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Abstract: The challenge of combining two unbiased estimators is a common occurrence in applied
statistics, with significant implications across diverse fields such as manufacturing quality control,
medical research, and the social sciences. Despite the widespread relevance of estimating the common
population mean µ, this task is not without its challenges. A particularly intricate issue arises when
the variations within populations are unknown or possibly unequal. Conventional approaches,
like the two-sample t-test, fall short in addressing this problem as they assume equal variances
among the two populations. When there exists prior information regarding population variances
(σ2

i , i = 1, 2), with the consideration that σ2
1 and σ2

2 might be equal, a hypothesis test can be conducted:
H0 : σ2

1 = σ2
2 versus H1 : σ2

1 ̸= σ2
2 . The initial sample is utilized to test H0, and if we fail to reject

H0, we gain confidence in incorporating our prior knowledge (after testing) to estimate the common
mean µ. However, if H0 is rejected, indicating unequal population variances, the prior knowledge is
discarded. In such cases, a second sample is obtained to compensate for the loss of prior knowledge.
The estimation of the common mean µ is then carried out using either the Graybill–Deal estimator
(GDE) or the maximum likelihood estimator (MLE). A noteworthy discovery is that the proposed
preliminary testimators, denoted as µ̂PT1 and µ̂PT2 , exhibit superior performance compared to the
widely used unbiased estimators (GDE and MLE).

Keywords: common mean; testimator; shrinkage; meta-analysis

MSC: 62P10

1. Introduction

The problem of combining two unbiased estimators arises frequently in applied
statistics, where it has important implications in a wide range of fields, from quality
control in manufacturing to medical research and social sciences [1–3]. For instance, in the
context of manufacturing, it is essential to ensure that the means of different production
lines are within specified quality standards. By using the common mean inference, you
can determine whether the means of these production lines are within specified quality
standards. If one line’s mean falls outside the acceptable range, it could signal a quality
issue. In clinical trials, researchers often need to compare the effectiveness of different
treatments or drugs. The common mean approach can help determine whether a particular
treatment yields statistically different results in terms of patient outcomes, such as recovery
times or symptom alleviation.

The technique of combining and analyzing data from several independent studies
on a specific topic or research question is referred to as meta-analysis [3]. The goal of
meta-analysis is to obtain a more accurate and reliable estimate of the overall effect size or
treatment effect than what can be achieved by any individual study alone [3,4]. It provides
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a systematic and quantitative approach to synthesizing evidence from various studies,
allowing researchers to draw more robust conclusions and make generalizations [3].

A well-known context of this problem occurred when Meier [2] was asked to draw
inferences about the mean of albumin in plasma protein in human subjects based on results
from four experiments [2], shown in Table 1.

Table 1. Albumin in plasma protein of four different experiments.

Experiment ni Mean Variance

A 12 62.30 12.99
B 15 60.30 7.84
C 7 59.50 33.43
D 16 61.50 18.51

Another scenario happened when Eberhardt et al. [5] had results from four experi-
ments about nonfat milk powder and the problem was to draw inferences about the mean
Selenium in nonfat milk powder by combining the results from four methods (Table 2).

Table 2. Selenium content in nonfat milk powder using four methods.

Methods ni Mean Variance

Atomic absorption spectrometry 8 105.00 85.71
Neutron activation:
(1) Instrumental 12 109.75 20.75
(2) Radiochemical 14 109.50 2.73
Isotope dilution mass spectrometry 8 113.25 33.64

Despite the broad applicability of the common mean, µ, estimating it is not without
difficulties. One of the most difficult problems emerges when the population variations are
unknown or maybe unequal. Traditional approaches for addressing this issue, such as the
two-sample t-test, are insufficient since they assume equal variances and are not designed
for combining and analyzing data from several independent studies on a specific topic or
research question.

To formulate the present problem, we assume only that there are two normal popula-
tions with a common mean, but with unknown and possibly unequal variances σ2

1 , . . . , σ2
k >

0. Let us assume that we have independent and identically distributed (i.i.d) observations
Xi1, . . . , Xini from N(µ, σ2

i ), i = 1, 2 and define Xi and Si are given as

Xi =
ni

∑
j=1

Xij

ni
, Si =

ni

∑
j=1

(Xij − Xi)
2, (1)

where Xi ∼ N(µ, σ2
i /ni), Si ∼ σiχ

2
ni−1. Note that these statistics, {Xi, Si, i = 1, 2}, are

all mutually independent. Again, it can be noted that {X1, S1, X2, S2} are minimal suf-
ficient statistics for (µ, σ2

1 , σ2
2 ) but are not complete. As a result, one cannot obtain the

uniformly minimum-variance unbiased estimator (UMVUE) if it exists using the standard
Rao–Blackwell theorem on an unbiased estimator for estimating the common mean µ.

