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Abstract: In this paper, a new full-Newton step feasible interior-point method for convex quadratic
programming is presented and analyzed. The idea behind this method is to replace the complemen-
tarity condition with a non-negative weight vector and use the algebraic equivalent transformation
for the obtained equation. Under the selection of appropriate parameters, the quadratic rate of con-
vergence of the new algorithm is established. In addition, the iteration complexity of the algorithm is
obtained. Finally, some numerical results are presented to demonstrate the practical performance of
the proposed algorithm.
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1. Introduction

Since Karmarkar’s seminal paper [1], a large amount of research has been devoted to
the study of interior-point methods (IPMs). IPMs are one of the most efficient methods for
solving linear optimization (LO). At the same time, these methods have been extended to
other optimization problems, including convex quadratic programming (CQP), semidefinite
optimization (SDO), etc.

Full-Newton step IPMs for solving LO were initiated by Roos et al. [2]. The main
advantage of these methods is that they use only full-Newton steps and no line searches are
needed. Furthermore, the iterates always lie in the quadratic convergence neighborhood,
under some mild assumptions. In 2003, Darvay [3] proposed an algebraic equivalent
transformation (AET) technique to determine search directions in IPMs for LO. He applied
a continuously differentiable and monotone function ψ : [0, ∞] → R on both sides of the
centering equation of the central path and then used Newton’s method to derive the search
directions. In addition, he introduced a full-Newton step primal–dual path-following
interior-point algorithm for LO using the square root function in the AET technique. Later
on, Achache [4], Wang and Bai [5–7] and Wang et al. [8] extended Darvay’s algorithm
for LO to CQP, second-order cone optimization (SOCO), SDO and symmetric cone op-
timization (SCO) and P∗(κ) linear complementarity problem (P∗(κ)-LCP), respectively.
Boudjellal et al. [9,10] proposed primal–dual interior-point algorithms for solving convex
quadratic programming (CQP) problems based on parametric kernel functions with expo-
nential and polynomial barrier terms.

The weighted linear complementarity problem (WLCP) was introduced by Potra [11].
In that paper, Potra defined a smooth central path for the WLCP and proposed two interior-
point algorithms to solve the WLCP, both of which followed the smooth central path.
Asadi et al. [12] extended the full-Newton step IPM introduced in [2] to the monotone WLCP
and proved the quadratic rate of convergence to the target points on the smooth central
path. Recently, Kheirfam [13] extended the full-Newton step IPM using the ψ(z) =

√
z
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function in the AET technique for the monotone WLCP. Based on the function ψ(z) =
√

z in
the AET technique, Zhang et al. [14] defined a predictor–corrector interior-point algorithm
for P∗(κ)-WLCP. Very recently, Boudjellal and Benterki [15] extended the full-Newton step
feasible IPM to solve CQP problems based on replacing the complementarity condition by
a non-negative weight vector.

Inspired by the works mentioned above, we extend the full-Newton step IPM to CQP.
We replace the complementarity condition with a non-negative weight vector and then use
the ψ(z) =

√
z function in the AET technique. We apply the Newton method to the system

defining the weighted central path to obtain search directions and take full steps along these
search directions. We prove the feasibility of the full steps and quadratic rate of convergence
to the target points on the weighted central path. By choosing appropriate values for the
parameters, we obtain an iteration bound for WCQP with the same complexity as the one
obtained for this type of problem. The novelty of the proposed method lies in the use of
AET to solve the convex QP, which the method presented in [15] is a special case of our
method for ψ(z) = z.

The paper is organized as follows. In Section 2, we recall the primal–dual pair of
CQP problems and then state the weighted central path for the CQP problem. In Section 3,
we describe the AET technique on the weighted central path and define a norm-based
proximity measure. A generic framework of the algorithm is presented. Section 4 is devoted
to the analysis of the algorithm. In Section 5, we derive an iteration bound for the proposed
algorithm. Some numerical results are presented in Section 6. Concluding remarks are
given in Section 7.

