual with the best fitness
value as the initial optimal body and approximates it as the most suitable location for
dandelion seeds to survive and reproduce. Using the minimum number as an illustration,
the mathematical expression Xbest of the initial optimal body is

fbest = min(f (Xi))
Xbest = X(f ind(fbest = = f (Xi)))

(4)

where find () refers to two indexes with the same values.

2.2.2. Rising Process

When dandelions are in the rising process, the impacts of wind speed, air humidity,
and other variables vary depending on the weather. Here, the weather is divided into
sunny and rainy days, and then dandelion flight behavior in these two conditions is
analyzed separately.

In the case of sunny days, wind speeds can be regarded to have a log-normal distribu-
tion ln Y ∼ N

(
µ, σ2). Such a distribution allows dandelions to fly farther away. Dandelions

are randomly scattered around the search area by the wind. The dandelions fly higher and
spread farther with a stronger wind. In this instance, the dandelion evolutionary iteration’s
mathematical expression is

Xt+1 = Xt + α × vx × vy × lnY × (Xs − Xt) (5)

where Xt denotes where the dandelion was at the tth iteration. Equation (6) gives the
expression for the randomly generated location, and Xs denotes the randomly chosen
position in the search space during iteration t.

Xs = rand(1, Dim)× (UB − LB) + LB (6)

where lnY denotes a log-normal distribution subject to µ = 0 and σ2 = 1, and its mathematical
formula is

lnY =

{
1

y
√

2π
exp
[
− 1

2σ2 (lny)2
]
, y ≥ 0

0, y < 0
(7)

In Equation (7), y represents the standard normal distribution N (0, 1). Following
a logarithmic normal distribution, dandelions are more distributed on the y axis, which
increases the chances of dandelions spreading to distant regions and expands the search
domain. The mathematical expression for α, an adaptive parameter used to modify the
search step length, is

α = rand()×
(

1
T2 t2 − 2

T
t + 1

)
(8)

In Equation (8), α is a random number between [0, 1] and follows the principle of
nonlinear reduction. It is determined by the current number of iterations and the maximum

Mathematics 2024, 12, 1111 6 of 24

number of iterations. It shows a gradually decreasing trend, and the decrease becomes
slower and slower. This allows for the use of wind speed in the limited time in the early
stage to fly to a farther search interval with a larger step size, in order to find the most
suitable location for dandelion growth. The curve of α is shown in Figure 2a. T represents
the maximum number of iterations. Dandelions produce vortices during ascent, while vx
and vy represent the two components of the force generated by the vortex. We must apply
Equation (9) to calculate vx and vy.

r = 1
eθ

vx = r × cosθ
vy = r × sin θ

(9)

where θ is a random number between [−π, π], e represents the natural constant, and r
represents the rising vortex distance. r, vx, and vy are all related to the angle θ.

Mathematics 2024, 12, x FOR PEER REVIEW 6 of 26

domain. The mathematical expression for α, an adaptive parameter used to modify the
search step length, is

() 2
2

1 2rand t t 1
T T

α = × − +

 (8)

In Equation (8), α is a random number between [0, 1] and follows the principle of
nonlinear reduction. It is determined by the current number of iterations and the maxi-
mum number of iterations. It shows a gradually decreasing trend, and the decrease be-
comes slower and slower. This allows for the use of wind speed in the limited time in the
early stage to fly to a farther search interval with a larger step size, in order to find the
most suitable location for dandelion growth. The curve of α is shown in Figure 2a. T rep-
resents the maximum number of iterations. Dandelions produce vortices during ascent,
while vx and vy represent the two components of the force generated by the vortex. We
must apply Equation (9) to calculate vx and vy.

x

y

1r
e

v r cos
v r sin

θ

θ
θ

=

= ×
= ×

(9)

where θ is a random number between [−𝜋, 𝜋], e represents the natural constant, and r
represents the rising vortex distance. r, vx, and vy are all related to the angle θ.

(a) (b)

Figure 2. (a): Step size control parameter α in sunny iteration. (b): Step size control parameter k in
rainy day iteration.

In the case of rainy days, a dandelion cannot be carried by the wind to distant areas;
it can only spread in a small area in its locality. Thus, the mathematical expression for this
stage is

t 1 tX X k+ = × (10)

where k controls the dandelion’s local search domain, and the domain is calculated using
Equation (11).

()

2
2 2 2

1 2 1q t t 1
T 2T 1 T 2T 1 T 2T 1

k 1 rand q

= − + +
− + − + − +

= − ×
 (11)

The DO algorithm with a lengthy stride in the beginning and a short cloth length
later is conducive to the local exploitation of the algorithm. q represents the factor that

Th
e

va
lu

e
of

 a
lp

ha

Th
e

va
lu

e
of

 k

Figure 2. (a): Step size control parameter α in sunny iteration. (b): Step size control parameter k in
rainy day iteration.

In the case of rainy days, a dandelion cannot be carried by the wind to distant areas; it
can only spread in a small area in its locality. Thus, the mathematical expression for this
stage is

Xt+1 = Xt × k (10)

where k controls the dandelion’s local search domain, and the domain is calculated using
Equation (11).

q = 1
T2−2T+1 t2 − 2

T2−2T+1 t + 1 + 1
T2−2T+1

k = 1 − rand()× q
(11)

The DO algorithm with a lengthy stride in the beginning and a short cloth length
later is conducive to the local exploitation of the algorithm. q represents the factor that
determines the control step size based on the number of iterations and the maximum
number of iterations. k is determined by a random number between 0 and 1 and the
value of q. In order to ensure overall convergence to the ideal search agent, k continuously
decreases in the later stages of the iteration to achieve a small step exploration and gradually
find a suitable location for dandelion growth. The curve of k is shown in Figure 2b.

For both weather conditions mentioned above, the dandelion evolutionary iteration
mathematical model is

Xt+1 =

{
Xt + α × vx × vy × lnY × (Xs − Xt), randn < 1.5
Xt × k, else

(12)

where randn is a random number that follows the standard normal distribution. We chose
the cut-off point of randn to be 1.5 because during the sunny stage, due to the use of wind
power, dandelions can fly further, resulting in longer iteration and update times. Therefore,

Mathematics 2024, 12, 1111 7 of 24

the probability of this stage is higher. During rainy days, dandelions are often hit by
rainwater, and they can only iterate and update in a small area around them. The update
time is shorter, so the probability of this stage is lower, so the node should be set to the
right of the randn function curve in Figure 3. Only when the cut-off point is set to 1.5 can
the search for dandelions traverse the entire search space as much as possible in the first
stage, providing the correct direction for the iterative optimization in the next stage.

Mathematics 2024, 12, x FOR PEER REVIEW 8 of 26

Wind
lnY-N(0,1)

In the case of sunny days
Vx*Vy

r

θ

Xt

Xt+2

Xt+1

Xs
Vortex

Local neighborhoods

In the case of rainy days

Xt
Xt+1

f

randn

These two cases happen

u1.5

Rainy daysSunny days

Follow the standard normal distribution

Vortex

Vortex

Vortex

Vortex

Vortex

Vortex

Vortex Vortex

Vortex

Figure 3. Movement behavior during the ascent process of dandelions.

2.2.3. Descending Process
In this stage, after the dandelions have risen to a certain height, they begin to decline

steadily. During the descent, Brownian motion is used to describe the flight behavior of
dandelions. With iterative updates, it is simple for people to go across more search regions
since Brownian motion follows a normal distribution with each modification. At the same
time, to ensure the stability of dandelion landing, we use the average position data from
the ascending phase when detailing the iteration procedure in the descending phase. The
mathematical expression corresponding to this stage is

()t 1 t t mean _ t t tX X X Xα β α β+ = − × × − × × (13)

where βt denotes Brownian motion and is a random number from the standard normal
distribution [23]. Brownian motion is a continuous random process that is used to iterate
the descent stage of dandelions, allowing them to traverse and search for more locations
in as limited a time as possible, thus obtaining the updated location of the next generation
of dandelions with a greater probability. In addition, the trajectory of Brownian motion is
also shown in Figure 4. The mathematical expression for Xmean_t, which stands for the pop-
ulation’s average location, is

pop

mean _ t i
i 1

1X X
pop =

= (14)

Figure 3. Movement behavior during the ascent process of dandelions.

Figure 3 shows the flight behavior of dandelions in two weather conditions. In the first
instance, dandelions randomly choose location data during the update iteration as they
flutter in the wind on a sunny day. In the second instance, dandelions merely reposition
themselves in the appropriate tiny neighborhood around themselves when it rains rather
than taking to the air with the wind. The cut-off point in both cases is set to 1.5, which is
more conducive to the global convergence of the DO algorithm.

2.2.3. Descending Process

In this stage, after the dandelions have risen to a certain height, they begin to decline
steadily. During the descent, Brownian motion is used to describe the flight behavior of
dandelions. With iterative updates, it is simple for people to go across more search regions
since Brownian motion follows a normal distribution with each modification. At the same
time, to ensure the stability of dandelion landing, we use the average position data from

Mathematics 2024, 12, 1111 8 of 24

the ascending phase when detailing the iteration procedure in the descending phase. The
mathematical expression corresponding to this stage is

Xt+1 = Xt − α × βt × (Xmean_t − α × βt × Xt) (13)

where βt denotes Brownian motion and is a random number from the standard normal
distribution [23]. Brownian motion is a continuous random process that is used to iterate
the descent stage of dandelions, allowing them to traverse and search for more locations in
as limited a time as possible, thus obtaining the updated location of the next generation
of dandelions with a greater probability. In addition, the trajectory of Brownian motion
is also shown in Figure 4. The mathematical expression for Xmean_t, which stands for the
population’s average location, is

Xmean_t =
1

pop

pop

∑
i = 1

Xi (14)

Mathematics 2024, 12, x FOR PEER REVIEW 9 of 26

Xt

O

Xmean_t

Xt+1

The descent process obeys
Brownian motion

βt

Figure 4. Movement behavior during the descent process of dandelions.

Figure 4 shows the descent of dandelions. As can be seen, the population’s average
position information is crucial in both the rising and falling stages and is crucial for deter-
mining the direction of evolution for the iterative updating of individuals. During itera-
tive updates, Brownian motion helps dandelions avoid falling into local extrema, driving
populations to settle in areas close to the global optimal solution.

2.2.4. Landing Process
This part is based on the first two stages, in which dandelions are chosen to land

randomly. The search agent uses the current optimal body’s position information to iter-
ate in its neighborhoods as the iteration goes on. Finally, the global optimal solution can
be found. Therefore, the DO algorithm reaches the global optimal outcome. Equation (15)
describes this behavior.