The natural meta-analysis question now is the problem of combining several estimates
of an unknown quantity to obtain an estimate of improved precision. A similar problem
arises in the analysis of incomplete block experiments. The “intra-block” and “inter-block”
estimates of varietal means have different variances, and the recovery of “inter-block
information” is an attempt to combine these estimates in the most efficient manner. In the
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case when the two population variances are completely known, the common mean µ can
easily be estimated as

µ̂ =

(
2

∑
i=1

ni

σ2
i

Xi

)
/

(
2

∑
i=1

ni

σ2
i

)
, (2)

which is the UMVUE, the best linear unbiased estimator (BLUE), and the maximum
likelihood estimator (MLE) with a variance given as

Var(µ̂) =
1

∑2
1
(
ni/σ2

i
) . (3)

In our present problem, the population variances are unknown and possibly unequal. The
most appealing unbiased estimator of µ̂ is the Graybill–Deal estimate (GDE) [6], given as

µ̂GD =

(
2

∑
i=1

ni

s2
i

Xi

)
/

(
2

∑
i=1

ni

s2
i

)
, (4)

with

Var(µ̂GD) = E

( 2

∑
i=1

(
niσ

2
i

s4
i

))
/

(
2

∑
i=1

(
ni

s2
i

))2
, (5)

where s2
i = Si/(ni − 1), i = 1, 2. For the two-sample case, the GDE [6] showed first that

an unbiased estimator has a smaller variance than either sample mean provided that both
sample sizes are greater than 10. Since then, several papers have been written generalizing
and extending their findings [7–11] and the references therein. On the other hand, Meier [2]
suggested a method for setting an approximate confidence interval for µ centered at µ̂GD.
Furthermore, [12,13] developed approximate confidence intervals centered at µ̂GD. The
properties of such estimators have received a lot of attention in the literature. We would
like to highlight the contributions of Kifle et al. [1], Sinha et al. [3], Sinha [14], Hartung [15],
and Krishnamoorthy and Moore [16] in particular.

Even though many generalizations of µ̂GD have been proposed in recent years, it
still commonly remains one of the central figures in statistical modeling and methods in
meta-analysis due to its natural appeal. We may have prior information that the variances
σ2

1 and σ2
2 may be equal. Then, we can test the hypothesis H0 : σ2

1 = σ2
2 versus H1 : σ2

1 ̸= σ2
2

and then estimate the common mean µ̂ of these two independent normal populations
depending on the outcome of this test. Stein [17] introduced and thoroughly discussed
the preliminary test shrinkage estimator. His work had a profound impact on the field of
statistical estimation, particularly for the common mean problem with unknown variances.
His approach has inspired various developments and applications in statistics and has
become a foundation for the use of shrinkage estimators in modern statistical practice.
Thompson [18] proposed a shrinkage technique, given as

ω = qθ0 + (1 − q)θ, (6)

for improving the existing estimator of parameter θ and estimating the mean, which lowers
the mean square error (MSE) of the UMVUE of the mean of a population, is considered. It
was noted that the shrinkage estimator outperforms the usual estimator if the guess value
of q is chosen in a way that aligns with reality. Therefore, rather than considering q as
a fixed constant in the shrinkage estimator, one should consider it as a weight that falls
between 0 and 1. In this case, q can be treated as a continuous function of some relevant
statistics, with the expectation that its value will drop monotonically as (θ − θ0) increases.
Other researchers, like, Walker, Schuurmann, and Raghunathan [19], also proposed a
testimator for the mean of a normal distribution. It was further noted in the literature that
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when prior information is available, the shrinkage estimators for the parameters of various
distributions perform better than the usual estimators in terms of the mean square error
when the estimated value is close to the true value [18,20,21].

If we assume that the prior knowledge about population variances (σ2
i , i = 1, 2)

is available and that the variances σ2
1 and σ2

2 may be equal, we can test the hypothesis
H0 : σ2

1 = σ2
2 versus H1 : σ2

1 ̸= σ2
2 . The first stage sample is used to test H0 and if we fail to

reject H0, we feel comfortable in using prior knowledge (having tested it) to estimate the
common mean µ. However, if H0 is rejected, we discard our prior knowledge and obtain a
second sample to make up for the loss of the prior knowledge and estimate the common
mean µ using GDE or MLE. This type of adaptive estimator based on a preliminary test has
been used by many researchers [22,23].