2. CQP and Its Weighted Central Path

Consider the primal–dual CQP problem pair in the following standard form:

min cTx + 1
2 xTQx

s.t. Ax = b
x ≥ 0,

max bTy − 1
2 xTQx

s.t. ATy + s − Qx = c
s ≥ 0,

(1)

where Q ∈ Rn×n is a symmetric and positive semidefinite matrix, A ∈ Rm×n is a full-row-
rank matrix, c ∈ Rn, and b ∈ Rm. The vectors x ∈ Rn, s ∈ Rn and y ∈ Rm are the decision
variables. Let F 0 denote the set of strictly feasible solutions of the primal–dual pair (1), i.e.,

F 0 = {(x, y, s) : Ax = b, ATy + s − Qx = c, x > 0, s > 0}.

It is well known that finding an optimal solution for the primal–dual pair (1) is equivalent
to solve the following Karush–Khun–Tucker (KKT) optimality conditions:

Ax = b, x ≥ 0,
ATy + s − Qx = c, s ≥ 0,

xs = 0,
(2)

where xs = [x1s1, . . . , xnsn]T denotes the coordinate-wise (Hadamard) product of the
vectors x and s. We consider the same central path as introduced in [15]. Let an initial point
(x0, y0, s0) ∈ F 0 be given; we define

t0 := (x0)Ts0

n , cc := x0s0, γ := min cc
t0 , w(t) := (1 − t

t0 )w+ + t
t0 cc, w+ := (1 − θ)w, (3)

where t ∈ [0, t0], w ∈ Rn
+ and θ ∈ [0, 1]. The basic idea of IPMs for weighted problems

is to replace the complementarity condition xs = 0 in (2) by the parameterized equation
xs = w(t). In this way, we obtain the following perturbed system

Ax = b, x ≥ 0,
ATy + s − Qx = c, s ≥ 0,

xs = w(t).
(4)
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Under our assumptions, it is proved in [16] that the system (4) has a unique solution for
each t ∈ [0, t0], denoted by (x(w(t)), y(w(t)), s(w(t))). The set of all these solutions forms
the so-called weighted path for (1). If t → 0 and w → 0, then w(t) → 0, the limit of the
weighted path exists, and the limit point satisfies the complementarity condition. Therefore,
the limit gives an optimal solution of (1).

3. New Search Direction and Algorithm

According to the idea of algebraic equivalent transformation presented by Darvay [3],
we write the system (4) in the following equivalent form:

Ax = b, x ≥ 0,
ATy + s − Qx = c, s ≥ 0,

ψ(xs) = ψ(w(t)),
(5)

where ψ : [ξ, ∞] → R is a continuously differentiable function with ψ
′
(z) > 0 for z ∈ [ξ, ∞]

and ξ ∈ [0, 1]. It is worth noting that the transformed system (5) does not change the
weighted path and only specifies different directions depending on the ψ function.

Let us be at the point (x, y, s) ∈ F 0; then, by applying Newton’s method in system (5),
the search direction (∆x, ∆y, ∆s) is the solution of the following linear system:

A∆x = 0,
AT∆y + ∆s − Q∆x = 0,

s∆x + x∆s = ψ(w(t))−ψ(xs)
ψ
′ (xs)

.
(6)

Considering the function ψ(z) =
√

z for system (6), we obtain the following system

A∆x = 0,
AT∆y + ∆s − Q∆x = 0,

s∆x + x∆s = 2
√

xs
(√

w(t)−
√

xs
)
.

(7)

The new iterates are then given by:

x+ := x + ∆x, y+ := y + ∆y, s+ := s + ∆s,

this means that a full-Newton step is taken along the search directions.

Remark 1. Note that for ψ(z) = z, we obtain the search directions introduced in [15].

For ease of analysis, we consider a scaled version of (7). For this purpose, we introduce
the vector v and the scaled search directions dx and ds as follows:

v :=
√

xs
t

, dx :=
v∆x

x
, ds :=

v∆s
s

. (8)

With these notations, one easily checks that the system (7) can be rewritten as follows:

Adx = 0,
AT ∆y

t + ds − Qdx = 0,
dx + ds = pv,

(9)

where A :=
√

tAD, Q := DQD, D := diag
(√ x

s
)
= diag

(√ x1
s1

, . . . ,
√

xn
sn

)
, and pv :=

2
(√

w(t)
t − v

)
.