() ()t 1 elite elite tX X levy X Xλ α δ+ = + × × − × (15)

where Xelite represents the optimal position of the dandelions in the ith iteration. Levy (λ)
represents the function of Levy flight and is calculated using Equation (16) [24].

() 1
wLevy s
t β

σλ ×= × (16)

The Levy flight function follows the trajectory of a power function to adjust the search
step size. Most of the steps in motion are very short, and there are also a small number of
long steps, which is more in line with the landing phase and the motion trajectory of dan-
delions. When a dandelion starts landing, the step size increases first under the adjust-
ment of Levy flight, and the neighborhood of the optimal solution is comprehensively
searched within its vicinity. In the middle and late stages of landing, the steps start to
become shorter and shorter; only in this way can we avoid crossing the optimal solution
due to step length and, thus, constantly approach the optimal solution. The parameter
settings in the Levy flight function [22,24–26] are learned from the experience of research-
ers throughout history. In Equation (16), β takes a value of 1.5 in this paper. s is a fixed
value of 0.01. w and t are random numbers between [0, 1] [22].

The mathematical expression of σ is

Figure 4. Movement behavior during the descent process of dandelions.

Figure 4 shows the descent of dandelions. As can be seen, the population’s average
position information is crucial in both the rising and falling stages and is crucial for
determining the direction of evolution for the iterative updating of individuals. During
iterative updates, Brownian motion helps dandelions avoid falling into local extrema,
driving populations to settle in areas close to the global optimal solution.

2.2.4. Landing Process

This part is based on the first two stages, in which dandelions are chosen to land
randomly. The search agent uses the current optimal body’s position information to iterate
in its neighborhoods as the iteration goes on. Finally, the global optimal solution can be
found. Therefore, the DO algorithm reaches the global optimal outcome. Equation (15)
describes this behavior.

Xt+1 = Xelite + levy(λ)× α × (Xelite − Xt × δ) (15)

where Xelite represents the optimal position of the dandelions in the ith iteration. Levy (λ)
represents the function of Levy flight and is calculated using Equation (16) [24].

Levy(λ) = s × w × σ

|t|
1
β

(16)

Mathematics 2024, 12, 1111 9 of 24

The Levy flight function follows the trajectory of a power function to adjust the search
step size. Most of the steps in motion are very short, and there are also a small number
of long steps, which is more in line with the landing phase and the motion trajectory
of dandelions. When a dandelion starts landing, the step size increases first under the
adjustment of Levy flight, and the neighborhood of the optimal solution is comprehensively
searched within its vicinity. In the middle and late stages of landing, the steps start to
become shorter and shorter; only in this way can we avoid crossing the optimal solution
due to step length and, thus, constantly approach the optimal solution. The parameter
settings in the Levy flight function [22,24–26] are learned from the experience of researchers
throughout history. In Equation (16), β takes a value of 1.5 in this paper. s is a fixed value
of 0.01. w and t are random numbers between [0, 1] [22].

The mathematical expression of σ is

σ =

 Γ(1 + β)× sin
(

πβ
2

)
Γ
(

1+β
2

)
× β × 2(

β−1
2)

 (17)

where β is fixed at 1.5. δ is a function that increases linearly from [0, 2] and its expression
is expressed by Equation (18). It is an iterative factor of linear growth used to control the
current position of dandelions. As the number of iterations increases, the location range
of dandelions expands, increasing the opportunity to find the optimal solution. Figure 5
shows the linear variation of δ.

δ =
2t
T

(18)

Mathematics 2024, 12, x FOR PEER REVIEW 10 of 26

()
1
2

1 sin
2

1 2
2

β

πβΓ β
σ

βΓ β
−

 + ×
 =

 + × ×

 (17)

where β is fixed at 1.5. δ is a function that increases linearly from [0, 2] and its expression
is expressed by Equation (18). It is an iterative factor of linear growth used to control the
current position of dandelions. As the number of iterations increases, the location range
of dandelions expands, increasing the opportunity to find the optimal solution. Figure 5
shows the linear variation of δ.

2t
T

δ = (18)

Figure 5. Linear growth graph of parameter δ.

Figure 6 shows the process of the landing stage. In this process, a linear increasing
function is applied to individuals to avoid overexploitation. To model individual move-
ment step length, the Levy flight coefficient was applied. This is because, under the Gauss-
ian distribution, the Levy flight coefficient can allow dandelions to cross to other distant
locations with a greater probability. It helps the DO algorithm precisely converge to the
global optimal solution.

Th
e

va
lu

e
of

 g
ro

w
th

 fa
ct

or

Figure 5. Linear growth graph of parameter δ.

Figure 6 shows the process of the landing stage. In this process, a linear increasing
function is applied to individuals to avoid overexploitation. To model individual movement
step length, the Levy flight coefficient was applied. This is because, under the Gaussian
distribution, the Levy flight coefficient can allow dandelions to cross to other distant
locations with a greater probability. It helps the DO algorithm precisely converge to the
global optimal solution.

Mathematics 2024, 12, 1111 10 of 24

Mathematics 2024, 12, x FOR PEER REVIEW 11 of 26

T
Xelite

Landing stage

local
neighborhoods

Xt+1

Xt+2

Xt+3

The last
position

update of the
descent stage

Xt

Figure 6. Movement behavior during the landing process of dandelions.

2.3. Time Complexity
To describe the running time of the algorithm, we can use different mathematical

formulas for analysis. However, in the field of computer science, there is a specialized
term to characterize the time complexity of algorithms, namely big O notation. Big O no-
tation does not indicate how long the algorithm needs to run; it represents the speed at
which the algorithm’s running time increases, that is, the running time of the algorithm
increases at different speeds, which is known as the overall time complexity. In big O
notation, the formula for time complexity is

() ()()T n O f n= (19)

where f (n) represents the sum of the number of times each line of code is executed, while
O represents a proportional relationship.

The total time complexity of the DO algorithm includes three aspects: population
initialization, three iterative update processes, and each individual iteration. When the
DO algorithm starts executing, it takes O (pop × Dim) time to initialize the population dur-
ing the initialization stage. Among them, pop represents the population size, and Dim
represents the dimension of the variable. When the initialization stage of dandelion ends
and the iterative update process begins, it is necessary to calculate the fitness value of the
population, which requires an amount of time equal to O (pop × f). Among them, f is the
objective function for defining the problem. Also, because the iterative updating process
of dandelions includes three stages, namely the ascending stage, the descending stage,
and the landing stage, each stage requires some time until the maximum number of iter-
ations T is completed; therefore, an amount of time equaling O (pop × Dim × T) is required
for the three stages. Among them, T represents the maximum number of iterations. More-
over, each iteration in the three stages also requires time, with each iteration taking O (m)

Figure 6. Movement behavior during the landing process of dandelions.

2.3. Time Complexity

To describe the running time of the algorithm, we can use different mathematical
formulas for analysis. However, in the field of computer science, there is a specialized term
to characterize the time complexity of algorithms, namely big O notation. Big O notation
does not indicate how long the algorithm needs to run; it represents the speed at which
the algorithm’s running time increases, that is, the running time of the algorithm increases
at different speeds, which is known as the overall time complexity. In big O notation, the
formula for time complexity is

T(n) = O(f (n)) (19)

where f (n) represents the sum of the number of times each line of code is executed, while
O represents a proportional relationship.

The total time complexity of the DO algorithm includes three aspects: population
initialization, three iterative update processes, and each individual iteration. When the
DO algorithm starts executing, it takes O (pop × Dim) time to initialize the population
during the initialization stage. Among them, pop represents the population size, and Dim
represents the dimension of the variable. When the initialization stage of dandelion ends
and the iterative update process begins, it is necessary to calculate the fitness value of the
population, which requires an amount of time equal to O (pop × f). Among them, f is the
objective function for defining the problem. Also, because the iterative updating process of
dandelions includes three stages, namely the ascending stage, the descending stage, and
the landing stage, each stage requires some time until the maximum number of iterations
T is completed; therefore, an amount of time equaling O (pop × Dim × T) is required for
the three stages. Among them, T represents the maximum number of iterations. Moreover,
each iteration in the three stages also requires time, with each iteration taking O (m) to
find the optimal solution for the current dandelion, which is the most suitable location for

Mathematics 2024, 12, 1111 11 of 24

dandelion growth. In summary, the total time complexity of the DO algorithm throughout
the entire iteration process is O (m × pop × Dim × f × T).

3. Linear Antenna Array Synthesis
3.1. Geometric Illustration of Linear Antenna Array

A geometric representation of a linear antenna array is shown in Figure 7. As shown
in the figure, the linear antenna array consists of 2N array elements arranged symmetrically
on a horizontal line. If the array elements are arranged at an equal distance, it is called an
equidistant symmetric array. If the distance between the array elements is not equal, it is
called a non-equidistant symmetric array. When the DO algorithm is used to optimize the
linear antenna array, it is necessary to calculate the array factor. The electric field in the far
field of the dipole can be expressed as Equation (20) [27].

E(θ) = j
Idl
4π

(
e−jkR

R

)
η0ksinθ (20)

where Idl is the excitation amplitude, η0 is the impedance of free space, k is the wave
number of free-space waves, k = 2π/λ, and λ is the wavelength.

Mathematics 2024, 12, x FOR PEER REVIEW 12 of 26

to find the optimal solution for the current dandelion, which is the most suitable location
for dandelion growth. In summary, the total time complexity of the DO algorithm
throughout the entire iteration process is O (m × pop × Dim × f × T).

3. Linear Antenna Array Synthesis
3.1. Geometric Illustration of Linear Antenna Array

A geometric representation of a linear antenna array is shown in Figure 7. As shown
in the figure, the linear antenna array consists of 2N array elements arranged symmetri-
cally on a horizontal line. If the array elements are arranged at an equal distance, it is
called an equidistant symmetric array. If the distance between the array elements is not
equal, it is called a non-equidistant symmetric array. When the DO algorithm is used to
optimize the linear antenna array, it is necessary to calculate the array factor. The electric
field in the far field of the dipole can be expressed as Equation (20) [27].

() 0 sin
4

jkRIdl eE j k
R

θ η θ
π

−
=

 (20)

where Idl is the excitation amplitude, 0η is the impedance of free space, k is the wave

number of free-space waves, k 2π λ= , and λ is the wavelength.

x

y

θ

1N N32 4

Figure 7. Geometric illustration of a linear antenna array.

For antenna arrays, the far-field radiation pattern can be represented as the product
of element factor EF (θ) (EF (θ) = sin θ for electric dipole and EF (θ) = 1 for isotropic source)
and array factor AF (θ), as shown in Equation (21).

