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Abstract: As user–item interaction information is typically limited, collaborative filtering (CF)-based
recommender systems often suffer from the data sparsity issue. To address this issue, recent recom-
mender systems have turned to graph neural networks (GNNs) due to their superior performance in
capturing high-order relationships. Furthermore, some of these GNN-based recommendation models
also attempt to incorporate other information. They either extract self-supervised signals to mitigate
the data sparsity problem or employ social information to assist with learning better representations
under a social recommendation setting. However, only a few methods can take full advantage of
these different aspects of information. Based on some testing, we believe most of these methods
are complex and redundantly designed, which may lead to sub-optimal results. In this paper, we
propose SSGCL, which is a recommendation system model that utilizes both social information and
self-supervised information. We design a GNN-based propagation strategy that integrates social
information with interest information in a simple yet effective way to learn user–item representations
for recommendations. In addition, a specially designed contrastive learning module is employed to
take advantage of the self-supervised signals for a better user–item representation distribution. The
contrastive learning module is jointly optimized with the recommendation module to benefit the final
recommendation result. Experiments on several benchmark data sets demonstrate the significant
improvement in performance achieved by our model when compared with baseline models.

Keywords: recommendation system; collaborative filtering; social recommendation; contrastive
learning; graph neural networks

MSC: 68T07

1. Introduction

With the rapid evolution of internet technology, users are inundated with exponential
amounts of information every day. This leads to a situation where, although users seem to
receive a greater volume of it, it becomes challenging to extract useful information from the
large volume of redundant data. Recommendation systems play a crucial role in addressing
this issue. At present, recommendation systems have already become a common solution
to provide information filtering and prediction in various domains, such as social networks
and short videos [1–3]. The critical function of recommendation systems is to provide users
with items they may find interesting while avoiding recommending items that they do not,
thereby saving them time and effort while boosting the revenue of various companies.

Collaborative filtering (CF) is one of the most popular technologies for recommenda-
tion which predicts users’ interest in items by analyzing collaborative behaviors between
users [4]. Many of the early CF models are based on matrix factorization (MF) [5–11]. These
methods decompose the user–item matrix into two lower-dimensional latent representation
matrices to capture the features of users and items. However, due to the inherent sparsity
of data (a user is usually associated with only a few items, resulting in very few non-zero
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entries in the matrix), models based on MF often struggle to effectively capture feature
embeddings for users and items.

To address this issue, some studies have aimed to involve social information and
perform social recommendations. These methods are based on the idea that users in a social
network may influence each other and share their preferences toward items. Therefore, the
user–user interactions in the social network are worth exploring and are usually jointly
learned with the user–item interactions in the network of interest. Through introducing
social information, the sparsity issue is mitigated, and the efficiency and effectiveness of
recommendations are enhanced.

In recent years, graph neural networks (GNNs) have emerged as effective methods
for handling networked data. To learn better feature embedding, GNNs have also been
successfully introduced into the recommendation task [12,13]. One of the reasons for
the popularity of GNNs is their ability to capture high-order connectivity [14]. In GNN-
based social recommendation systems, the user–item interactions form a bipartite graph,
allowing for users to have two types of neighbors: directly associated items and two-step
neighbor users sharing the same preferences. The user–user social interactions can also
be easily turned into a graph. This property enables GNN-based recommendation system
models [15–17] to extract collaboration signals from numerous interactions and obtain
powerful node representations from high-order neighbor information.

Furthermore, some GNN-based recommendation systems have also aimed to em-
ploy self-supervision signals from autoencoders [18–20] or contrastive learning-based
approaches [21,22]. Contrastive learning typically constructs pairs of positive and negative
samples through data augmentation methods and then forces positive samples closer to
and negative samples further from each other, thereby maximizing the discrimination
between positive and negative pairs for representation learning. The contrastive loss is
usually jointly optimized with the GNN loss to manipulate the embedding learning.

Although existing GNN-based social recommendation systems have combined so-
cial, interest, and even self-supervised information, achieving satisfactory results, some
problems still limit the performance of these algorithms.

Sparse and unbalanced data sets: In practical applications, there is often a disparity
in the number of users and items in the graph or the sparsity of the data set. Taking
the Yelp data set as an example, the number of items is more than twice the number of
users. This means that information related to a single item is sparser than that related
to a user. Therefore, achieving the same high quality in learning item representations as
in user representations is challenging. The inclusion of social information has made this
inclination even worse. Unbalanced user and item representation learning will, without
doubt, degrade the recommendation performance.

Complex and inefficient augmentation: Many social recommendation systems that
incorporate graph neural networks (GNNs) tend to employ overly complex graph aug-
mentation methods for contrastive learning, such as randomly dropping nodes or edges
in the graph [23]. Research has shown that this type of operation can alter the original
structure of the graph, leading to changes in the semantics of the user–item interactions [24].
Existing social recommendation models lack direct and simple ways of extracting informa-
tion from the interactions. This dramatically affects the effectiveness and efficiency of the
social recommendation.

Motivated by these observations, we address the following challenges in performing
satisfactory social recommendations:

• In social recommendation, we have both social and interest information, which is
sparse and unbalanced. How can we effectively learn useful user and item embedding
from such complex information?

• Contrastive learning is a promising path toward better recommendation performance.
How can we design a practical graph augmentation approach for contrastive learning?

To deal with the first challenge, we propose a diffusion module to effectively learn
user and item embedding. Instead of the traditional GCN [25], a more straightforward
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GNN-based strategy is designed to perform influence diffusion and learn informative
user and item representation separately from the social and interest graph. Instead of
aggregating and updating the user embedding learned from the interest and social graph at
each GNN layer, we choose to update the user embedding from the two graphs separately
by themselves and simply sum up the final embedding from the two networks. We argue
that this method sufficiently extracts information related to both users and items without
disturbing each other and obtains better embedding.

For the second challenge, we abandon complex graph enhancement methods and
simply generate positive and negative samples for self-supervision by adding noise to the
embedding. The experimental results suggest that such graph augmentation improves the
model performance without compromising the original semantics of the graph. In such a
simple way, our contrastive learning component can manipulate the embedding learning
toward a smoother distribution, thereby improving the recommendation performance.

To summarize, in this paper, we propose a model called SSCGL specifically designed
for social recommendation. SSCGL consists of three main modules: a diffusion module,
a contrastive learning module, and a prediction module. The diffusion module learns
informative user and item embedding separately from the social and interest information
with a specially designed GNN-based architecture. Then, a contrastive learning module
that generates contrastive views by adding noise to the graph is incorporated to further
manipulate the embedding learning. Finally, the contrastive learning and the recommenda-
tion are jointly optimized to predict the final recommendation results. Experimental results
on real-world social recommendation data sets validate the effectiveness of our designs.

Our work significantly contributes in the following aspects:

• We successfully integrate social information and self-supervised signals into the rec-
ommendation system, significantly improving the performance.

• While existing social recommendation works tend to design complex attention mecha-
nisms to fuse the social and interest information during the GNN propagation, we
abandon traditional GCN encoding and opt for a more straightforward encoder for
layer-wise embedding updating. The representations from the interest and social net-
works are separately updated and, at last, combined with a simple sum. Our design
demonstrates simple and powerful acquisition of better item and user representations.

• We abandon complex graph enhancement methods commonly used in traditional
contrastive learning approaches and employ a simpler and more effective approach
by adding noise to embeddings, further improving the model’s performance.