Estimating and evaluating hypotheses about the common means of different univariate
normal populations is an important problem. This study attempts to propose a preliminary
testimator for the common mean µ with unknown and unequal variances. The preliminary
testimator thus produced will be studied for its behavior when the expressions of its bias,
MSE, and Relative Efficiency (RE) are determined and their performance will be evaluated.
The proposed method incorporates preliminary testing to assess the equality of population
variances before estimating the common mean µ. When significant differences in variances
are detected, the preliminary test shrinkage estimator adjusts the weight assigned to each
sample mean, shrinking estimates from populations with smaller sample variances towards
the overall mean. This is the main motivation behind this revisit to the common mean µ
problem and filling certain gaps analytically as well as computationally while proposing a
preliminary test shrinkage estimator.

2. Materials and Methods

It is natural to test a null hypothesis with the prior, uncertain non-sample information
in hand. This is followed by the testimator. A testimator is a two-step estimator that
estimates an important parameter based on the results of a preliminary test. For estimating
the common mean µ, we consider the hypothesis

H0 : σ2
1 = σ2

2 vs. H1 : σ2
1 ̸= σ2

2 . (7)

We define our proposed preliminary testimator for the common mean µ as

µ̂PT =

{
µGrand = n1X+n2Y

n1+n2
, if c1α < F < c2α

µ̂UE , if F < c1α or F > c2α,
(8)

where µ̂UE is the unbiased estimator of µ. We may rewrite the above equation as

µ̂PT = µGrand{I(c1α < F < c2α)}+ µ̂UE{I(F < c1α or F > c2α)}, (9)

where I(·) is the indicator function, defined as I(A) = 1 if A is true and I(A) = 0 if A is
false, and F = s2

1/s2
2 is the F-test statistic. The more this ratio deviates from 1, the stronger

the evidence is for unequal population variances. To find the F critical values (c1α and c2α),
we look at two choices:

Choice 1: Equal tail probability by fixing c1α and c2α to α
2 . The hypothesis that the two

variances are equal is rejected if F > Fα
2 ,ν1,ν2

or F < F1− α
2 ,ν1,ν2

, where νi = ni − 1, i = 1, 2.

Choice 2: Under the alternative hypothesis, F =
s2

1/σ2
1

s2
2/σ2

2
= F

θ ∼ Fν1,ν2 . Then, 1− α = Pr (c1α <

F/θ < c2α ), where θ = σ2
1 /σ2

2 . It is not unique in choosing c1α and c2α for the given (1 − α).
In order to make it unique, we minimize the length between the upper and lower bounds as
L = F ( 1

c1α
− 1

C2α
). The expected length, L, is then given as E (F ) ( 1

c1α
− 1

C2α
). So, the critical

values may be found by minimizing ( 1
c1α

− 1
C2α

) subject to 1 − α = Pr (c1α < F < c2α ).
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2.1. The GDE of the Common Mean

The famous and most widely used estimator is the GDE [6] estimator, which is an
unbiased estimator of the common mean µ which is uniformly better than either Xi, i = 1, 2
in that ni, i = 1, 2 are both larger than ten. We define our proposed testimator for the
common mean as

µ̂PT1 =


µGrand = n1X1+n2X2

n1+n2
, if c1α < F < c2α

µ̂GD =

(
∑2

i=1
ni
s2

i
Xi

)
/
(

∑2
i=1

ni
s2

i

)
, if F < c1α or F > c2α.

(10)

The µ̂GD in the equation above, can be expressed as µ̂GD = X1ϵ + X2(1 − ϵ), where
ϵ = n1s2

2/
(
n2s2

1 + n1s2
2
)
. Notice that ϵ is the function of s2

1, s2
2. Then, we may also rewrite

µGrand in the above equation as µGrand = X1B + X2(1 − B), where B = n1/(n1 + n2).
Notice that B is the function of n1, n2. Then, we revise our proposed testimator µ̂PT1 as

µ̂PT1 = µGrandI(c1α < F < c2α) + µ̂GDI(F < c1α | F > c2α)

=
{

X1B + X2(1 − B)
}

I(A) +
{

X1ϵ + X2(1 − ϵ)
}

I(Ac)

= X1{ϵI(Ac) + BI(A)}+ X2{(1 − ϵ)I(Ac) + (1 − B)I(A)}, (11)

where I(·) is the indicator function, defined as I(A) = 1 if A is true and I(A) = 0 if A is
false.