() () ()f EF AFθ θ θ= × (21)

In this article, we consider an antenna array composed of isotropic sources, so we can
ignore the influence of the far-field expression EF (θ) here, and only the array factor AF
(θ) is considered. The array factor AF (θ) of a far-field linear symmetric antenna array is
given by [28].

() ()()
N

n n n
n 1

AF 2 I cos kx cosθ θ ϕ
=

= + (22)

where In and φn are the excitation amplitude and phase in the array, and xn denotes the
position of the array element. k is the wave number and is given by 2π λ and θ is the
azimuth angle.

Figure 7. Geometric illustration of a linear antenna array.

For antenna arrays, the far-field radiation pattern can be represented as the product of
element factor EF (θ) (EF (θ) = sin θ for electric dipole and EF (θ) = 1 for isotropic source)
and array factor AF (θ), as shown in Equation (21).

f (θ) = EF(θ)× AF(θ) (21)

In this article, we consider an antenna array composed of isotropic sources, so we can
ignore the influence of the far-field expression EF (θ) here, and only the array factor AF (θ)
is considered. The array factor AF (θ) of a far-field linear symmetric antenna array is given
by [28].

AF(θ) = 2
N

∑
n = 1

Incos(kxn cos(θ) + φn) (22)

where In and φn are the excitation amplitude and phase in the array, and xn denotes the
position of the array element. k is the wave number and is given by 2π/λ and θ is the
azimuth angle.

Two types of simulation experiments are conducted on linear arrays to verify the
superiority of the DO algorithm. One type is an equidistant linear array, where the am-
plitude of the array elements is optimized assuming that the excitation phase of the array
elements is 0; the other type involves optimizing the spacing of array elements based

Mathematics 2024, 12, 1111 12 of 24

on the assumption that the excitation amplitude and phase of the array elements remain
unchanged, in order to obtain the desired directional pattern.

3.2. Antenna Current Optimization

The DO algorithm is used for pattern synthesis design of linear array antennas to
obtain the desired pattern. Examples 1–5 are provided to demonstrate how to optimize the
current amplitudes In for the best pattern synthesis. Because the handling phase involves a
great deal of complexity, the excitation current phase is set to 0, that is, φn = 0.

The array factor for optimizing antenna current amplitude is changed from Equation (22)
to Equation (23):

AF(θ) = 2
N

∑
n = 1

Incos(kxncos(θ)) (23)

In an equally spaced antenna array, the positions of antenna elements are fixed as
xn = nd, where d is equal to λ/2.

3.2.1. Minimizing Peak SLL

As shown in [29,30], the fitness function used to reduce peak SLL is written as follows:

Fitness = min(max(20log|AF(θ)|)) (24)

Here, max(20log|AF(θ)|) gives the maximum SLL (peak SLL). AF(θ) is the array factor
given by Equation (23).

In order to reduce the peak SLL, this section provides two design examples that demon-
strate how the DO algorithm can be used to optimize antenna current amplitudes. For both
situations, the fitness function provided by Equation (24) is applied. The population (N) of
the DO algorithm is set to 40 and the number of iterations is set to 1000.

Design Example 1: We consider a 2N = 16 linear array to achieve the lowest possible
SLL in regions θ = [0◦, 76◦] and θ = [104◦, 180◦]. We optimize this antenna model using
different algorithms, including traditional methods such as the Chebyshev method [31]
and the Taylor method [31], as well as popular evolutionary algorithms such as the PSO
algorithm [29] and the ant lion optimization (ALO) algorithm [32] and compare them with
the DO algorithm. Table 2 shows the peak SLL values obtained by a uniform array, the
Chebyshev method [31], Taylor method 1 (Taylor one-parameter distribution) [31], Taylor
method 2 (Taylor n distribution) [31], and the PSO [29], ALO [32], and DO algorithms as
well as their corresponding excitation current amplitude values. According to the optimized
excitation current amplitude values in Table 2, the optimized antenna array pattern of the
model can be drawn. Moreover, based on the size of the optimized peak SLL, it is possible
to visually compare which algorithm has stronger optimization ability in reducing antenna
sidelobes. To be more precise, the peak SLL obtained by the DO algorithm is −35.69 dB,
which is 22.54 dB lower than the peak SLL of a uniform array, 4.99 dB lower than the array
optimized by the Chebyshev method [31], 4.99 dB lower than the array optimized by Taylor
method 1 [31], 6.09 dB lower than the array optimized by Taylor method 2 [31], and 5.06 dB
lower than the array optimized by the PSO [29] algorithm. The peak SLL decreased from
−30.85 dB to −35.69 dB (by 4.84 dB) compared with the ALO [32] algorithm. Figure 8
depicts the pattern obtained by a uniform array and the optimized array patterns of
the six methods. Meanwhile, Figure 9 shows the three-dimensional radiation patterns
(two-dimensional plane rotates 180◦ around the z axis) before and after optimization by
the DO algorithm.

Mathematics 2024, 12, 1111 13 of 24

Table 2. Peak SLL is minimized with optimal current amplitudes.

Method Optimized Current Amplitudes Peak SLL (dB)

CONV (Uniform array) 1.0000, 1.0000, 1.0000, 1.0000,
1.0000, 1.0000, 1.0000, 1.0000 −13.15

Chebyshev method [31] 1.0000, 0.9510, 0.8600, 0.7360,
0.5930, 0.4450, 0.3060, 0.2710 −30.70

Taylor method 1 [31] 1.0000, 0.9610, 0.9030, 0.7110,
0.5670, 0.4100, 0.2490, 0.1780 −30.70

Taylor method 2 [31] 1.0000, 0.9860, 0.8690, 0.7330,
0.5970, 0.4900, 0.3060, 0.2650 −29.60

PSO [29] 1.0000, 0.9521, 0.5605, 0.7372,
0.5940, 0.4465, 0.3079, 0.2724 −30.63

ALO [32] 1.0000, 0.9344, 0.8521, 0.7044,
0.6000, 0.4000, 0.3003, 0.2002 −30.85

DO 1.0000, 0.9600, 0.8222, 0.6789,
0.5055, 0.3513, 0.2186, 0.1367 −35.69

Mathematics 2024, 12, x FOR PEER REVIEW 14 of 26

array patterns of the six methods. Meanwhile, Figure 9 shows the three-dimensional radi-
ation patterns (two-dimensional plane rotates 180° around the z axis) before and after op-
timization by the DO algorithm.

Table 2. Peak SLL is minimized with optimal current amplitudes.

Method Optimized Current Amplitudes Peak SLL (dB)
CONV (Uniform ar-

ray)
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000,

1.0000, 1.0000
−13.15

Chebyshev method
[31]

1.0000, 0.9510, 0.8600, 0.7360, 0.5930, 0.4450,
0.3060, 0.2710

−30.70

Taylor method 1 [31]
1.0000, 0.9610, 0.9030, 0.7110, 0.5670, 0.4100,

0.2490, 0.1780 −30.70

Taylor method 2 [31]
1.0000, 0.9860, 0.8690, 0.7330, 0.5970, 0.4900,

0.3060, 0.2650 −29.60

PSO [29]
1.0000, 0.9521, 0.5605, 0.7372, 0.5940, 0.4465,

0.3079, 0.2724 −30.63

ALO [32]
1.0000, 0.9344, 0.8521, 0.7044, 0.6000, 0.4000,

0.3003, 0.2002 −30.85

DO
1.0000, 0.9600, 0.8222, 0.6789, 0.5055,

0.3513, 0.2186, 0.1367
−35.69

Figure 8. Array patterns for design Example 1.

Figure 8. Array patterns for design Example 1.

Mathematics 2024, 12, x FOR PEER REVIEW 14 of 26

array patterns of the six methods. Meanwhile, Figure 9 shows the three-dimensional radi-
ation patterns (two-dimensional plane rotates 180° around the z axis) before and after op-
timization by the DO algorithm.

Table 2. Peak SLL is minimized with optimal current amplitudes.

Method Optimized Current Amplitudes Peak SLL (dB)
CONV (Uniform ar-

ray)
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000,

1.0000, 1.0000
−13.15

Chebyshev method
[31]

1.0000, 0.9510, 0.8600, 0.7360, 0.5930, 0.4450,
0.3060, 0.2710

−30.70

Taylor method 1 [31]
1.0000, 0.9610, 0.9030, 0.7110, 0.5670, 0.4100,

0.2490, 0.1780 −30.70

Taylor method 2 [31]
1.0000, 0.9860, 0.8690, 0.7330, 0.5970, 0.4900,

0.3060, 0.2650 −29.60

PSO [29]
1.0000, 0.9521, 0.5605, 0.7372, 0.5940, 0.4465,

0.3079, 0.2724 −30.63

ALO [32]
1.0000, 0.9344, 0.8521, 0.7044, 0.6000, 0.4000,

0.3003, 0.2002 −30.85

DO
1.0000, 0.9600, 0.8222, 0.6789, 0.5055,

0.3513, 0.2186, 0.1367
−35.69

Figure 8. Array patterns for design Example 1.

Figure 9. DO algorithm optimization—3D radiation pattern before and after optimization for design
Example 1.

Design Example 2: we present an array with 2N = 24 elements to achieve minimum
SLL. Three algorithms, namely the modified spider monkey optimization (MSMO) al-
gorithm [33], the runner-root algorithm (RRA) [34], and the DO algorithm, are used to

Mathematics 2024, 12, 1111 14 of 24

optimize the excitation current amplitude of the array; the excitation current amplitudes
and the results of peak SLL suppression are summarized in Table 3. According to the opti-
mized excitation current amplitude values in Table 3, the optimized antenna array pattern
of the model can be drawn. Moreover, based on the size of the optimized peak SLL, it is
possible to visually compare which algorithm has stronger optimization ability in reducing
antenna sidelobes. It can be seen that the peak SLL values provided by the MSMO [33]
algorithm and RRA [34] are −37.52 dB and −41.08 dB; the DO algorithm can reduce the
peak SLL value to −42.56 dB, which is equivalent to a decrease of 5.04 dB compared to
the MSMO [33] algorithm and 1.48 dB compared to RRA [34], although the DO algorithm
causes a slight broadening of the main lobe (FNBW) compared to the other three. Figure 10
shows the original uniform array and the array direction optimized by three algorithms.
Figure 11 shows the array pattern and 3D radiation patterns (two-dimensional plane rotates
180◦ around the z axis) of the 24 elements of the LAA before and after DO algorithm opti-
mization. From the figure, it can be observed that the DO algorithm has better optimization
performance in reducing the level of the sidelobes.