• We evaluate our model on three real-world publicly available data sets. Our SSGCL
demonstrates superior performance, compared with eight state-of-the-art baselines, in
terms of social recommendations.

2. Related Work

In this section, we provide a brief overview of recommendation systems based on
different kinds of approaches.

2.1. Matrix Factorization (MF)-Based Recommendation Systems

In the current field of recommendation systems, many classic collaborative filtering
algorithms adopt the matrix factorization (MF) approach [26–28]. Models based on MF map
users and items to a lower-dimensional space using vector representations [29]. Satisfaction
is then evaluated by computing the inner product of the vectors representing users and
items. However, MF-based models struggle to effectively encode features of the user–item
matrix, meaning that MF cannot capture more implicit factors. Moreover, traditional matrix
factorization methods based on MF typically only leverage relationships between users and
items for recommendations, neglecting user–user relationships. This implies that the model
cannot capture information about higher-order neighbors, as simple matrix factorization
essentially considers only first-order neighbor information and ignores potential relation-
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ships between users. These limitations result in sub-optimal recommendation performance
for traditional MF models.

Early social recommendation models based on MF include SocialMF [26], TrustMF [27],
and BPR-MF [28]. SocialMF is a recommendation approach based on social networks that
assumes the existence of social networks between users and making recommendations
based on direct or indirect social relationships between users. TrustMF moves a step further
by considering the impact of social trust propagation. In TrustMF, the configuration of
trust networks and trust matrices allows for a thorough analysis of the mutual influence
between trustors and trustees. In contrast to the previous two models, BPR-MF introduces
a pairwise BPR loss, leading to improved optimization of the model.

However, most of the aforementioned MF-based models are no longer effective in han-
dling large-scale data sets and sparsely rated data sets compared with GNN-based methods.

2.2. Recommendation Systems Based on Graph Neural Networks

Methods based on graph neural networks (GNNs) have gradually become mainstream
in the field of recommendation systems. The inherent structure of GNNs can effectively
represent the graph between users and users, as well as between users and items, which
aligns well with the high connectivity observed in social networks. The core objective of
GNN-based recommendation systems is to learn representations for each node.

NGCF [30], for instance, aims to further learn embeddings for users and items in the
latent space by exploring high-order connectivity relationships to refine the embedding
representations. The refined user and item representations are then used for predictions.
Diffnet++ [31] constructs a powerful and efficient diffusion network that combines the
user–user graph and user–item graph to address the shortcomings of traditional MF-based
methods in capturing high-order neighbor information. It incorporates carefully designed
attention mechanisms in the model to resolve the inconsistency between the user–user
graph and user–item graph relationships.

Approaching the issue of social inconsistency from a different angle, the authors of
ref. [32] introduce the concept that social relationships may not necessarily align with rating
predictions to create ConsisReg. Based on this insight, they propose a new framework to
address this problem.

In many GNN-based models [31,32], graph convolutional networks (GCNs) are com-
monly used for embedding. However, the GCN was initially designed for homogeneous
graphs and may not be suitable for GNN-based social models. LightGCN [33] improved
upon the GCN by removing unnecessary non-linear activation functions and feature trans-
formation matrices, making it more suitable for recommendation systems and achieving
more advanced recommendation performance.

To further enhance the performance and robustness of recommendation systems, these
GNN-based models strive to innovate and address specific challenges, showcasing the
ongoing evolution in this area.

2.3. Recommendation System with Graph Contrastive Learning

A highly promising approach recently used in research involves integrating contrastive
learning methods into graph-based recommendation systems to address challenges such
as insufficient collaboration signals and data sparsity. In particular, SGL [23] combines
contrastive learning with recommendation systems, employing three strategies—node
dropping, edge dropping, and random walks—to enhance the graph. Contrastive learning
is then utilized to obtain diverse self-supervised signals. The model is subsequently jointly
trained with these signals as auxiliary modules, leading to improved performance.

SimGRACE [34] introduces perturbations to GCN encoders to generate new views
for contrastive learning, while LightGCL [35] employs singular value decomposition to
reconstruct different views for contrastive learning. These new views are then jointly
optimized with the main model. SimGCL [36], on the other hand, recognizes that complex
graph augmentation strategies may adversely affect the model. SimGCL opts for a simpler
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and more efficient approach by introducing noise into the embedding representations for
contrastive learning.

Nevertheless, there is still a lack of a contrastive learning enhanced social recommen-
dation method, where the self-supervision signal can effectively manipulate the learning
toward better recommendation.

3. Methodology

This section presents our proposed recommendation model, SSGCL, which consists of
four components. We first introduce some essential notation. In the second and third parts,
the diffusion module and prediction layer employed in our model are introduced, respec-
tively. The training approach of the model is presented in the last part. The framework of
SSGCL is illustrated in Figure 1.

Figure 1. The conceptual framework of our proposed social recommendation system SSGCL. Through
a GNN-based encoder, it learns a user embedding p from the user–user graph representing social
information, a user embedding q, and an item embedding v from the user–item graph representing
interest information. The two user embeddings p and q are summed to provide the final user embed-
ding. Based on these, a contrastive learning module is jointly optimized with the recommendation
task to learn the final embedding and recommendation result.

3.1. Notation

This study focuses on the social recommendation problem. Social recommendation
systems generally have two sets of entities: a user set U consisting of m users and an item
set V consisting of n items. Users may form two types of relationships: social connections
between users and interest relationships toward items. These behaviors can be represented
as a social graph and an interest graph: the social graph Gs contains nodes denoting users
and edges denoting social connections, while the interest graph Gi contains nodes denoting
both users and items, and edges denoting user preference toward the items.

These two graphs can be defined by two matrices: a user–user social relationship
matrix S ∈ RM×M and a user–item interest relationship matrix R ∈ RM×N .

In the user–user social relationship matrix S, if user a trusts user b or, in other words,
user a’s decision may be influenced by user b, sab = 1; otherwise, sab = 0. We use Sa to
represent the set of all users that user a follows or trusts, i.e., Sa = [b|sab = 1].

Similarly, in the user–item interest matrix R, rac = 1 means user a is interested in
item c, and rac = 0 otherwise. Ra represents the set of items that user a is interested
in, i.e., Ra = [c|rac = 1], and Rc represents the set of users that voted for item c, i.e.,
Rc = [a|rca = 1].

Our goal is to find unknown preferences from users toward items; that is, a predicted
new user–item matrix R̂ from R, with new preferences added.

3.2. Diffusion Module

As mentioned before, we design a diffusion module to learn comprehensive represen-
tations of users and items based on social and interest information. It has two parts, which
acquire the representations from Gs and Gi.
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First, representations are acquired from the user–item graph (interest graph Gi). While
most GNN-based recommendation systems [12,31] commonly employ traditional GCN
encoders to aggregate various information in the social and interest graphs, in this study,
we follow [33] and employ a simple but efficient aggregation strategy.