Mathematics 2024, 12, 1104 4 of 11

We define the norm-based proximity δ(v) to measure the distance between the cur-
rent iterate (x, y, s) and the weighted center (x(w(t)), y(w(t)), s(w(t))) for a given t > 0,
as follows:

δ(v) := δ(x, s; t) =
1
2
∥pv∥ =

∥∥∥√w(t)
t

− v
∥∥∥. (10)

Note that

xs = w(t) ⇔ v2 =
w(t)

t
⇔ v =

√
w(t)

t
⇔ δ(v) = 0,

where v2 = vv. Let qv := dx − ds. Then, by the third equation of (9), we have

dx =
pv + qv

2
, ds =

pv − qv

2
, dxds =

p2
v − q2

v
4

. (11)

Furthermore, we have

∥qv∥2 = ∥dx − ds∥2 = ∥dx + ds∥2 − 4dT
x ds ≤ ∥pv∥2 = 4δ2, (12)

where the inequality comes from the fact that

dT
x ds = dT

x
(
Qdx − AT ∆y

t
)
= dT

x Qdx ≥ 0,

where the first equality is due to the second equation of (9), and the second equality follows
from the first equation of (9).

We now give a generic framework of our new weighted interior-point algorithm
(Algorithm 1).

Algorithm 1: Full-Newton step IPM for WCQP
Input:
A ∈ Rm×n, Q ∈ Rn×n(symmetric and positive semidefinite), c ∈ Rn, b ∈ Rm;
the accuracy parameter ε > 0;
the threshold parameter τ ∈ [0, 1];
the barrier update parameter θ ∈ [0, 1];

An initial point (x0, y0, s0) ∈ F 0 with δ(x0, s0; t0) ≤ τ, where t0 = (x0)Ts0

n ;
cc = x0s0, w0 ≥ cc;
begin
x = x0, y = y0, s = s0, t = t0, w = w0;
while ∥

√
w −

√
xs∥ > ε do

Set t = (1 − θ)t, w = (1 − θ)w, w(t) = (1 − t
t0 )w + t

t0 cc;
Determine (∆x, ∆y, ∆s) according to (7);
Set (x, y, s) = (x, y, s) + (∆x, ∆y, ∆s);
end
end.

4. Analysis of the Algorithm

In the next lemma, we present a sufficient condition that guarantees that the full-
Newton step is strictly feasible.

Lemma 1. Let (x, y, s) be a strictly feasible point. A new iterate (x+, y+, s+) is strictly feasible if

δ := δ(v) <
√

γ,

where γ is defined as (3).
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Proof. We introduce a step length α ∈ [0, 1] and define

x(α) := x + α∆x, s(α) := s + α∆s.

Therefore, by using (8), (11) and the third equation of (9), we have

x(α)s(α)
t

=
xs
t
+ α

x∆s + s∆x
t

+ α2 ∆x∆s
t

= v2 + αv(dx + ds) + α2dxds

= v2 + αvpv + α2 p2
v − q2

v
4

= (1 − α)v2 + α(v2 + vpv) + α2 p2
v − q2

v
4

= (1 − α)v2 + α
(w(t)

t
− (1 − α)

p2
v

4
− α

q2
v

4

)
, (13)

where the last equality is obtained from the following

v2 + vpv = v2 + 2v
(√w(t)

t
− v

)
= 2v

√
w(t)

t
− v2 =

w(t)
t

− p2
v

4
.