Table 3. Optimized excitation amplitudes: 2N = 24 elements.

Method Optimized Current Amplitudes FNBW (deg) Peak SLL (dB)

CONV (Uniform array)
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000

~ −13.23
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000

MSMO [33]
1.0000, 0.9717, 0.9195, 0.8438, 0.7555, 0.6565

16.8 −37.52
0.5278, 0.4534, 0.3194, 0.2430, 0.1818, 0.1296

RRA [34]
1.0000, 0.9706, 0.9141, 0.8344, 0.7371, 0.6287

17.8 −41.08
0.5162, 0.4060, 0.3038, 0.2140, 0.1395, 0.1136

DO
0.8192, 0.7901, 0.7414, 0.6798, 0.5855, 0.5004

18.6 −42.56
0.4069, 0.3111, 0.2287, 0.1596, 0.1018, 0.0692

Mathematics 2024, 12, x FOR PEER REVIEW 15 of 26

Figure 9. DO algorithm optimization—3D radiation pattern before and after optimization for de-
sign Example 1.

Design Example 2: we present an array with 2N = 24 elements to achieve minimum
SLL. Three algorithms, namely the modified spider monkey optimization (MSMO) algo-
rithm [33], the runner-root algorithm (RRA) [34], and the DO algorithm, are used to opti-
mize the excitation current amplitude of the array; the excitation current amplitudes and
the results of peak SLL suppression are summarized in Table 3. According to the opti-
mized excitation current amplitude values in Table 3, the optimized antenna array pattern
of the model can be drawn. Moreover, based on the size of the optimized peak SLL, it is
possible to visually compare which algorithm has stronger optimization ability in reduc-
ing antenna sidelobes. It can be seen that the peak SLL values provided by the MSMO [33]
algorithm and RRA [34] are −37.52 dB and −41.08 dB; the DO algorithm can reduce the
peak SLL value to −42.56 dB, which is equivalent to a decrease of 5.04 dB compared to the
MSMO [33] algorithm and 1.48 dB compared to RRA [34], although the DO algorithm
causes a slight broadening of the main lobe (FNBW) compared to the other three. Figure
10 shows the original uniform array and the array direction optimized by three algo-
rithms. Figure 11 shows the array pattern and 3D radiation patterns (two-dimensional
plane rotates 180° around the z axis) of the 24 elements of the LAA before and after DO
algorithm optimization. From the figure, it can be observed that the DO algorithm has
better optimization performance in reducing the level of the sidelobes.

Table 3. Optimized excitation amplitudes: 2N = 24 elements.

Method Optimized Current Amplitudes FNBW (deg) Peak SLL (dB)

CONV (Uniform array)
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000

~ −13.23
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000

MSMO [33]
1.0000, 0.9717, 0.9195, 0.8438, 0.7555, 0.6565

16.8 −37.52
0.5278, 0.4534, 0.3194, 0.2430, 0.1818, 0.1296

RRA [34]
1.0000, 0.9706, 0.9141, 0.8344, 0.7371, 0.6287

17.8 −41.08
0.5162, 0.4060, 0.3038, 0.2140, 0.1395, 0.1136

DO
0.8192, 0.7901, 0.7414, 0.6798, 0.5855, 0.5004

18.6 −42.56
0.4069, 0.3111, 0.2287, 0.1596, 0.1018, 0.0692

Figure 10. Array patterns for design Example 2. Figure 10. Array patterns for design Example 2.

Mathematics 2024, 12, 1111 15 of 24
Mathematics 2024, 12, x FOR PEER REVIEW 16 of 26

Figure 11. DO algorithm optimization—3D radiation pattern before and after optimization for
design Example 2.

3.2.2. Minimizing Peak SLL and Forming Deep Nulls
In this section, while reducing peak SLL, we need to achieve deep nulls in the speci-

fied directions to counteract the impact of strong interference on the performance of the
array; the fitness function is shown in Equation (25) [30]:

() ()ui

li

2 2
k

i ki

1Fitness AF d AF
θ

θ
θ θ θ

θ
= +

Δ (25)

where θli and θui are the spatial regions in which SLL is suppressed and Δ θi = θui − θli.
The null direction is given by θk. The first term of the fitness function in Equation (25)
accounts for SLL suppression, and the second term takes into consideration the nulls in
the desired directions. ()AF θ is the array factor given by Equation (23). The fitness
function used for Example 3, Example 4, and Example 5 are given by Equation (25).

Design Example 3: The DO algorithm is considered to optimize the excitation current
amplitude of 20 elements of a linear array to minimize the SLL and form deep nulls. We
reduce the SLL in the regions of θ = [0°, 76°] and θ = [104°, 180°] as well as form deep nulls
at θ = 76° and θ = 104°. The population size (N) is set to 20 and the maximum number of
iterations is set to 500. Figure 12 shows the array patterns optimized by three algorithms.
The 3D radiation patterns (two-dimensional plane rotates 180° around the z axis) are
shown in Figure 13. The excitation current amplitude values optimized by the DO algo-
rithm are listed in Table 4. From Table 4, the amplitude values of the excitation current for
optimizing a 20-element linear array using the DO algorithm can be obtained. Based on
these 10 current values, the antenna array pattern optimized by the DO algorithm under
this condition can be drawn, providing readers with a clear and intuitive perspective. A
comparison of the peak SLL values and null depths are shown in Table 5. From Table 5,
we can obtain the peak SLL and null depth of each algorithm after optimizing the antenna
array model. The smaller the peak SLL and null depth, the stronger the optimization abil-
ity of this algorithm compared to other algorithms.

Figure 11. DO algorithm optimization—3D radiation pattern before and after optimization for design
Example 2.

3.2.2. Minimizing Peak SLL and Forming Deep Nulls

In this section, while reducing peak SLL, we need to achieve deep nulls in the specified
directions to counteract the impact of strong interference on the performance of the array;
the fitness function is shown in Equation (25) [30]:

Fitness = ∑
i

1
∆θi

∫ θui

θli

|AF(θ)|
2

dθ + ∑
k
|AF(θk)|

2 (25)

where θli and θui are the spatial regions in which SLL is suppressed and ∆θi = θui − θli. The
null direction is given by θk. The first term of the fitness function in Equation (25) accounts
for SLL suppression, and the second term takes into consideration the nulls in the desired
directions. AF(θ) is the array factor given by Equation (23). The fitness function used for
Example 3, Example 4, and Example 5 are given by Equation (25).

Design Example 3: The DO algorithm is considered to optimize the excitation current
amplitude of 20 elements of a linear array to minimize the SLL and form deep nulls. We
reduce the SLL in the regions of θ = [0◦, 76◦] and θ = [104◦, 180◦] as well as form deep nulls
at θ = 76◦ and θ = 104◦. The population size (N) is set to 20 and the maximum number of
iterations is set to 500. Figure 12 shows the array patterns optimized by three algorithms.
The 3D radiation patterns (two-dimensional plane rotates 180◦ around the z axis) are shown
in Figure 13. The excitation current amplitude values optimized by the DO algorithm are
listed in Table 4. From Table 4, the amplitude values of the excitation current for optimizing
a 20-element linear array using the DO algorithm can be obtained. Based on these 10 current
values, the antenna array pattern optimized by the DO algorithm under this condition can
be drawn, providing readers with a clear and intuitive perspective. A comparison of the
peak SLL values and null depths are shown in Table 5. From Table 5, we can obtain the
peak SLL and null depth of each algorithm after optimizing the antenna array model. The
smaller the peak SLL and null depth, the stronger the optimization ability of this algorithm
compared to other algorithms.

Table 4. The optimal excitation current amplitudes obtained using the DO algorithm.

Array Element 1 2 3 4 5

Optimized current amplitudes 1.0000 0.9933 0.9938 0.7965 0.6794

Array Element 6 7 8 9 10

Optimized current amplitudes 0.6581 0.4322 0.3669 0.2138 0.0956

Table 5. Comparison of 20-element linear array results optimized by different algorithms.

Algorithm Uniform Array FPA [35] CCPA [36] DO

Peak SLL (dB) −17.62 −31.31 −31.57 −31.72

Null depth (dB) −17.69 −120.9 −143.3 −187.6

Mathematics 2024, 12, 1111 16 of 24

Mathematics 2024, 12, x FOR PEER REVIEW 17 of 26

Figure 12. Array patterns for design Example 3.

Figure 13. DO algorithm optimization—3D radiation pattern before and after optimization for
design Example 3.

Table 4. The optimal excitation current amplitudes obtained using the DO algorithm.

Array Element 1 2 3 4 5
Optimized current am-

plitudes
1.0000 0.9933 0.9938 0.7965 0.6794

Array element 6 7 8 9 10
Optimized current am-

plitudes
0.6581 0.4322 0.3669 0.2138 0.0956

Table 5. Comparison of 20-element linear array results optimized by different algorithms.

Algorithm Uniform Array FPA [35] CCPA [36] DO
Peak SLL (dB) −17.62 −31.31 −31.57 −31.72

Null depth (dB) −17.69 −120.9 −143.3 −187.6

As shown in Table 5, the DO algorithm obtains better results than FPA [35] and CCPA
[36]. For the maximum SLL, the maximum SLL value obtained by the DO algorithm is
−31.72 dB, which is 0.41 dB and 0.15 dB lower than the maximum SLL optimized by FPA
[35] and CCPA [36], respectively. Meanwhile, for the depth of nulls, the DO algorithm
obtains a depth of nulls equaling −187.6 dB, which is 66.7 dB and 44.3 dB lower than that

Figure 12. Array patterns for design Example 3.

Mathematics 2024, 12, x FOR PEER REVIEW 17 of 26

Figure 12. Array patterns for design Example 3.

Figure 13. DO algorithm optimization—3D radiation pattern before and after optimization for
design Example 3.

Table 4. The optimal excitation current amplitudes obtained using the DO algorithm.

Array Element 1 2 3 4 5
Optimized current am-

plitudes
1.0000 0.9933 0.9938 0.7965 0.6794

Array element 6 7 8 9 10
Optimized current am-

plitudes
0.6581 0.4322 0.3669 0.2138 0.0956

Table 5. Comparison of 20-element linear array results optimized by different algorithms.