Specifically, both user and item representations are acquired from the interest graph.
The diffusion process of the interest graph Gi can be defined as

q(L)
i = AGGitems(v

(L−1)
j , ∀j ∈ Ri) = ∑

j∈Ni

v(L−1)
j√
|Ri||Rj|

, (1)

v(L)
j = AGGusers(q

(L−1)
i , ∀i ∈ Rj) = ∑

i∈Nj

q(L−1)
i√
|Rj||Ri|

. (2)

Here, L is the number of stacked diffusion layers. q(L)
i is the representation of user i

obtained from the interest graph. Similarly, v(L)
j is the representation of item j from the

interest graph. Ri represents the set of items j that user i is interested in, and Rj is the set of

users i that voted for item j. It is worth mentioning that the input of the first layer q(0)i and

v(0)j are randomly initialized.
Such an encoder is better suited for GNN-based recommendation systems, as it aban-

dons the redundant non-linear transformations of traditional GCN encoders.
The second part involves learning representations from the social graph Gs. Unlike

the user–item graph Gi, the social graph only contains nodes representing users, and we
can learn only user representations from it. The propagation of user i based on the social
graph Gs at the Lth layer could be defined as

p(L)
i = AGGusers(p(L−1)

t , ∀t ∈ Si) = ∑
t∈Si

p(L−1)
t√
|Si||St|

, (3)

where p(L)
i is the embedding for user i at layer L and Si is the set of socially connected

neighbor users of user i.
Upon completion of the aggregation through Equations (1) and (2), representations

q(L)
i are obtained for user i after L layers of iterations and v(L)

j for item j after L layers of it-
erations based on the user–item graph. Through Equation (3), the social-relation-based user
representation denoted as p(L)

i is obtained. To aggregate user representation learned from
the social graph and the interest graph, previous works [31] designed complex attention
mechanisms and combined the two view information from every layer. However, we opt
for a simple yet effective sum aggregation function to obtain the final user representation:

u(L)
i = q(L)

i + p(L)
i (4)

With our aggregation approach, both q(L)
i and p(L)

i effectively learn user representa-
tions from their respective views, making full use of the information in each graph without
being subject to additional interference.

3.3. Prediction Layer

In the previous section, it is shown that the final user embedding u(L)
i and the final

item embedding v(L)
j are obtained from Equations (2) and (4). Then, the prediction results

of our model are calculated by taking the inner product of the final user embedding and
item embedding:

ŷij =< u(L)
i , v(L)

j > . (5)

where ŷij is user i’s predicted preference score for item j, according to our model.
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3.4. Model Training

In order to capture more collaborative signals, we employed two types of losses
for joint learning to optimize the model: a supervised loss suitable for recommendation
systems and a self-supervised loss to capture more collaborative signals.

3.4.1. Supervised Loss

We opted not to use point-wise loss functions [37] which are widely used for rec-
ommendation, and instead chose the Bayesian personalized ranking (BPR) pairwise loss
function instead. The BPR loss function is specialized for the ranking task. In Bayesian
personalized ranking, instances with an interaction are considered positive samples, while
those without interaction are considered negative samples. The objective is to maximize
the margin between positive and negative samples, which is similar to contrastive learning
in principle. This matches our need to determine which items are more worthy of rec-
ommendation to the users (potential positive samples with high ranking). Additionally,
recommendation data are sparse, with positive samples (instances where users interact
with items) being far fewer than negative samples. The sampling-based BPR loss can satis-
factorily resolve this problem and lead to better performance. The BPR loss is defined as

Lbpr = ∑
(i,j+ ,j−)∈O

− log σ(ŷij+ − ŷij−), (6)

where O = [(i, j+, j−)|(i, j+) ∈ O+, (i, j−) ∈ O−] is the training data, O+ represents
the observed interaction information, and O− denotes unobserved interactions. σ is the
sigmoid function. The BPR loss provides positive and negative signals to model the
user–item interaction but still lacks the ability to enhance the embedding based on the
nodes themselves. This could potentially result in sub-optimal representations. To address
this issue, we employed a specially designed contrastive loss as assistance.

3.4.2. Self-Supervised Loss

To create contrastive views, traditional GNN-based contrastive learning involves pre-
processing steps, such as randomly dropping nodes or edges, performing random walks,
or even constructing an entirely new graph [23]. Such strategies tend to be over-designed.
According to the findings of previous work, steps such as randomly dropping nodes and
edges are likely to result in the loss of important information [36]. Moreover, enhancing the
graph in these ways can be very time-consuming.

Therefore, here, we adopt a simpler and more efficient contrastive learning approach.
Inspired by [36], traditional graph enhancement methods are abandoned and instead
positive and negative samples are constructed by adding noise to the learned embedding
of users and items. In particular, for a user embedding ui, samples u

′
i and u

′′
i are generated

as follows:

u
′
i = ui + β

′
i, u

′′
i = ui + β

′′
i . (7)

Here, for user i with learned representation ui, β
′

and β
′′

represent the added vector
noises. These noises are constrained by ||β||2 = ε and β = β̄ ⊙ sign(ui), β̄ ∈ Rd ∼ U(0, 1).
ε is a hyperparameter and ⊙ is the Hadamard product. These constraints control the
magnitude and the orthant of the noise, which could otherwise lead to significant biases
and disrupt the original semantics of the node. Figure 2 briefly illustrates our contrastive
learning method described in Equation (7).

We consider samples generated from the same node as positive pairs and samples
from different nodes as negative ones for contrastive learning. This simple strategy can
smoothly manipulate the learned representation toward a better distribution. The InfoNCE
contrastive loss [38] is employed to force positive pairs close to each other and negative
pairs distant from each other,
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Luser
cl = ∑

i∈U
− log

exp(cos < u
′
i, u

′′
i > /τ)

∑k∈U exp(cos < u′
i, uk > /τ)

. (8)

Figure 2. Illustration of data augmentation with added noise. β
′

and β
′′

are the noises we add to the
learned representations, constrained by hyperparameter ε. u

′

i/v
′

j and u
′′

i /v
′′

j are the samples generated
from ui/vj with the noises. They are close to the original representation and can be regarded as
positive samples, compared with the representations of other nodes uk/vk.

Here, cos <,> denotes the cosine similarity between two vectors. τ is a temperature
hyperparameter. The denominator is summed over all possible users k in the user set U.
This contrastive loss can be regarded as a softmax classifier that classifies u

′
to u

′′
.

Similarly, for item embedding vj, the following is the item-based noised samples and
contrastive loss:

v
′
j = vj + β

′
j, v

′′
j = vj + β

′′
j . (9)

Litem
cl = ∑

j∈V
− log

exp(cos < v
′
j, v

′′
j > /τ)

∑k∈V exp(cos < v′
j, vk > /τ)

. (10)

The final self-supervised loss is the sum of the user-based contrastive loss and the
item-based contrastive loss:

Lssl = Litem
cl + Luser

cl (11)

3.4.3. Final Loss

We incorporated our supervised BPR loss (refer to Equation (6)) with our self-supervised
contrastive loss (refer to Equation (11)) for joint learning and to optimize our model. The final
loss function is defined as

L f inal = Lbpr + λ1Lssl + λ2||θ||2, (12)

where ||θ||2 is the regularization term of L f inal introduced to prevent model overfitting.
λ1 and λ2 are two hyperparameters used to control the balance. The learning process is
conducted in a supervised manner. The BPR loss is the primary supervised component
that optimizes the user and item embedding, while the self-supervised learning module
merely serves as an auxiliary part that manipulates the learned embedding toward a
better distribution.
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4. Experiments

In this section, to demonstrate the effectiveness and superiority of our model, we conducted
extensive experiments and addressed the following questions from various perspectives:

- RQ1: How does our model perform compared with various state-of-the-art (SOTA)
models on different data sets?