Furthermore, for α ∈ [0, 1], we have∥∥∥(1 − α)
p2

v
4

+ α
q2

v
4

∥∥∥
∞
≤ (1 − α)

∥p2
v∥∞

4
+ α

∥q2
v∥∞

4

≤ (1 − α)
∥pv∥2

4
+ α

∥qv∥2

4
≤ (1 − α)δ2 + αδ2 = δ2 < γ, (14)

where the first inequality is due to the triangle inequality, the second inequality follows
from the fact that for x ∈ Rn, ∥x∥∞ ≤ ∥x∥, the third inequality is due to (12) and the last
inequality comes from the assumption δ <

√
γ. Moreover, we have

min
(w(t)

t
− (1 − α)

p2
v

4
− α

q2
v

4

)
≥ min

w(t)
t

−
∥∥∥(1 − α)

p2
v

4
+ α

q2
v

4

∥∥∥
∞

≥ min
cc
t0 −

∥∥∥(1 − α)
p2

v
4

+ α
q2

v
4

∥∥∥
∞

= γ −
∥∥∥(1 − α)

p2
v

4
+ α

q2
v

4

∥∥∥
∞
> 0.

where the second inequality is due to w(t) = (1− t
t0 )w+ + t

t0 cc ≥ t
t0 cc, the equality follows

from (3) and the last inequality is due to (14). Thus, for all α ∈ [0, 1], we have

(1 − α)v2 + α
(w(t)

t
− (1 − α)

p2
v

4
− α

q2
v

4

)
> 0,

which, by (13), implies that x(α)s(α) > 0 for α ∈ [0, 1]. Hence, none of the entries of x(α)
and s(α) vanish for α ∈ [0, 1]. Since x > 0 and s > 0 and x(α) and s(α) are linear functions
on α, this implies that x(α) > 0 and s(α) > 0 for α ∈ [0, 1]. Hence, x(1) = x+ > 0 and
s(1) = s+ > 0. This completes the proof.

Lemma 2. Let δ := δ(v). After a full-Newton step

min
i
(v+i ) ≥

√
γ − δ2, where v+ =

√
x+s+

t
,

and γ is defined as in (3).
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Proof. From (13) with α = 1, it follows that

x+s+

t
=

w(t)
t

− q2
v

4
. (15)

Now, from (15) and the definition of v+, we have

min
i
(v+i )

2 = min
i

(wi(t)
t

− (q2
v)i
4

)
≥ min

i

wi(t)
t

− ∥q2
v∥∞

4

≥
min

i
cci

t0 − ∥qv∥2

4
≥ γ − δ2,

where the second inequality follows from w(t) ≥ t
t0 cc and ∥q2

v∥∞ ≤ ∥qv∥2
∞ ≤ ∥qv∥2, and

the last inequality is due to (3) and (12). By taking the square root of both sides of the above
inequality, the desired inequality in the lemma is obtained, and the proof is complete.

The next lemma shows the effect of a full-Newton step on the proximity measure.

Lemma 3. Let δ := δ(v) <
√

γ, γ is defined as in (3). Then, we have

δ+ := δ(v+) ≤ δ2

√
γ +

√
γ − δ2

.

Thus, δ+ ≤ 1√
γ δ2, which shows the quadratic convergence of the algorithm.

Proof. We have

(δ+)2 =
∥∥∥√w(t)

t
− v+

∥∥∥2
=

n

∑
i=1

(√wi(t)
t

− v+i
)2

=
n

∑
i=1

(√wi(t)
t

− v+i
)2

(√
wi(t)

t + v+i
)2

(√
wi(t)

t + v+i
)2

≤ 1(√mini cci
t + min

i
(v+i )

)2

n

∑
i=1

(wi(t)
t

− (v+i )
2
)2

≤ 1(√
γ +

√
γ − δ2

)2

∥∥∥w(t)
t

− (v+)2
∥∥∥2

=
1(√

γ +
√

γ − δ2
)2

∥∥ q2
v

4

∥∥2

≤ 1(√
γ +

√
γ − δ2

)2

(∥qv∥2

4

)2

≤
( δ2

√
γ +

√
γ − δ2

)2
,

where the second inequality follows from the fact that wi(t)
t ≥ cci

t0 ≥ mini cci
t0 = γ and

Lemma 2, the fourth equality is due to (15), the third inequality results from the fact that
∥x2∥ ≤ ∥x∥2 for x ∈ Rn, and the last inequality is due to (12). By taking the square root of
both sides of the above inequality, the proof is complete.

In the following lemma, we give an upper bound on the duality gap after a full-Newton step.