Algorithm Uniform Array FPA [35] CCPA [36] DO
Peak SLL (dB) −17.62 −31.31 −31.57 −31.72

Null depth (dB) −17.69 −120.9 −143.3 −187.6

As shown in Table 5, the DO algorithm obtains better results than FPA [35] and CCPA
[36]. For the maximum SLL, the maximum SLL value obtained by the DO algorithm is
−31.72 dB, which is 0.41 dB and 0.15 dB lower than the maximum SLL optimized by FPA
[35] and CCPA [36], respectively. Meanwhile, for the depth of nulls, the DO algorithm
obtains a depth of nulls equaling −187.6 dB, which is 66.7 dB and 44.3 dB lower than that

Figure 13. DO algorithm optimization—3D radiation pattern before and after optimization for design
Example 3.

As shown in Table 5, the DO algorithm obtains better results than FPA [35] and
CCPA [36]. For the maximum SLL, the maximum SLL value obtained by the DO algorithm
is −31.72 dB, which is 0.41 dB and 0.15 dB lower than the maximum SLL optimized by
FPA [35] and CCPA [36], respectively. Meanwhile, for the depth of nulls, the DO algorithm
obtains a depth of nulls equaling −187.6 dB, which is 66.7 dB and 44.3 dB lower than that
of FPA [35] and CCPA [36], respectively. This shows that the DO algorithm has a better
performance in optimizing linear antenna arrays.

Design Example 4: A 20-element linear array is considered, with the design objective
of forming low sidelobes in the regions θ = [0◦, 82◦] and θ = [98◦, 180◦] and deep nulls at
θ = 64◦, 76◦, 104◦, and 116◦. The GWO [37] algorithm and the DO algorithm are used to
optimize the excitation current amplitude of the array, and the excitation current amplitude
values are listed in Table 6. According to the optimized excitation current amplitude values
in Table 6, the 20-element linear array patterns optimized by different algorithms can
be drawn. A comparison of the peak SLL values and null depths are shown in Table 7.
Based on the optimized peak SLL and null values in Table 7, it can be determined which
algorithm reduces SLL lower and forms deeper nulls. Obviously, the null depth obtained
by using the DO algorithm is −131.6 dB, which is 108.9 dB lower than that of a uniform
array and 39.58 dB lower than a GWO [37] algorithm-optimized array. Compared to the
GWO [37] algorithm-optimized array and uniform array, the null depths obtained with the
DO algorithm are substantially higher. The peak SLL obtained using the DO algorithm is
−29.39 dB, which is 16.20 dB lower than that of the uniform array and 0.95 dB lower than
the peak SLL optimized by the GWO [37] algorithm. Although the DO algorithm slightly

Mathematics 2024, 12, 1111 17 of 24

widens the main lobe width of the antenna array compared to the GWO [37] algorithm, the
peak SLL optimized by the DO algorithm is lower and the nulls are deeper, which is more
conducive to suppressing strong interference in the antenna array and, thus, improving the
radiation efficiency of the array. The antenna array optimized by the GWO [37] algorithm
has poor anti-interference ability. Therefore, the DO algorithm is better than the GWO [37]
algorithm in optimizing the performance of the antenna array.

Table 6. Optimized excitation amplitudes of 2N = 20 elements for Example 4.

Method Optimized Current Amplitudes

Uniform array 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000

GWO [37] 1.0000, 0.9794, 0.9254, 0.8126, 0.7008, 0.6000, 0.4594, 0.3326, 0.2133, 0.1167

DO 0.9916, 0.9986, 1.0000, 0.8303, 0.7148, 0.6093, 0.4466, 0.3573, 0.1959, 0.2127

Table 7. Peak SLL and null depths for Example 4.

Method Peak SLL (dB)
Null Depth (dB)

FNBW (deg)
64◦ 76◦ 104◦ 116◦

Uniform array −13.19 −22.7 −17.7 −17.7 −22.7 11.4

GWO [37] −28.44 −92.02 −79.12 −79.12 −92.02 18.4

DO −29.39 −92.37 −131.6 −131.6 −92.37 18.6

The population (N) of the DO algorithm is set to 30 and the number of iterations is set
to 1000. The array patterns are depicted in Figure 14. Figure 15 displays the 20-element
LAA’s 3D radiation patterns (two-dimensional plane rotates 180◦ around the z axis) before
and after DO algorithm optimization.

Mathematics 2024, 12, x FOR PEER REVIEW 19 of 26

Figure 14. Array patterns for design Example 4.

Figure 15. DO algorithm optimization—3D radiation pattern before and after optimization for
design Example 4.

Design Example 5: The fifth example uses DO to realize maximum SLL reduction and
notch (i.e., continuous multiple nulls) placement of a 20-element linear array; the region
in which the SLL is reduced is θ = [0°, 82°] and θ = [98°, 180°] and it needs to form a notch
in the specific direction interval θ ∈ [50°, 60°] ∪ [120°, 130°]. The population size is 30,
and there are 500 iterations in total. Figure 16 shows the original uniform array and the
array patterns optimized by three algorithms. The 3D radiation patterns (two-dimensional
plane rotates 180° around the z axis) are shown in Figure 17.

Table 8 shows the peak SLL values and notch depths obtained by a uniform array,
the SMO [16] algorithm, GOA [38], and the DO algorithm as well as their corresponding
excitation current amplitude values. Based on the amplitude values of the excitation cur-
rent in the table, the SMO [16] algorithm, GOA [38], and the DO algorithm can all draw
corresponding optimized antenna array patterns. According to the results, the DO algo-
rithm can achieve the maximum SLL of −27.1 dB, and the maximum SLL of notch depths
is −63.1 dB. The maximum SLL of the DO algorithm-optimized array is 3 dB lower than
that of the SMO [16] algorithm-optimized array, and the maximum SLL of notch depths
is 6.4 dB and 1.9 dB lower than that of the SMO [16] algorithm-optimized array and the
GOA [38]-optimized array, respectively. Therefore, the DO algorithm has more benefits
in reducing the maximum SLL and notch depths.

Figure 14. Array patterns for design Example 4.

Mathematics 2024, 12, 1111 18 of 24

Mathematics 2024, 12, x FOR PEER REVIEW 19 of 26

Figure 14. Array patterns for design Example 4.

Figure 15. DO algorithm optimization—3D radiation pattern before and after optimization for
design Example 4.

Design Example 5: The fifth example uses DO to realize maximum SLL reduction and
notch (i.e., continuous multiple nulls) placement of a 20-element linear array; the region
in which the SLL is reduced is θ = [0°, 82°] and θ = [98°, 180°] and it needs to form a notch
in the specific direction interval θ ∈ [50°, 60°] ∪ [120°, 130°]. The population size is 30,
and there are 500 iterations in total. Figure 16 shows the original uniform array and the
array patterns optimized by three algorithms. The 3D radiation patterns (two-dimensional
plane rotates 180° around the z axis) are shown in Figure 17.

Table 8 shows the peak SLL values and notch depths obtained by a uniform array,
the SMO [16] algorithm, GOA [38], and the DO algorithm as well as their corresponding
excitation current amplitude values. Based on the amplitude values of the excitation cur-
rent in the table, the SMO [16] algorithm, GOA [38], and the DO algorithm can all draw
corresponding optimized antenna array patterns. According to the results, the DO algo-
rithm can achieve the maximum SLL of −27.1 dB, and the maximum SLL of notch depths
is −63.1 dB. The maximum SLL of the DO algorithm-optimized array is 3 dB lower than
that of the SMO [16] algorithm-optimized array, and the maximum SLL of notch depths
is 6.4 dB and 1.9 dB lower than that of the SMO [16] algorithm-optimized array and the
GOA [38]-optimized array, respectively. Therefore, the DO algorithm has more benefits
in reducing the maximum SLL and notch depths.

Figure 15. DO algorithm optimization—3D radiation pattern before and after optimization for design
Example 4.

Design Example 5: The fifth example uses DO to realize maximum SLL reduction and
notch (i.e., continuous multiple nulls) placement of a 20-element linear array; the region in
which the SLL is reduced is θ = [0◦, 82◦] and θ = [98◦, 180◦] and it needs to form a notch in
the specific direction interval θ ∈ [50◦, 60◦] ∪ [120◦, 130◦]. The population size is 30, and
there are 500 iterations in total. Figure 16 shows the original uniform array and the array
patterns optimized by three algorithms. The 3D radiation patterns (two-dimensional plane
rotates 180◦ around the z axis) are shown in Figure 17.

Mathematics 2024, 12, x FOR PEER REVIEW 20 of 26

Figure 16. Array patterns for Example 5.

Figure 17. DO algorithm optimization—3D radiation pattern before and after optimization for
design Example 5.

Table 8. Excitation amplitudes of 20-element linear array after optimization for Example 5.

Algorithms Peak SLL (dB) Notch Depths (dB) Optimized Current Amplitudes

CONV (Uniform array) −13.2 −23.6 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000,
1.000, 1.000, 1.000

SMO [16] −24.1 −56.7 1.000, 0.999, 1.000, 0.836, 0.643, 0.654, 0.477,
0.597, 0.258, 0.215

GOA [38] −27.7 −61.2 1.000, 0.986, 0.990, 0.796, 0.736, 0.563, 0.527,
0.447, 0.243, 0.151

DO −27.1 −63.1
1.000, 1.000, 0.975, 0.838, 0.687, 0.630,

0.493, 0.498, 0.233, 0.160

3.3. Antenna Position Optimization
The DO algorithm is used for pattern synthesis design of linear array antennas to

obtain the desired pattern. In order to create the best pattern synthesis with minimum SLL
and deep nulls, Examples 6 and 7 in this section show how to optimize the antenna

Figure 16. Array patterns for Example 5.

Mathematics 2024, 12, x FOR PEER REVIEW 20 of 26

Figure 16. Array patterns for Example 5.

Figure 17. DO algorithm optimization—3D radiation pattern before and after optimization for
design Example 5.

Table 8. Excitation amplitudes of 20-element linear array after optimization for Example 5.

Algorithms Peak SLL (dB) Notch Depths (dB) Optimized Current Amplitudes

CONV (Uniform array) −13.2 −23.6 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000,
1.000, 1.000, 1.000

SMO [16] −24.1 −56.7 1.000, 0.999, 1.000, 0.836, 0.643, 0.654, 0.477,
0.597, 0.258, 0.215

GOA [38] −27.7 −61.2 1.000, 0.986, 0.990, 0.796, 0.736, 0.563, 0.527,
0.447, 0.243, 0.151

DO −27.1 −63.1
1.000, 1.000, 0.975, 0.838, 0.687, 0.630,

0.493, 0.498, 0.233, 0.160

3.3. Antenna Position Optimization
The DO algorithm is used for pattern synthesis design of linear array antennas to

obtain the desired pattern. In order to create the best pattern synthesis with minimum SLL
and deep nulls, Examples 6 and 7 in this section show how to optimize the antenna

Figure 17. DO algorithm optimization—3D radiation pattern before and after optimization for design
Example 5.