- RQ2: How do the self-supervised learning module and diffusion modules’ propaga-
tion mechanisms impact the model?

- RQ3: How do different parameter settings affect the model?

4.1. Benchmark Data Sets

We utilized three real-world publicly available data sets: Yelp [23], Last.fm [39], and
Douban-book [36]. Below, detailed information about the data sets is provided.

• Yelp: Yelp is a geographically based online review platform that encourages users
to share their perspectives and experiences by writing reviews and providing rat-
ings. The data set encompasses interactions between users and various locations,
including visits and comments. Additionally, by leveraging user friend lists, we can
infer user relationships, enabling further analysis of influencing factors within the
social network.

• Douban-book: Douban-book is a highly influential book-related online social platform
in China that gathers extensive information on books and user reviews. This platform
enables users to search for books, share their book reviews, rate works, and create
personal booklists. Additionally, users can follow other readers, thereby establishing a
social network to receive more book recommendations and enhance their interactive
experiences.

• Last.fm: Last.fm is a music-related data set that includes user, artist, song, and
social relationship data. It is widely used in research on music recommendation
systems, social network analysis, and music data mining. The data set comprises
information such as users’ listening histories, social relationships, tags, and events,
providing valuable resources for studying music consumption behavior and music
social networks.

The three data sets are publicly available for download. All processed data sets
were obtained from https://recbole.io/cn/dataset_list.html (accessed on 6 March 2024).
A summary of the data set details is provided in Table 1. The data sets were all pre-
processed [40] and have been widely used for the recommendation task. Our focus was
solely on the social interest information within the data sets, while other user attributes
and item details were not within the scope of our consideration.

Table 1. Benchmark graph data sets.

Data Set Users Avg. Actions of
Users Items Avg. Actions of

Items Interactions Sparsity

Yelp 17,236 12.065 37,379 5.563 207,945 99.968
Douban-book 13,025 60.812 22,348 35.443 792,062 99.728

Last.fm 1893 49.067 17,633 5.265 92,834 99.722

4.2. Baseline Methods

In the experiments, we compared a total of eight recommendation system models with
our proposed SSGCL. The main differences between these baselines are summarized in
Table 2.

• MF-BPR [28] is a recommendation system model. Built upon the idea of matrix
factorization, it aims to learn latent representations of users and items for personalized
item recommendations. The model is optimized using Bayesian personalized ranking
(BPR) loss.

https://recbole.io/cn/dataset_list.html
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• Social-MF [26] is a model designed for recommendation systems. It is also based on
the idea of matrix factorization, integrating social information with purchase data to
provide personalized recommendations.

• NGCF [30] is a deep learning model for recommendation systems, combining tra-
ditional collaborative filtering methods with graph neural networks to enhance the
effectiveness of personalized recommendations. The core idea involves representing
users and items as nodes in a graph and using graph neural networks to learn their
latent relationships. Through multiple layers of neural networks, NGCF can better
capture the complex interactions between users and items, thereby improving the
model performance.

• Diffnet++ [31] is a graph diffusion model for social recommendations. It combines social
and interest information in a recursive manner and employs an attention mechanism
during the propagation and aggregation process to enhance the model’s performance.

• MHCN [41] is a model based on hyper-graph convolutional networks for recommen-
dation systems. The model utilizes social and other information to model edges in the
hyper-graph, thereby enhancing the recommendation performance of the model.

• LightGCN [33] is a lightweight graph convolutional model. In comparison with
traditional graph convolutional networks (GCNs), it simplifies the structure and
parameters. By directly updating user and item embedding vectors, it enhances the
learning efficiency and effectiveness in social networks and recommendation systems.

• SGL [23] is a graph convolutional model that incorporates self-supervised learning for
recommendation systems. The algorithm enhances the graph to transform the original
graph and create different views by using uniform node and edge dropout strategies.
Subsequently, it employs contrastive learning methods to learn from these views. The
losses are jointly optimized to obtain the final representations of nodes.

• SEPT [42] is a recommendation system model that incorporates self-supervised learn-
ing. By constructing complementary views of the graph, pseudo-labels are obtained,
and triplet training is employed to assist the training process.

Table 2. Algorithm comparison.

Interest Information Social Information GNN Self-Supervised Learning Diffusion Module BPR

MF-BPR ⋆ ⋆

Social-MF ⋆ ⋆

NGCF ⋆ ⋆ ⋆

Diffnet++ ⋆ ⋆ ⋆ ⋆ ⋆

MHCN ⋆ ⋆ ⋆ ⋆

LightGCN ⋆ ⋆ ⋆

SGL ⋆ ⋆ ⋆ ⋆

SEPT ⋆ ⋆ ⋆ ⋆ ⋆

SSCGL ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

4.3. Experimental Setup

For the effectiveness and fairness of the experiments, we adjusted the hyperparameters
for all baselines following the strategies in the original papers. We ran all experiments
with the Adam optimizer. The data sets were randomly divided into training, validation,
and test sets in an 8:1:1 ratio. Meanwhile, we employed two advanced and effective
evaluation metrics that are widely used in top conferences [31,33,36,43]—namely Recall@K
and NDCG@K (normalized discounted cumulative gain)—to assess the model performance.
In our SSGCL model, we stacked three GNN layers for the influence diffusion, and the
embedding size for both users and items was set to 64. The L2 norm was employed for the
regularization. The trade-off hyperparameters of the contrastive learning module λ1 and
the regularization term λ2 were set to 1 × 10−5 and 1 × 10−2, respectively. The learning
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rate α was set to 1 × 10−3. The temperature coefficient τ was 0.15. The noise radius ε is 0.1.
Additionally, all our experiments were conducted on an RTX 2070 (8 GB) GPU, and the
results of the first 50 epochs are illustrated in Figure 3.

Figure 3. The performance curves in the first 50 epochs.

4.4. Performance Comparison (RQ1)

This study compared eight baseline models with two variants of SSGCL, namely
SSGCL-M and SSGCL-L, across three public data sets and two evaluation metrics. SSGCL-M
was the model that only aggregated the user representation of the two graphs in the last
GNN layer, as described in our Methodology section. SSGCL-L was a variant of our model
in which we followed previous works and aggregated the user representation at each layer
of the GNN influence diffusion. The learned user representation that combined two sides
of information was then updated into the two graphs for the influence diffusion of the next
GNN layer.

We conducted the experiment by evaluating the rankings for the top 10, top 20, and top
30 recommendations. As shown in Tables 3–5, our SSGCL-M (final aggregation) consistently
outperformed the optimal baseline in the top@k experiments, while SSGCL-L (intermediate
aggregation) achieved a performance close to the baseline. We summarize our findings
as follows:

1. The exploration of social information could benefit the recommendation system.

The tables show that many recommendation systems that incorporate social informa-
tion performed better than other methods proposed during the same time period, such as
Diffnet++, SEPT, and our method. However, the advantages of social information were
not apparent when compared with more up-to-date methods. This was probably because
taking full advantage of social information is difficult. Early approaches lack effective ways
to jointly learn social interactions with the interest information.