2.1.1. Bias of Preliminary Testimator µ̂PT1

The bias of the proposed preliminary testimator is equal to E(µ̂PT1)− µ, where

E(µ̂PT1) = E
[

E
(

X1{ϵI(Ac) + BI(A)}+ X2{(1 − ϵ)I(Ac) + (1 − B)I(A)}|s2
1, s2

2

)]
= E

[
E
({

X1B + X2(1 − B)
}

I(A) +
{

X1ϵ + X2(1 − ϵ)
}

I(Ac)|s2
1, s2

2

)]
= Es2

1,s2
2
[µI(A) + µI(Ac)]

= µ. (12)

Our proposed preliminary testimator µ̂PT1 is an unbiased estimator for a common mean µ.

2.1.2. Mean Square Error of Preliminary Testimator µ̂PT1

The MSE of µ̂PT1 can be expressed as

MSE(µ̂PT1) = E(µ̂PT1 − µ)2

= E
{(

X1ψ + X2Ψ
)
− µ

}2

= E
(

X2
1ψ2 + X2

2Ψ2 − 2X1ψµ − 2X2Ψµ + 2X1ψX2Ψ + µ2
)

= E
{

E
[(

X2
1ψ2 + X2

2Ψ2 − 2X1ψµ − 2X2Ψµ + 2X1ψX2Ψ + µ2
)
|s2

1, s2
2

]}
=

σ2
1

n1
Es2

1,s2
2
(ψ2) +

σ2
2

n2
Es2

1,s2
2
(Ψ2) + µ2Es2

1,s2
2
{(ψ + Ψ)[(ψ + Ψ)− 2] + 1},

where ψ = ϵI(Ac)+ BI(A) and Ψ = (1 − ϵ)I(Ac)+ (1 − B)I(A). Without loss of generality,
µ = 0. Therefore, our above equation for MSE(µ̂PT1) can be defined as

MSE(µ̂PT1) =
σ2

1
n1

Es2
1,s2

2
(ψ2) +

σ2
2

n2
Es2

1,s2
2
(Ψ2) (13)
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2.2. The MLE of the Common Mean

Pal et al. [24] revisited the common mean problem by elucidating the structure of
the MLE, and comparing it with the GDE. It was found that the MLE has better overall
performance than the popular GDE. It can be noted that the MLE for the common mean µ
does not have a closed expression when σ2

i is unknown and, as a result, the exact sampling
distribution is impossible to derive [24].

The MLEs of µ̂ML, σ̂2
1(ML), and σ̂2

2(ML) are defined as

σ̂2
1(ML) = (S1/n1) +

{
n2σ̂2

1(ML)/
(

n2σ̂2
1(ML) + n1σ̂2

2(ML)

)}2
D2 (14)

σ̂2
2(ML) = (S2/n2) +

{
n1σ̂2

2(ML)/
(

n2σ̂2
1(ML) + n1σ̂2

2(ML)

)}2
D2 (15)

µ̂ML =

{
2

∑
i=1

(
ni/σ̂2

i(ML)

)
Xi

}
/

{
2

∑
i=1

(
ni/σ̂2

i(ML)

)}
, (16)

where D2 = (X1 − X2)
2. Notice that both σ̂2

1(ML) and σ̂2
2(ML) are functions of S1, S2, and D2.

Thus, it is easy to write µ̂ML as

µ̂ML = X2 + Dϵ̂, (17)

where ϵ̂ = n1σ̂2
2(ML)/ (n2σ̂2

1(ML) + n1σ̂2
2(ML)). This is an unbiased estimator of the common

mean µ.
It should be noted that numerical iterations should be used to obtain the µ̂ML of the

common mean µ because the system of equations may have multiple solutions, and one
must determine which of these solutions results in the ML estimate that truly provides the
global maximum of the likelihood function.

So, let β1 = σ2
1 , β2 = σ2

2 , Sx = ∑n1
i=1(Xi − X)2, Sy = ∑n2

j=1(Yj − Y)2, t1 = (S1/n1) and
t2 = (S2/n2). The above equations, (14) and (15), can be written as

β̂1 = t1 +
{

n2 β̂1/
(
n2 β̂1 + n1 β̂2

)}2D2

β̂2 = t2 +
{

n1 β̂2/
(
n2 β̂1 + n1 β̂2

)}2D2.