Mathematics 2024, 12, 1111 19 of 24

Table 8 shows the peak SLL values and notch depths obtained by a uniform array,
the SMO [16] algorithm, GOA [38], and the DO algorithm as well as their corresponding
excitation current amplitude values. Based on the amplitude values of the excitation
current in the table, the SMO [16] algorithm, GOA [38], and the DO algorithm can all
draw corresponding optimized antenna array patterns. According to the results, the
DO algorithm can achieve the maximum SLL of −27.1 dB, and the maximum SLL of notch
depths is −63.1 dB. The maximum SLL of the DO algorithm-optimized array is 3 dB lower
than that of the SMO [16] algorithm-optimized array, and the maximum SLL of notch
depths is 6.4 dB and 1.9 dB lower than that of the SMO [16] algorithm-optimized array and
the GOA [38]-optimized array, respectively. Therefore, the DO algorithm has more benefits
in reducing the maximum SLL and notch depths.

Table 8. Excitation amplitudes of 20-element linear array after optimization for Example 5.

Algorithms Peak SLL (dB) Notch Depths (dB) Optimized Current Amplitudes

CONV (Uniform array) −13.2 −23.6 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000

SMO [16] −24.1 −56.7 1.000, 0.999, 1.000, 0.836, 0.643, 0.654, 0.477, 0.597, 0.258, 0.215

GOA [38] −27.7 −61.2 1.000, 0.986, 0.990, 0.796, 0.736, 0.563, 0.527, 0.447, 0.243, 0.151

DO −27.1 −63.1 1.000, 1.000, 0.975, 0.838, 0.687, 0.630, 0.493, 0.498, 0.233, 0.160

3.3. Antenna Position Optimization

The DO algorithm is used for pattern synthesis design of linear array antennas to
obtain the desired pattern. In order to create the best pattern synthesis with minimum
SLL and deep nulls, Examples 6 and 7 in this section show how to optimize the antenna
positions xn. It is supposed that In = 1 and φn = 0 for the amplitude and phase of the
excitations are uniform.

3.3.1. Minimizing Peak SLL

For minimizing peak SLL, the fitness function is given by Equation (24). It is required
to impose an additional restriction on the overall length of the antenna array to retain the
main lobe shape and beam width, as seen in the following formula:{

x1 = 0.25λ

xN = (2N−1)d
2

(26)

The position of the first antenna is fixed at 0.25 λ, the spacing between adjacent
elements is 0.5 λ, and the position of the Nth element is fixed at xN = (2N − 1)d/2, where
the uniform LAA’s standard spacing is indicated by d = 0.5 λ.

Design Example 6: A 2N = 16-element linear array is considered, with the design
objective of forming low sidelobes in the regions θ = [0◦, 82◦] and θ = [98◦, 180◦]. The
population size is 30, and there are 500 iterations in total. Seven algorithms, namely
the PSO [39] algorithm, particle swarm optimization and gravitational search algorithm
(PSOGSA) [39], whale optimization algorithm (WOA) [39], GOA [39], sparrow search
algorithm (SSA) [39], modified sparrow search algorithm (MSSA) [39], and DO algorithm,
are used to optimize the position of the array. Table 9 provides a summary of the element
positions and the peak SLL values that were optimized using these nature-inspired opti-
mization algorithms. According to the optimized array element positions in Table 9, the
optimized antenna array pattern under this model can be drawn. In addition, based on
the size of the optimized peak SLL, it is possible to visually compare which algorithm has
stronger optimization ability in reducing antenna SLL. More specifically, the conventional
method (uniform array) and PSO [39], PSOGSA [39], WOA [39], GOA [39], SSA [39], and
MSSA [39] algorithm-optimized arrays provide a peak SLL of −13.1476 dB, −21.3693 dB,
−21.8484 dB, −19.1546 dB, −19.9808 dB, −22.0177 dB, and −22.6768 dB, respectively. The
DO algorithm-optimized array gives a peak SLL of −22.8766 dB which is 9.729 dB lower

Mathematics 2024, 12, 1111 20 of 24

and 0.1998 dB lower compared to that of the uniform array and MSSA [39]-optimized
array. The array pattern optimized by these algorithms and the 3D radiation patterns
(two-dimensional plane rotates 180◦ around the z axis) of the 16-element LAA before and
after DO algorithm optimization are given in Figures 18 and 19.

Table 9. Sixteen-element LAA with optimized element positions and maximum SLL using differ-
ent algorithms.

Algorithm Optimized Element Positions (λ) Peak SLL (dB)

Uniform array 0.2500, 0.7500, 1.2500, 1.7500, 2.2500, 2.7500, 3.2500, 3.7500 −13.1476

PSO [39] 0.2500, 0.5311, 1.0128, 1.3930, 1.8738, 2.3329, 2.9893, 3.7500 −21.3693

PSOGSA [39] 0.2500, 0.5495, 1.0230, 1.3560, 1.8561, 2.3358, 2.9783, 3.7500 −21.8484

WOA [39] 0.2500, 0.6485, 1.0456, 1.3751, 1.9467, 2.4634, 3.0076, 3.7500 −19.1546

GOA [39] 0.2500, 0.5802, 1.1274, 1.3493, 1.9119, 2.3129, 3.0208, 3.7500 −19.9808

SSA [39] 0.2500, 0.5331, 1.0118, 1.3453, 1.8495, 2.3404, 2.9835, 3.7500 −22.0177

MSSA [39] 0.2500, 0.5226, 1.0038, 1.3486, 1.8518, 2.3447, 2.9948, 3.7500 −22.6768

DO 0.2500, 0.5138, 1.0025, 1.3456, 1.8454, 2.3264, 2.9886, 3.7500 −22.8766

Mathematics 2024, 12, x FOR PEER REVIEW 21 of 26

positions xn. It is supposed that In = 1 and φn = 0 for the amplitude and phase of the exci-
tations are uniform.

3.3.1. Minimizing Peak SLL
For minimizing peak SLL, the fitness function is given by Equation (24). It is required

to impose an additional restriction on the overall length of the antenna array to retain the
main lobe shape and beam width, as seen in the following formula:

()
1

N

x 0.25
2N 1 d

x
2

= λ

 −

=

 (26)

The position of the first antenna is fixed at 0.25 λ, the spacing between adjacent ele-
ments is 0.5 λ, and the position of the Nth element is fixed at ()Nx 2N 1 d 2= − , where
the uniform LAA’s standard spacing is indicated by d = 0.5 λ.

Design Example 6: A 2N = 16-element linear array is considered, with the design ob-
jective of forming low sidelobes in the regions θ = [0°, 82°] and θ = [98°, 180°]. The popu-
lation size is 30, and there are 500 iterations in total. Seven algorithms, namely the PSO
[39] algorithm, particle swarm optimization and gravitational search algorithm (PSOGSA)
[39], whale optimization algorithm (WOA) [39], GOA [39], sparrow search algorithm
(SSA) [39], modified sparrow search algorithm (MSSA) [39], and DO algorithm, are used
to optimize the position of the array. Table 9 provides a summary of the element positions
and the peak SLL values that were optimized using these nature-inspired optimization
algorithms. According to the optimized array element positions in Table 9, the optimized
antenna array pattern under this model can be drawn. In addition, based on the size of
the optimized peak SLL, it is possible to visually compare which algorithm has stronger
optimization ability in reducing antenna SLL. More specifically, the conventional method
(uniform array) and PSO [39], PSOGSA [39], WOA [39], GOA [39], SSA [39], and MSSA
[39] algorithm-optimized arrays provide a peak SLL of −13.1476 dB, −21.3693 dB, −21.8484
dB, −19.1546 dB, −19.9808 dB, −22.0177 dB, and −22.6768 dB, respectively. The DO algo-
rithm-optimized array gives a peak SLL of −22.8766 dB which is 9.729 dB lower and 0.1998
dB lower compared to that of the uniform array and MSSA [39]-optimized array. The ar-
ray pattern optimized by these algorithms and the 3D radiation patterns (two-dimensional
plane rotates 180° around the z axis) of the 16-element LAA before and after DO algorithm
optimization are given in Figures 18 and 19.

Figure 18. Array patterns for Example 6.

Mathematics 2024, 12, x FOR PEER REVIEW 22 of 26

Figure 18. Array patterns for Example 6.

Figure 19. DO algorithm optimization—3D radiation pattern before and after optimization for
design Example 6.

Table 9. Sixteen-element LAA with optimized element positions and maximum SLL using different
algorithms.

Algorithm Optimized Element Posi-
tions (λ) Peak SLL (dB)

Uniform array 0.2500, 0.7500, 1.2500, 1.7500,
2.2500, 2.7500, 3.2500, 3.7500

−13.1476

PSO [39] 0.2500, 0.5311, 1.0128, 1.3930,
1.8738, 2.3329, 2.9893, 3.7500

−21.3693

PSOGSA [39] 0.2500, 0.5495, 1.0230, 1.3560,
1.8561, 2.3358, 2.9783, 3.7500

−21.8484

WOA [39] 0.2500, 0.6485, 1.0456, 1.3751,
1.9467, 2.4634, 3.0076, 3.7500

−19.1546

GOA [39] 0.2500, 0.5802, 1.1274, 1.3493,
1.9119, 2.3129, 3.0208, 3.7500

−19.9808

SSA [39] 0.2500, 0.5331, 1.0118, 1.3453,
1.8495, 2.3404, 2.9835, 3.7500

−22.0177

MSSA [39] 0.2500, 0.5226, 1.0038, 1.3486,
1.8518, 2.3447, 2.9948, 3.7500

−22.6768

DO
0.2500, 0.5138, 1.0025,
1.3456, 1.8454, 2.3264,

2.9886, 3.7500
−22.8766

3.3.2. Minimizing Peak SLL and Forming Deep Nulls
Design Example 7: This example shows how to use the DO algorithm to optimize the

positions of a 32-element linear array for SLL minimization and the formation of deep
nulls. The fitness function used in this case is provided by Equation (25). SLL reduction is
desired in the regions θ = [0°, 85°] and θ = [95°, 180°], and deep nulls at θ = 81° and θ = 99°
are also desired. The population (N) of the DO algorithm is set to 30 and the number of
iterations is set to 1000.