Lemma 4. After a full-Newton step, we have

(x+)Ts+ ≤ eTw(t),
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where e = [1, . . . , 1]T .

Proof. From (15), we obtain

(x+)Ts+

t
= eT w(t)

t
− eT q2

v
4

= eT w(t)
t

− 1
4
∥qv∥2 ≤ 1

t
eTw(t),

which proves the lemma.

When t is updated at each iteration, we estimate an upper bound on the value of the
proximity measure.

Lemma 5. Let δ := δ(x, s; t) <
√

γ and t+ := (1 − θ)t, where θ ∈]0, 1[. Then, we have

δ(x+, s+; t+) ≤ 1
√

1 − θ
(√

γ − θ
t0 ∥w − cc∥ − θ2

t0 ∥w∥+
√

γ − δ2
)(δ2 +

θ

t0 ∥w − cc∥+ θ2

t0 ∥w∥
)

,

where γ and cc are defined as in (3).

Proof. Let v̄+ :=
√

x+s+
t+ . Furthermore, from the definition of w(t), we have

w(t+) = w(t) +
θt
t0 (w

+ − cc) ≥ t
t0 cc +

θt
t0 (w

+ − cc) = (1 − θ)
t
t0 cc +

θt
t0 w+ > 0.

Therefore, we have

δ2(x+, s+; t+) =
∥∥∥√w(t+)

t+
− v̄+

∥∥∥2
=

∥∥∥
√

w(t) + θt
t0 (w+ − cc)

(1 − θ)t
− v+√

1 − θ

∥∥∥2

=
1

1 − θ

∥∥∥√w(t)
t

+
θ

t0 (w
+ − cc)− v+

∥∥∥2

≤ 1
1 − θ

n

∑
i=1

1(√wi(t)
t + θ

t0 (w
+
i − cci) + v+i

)2

(wi(t)
t

+
θ

t0 (w
+
i − cci)− (v+i )

2
)2

≤ 1

(1 − θ)
(√

γ − θ
t0 ∥w+ − cc∥+

√
γ − δ2

)2

(∥∥w(t)
t

− (v+)2∥∥+ θ

t0 ∥w+ − cc∥
)2

≤ 1

(1 − θ)
(√

γ − θ
t0 ∥w+ − cc∥+

√
γ − δ2

)2

(∥qv∥2

4
+

θ

t0 ∥w+ − cc∥
)2

≤ 1

(1 − θ)
(√

γ − θ
t0 ∥w+ − cc∥+

√
γ − δ2

)2

(
δ2 +

θ

t0 ∥w+ − cc∥
)2

≤ 1

(1 − θ)
(√

γ − θ
t0 ∥w − cc∥ − θ2

t0 ∥w∥+
√

γ − δ2
)2

(
δ2 +

θ

t0 ∥w − cc∥+ θ2

t0 ∥w∥
)2

.

The square root of both sides of the above inequality gives the desired inequality. The proof
is complete.

5. Iteration Bound

We obtain an upper bound on the number of iterations of the proposed algorithm.
Before doing this, we determine the values of the barrier parameter θ and the threshold
parameter τ that guarantee that the iterates are located in the τ-neighborhood of the central
path, i.e, if δ := δ(x, s; t) ≤ τ, then δ(x+, s+; t+) ≤ τ. By Lemma 5, we have
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δ(x+, s+; t+) ≤
δ2 + θ

t0 ∥w − cc∥+ θ2

t0 ∥w∥
√

1 − θ
(√

γ − θ
t0 ∥w − cc∥ − θ2

t0 ∥w∥+
√

γ − δ2
) ,

and because δ ≤ τ, we have

δ(x+, s+; t+) ≤
τ2 + θ

t0 ∥w − cc∥+ θ2

t0 ∥w∥
√

1 − θ
(√

γ − θ
t0 ∥w − cc∥ − θ2

t0 ∥w∥+
√

γ − τ2
) .