2. The approaches based on GNNs exhibited excellent performance.

From the tables, it is evident that GNN-based models generally exhibited a significant
improvement over traditional approaches, such as matrix factorization-based recommenda-
tion systems. For example, LightGCN and SGL performed quite well without social infor-
mation, and mainly benefited from their well-designed GNN layers. MHCN involves both
social information and self-supervised signals but has yet to achieve satisfactory results,
which may be because it fails to model multifaceted information sufficiently without the
assistance of GNNs. This demonstrates a GNN’s effectiveness in handling such interest and
social networks, as well as modeling the complex interactions in the recommendation task.

3. Self-supervised learning shows great potential in recommendation system tasks.

It can be observed from the tables that recent recommendation system approaches,
such as SGL and SEPT, tended to employ self-supervised learning and obtained satisfactory
performance. This was because the self-supervised learning module could help to learn
more informative representations and make the user and item representation uniform,
thereby helping to achieve better recommendation results.

4. The superiority of our SSGCL.
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Our SSGCL sufficiently explored the social and interest network with a GNN-based
influence diffusion layer. The learned representation was further optimized with a con-
trastive learning module that extracts self-supervised signals. This should be the reason
why our SSGCL performed well compared with the baseline methods.

Table 3. Experimental results for the Douban-book data set.

Model Recall@10 Recall@20 Recall@30 NDCG@10 NDCG@20 NDCG@30

MF-BPR 0.0901 0.1362 0.1685 0.0706 0.0838 0.1059
Social-MF 0.0246 0.0399 0.0534 0.0122 0.0162 0.0192

NGCF 0.1061 0.1559 0.1905 0.0831 0.0968 0.1068
Diffnet++ 0.1285 0.1822 0.2181 0.0998 0.1151 0.1251
MHCN 1 - - - - - -

LightGCN 0.1962 0.2576 0.3306 0.1666 0.1828 0.1947
SGL 0.1941 0.2581 0.3025 0.1681 0.1828 0.1972
SEPT 0.2370 0.3046 0.3523 0.1957 0.2138 0.2271

SSGCL-L 0.2407 0.3042 0.3468 0.1961 0.2129 0.2248
SSGCL-M 2 0.2765 0.3367 0.3757 0.2298 0.2460 0.2572

1 The Douban-book data set was too large for the MHCN algorithm. 2 In the table, data in bold indicates
optimal performance.

Table 4. Experimental results for the Last.fm data set.

Model Recall@10 Recall@20 Recall@30 NDCG@10 NDCG@20 NDCG@30

MF-BPR 0.1786 0.2438 0.2958 0.1681 0.1958 0.2145
Social-MF 0.1510 0.2196 0.2676 0.1400 0.1690 0.1863

NGCF 0.1958 0.2738 0.3261 0.1854 0.2185 0.2372
Diffnet++ 0.2545 0.3521 0.4184 0.2512 0.2921 0.3159
MHCN 0.3357 0.4684 0.5499 0.2995 0.3557 0.3848

LightGCN 0.3929 0.5097 0.5823 0.3808 0.4308 0.4571
SGL 0.3831 0.4991 0.5741 0.3739 0.4231 0.4501
SEPT 0.3774 0.4818 0.5562 0.3753 0.4195 0.4463

SSGCL-L 0.4844 0.6092 0.6770 0.4669 0.5202 0.5448
SSGCL-M 0.5495 0.6650 0.7241 0.5510 0.6005 0.6219

Table 5. Experimental results for the Yelp data set.

Model Recall@10 Recall@20 Recall@30 NDCG@10 NDCG@20 NDCG@30

MF-BPR 0.0222 0.0367 0.0512 0.0112 0.0151 0.0182
Social-MF 0.0240 0.0400 0.0543 0.0122 0.0163 0.0195

NGCF 0.0327 0.0571 0.0747 0.0164 0.0227 0.0265
Diffnet++ 0.2077 0.2678 0.3081 0.1456 0.1613 0.1702
MHCN 0.1368 0.1996 0.2470 0.0787 0.0951 0.1055

LightGCN 0.5721 0.6631 0.7136 0.4318 0.4561 0.4674
SGL 0.5832 0.6695 0.7194 0.4478 0.4708 0.4822
SEPT 0.4101 0.5065 0.5638 0.2816 0.3068 0.3195

SSGCL-L 0.6772 0.7690 0.8143 0.5050 0.5296 0.5505
SSGCL-M 0.7143 0.7910 0.8296 0.5546 0.5755 0.5846

4.5. Ablation Study (RQ2)

Ablation experiments helped us gain a deeper understanding of the contributions of
different components of the model to the overall performance. Through gradually removing
specific parts of the model or altering their configurations, we assessed the impacts of these
parts on the model’s performance, thus revealing key factors in the model design.

From the above experiments, we could observe that both SSGCL-L and SSGCL-M
performed well. The variant SSGCL-L adopts a more complicated influence diffusion
strategy that aggregates the user representation at each layer like in many other algorithms
that take social information into account. However, it cannot beat SSGCL-M, which has a
simple final aggregation strategy.
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In this subsection, to further investigate the effectiveness of the model’s simple in-
fluence diffusion strategy and the contrastive learning module, we conducted ablation
experiments to address the question of whether simpler aggregation mechanisms and
contrastive learning make sense. For this purpose, we compared four variants of the model,
namely SSGCL-M utilizing final layer aggregation with contrastive learning, SSGCL-L
employing intermediate layer aggregation with contrastive learning, SSGCL-N using final
layer aggregation without contrastive learning, and SSGCL-O using intermediate layer
aggregation without contrastive learning. To ensure the fairness of the ablation experiments,
we used the same optimizer and other parameters as mentioned before.

From Tables 6–8, it is evident that SSGCL-M achieved the best performance on all three
public data sets. This further shows the effectiveness of our simple final layer aggregation
and the contrastive learning module. SSGCL-M performed better than SSGCL-L, and
SSGCL-N performed better than SSGCL-O, both of which demonstrated that the precisely
designed propagation of previous social recommendation systems did not have much of
an effect on the final performance; furthermore, our final aggregation strategy was simple
and effective, and it lead to better representations and recommendation results. SSGCL-M
and SSGCL-L clearly outperformed the other two variants, which shows the superiority of
our contrastive learning module.

Table 6. Ablation study of the Douban-book data set.

Model Recall@10 Recall@20 Recall@30 NDCG@10 NDCG@20 NDCG@30

SSGCL-M 0.2765 0.3367 0.3757 0.2298 0.2460 0.2572
SSGCL-L 0.2407 0.3042 0.3468 0.1961 0.2129 0.2248
SSGCL-N 0.1947 0.2613 0.3053 0.1619 0.1792 0.1914
SSGCL-O 0.1717 0.2335 0.2796 0.1400 0.1560 0.1856

Table 7. Ablation study of the Last.fm data set.

Model Recall@10 Recall@20 Recall@30 NDCG@10 NDCG@20 NDCG@30

SSGCL-M 0.5495 0.6650 0.7241 0.5510 0.6005 0.6219
SSGCL-L 0.4844 0.6092 0.6770 0.4669 0.5202 0.5448
SSGCL-N 0.3162 0.4321 0.5100 0.3049 0.3541 0.3821
SSGCL-O 0.2997 0.4115 0.4897 0.2893 0.3370 0.3648

Table 8. Ablation study of the Yelp data set.