Figure 20 shows the original uniform array and the array direction optimized by CSO
[40], GWO [37], and DO algorithms. The 3D radiation patterns (two-dimensional plane
rotates 180° around the z axis) are shown in Figure 21. Table 10 provides the optimized
positions of the array elements obtained by a uniform array and the CSO [40] algorithm,
GWO [37] algorithm, and DO algorithm. According to the optimal array positions ob-
tained by each algorithm in Table 10, their optimal antenna array patterns under the model
can be plotted. Table 11 shows the peak SLL values, the null depths, and the FNBW. By

Figure 19. DO algorithm optimization—3D radiation pattern before and after optimization for design
Example 6.

3.3.2. Minimizing Peak SLL and Forming Deep Nulls

Design Example 7: This example shows how to use the DO algorithm to optimize the
positions of a 32-element linear array for SLL minimization and the formation of deep nulls.

Mathematics 2024, 12, 1111 21 of 24

The fitness function used in this case is provided by Equation (25). SLL reduction is desired
in the regions θ = [0◦, 85◦] and θ = [95◦, 180◦], and deep nulls at θ = 81◦ and θ = 99◦ are also
desired. The population (N) of the DO algorithm is set to 30 and the number of iterations is
set to 1000.

Figure 20 shows the original uniform array and the array direction optimized by
CSO [40], GWO [37], and DO algorithms. The 3D radiation patterns (two-dimensional
plane rotates 180◦ around the z axis) are shown in Figure 21. Table 10 provides the optimized
positions of the array elements obtained by a uniform array and the CSO [40] algorithm,
GWO [37] algorithm, and DO algorithm. According to the optimal array positions obtained
by each algorithm in Table 10, their optimal antenna array patterns under the model can be
plotted. Table 11 shows the peak SLL values, the null depths, and the FNBW. By comparing
the data results in Table 11, the degree to which each algorithm reduces SLL and the depth
of nulls formed can be determined. It is very easy to see that the CSO [40] algorithm offers
a null depth of −80 dB and the GWO [37] algorithm gives −106 dB nulls. However, the
placement of nulls up to −125.1 dB deep at the desired directions (θ = 81◦ and θ = 99◦)
is achieved by the DO algorithm; it is seen that the null depth obtained by using the
DO algorithm-optimized array is 45.1 dB lower than the CSO [40] algorithm-optimized
array and 19.1 dB lower than the GWO [37] algorithm-optimized array, and the FNBW does
not exceed the required 10◦ either. It can also be seen that the peak SLL values provided
by CSO [40] algorithm and GWO [37] algorithm are −18.5092 dB and −15.9686 dB; the
DO algorithm can reduce the peak SLL value to −20.1012 dB, which is equivalent to a
decrease of 1.592 dB compared to the CSO [40] algorithm and 4.1326 dB compared to the
GWO [37] algorithm. Thus, the DO algorithm is better than the CSO [40] algorithm and the
GWO [37] algorithm in optimizing the performance of the antenna array.

Mathematics 2024, 12, x FOR PEER REVIEW 23 of 26

comparing the data results in Table 11, the degree to which each algorithm reduces SLL
and the depth of nulls formed can be determined. It is very easy to see that the CSO [40]
algorithm offers a null depth of −80 dB and the GWO [37] algorithm gives −106 dB nulls.
However, the placement of nulls up to −125.1 dB deep at the desired directions (θ = 81°
and θ = 99°) is achieved by the DO algorithm; it is seen that the null depth obtained by
using the DO algorithm-optimized array is 45.1 dB lower than the CSO [40] algorithm-
optimized array and 19.1 dB lower than the GWO [37] algorithm-optimized array, and the
FNBW does not exceed the required 10° either. It can also be seen that the peak SLL values
provided by CSO [40] algorithm and GWO [37] algorithm are −18.5092 dB and −15.9686
dB; the DO algorithm can reduce the peak SLL value to −20.1012 dB, which is equivalent
to a decrease of 1.592 dB compared to the CSO [40] algorithm and 4.1326 dB compared to
the GWO [37] algorithm. Thus, the DO algorithm is better than the CSO [40] algorithm
and the GWO [37] algorithm in optimizing the performance of the antenna array.

Figure 20. Array patterns for Example 7.

Figure 21. DO algorithm optimization—3D radiation pattern before and after optimization for
design Example 7.

Figure 20. Array patterns for Example 7.

Mathematics 2024, 12, x FOR PEER REVIEW 23 of 26

comparing the data results in Table 11, the degree to which each algorithm reduces SLL
and the depth of nulls formed can be determined. It is very easy to see that the CSO [40]
algorithm offers a null depth of −80 dB and the GWO [37] algorithm gives −106 dB nulls.
However, the placement of nulls up to −125.1 dB deep at the desired directions (θ = 81°
and θ = 99°) is achieved by the DO algorithm; it is seen that the null depth obtained by
using the DO algorithm-optimized array is 45.1 dB lower than the CSO [40] algorithm-
optimized array and 19.1 dB lower than the GWO [37] algorithm-optimized array, and the
FNBW does not exceed the required 10° either. It can also be seen that the peak SLL values
provided by CSO [40] algorithm and GWO [37] algorithm are −18.5092 dB and −15.9686
dB; the DO algorithm can reduce the peak SLL value to −20.1012 dB, which is equivalent
to a decrease of 1.592 dB compared to the CSO [40] algorithm and 4.1326 dB compared to
the GWO [37] algorithm. Thus, the DO algorithm is better than the CSO [40] algorithm
and the GWO [37] algorithm in optimizing the performance of the antenna array.

Figure 20. Array patterns for Example 7.

Figure 21. DO algorithm optimization—3D radiation pattern before and after optimization for
design Example 7.

Figure 21. DO algorithm optimization—3D radiation pattern before and after optimization for design
Example 7.

Mathematics 2024, 12, 1111 22 of 24

Table 10. Positions that are optimized for the 32-element array for Example 7.

Method Optimized Element Positions (λ)

Uniform array
0.2500, 0.7500, 1.2500, 1.7500, 2.2500, 2.7500, 3.2500, 3.7500

4.2500, 4.7500, 5.2500, 5.7500, 6.2500, 6.7500, 7.2500, 7.7500

CSO [40]
0.2883, 0.6830, 1.1929, 1.5199, 1.9768, 2.3247, 2.6886, 3.1362

3.4848, 3.9538, 4.3822, 4.9252, 5.4817, 6.2091, 7.0412, 7.7500

GWO [37]
0.194307, 0.74071, 1.249193, 1.747565, 2.241275, 2.714261, 2.999822, 3.451514

3.753935, 4.275930, 4.750000, 5.255635, 5.751775, 6.455911, 7.250000, 8.000000

DO
0.100053, 0.736700, 0.884280, 1.379279, 1.784958, 1.815880, 2.426244, 2.800191

3.385721, 3.592616, 4.084495, 4.601558, 5.417883, 6.328078, 7.184669, 8.094933

Table 11. Peak SLL (dB), null depth (dB) and FNBW (deg) comparison for Example 7.

Method Uniform Array CSO [40] GWO [37] DO

Peak SLL (dB) −15.7135 −18.5092 −15.9686 −20.1012

Nulls depth (dB) −17.82 −80 −106 −125.1

FNBW (deg) 7.2 8.4 7.8 9.8

4. Conclusions

In this paper, the dandelion optimization algorithm’s mathematical model and basic
principles are briefly introduced, and it is the first time that the algorithm has been used to
optimize a linear antenna array. In order to obtain an array pattern with the lowest SLL and
deep nulls in the designated directions, the DO algorithm was used to design six simulation
experiments from two situations of optimizing current amplitudes and optimizing array
element spacings. In the first two examples, only the sidelobe of the antenna is lowered,
and the sidelobe is reduced by a lower degree than other algorithms when the main lobe
of the antenna is basically not widened. Examples 3, 4, and 5 use the DO algorithm to
optimize the amplitudes of the current to reduce SLL and generate deep nulls and deep
notches at specific directions, and the data show that the DO algorithm produces deeper
nulls and notches than other algorithms. This is more conducive to the array antenna
system in eliminating interference from interference sources. The last two examples involve
reducing the sidelobes and generating the deep nulls by optimizing the array element
spacing. The results show that the array pattern obtained using the DO algorithm has
lower sidelobes and deeper nulls. The six simulation experiments above show that the
optimization of the array antenna can not only optimize the current amplitudes of the
antenna but also optimizes the positions of the antenna, and the DO algorithm outperforms
other existing algorithms discussed here in terms of reducing peak SLL and obtain the
depth of nulls. This also explains the viability of the DO algorithm for optimizing antenna
arrays and even other electromagnetic problems. Of course, the DO algorithm also has
certain limitations. In future work, the authors will focus on improving the DO algorithm
by introducing a nonlinear growth factor to overcome its slow convergence speed and
tendency to fall into local optima. The improved algorithm should not only be applied to
the optimization of linear arrays but also extended to the optimization of planar arrays and
even time-modulated arrays for further research. In addition, the authors will no longer be
limited to theoretical antenna model simulation optimization but rather closer to real-world
engineering applications. We will enrich the resources of our laboratory and strive to link
evolutionary algorithms with EM simulation software such as HFSS (Version 2020 R2). We
will no longer only use algorithms to optimize antenna models, nor will we solely use HFSS
embedded optimization tools to design antenna models. Instead, the two are combined
by firstly optimizing the antenna model with an algorithm and secondly outputting the
optimization results in HFSS, modeling and designing the antenna model based on the

Mathematics 2024, 12, 1111 23 of 24

optimization results, and then analyzing the electromagnetic parameters. Finally, efforts
were made to create various simple small antenna arrays. Combining theoretical research
with practical applications will further promote the development of electromagnetics.

Author Contributions: J.L. (the first author) proposed the idea and conducted simulation experiments
to obtain experimental results according to the direction of the research and organized the data and
wrote the paper. Y.L. (the corresponding author) is mainly responsible for supervising and reviewing
papers, including the correctness of research ideas and the standardization of language expression in
the manuscript. W.Z. and T.Z. (the third and fourth authors) built on the details of the completed
paper. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (Program No.
62341124), the Yunnan Fundamental Research Projects (Program No. 202201AT070030), the Graduate
Research Innovation Fund of Yunnan Normal University (Program No. 009002050205502002), and the
Scientific Research Fund of Yunnan Provincial Education Department (Program No. 2024Y150)).

Data Availability Statement: All data generated or analyzed during this study are included in this
article. For the other algorithms in this study, the data were taken from the cited references to compare
these data with the results obtained by the DO algorithm in this study and to determine the superior
performance of the DO algorithm.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yang, Y.H.; Sun, B.H.; Guo, J.L. A low-cost, single-layer, dual circularly polarized antenna for millimeter-wave applications. IEEE

Antennas Wirel. Propag. Lett. 2019, 18, 651–655. [CrossRef]
2. Bilgic, M.M.; Yegin, K. Modified annular ring antenna for GPS and SDARS automotive applications. IEEE Antennas Wirel. Propag.