Substituting t0 = min cc
γ in the latter inequality, we obtain

δ(x+, s+; t+) ≤
τ2 + γθ

min cc∥w − cc∥+ γθ2

min cc∥w∥
√

1 − θ
(√

γ − γθ
min cc∥w − cc∥ − γθ2

min cc∥w∥+
√

γ − τ2
) .

If we take τ =
√

γ
2 , we obtain

δ(x+, s+; t+) ≤
τ2 + 2τ2θ

min cc∥w − cc∥+ 2τ2θ2

min cc∥w∥
√

1 − θ
(√

2τ2 − 2τ2θ
min cc∥w − cc∥ − 2τ2θ2

min cc∥w∥+ τ
) .

Therefore, the condition δ(x+, s+; t+) ≤ τ holds if

τ2 + 2τ2θ
min cc∥w − cc∥+ 2τ2θ2

min cc∥w∥
√

1 − θ
(√

2τ2 − 2τ2θ
min cc∥w − cc∥ − 2τ2θ2

min cc∥w∥+ τ
) ≤ τ,

or
1 + 2θ

min cc∥w − cc∥+ 2θ2

min cc∥w∥
√

1 − θ
(√

2 − 2θ
min cc∥w − cc∥ − 2θ2

min cc∥w∥+ 1
) ≤ 1.

If we take

θ =
min cc

4(min cc + ∥w∥) , and w > cc,

we obtain θ ≤ 1
4 , which yields 1√

1−θ
≤ 2√

3
and

1 + 2θ
min cc∥w − cc∥+ 2θ2

min cc∥w∥
√

1 − θ
(√

2 − 2θ
min cc∥w − cc∥ − 2θ2

min cc∥w∥+ 1
) ≤ 2√

3

( 6
6 +

√
53

)(55
36

)
≤ 0.7970 < 1.

The following theorem gives the main result of the paper.

Theorem 1. If θ = min cc
4(min cc+∥w∥) and τ =

√
γ
2 , then the algorithm achieves an ε-approximate

solution (x, y, s) ∈ F 0 such that ∥
√

w −
√

xs∥ ≤ ε, after at most
8
(

min cc + ∥w∥
)

min cc
log

max{
√

min cc
2 +

∥∥∥ cc−w
2
√

w+e

∥∥∥, ∥w∥}
ε


iterations.

Proof. Using the triangle inequality, we have
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∥
√

w −
√

xs∥ ≤ ∥
√

w(t)−
√

xs∥+ ∥
√

w(t)−
√

w∥

=
√

t
∥∥∥√w(t)

t
− v

∥∥∥+ ∥
√

w(t)−
√

w∥

=
√

tδ + ∥
√

w(t)−
√

w∥

≤
√

tγ
2

+ ∥
√

w(t)−
√

w∥, (16)

where the second equality is due to (10), and the last inequality follows from δ ≤ τ =
√

γ
2 .

On the other hand, from the definition of w(t) in (3), we have

∥∥√w(t)−
√

w
∥∥ =

∥∥∥√w +
t
t0 (cc − w)−

√
w
∥∥∥

≃
∥∥∥√w +

t
t0 (cc − w)

2
√

w + e
−
√

w
∥∥∥ ≤

√
t
t0

∥∥∥ cc − w
2
√

w + e

∥∥∥.

Substituting this bound into (16) yields after k iterations

∥
√

w −
√

xs∥ ≤
(√ t0γ

2
+

∥∥∥ cc − w
2
√

w + e

∥∥∥)√ t
t0 ≤

(√ t0γ

2
+

∥∥∥ cc − w
2
√

w + e

∥∥∥)(1 − θ)
k
2 .

Using the definition of γ in (3), we deduce that ∥
√

w −
√

xs∥ ≤ ε is satisfied if

(√min cc
2

+
∥∥∥ cc − w

2
√

w + e

∥∥∥)(1 − θ)
k
2 ≤ ε.

Taking the logarithms of both sides and using the inequality log(1 + θ) ≤ θ for θ > −1,
we obtain

k ≥
8
(

min cc + ∥w∥
)

min cc
log

√
min cc

2 +
∥∥∥ cc−w

2
√

w+e

∥∥∥
ε

.