Model Recall@10 Recall@20 Recall@30 NDCG@10 NDCG@20 NDCG@30

SSGCL-M 0.7143 0.7910 0.8296 0.5546 0.5755 0.5846
SSGCL-L 0.5772 0.7690 0.8143 0.5050 0.5298 0.5505
SSGCL-N 0.4133 0.5140 0.5748 0.2808 0.3072 0.3212
SSGCL-O 0.3706 0.4708 0.5454 0.2455 0.2732 0.2884

4.6. Hyperparameter Analysis (RQ3)

In this subsection, we present the results of the experiments that were conducted
to explore the sensitivity of several key hyperparameters in our model. Analyzing the
parameter sensitivity helped us to better understand the behavior and performance of
the model. Through experimenting with and evaluating different parameter values, we
can understand how the model’s performance changed under different settings, thereby
determining the optimal parameter combination.

The contrastive learning coefficient λ1: We conducted experiments on the contrastive
learning coefficient λ1, and the results are shown in Figure 4. The model performance
peaked on the Last.fm and Douban-book data sets when the contrastive learning coefficient
reached 1 × 10−5. For the Yelp data set, when the contrastive learning coefficient reached
1 × 10−4, the model performance peaked. This shows that adjusting the parameters on
different data sets can optimize model performance, as different data sets exhibit varying
sensitivities to parameters.
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The regularization coefficient λ2: We conducted experiments on the regularization
coefficient λ2. The main purpose of the regularization parameter λ2 is to control the
complexity of the model, thereby helping to prevent overfitting. When the model becomes
overly complex, it may perform well on the training data but poorly on unseen data,
indicating a lack of generalization to new samples. By introducing the regularization
parameter, a penalty term was added to the loss function, penalizing the size of the model
parameters, which made the model simpler and improved its generalization capability.
The results are shown in Figure 5. We observed that when the regularization parameter
was set to 1 × 10−2, our model achieved the best performance on all data sets, which was
different from the case of the contrastive learning coefficient. Additionally, we found that
when we set the parameter between 1 × 10−4 and 1 × 10−8, the experimental results on
the Douban-book and Last.fm data sets remained stable, with the graph lines leveling
off. This trend was more rapid on the Yelp data set. When the parameter was set in the
range of [1 × 10−2, 1 × 10−8], the experimental results stabilized, and the decrease in model
performance was minimal. These findings provide guidance for selecting and adjusting
regularization parameters, emphasizing the importance of finding optimal parameters
within a certain range to achieve stable and excellent model performance.

The temperature coefficient of InfoNCE τ: The temperature coefficient τ plays a
crucial role in adjusting the scale of the contrastive size. The main function of temperature
coefficient τ is to control the proportion of positive and negative sample pairs. From a
mathematical perspective, the temperature coefficient τ in Equation (8) is positioned in the
denominator. Figure 6 clearly shows that, when the model parameter was set to 0.15, the
best performance was achieved on all three data sets. On the Douban-book and Last.fm
data sets, the model performance showed an upward trend as the value of parameter τ
increased within the range [0.1, 0.15]. However, when the parameter was set to [0.15, 1],
the model performance started to decline. On the Yelp data set, the model performance
remained relatively stable within the range [0.1, 0.15], but exhibited a declining trend within
the range of [0.15, 1]. Overall, the optimal performance was achieved when the model
parameter was set to 0.15.

Number of GNN layers: Due to the excessive smoothing issue of GNNs, we conducted
experiments to explore the best number of GNN layers for our model. The experimental
results are shown in Figure 7. For the Last.fm and Yelp data sets, as the number of
GNN layers increased, the model’s performance improved, reaching its peak when the
number of GNN layers was set to three. However, on the Douban-book data set, the model
performance peaked when the GNN layers reached two. This indicates that different data
sets exhibited varying sensitivities to the number of GNN layers. The Douban-book
data set, being larger and more intricate in its interrelations compared with the other two
data sets, further underscored the issue of excessive smoothing in graph neural networks
(GNNs). When data sets exhibit denser and more diverse interaction patterns, increasing
the number of GNN layers may lead to over-smoothing of the features, resulting in a loss
of detail and discriminative power in the learned features.

Noise radius ε: We abandoned traditional graph augmentation methods, such as
random node deletion or random edge deletion, opting instead to introduce uniform
noise into the samples to construct sample pairs and simultaneously enhance the model’s
robustness. However, the introduction of noise must be constrained, as excessive noise
can severely impact the model. Therefore, we imposed a radius constraint on the noise
introduced to ensure the effectiveness and stability of the model. We conducted experiments
with the noise radius parameter ε set to 0.01, 0.05, 0.1, 0.2, 0.3, and 0.4. We found that the
model achieved optimal performance across all three data sets when the noise radius r was
set to 0.1. Moreover, as the noise radius ε increased, the decreasing trend in performance
tended to stabilize. This indicates that our model has a certain level of robustness. The
experimental results are shown in Figure 8.

Through the parameter sensitivity experiments, we found that the data distribution
varied across each data set, leading to the requirement of different parameter configurations
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for the model to achieve optimal performance. Therefore, we had to adjust the parame-
ters to obtain the best performance. This also implies that in recommendation systems,
we can enhance the generalization performance by adjusting the parameters. In other
words, parameter adjustment can improve both the applicability and performance of the
recommendation system.

Figure 4. Sensitivity analysis of λ1.

Figure 5. Sensitivity analysis of λ2.
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Figure 6. Sensitivity analysis of τ.

Figure 7. Sensitivity analysis of GNN layers.
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Figure 8. Sensitivity analysis of ε.

5. Conclusions and Future Work

This paper proposes a simpler and more effective social recommendation system called
SSGCL. Specifically, we explore simpler aggregation methods and design a GNN-based
influence diffusion module that learns informative user and item representations from
both the interest network and the social network. A special contrastive learning module is
then employed, which generates positive and negative samples by simply adding noises
to the original node embedding to manipulate the learned representations for a better
distribution. The experiments demonstrate that some of the strategies in previous social
recommendation models are over-designed, while our model is effective and simple. We
achieve state-of-the-art results on three public data sets in terms of two evaluation metrics.

While our recommendation model has made significant progress in terms of perfor-
mance, there are other issues and limitations inherent in recommendation systems that
should be recognized. For instance, most existing recommendation systems face the risk of
data leakage because they utilize users’ private data and do not consider privacy protection,
making these data vulnerable to malicious attacks. Some companies choose to completely
safeguard data or withhold labels during training to prevent data leakage. However, while
this approach ensures data security, it sacrifices data interactivity, leading to sub-optimal
model performance during training. Similar issues are addressed in other scenarios but not
well explored for recommendation systems yet. Furthermore, social influence and algorith-
mic bias are also common issues in recommendation systems. Recommendation systems
may excessively filter user information, causing users to only encounter information related
to their interests, neglecting other important information and leading to societal fragmenta-
tion. Ensuring more diverse recommendations while improving recommendation system
performance remains a challenge and a focal point for future efforts.

Although these issues are outside the scope of this paper’s consideration, we intend
to address them in our future work. In our future research, we aim to broaden our focus to
explore the robustness of recommendation systems and their security and privacy concerns
to better align with real-world applications and offer numerous intriguing avenues for fu-
ture exploration. Additionally, we would also like to introduce more information, whereas
this study focused solely on social recommendation systems, primarily incorporating social
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information. For example, there has been a surge of interest in knowledge graphs [44]
within the field of recommendation systems. In this way, we can potentially uncover more
latent relationships and achieve superior performance.