Lett. 2015, 15, 1442–1445. [CrossRef]
3. Mobashsher, A.T.; Pretorius, A.J.; Abbosh, A.M. Low-profile vertical polarized slotted antenna for on-road RFID-enabled

intelligent parking. IEEE Trans. Antennas Propag. 2019, 68, 527–532. [CrossRef]
4. Liu, J.L.; Su, T.; Liu, Z.X. High-gain grating antenna with surface wave launcher array. IEEE Antennas Wirel. Propag. Lett. 2018, 17,

706–709. [CrossRef]
5. Huang, H.; Gao, S.; Lin, S.; Ge, L. A wideband water patch antenna with polarization diversity. IEEE Antennas Wirel. Propag. Lett.

2020, 19, 1113–1117. [CrossRef]
6. Pietrenko-Dabrowska, A.; Koziel, S.; Ullah, U. Reduced-cost two-level surrogate antenna modeling using domain confinement

and response features. Sci. Rep. 2022, 12, 4667. [CrossRef] [PubMed]
7. Pietrenko-Dabrowska, A.; Koziel, S. On EM-driven size reduction of antenna structures with explicit constraint handling. IEEE

Access 2021, 9, 165766–165772. [CrossRef]
8. Koziel, S.; Pietrenko-Dabrowska, A. Design-oriented modeling of antenna structures by means of two-level kriging with explicit

dimensionality reduction. AEU-Int. J. Electron. Commun. 2020, 127, 153466. [CrossRef]
9. Sarker, M.A.; Hossain, M.S.; Masud, M.S. Robust beamforming synthesis technique for low side lobe level using taylor excited

antenna array. In Proceedings of the 2016 2nd International Conference on Electrical, Computer & Telecommunication Engineering
(ICECTE), Rajshahi, Bangladesh, 8–10 December 2016; IEEE: New York, NY, USA, 2016; pp. 1–4.

10. Dorigo, M.; Gambardella, L.M. Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE
Trans. Evol. Comput. 1997, 1, 53–66. [CrossRef]

11. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural
Networks, Perth, WA, Australia, 27 November–1 December 1995; IEEE: New York, NY, USA, 1995; Volume 4, pp. 1942–1948.

12. Davis, L.D. Handbook of Genetic Algorithms; Van Nostrand Reinhold: New York, NY, USA; Santa Fe, NM, USA, 1991.
13. Storn, R.; Price, K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Glob.

Optim. 1997, 11, 341. [CrossRef]
14. Goudos, S.K.; Siakavara, K.; Sahalos, J.N. Novel spiral antenna design using artificial bee colony optimization for UHF RFID

applications. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 528–531. [CrossRef]
15. Quevedo-Teruel, O.; Rajo-Iglesias, E. Ant colony optimization in thinned array synthesis with minimum sidelobe level. IEEE

Antennas Wirel. Propag. Lett. 2006, 5, 349–352. [CrossRef]
16. Al-Azza, A.A.; Al-Jodah, A.A.; Harackiewicz, F.J. Spider monkey optimization: A novel technique for antenna optimization.

IEEE Antennas Wirel. Propag. Lett. 2015, 15, 1016–1019. [CrossRef]
17. Goudos, S.K.; Siakavara, K.; Samaras, T.; Vafiadis, E.E.; Sahalos, J.N. Self-adaptive differential evolution applied to real-valued

antenna and microwave design problems. IEEE Trans. Antennas Propag. 2011, 59, 1286–1298. [CrossRef]

https://doi.org/10.1109/LAWP.2019.2900301
https://doi.org/10.1109/LAWP.2015.2512558
https://doi.org/10.1109/TAP.2019.2939590
https://doi.org/10.1109/LAWP.2018.2812918
https://doi.org/10.1109/LAWP.2020.2990226
https://doi.org/10.1038/s41598-022-08710-2
https://www.ncbi.nlm.nih.gov/pubmed/35305009
https://doi.org/10.1109/ACCESS.2021.3134314
https://doi.org/10.1016/j.aeue.2020.153466
https://doi.org/10.1109/4235.585892
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1109/LAWP.2014.2311653
https://doi.org/10.1109/LAWP.2006.880693
https://doi.org/10.1109/LAWP.2015.2490103
https://doi.org/10.1109/TAP.2011.2109678

Mathematics 2024, 12, 1111 24 of 24

18. Ram, G.; Mandal, D.; Kar, R.; Ghoshal, S.P. Cat swarm optimization as applied to time-modulated concentric circular antenna
array: Analysis and comparison with other stochastic optimization methods. IEEE Trans. Antennas Propag. 2015, 63, 4180–4183.
[CrossRef]

19. Darvish, A.; Ebrahimzadeh, A. Improved fruit-fly optimization algorithm and its applications in antenna arrays synthesis. IEEE
Trans. Antennas Propag. 2018, 66, 1756–1766. [CrossRef]

20. Karimkashi, S.; Kishk, A.A. Invasive weed optimization and its features in electromagnetics. IEEE Trans. Antennas Propag. 2010,
58, 1269–1278. [CrossRef]

21. Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [CrossRef]
22. Zhao, S.; Zhang, T.; Ma, S.; Chen, M. Dandelion Optimizer: A nature-inspired metaheuristic algorithm for engineering applications.

Eng. Appl. Artif. Intell. 2022, 114, 105075. [CrossRef]
23. Einstein, A. Investigations on the Theory of the Brownian Movement; Courier Corporation: North Chelmsford, MA, USA, 1956.
24. Mantegna, R.N. Fast, accurate algorithm for numerical simulation of Levy stable stochastic processes. Phys. Rev. E 1994, 49, 4677.

[CrossRef]
25. Valian, E.; Mohanna, S.; Tavakoli, S. Improved cuckoo search algorithm for global optimization. Int. J. Commun. Inf. Technol. 2011,

1, 31–44.
26. Yahya, M.; Saka, M.P. Construction site layout planning using multi-objective artificial bee colony algorithm with Levy flights.

Autom. Constr. 2014, 38, 14–29. [CrossRef]
27. Raji, M.F.; Zhao, H.; Monday, H.N. Fast optimization of sparse antenna array using numerical Green’s function and genetic

al-gorithm. Int. J. Numer. Model. Electron. Netw. Devices Fields 2020, 33, e2544. [CrossRef]
28. Balanis, C.A. Microstrip antennas. Antenna Theory Anal. Des. 2005, 3, 811–882.
29. Khodier, M.M.; Al-Aqeel, M. Linear and circular array optimization: A study using particle swarm intelligence. Prog. Electromagn.

Res. B 2009, 15, 347–373. [CrossRef]
30. Singh, U.; Kumar, H.; Kamal, T.S. Linear array synthesis using biogeography based optimization. Prog. Electromagn. Res. M 2010,

11, 25–36. [CrossRef]
31. Chatterjee, S.; Chatterjee, S.; Poddar, D.R. Synthesis of linear array using Taylor distribution and Particle Swarm Optimisation.

Int. J. Electron. 2015, 102, 514–528. [CrossRef]
32. Saxena, P.; Kothari, A. Ant lion optimization algorithm to control side lobe level and null depths in linear antenna arrays. AEU-Int.

J. Electron. Commun. 2016, 70, 1339–1349. [CrossRef]
33. Singh, U.; Salgotra, R. Optimal synthesis of linear antenna arrays using modified spider monkey optimization. Arab. J. Sci. Eng.

2016, 41, 2957–2973. [CrossRef]
34. Subhashini, K.R. Runner-root algorithm to control sidelobe level and null depths in linear antenna arrays. Arab. J. Sci. Eng. 2020,

45, 1513–1529. [CrossRef]
35. Urvinder, S.; Salgotra, R. Synthesis of linear antenna array using flower pollination algorithm. Neural Comput. Appl. 2018, 29, 435–445.
36. Hu, K.; Liu, Y.; Zhao, K. Application of chaotic colony predation algorithm in electromagnetics. Phys. Scr. 2023, 98, 105516.

[CrossRef]
37. Saxena, P.; Kothari, A. Optimal pattern synthesis of linear antenna array using grey wolf optimization algorithm. Int. J. Antennas

Propag. 2016, 2016, 1205970. [CrossRef]
38. Wang, H.; Liu, C.; Wu, H.; Li, B.; Xie, X. Optimal pattern synthesis of linear array and broadband design of whip antenna using

grasshopper optimization algorithm. Int. J. Antennas Propag. 2020, 2020, 5904018. [CrossRef]
39. Liang, Q.; Chen, B.; Wu, H.; Ma, C.; Li, S. A novel modified sparrow search algorithm with application in side lobe level reduction

of linear antenna array. Wirel. Commun. Mob. Comput. 2021, 2021, 9915420. [CrossRef]
40. Pappula, L.; Ghosh, D. Linear antenna array synthesis using cat swarm optimization. AEU-Int. J. Electron. Commun. 2014, 68,

540–549. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TAP.2015.2444439
https://doi.org/10.1109/TAP.2018.2800695
https://doi.org/10.1109/TAP.2010.2041163
https://doi.org/10.1109/4235.585893
https://doi.org/10.1016/j.engappai.2022.105075
https://doi.org/10.1103/PhysRevE.49.4677
https://doi.org/10.1016/j.autcon.2013.11.001
https://doi.org/10.1002/jnm.2544
https://doi.org/10.2528/PIERB09033101
https://doi.org/10.2528/PIERM09120201
https://doi.org/10.1080/00207217.2014.905993
https://doi.org/10.1016/j.aeue.2016.07.008
https://doi.org/10.1007/s13369-016-2053-2
https://doi.org/10.1007/s13369-019-04051-x
https://doi.org/10.1088/1402-4896/acf62a
https://doi.org/10.1155/2016/1205970
https://doi.org/10.1155/2020/5904018
https://doi.org/10.1155/2021/9915420
https://doi.org/10.1016/j.aeue.2013.12.012

	Introduction
	Dandelion Optimization Algorithm
	Inspiration
	Mathematical Model
	Initialization
	Rising Process
	Descending Process
	Landing Process

	Time Complexity

	Linear Antenna Array Synthesis
	Geometric Illustration of Linear Antenna Array
	Antenna Current Optimization
	Minimizing Peak SLL
	Minimizing Peak SLL and Forming Deep Nulls

	Antenna Position Optimization
	Minimizing Peak SLL
	Minimizing Peak SLL and Forming Deep Nulls

	Conclusions
	References