Moreover, since at each iteration the norm of the w vector is also reduced by the factor
1 − θ, the result is obtained. The proof is completed.

6. Numerical Results

In this section, we present computational results in the MATLAB environment to
compare the proposed algorithm and the algorithm presented in [15]. We used the value of
the accuracy parameter ε = 10−4. In the implementation, we took different values of the
weight vector w0 such that w0 ∈ {cc + 10−3,

√
3cc, 3cc, ncc}. We reduced the value of the

parameter t and the weight vector w by the factor 1 − θ with θ = 0.2. Table 1 shows the
number of iterations of the proposed algorithm (denoted by iter) and the algorithm in [15]
(denoted by iter [15]) to obtain the optimal solution. The optimal values of the primal and
dual objective functions are denoted by “pri” and “dua”, respectively. In the following, we
give the standard test problems of CQP problems [15].

Example 1. A =

(
−1 1 0
1 1 1

)
, b =

(
1
2

)
, c =

 −2
−4
0

, Q =

 2 0 0
0 2 0
0 0 0

.

The initial primal–dual interior point is:

x0 = (0.3262, 1.3261, 0.3477)T , y0 = (0,−2.0721)T , s0 = (0.7247, 0.7247, 2.0722)T .
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Example 2. A =

(
1 1 1 0
1 5 0 1

)
, c =


−4
−6
0
0

, Q =


4 −2 0 0
−2 4 0 0
0 0 0 0
0 0 0 0

, b =

(
2
5

)
.

The initial primal–dual interior point is:

x0 = (0.9683, 0.5775, 0.4543, 1.1444)T , y0 = (−0.9184,−1.1244)T ,

s0 = (0.7612, 0.9141, 0.9185, 1.1244)T .

Example 3. A =

 1 1.2 1 1.8 0
3 −1 1.5 −2 1
−1 2 −3 4 2

, c =


1

−1.5
2

1.5
3

, b =

 9.31
5.45
6.60



Q =


20 1.2 0.5 0 −1
1.2 32 1 1 1
0.5 1 14 1 1
0.5 1 1 15 1
−1 1 1 1 16

.

The initial primal–dual interior point is:

x0 = (2.4539, 0.7875, 1.5838, 2.4038, 1.3074)T , y0 = (20.5435, 9.4781, 4.3927)T ,

s0 = (7.1215, 7.9763, 8.3150, 6.8686, 7.9750)T .

Table 1. The numerical results of Examples 1, 2 and 3 with different values of w0.

Exam. w0 iter iter [15] pri dua

Exam. 1 cc + 10−3 43 55 −4.4999 −4.4995
Exam. 1 3cc 48 64 −4.4999 −4.4994
Exam. 1

√
3cc 45 54 −4.4999 −4.4994

Exam. 1 (n + 1)cc 46 78 −4.4999 −4.4994
Exam. 2 cc + 10−3 44 51 −7.1614 −7.1610
Exam. 2 3cc 49 58 −7.1614 −7.1609
Exam. 2

√
3cc 46 52 −7.1614 −7.1610

Exam. 2 n cc 50 83 −7.1614 −7.1609
Exam. 3 cc + 10−3 57 64 172.7165 172.7169
Exam. 3 3cc 62 78 172.7165 172.7170
Exam. 3

√
3cc 59 67 172.7165 172.7169

Exam. 3 n cc 61 89 172.7165 172.7170

Note: The table shows that w0 close to cc gives better iteration numbers.

7. Concluding Remarks

In this paper, we presented a full-Newton step IPM based on the AET for weighted
convex quadratic programming. We used the square root function in order to obtain
a new search direction. By appropriate choosing the barrier parameter θ and thresh-
old parameter τ, we showed that the proposed algorithm had a complexity bound of⌈

8
(

min cc+∥w∥
)

min cc log
max{

√
min cc

2 +
∥∥ cc−w

2
√

w+e

∥∥,∥w∥}
ε

⌉
. Numerical results indicated that the pro-

posed algorithm performed well on a small set of test problems.
An interesting question for further research is to investigate an infeasible version of

the proposed method to avoid the difficulty of finding an initial point in F 0.
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