Regarding future work, as mentioned, there has been a surge of interest in knowl-
edge graphs [44] within the field of recommendation systems. Knowledge graphs offer
the capability to integrate various types of data, whereas this study focused solely on
social recommendation systems, primarily incorporating social information. Introducing
knowledge graphs into recommendation systems could potentially enrich the system with
a broader range of information, thereby uncovering more latent relationships and achiev-
ing superior performance. On the other hand, incorporating additional information into
recommendation systems may pose challenges, such as compromising model robustness
and introducing excessive noise [19]. In our future research endeavors, we aim to broaden
our focus beyond solely self-supervised learning of graphs. Instead, we intend to explore a
wider array of topics, including the semi-supervised learning of graphs [45], the security of
graph data [46], and privacy concerns in graph recommendation systems [47]. This expan-
sion will enable our recommendation systems to better align with real-world applications
and offer numerous intriguing avenues for future exploration.

Author Contributions: Methodology, W.Z.; Writing – original draft, Z.D.; Writing—review & editing,
C.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data sets used in our experiments are all publicly available.We
have made the code publicly available on github and implemented it using PyTorch. https://github.
com/0Nagatuki0/SSGCL.git.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Gong, X.; Feng, Q.; Zhang, Y.; Qin, J.; Ding, W.; Li, B.; Jiang, P.; Gai, K. Real-time Short Video Recommendation on Mobile Devices.

In Proceedings of the 31st ACM International Conference on Information & Knowledge Management, Atlanta, GA, USA, 17–21
October 2022; pp. 3103–3112.

2. Fan, W.; Ma, Y.; Li, Q.; He, Y.; Zhao, E.; Tang, J.; Yin, D. Graph neural networks for social recommendation. In Proceedings of the
World Wide Web Conference, San Francisco, CA, USA, 13–17 May 2019; pp. 417–426.

3. Volokhin, S.; Collins, M.D.; Rokhlenko, O.; Agichtein, E. Augmenting Graph Convolutional Networks with Textual Data for
Recommendations. In Proceedings of the European Conference on Information Retrieval, Dublin, Ireland, 2 April 2023; Springer:
Berlin/Heidelberg, Germany, 2023; pp. 664–675.

4. Shi, Y.; Larson, M.; Hanjalic, A. List-wise learning to rank with matrix factorization for collaborative filtering. In Proceedings of
the Fourth ACM Conference on Recommender Systems, Barcelona, Spain, 26–30 September 2010; pp. 269–272.

5. Koren, Y.; Bell, R.; Volinsky, C. Matrix factorization techniques for recommender systems. Computer 2009, 42, 30–37. [CrossRef]
6. Abdollahi, B.; Nasraoui, O. Explainable matrix factorization for collaborative filtering. In Proceedings of the 25th International

Conference Companion on World Wide Web, Montreal, QC, Canada, 11–15 April 2016; pp. 5–6.
7. Liu, X.; Aggarwal, C.; Li, Y.F.; Kong, X.; Sun, X.; Sathe, S. Kernelized matrix factorization for collaborative filtering. In Proceedings

of the 2016 SIAM International Conference on Data Mining, Miami, FL, USA, 5–7 May 2016; pp. 378–386.
8. Baltrunas, L.; Ludwig, B.; Ricci, F. Matrix factorization techniques for context aware recommendation. In Proceedings of the Fifth

ACM Conference on Recommender Systems, Chicago, IL, USA, 23–27 October 2011; pp. 301–304.
9. Nguyen, J.; Zhu, M. Content-boosted matrix factorization techniques for recommender systems. Stat. Anal. Data Min. ASA Data

Sci. J. 2013, 6, 286–301. [CrossRef]
10. Yu, H.F.; Hsieh, C.J.; Si, S.; Dhillon, I.S. Parallel matrix factorization for recommender systems. Knowl. Inf. Syst. 2014, 41, 793–819.

[CrossRef]
11. Kumar, R.; Verma, B.; Rastogi, S.S. Social popularity based SVD++ recommender system. Int. J. Comput. Appl. 2014, 87, 33–37.

[CrossRef]
12. Wu, S.; Sun, F.; Zhang, W.; Xie, X.; Cui, B. Graph neural networks in recommender systems: A survey. ACM Comput. Surv. 2022,

55, 1–37. [CrossRef]
13. Scarselli, F.; Gori, M.; Tsoi, A.C.; Hagenbuchner, M.; Monfardini, G. The graph neural network model. IEEE Trans. Neural Netw.

2008, 20, 61–80. [CrossRef]
14. Zhou, J.; Cui, G.; Hu, S.; Zhang, Z.; Yang, C.; Liu, Z.; Wang, L.; Li, C.; Sun, M. Graph neural networks: A review of methods and

applications. AI Open 2020, 1, 57–81. [CrossRef]

https://github.com/0Nagatuki0/SSGCL.git
https://github.com/0Nagatuki0/SSGCL.git
http://doi.org/10.1109/MC.2009.263
http://dx.doi.org/10.1002/sam.11184
http://dx.doi.org/10.1007/s10115-013-0682-2
http://dx.doi.org/10.5120/15279-4033
http://dx.doi.org/10.1145/3535101
http://dx.doi.org/10.1109/TNN.2008.2005605
http://dx.doi.org/10.1016/j.aiopen.2021.01.001


Mathematics 2024, 12, 1107 19 of 20

15. Yin, R.; Li, K.; Zhang, G.; Lu, J. A deeper graph neural network for recommender systems. Knowl.-Based Syst. 2019, 185, 105020.
[CrossRef]

16. Huang, T.; Dong, Y.; Ding, M.; Yang, Z.; Feng, W.; Wang, X.; Tang, J. MixGCF: An improved training method for graph neural
network-based recommender systems. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data
Mining, Online, 14–18 August 2021; pp. 665–674.

17. Xia, L.; Huang, C.; Xu, Y.; Dai, P.; Bo, L. Multi-behavior graph neural networks for recommender system. IEEE Trans. Neural
Netw. Learn. Syst. 2022, 35, 5473–5487. [CrossRef]

18. Wang, C.; Pan, S.; Hu, R.; Long, G.; Jiang, J.; Zhang, C. Attributed graph clustering: A deep attentional embedding approach.
arXiv 2019, arXiv:1906.06532.

19. Berahmand, K.; Daneshfar, F.; Salehi, E.S.; Li, Y.; Xu, Y. Autoencoders and their applications in machine learning: A survey. Artif.
Intell. Rev. 2024, 57, 28. [CrossRef]

20. Daneshfar, F.; Soleymanbaigi, S.; Nafisi, A.; Yamini, P. Elastic deep autoencoder for text embedding clustering by an improved
graph regularization. Expert Syst. Appl. 2024, 238, 121780. [CrossRef]

21. Chen, T.; Kornblith, S.; Norouzi, M.; Hinton, G. A simple framework for contrastive learning of visual representations. In
Proceedings of the International Conference on Machine Learning, PMLR, Online, 13–18 July 2020; pp. 1597–1607.

22. He, K.; Fan, H.; Wu, Y.; Xie, S.; Girshick, R. Momentum contrast for unsupervised visual representation learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 9729–9738.

23. Wu, J.; Wang, X.; Feng, F.; He, X.; Chen, L.; Lian, J.; Xie, X. Self-supervised graph learning for recommendation. In Proceedings of
the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, Online, 11–15 July 2021;
pp. 726–735.

24. Wang, H.; Zhang, J.; Zhu, Q.; Huang, W. Augmentation-free graph contrastive learning with performance guarantee. arXiv 2022,
arXiv:2204.04874.

25. Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907.
26. Jamali, M.; Ester, M. A matrix factorization technique with trust propagation for recommendation in social networks. In

Proceedings of the Fourth ACM Conference on Recommender Systems, Barcelona, Spain, 26–30 September 2010; pp. 135–142.
27. Yang, B.; Lei, Y.; Liu, J.; Li, W. Social collaborative filtering by trust. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1633–1647.

[CrossRef] [PubMed]
28. Rendle, S.; Freudenthaler, C.; Gantner, Z.; Schmidt-Thieme, L. BPR: Bayesian personalized ranking from implicit feedback. arXiv

2012, arXiv:1205.2618.
29. Yang, L.; Cao, X.; He, D.; Wang, C.; Wang, X.; Zhang, W. Modularity based community detection with deep learning. In

Proceedings of the IJCAI, New York, NY, USA, 9–15 July 2016; Volume 16, pp. 2252–2258.
30. Wang, X.; He, X.; Wang, M.; Feng, F.; Chua, T.S. Neural graph collaborative filtering. In Proceedings of the 42nd International

ACM SIGIR Conference on Research and Development in Information Retrieval, Paris, France, 21–25 July 2019; pp. 165–174.
31. Wu, L.; Li, J.; Sun, P.; Hong, R.; Ge, Y.; Wang, M. Diffnet++: A neural influence and interest diffusion network for social

recommendation. IEEE Trans. Knowl. Data Eng. 2020, 34, 4753–4766. [CrossRef]
32. Yang, L.; Liu, Z.; Dou, Y.; Ma, J.; Yu, P.S. ConsisRec: Enhancing GNN for social recommendation via consistent neighbor

aggregation. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information
Retrieval, Online, 11–15 July 2021; pp. 2141–2145.

33. He, X.; Deng, K.; Wang, X.; Li, Y.; Zhang, Y.; Wang, M. LightGCN: Simplifying and powering graph convolution network for
recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information
Retrieval, Online, 25–30 July 2020; pp. 639–648.

34. Xia, J.; Wu, L.; Chen, J.; Hu, B.; Li, S.Z. SimGRACE: A simple framework for graph contrastive learning without data augmentation.
In Proceedings of the ACM Web Conference 2022, Online, 25–29 April 2022; pp. 1070–1079.

35. Cai, X.; Huang, C.; Xia, L.; Ren, X. LightGCL: Simple Yet Effective Graph Contrastive Learning for Recommendation. arXiv 2023,
arXiv:2302.08191.

36. Yu, J.; Yin, H.; Xia, X.; Chen, T.; Cui, L.; Nguyen, Q.V.H. Are graph augmentations necessary? Simple graph contrastive
learning for recommendation. In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in
Information Retrieval, Madrid, Spain, 11–15 July 2022; pp. 1294–1303.

37. Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the
literature. Geosci. Model Dev. 2014, 7, 1247–1250. [CrossRef]

38. Oord, A.v.d.; Li, Y.; Vinyals, O. Representation learning with contrastive predictive coding. arXiv 2018, arXiv:1807.03748.
39. Karakayali, N.; Kostem, B.; Galip, I. Recommendation systems as technologies of the self: Algorithmic control and the formation

of music taste. Theory, Cult. Soc. 2018, 35, 3–24. [CrossRef]
40. Zhao, W.X.; Mu, S.; Hou, Y.; Lin, Z.; Chen, Y.; Pan, X.; Li, K.; Lu, Y.; Wang, H.; Tian, C.; et al. RecBole: Towards a unified,

comprehensive and efficient framework for recommendation algorithms. In Proceedings of the 30th ACM International
Conference on Information & Knowledge Management, Online, 1–5 November 2021; pp. 4653–4664.

41. Yu, J.; Yin, H.; Gao, M.; Xia, X.; Zhang, X.; Viet Hung, N.Q. Socially-aware self-supervised tri-training for recommendation.
In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, Online, 14–18 August 2021;
pp. 2084–2092.

http://dx.doi.org/10.1016/j.knosys.2019.105020
http://dx.doi.org/10.1109/TNNLS.2022.3204775
http://dx.doi.org/10.1007/s10462-023-10662-6
http://dx.doi.org/10.1016/j.eswa.2023.121780
http://dx.doi.org/10.1109/TPAMI.2016.2605085
http://www.ncbi.nlm.nih.gov/pubmed/27608451
http://dx.doi.org/10.1109/TKDE.2020.3048414
http://dx.doi.org/10.5194/gmd-7-1247-2014
http://dx.doi.org/10.1177/0263276417722391


Mathematics 2024, 12, 1107 20 of 20

42. Yu, J.; Yin, H.; Li, J.; Wang, Q.; Hung, N.Q.V.; Zhang, X. Self-supervised multi-channel hypergraph convolutional network for
social recommendation. In Proceedings of the Web Conference 2021, Ljubljana, Slovenia, 19–23 April 2021; pp. 413–424.

43. Gao, Y.; Du, Y.; Hu, Y.; Chen, L.; Zhu, X.; Fang, Z.; Zheng, B. Self-guided learning to denoise for robust recommendation. In
Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Madrid,
Spain, 11–15 July 2022; pp. 1412–1422.

44. Yang, Y.; Huang, C.; Xia, L.; Li, C. Knowledge graph contrastive learning for recommendation. In Proceedings of the 45th
International ACM SIGIR Conference on Research and Development in Information Retrieval, Madrid, Spain, 11–15 July 2022;
pp. 1434–1443.

45. Daneshfar, F.; Soleymanbaigi, S.; Yamini, P.; Amini, M.S. A survey on semi-supervised graph clustering. Eng. Appl. Artif. Intell.
2024, 133, 108215. [CrossRef]

46. Sun, L.; Dou, Y.; Yang, C.; Zhang, K.; Wang, J.; Philip, S.Y.; He, L.; Li, B. Adversarial attack and defense on graph data: A survey.
IEEE Trans. Knowl. Data Eng. 2022, 35, 7693–7711. [CrossRef]

47. Zhang, S.; Yin, H.; Chen, T.; Huang, Z.; Cui, L.; Zhang, X. Graph embedding for recommendation against attribute inference
attacks. In Proceedings of the Web Conference 2021, Ljubljana, Slovenia, 19–23 April 2021; pp. 3002–3014.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.engappai.2024.108215
http://dx.doi.org/10.1109/TKDE.2022.3201243

	Introduction
	Related Work
	Matrix Factorization (MF)-Based Recommendation Systems
	Recommendation Systems Based on Graph Neural Networks
	Recommendation System with Graph Contrastive Learning

	Methodology 
	Notation
	Diffusion Module
	Prediction Layer
	Model Training
	Supervised Loss
	Self-Supervised Loss
	Final Loss


	Experiments
	Benchmark Data Sets
	Baseline Methods
	Experimental Setup
	Performance Comparison (RQ1)
	Ablation Study (RQ2)
	Hyperparameter Analysis (RQ3)

	Conclusions and Future Work
	References 