Note that β̂1 > t1 and β̂2 > t2. Then, the above equations can be simplified as

β̂1 = t1 +
{

β̂1/
(

β̂1 + dβ̂2
)}2D2 > t1 (18)

β̂2 = t2 +
{

1 −
(

β̂1/
[
β̂1 + dβ̂2

])}2D2 > t2. (19)

Note that
√

D = |X − Y| > 0. Then, Equation (18) can be written as(
β̂1

β̂1 + dβ̂2

)
=

(
β̂1 − t1

D2

)1/2

. (20)

Using Equation (20) in (19), we obtain(
β̂2 − t2

D2

)1/2

+

(
β̂1 − t1

D2

)1/2

= 1. (21)

We then define our proposed preliminary testimator for the common mean as

µ̂PT2 =

{
µGrand = n1X1+n2X2

n1+n2
, if c1α < F < c2α

µ̂ML = X2 + Dϵ̂ , if F < c1α or F > c2α.
(22)
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It is easy to write µGrand = {n1D/(n1 + n2)}+ X1. Our proposed testimator µ̂PT2 can be
written as

µ̂PT2 = µGrandI(A) + µ̂MLI(Ac) (23)

2.2.1. Bias of Preliminary Testimator µ̂PT2

Bias of the proposed preliminary testimator is equal to E(µ̂PT2)− µ, where

E(µ̂PT2) = E{E (µ̂PT2 |s
2
1, s2

2 )}
= E{E ({n1D/(n1 + n2) + X1}I(A) +

{
X2 + Dϵ̂

}
I(Ac)|s2

1, s2
2 )}

= Es2
1,s2

2
[µI(A) + µI(Ac)]

= µ. (24)

The MLE µ̂PT2 is the unbiased estimator for the common mean µ.

2.2.2. Mean Square Error of Preliminary Testimator µ̂PT2

The MSE of µ̂PT2 can be expressed as

MSE(µ̂PT2) = E(µ̂PT2 − µ)2

= E{E (µ̂PT2 |s
2
1, s2

2 )− µ}2

= (σ2
2 /n2 ) + hEs2

1,s2
2
{I(Ac)ł(ϵ̂2 + 2ϵ̂2 [ϵ̂2 − 1 ] )}

+ hES1,S2{d1I(A) (1 + [ϵ̂2 − 1 ] )},

where h =
(
σ2

1 /n1 + σ2
2 /n2

)
and d1 = n1/(n1 + n2).

2.3. Relative Efficiency

The expression of efficiency of µ̂PT1 and µ̂PT2 relative to the µ̂GDE and µ̂MLE, respec-
tively, is defined as below:

R.E1 =
MSE(µ̂GDE)

MSE(µ̂PT1)
(25)

R.E2 =
MSE(µ̂MLE)

MSE(µ̂PT2)
. (26)

3. Simulation Study
3.1. Bias and Mean Squared Error

We will now examine how well the suggested preliminary testimator performs in
comparison to choices 1 and 2, bias and MSE. After that, we also consider the performance
of the testimators µ̂PT1 and µ̂PT2 by computing the RE. In order to attain a significant level
of accuracy, each simulated bias and MSE value was obtained using Q = 105 replications,
making the simulation incredibly large. It can be noted that the MSEs and REs of the
proposed testimators µ̂PT1 and µ̂PT2 are all functions of n1, n2, and δ = σ2

1 /σ2
2 . Out of these

parameters, n is the sample size and δ is the guessed value of the parameter used in the
suggested preliminary testimator. These massive computations were performed using
R (version 3.6.2) and R Studio (version 1.3.959) [25,26]. The algorithm for our proposed
testimators of the common mean µ is defined as:

1. Select two positive integers n1 and n2.
2. Generate independent random observations X1i, i = 1, . . . , n1 and X2i, i = 1, . . . , n2.
3. Test H0 : σ2

1 = σ2
2 versus H1 : σ2

1 ̸= σ2
2 at significance level α using F-test statistic in

Section 2 for H0 versus H1.
4. If we fail to reject H0, we take the estimator of µ̂PT = µGrand. However, if H0 is rejected

we take the estimator of µ̂PT as µ̂GD or µ̂ML.
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5. The performance of this proposed estimator is evaluated using the simulated bias as

Q−1 ∑Q
q
(
µ̂q − µ

)
and simulated MSE as Q−1 ∑Q

q
(
µ̂q − µ

)2.

Tables 3 and 4 show the variation in the values of δ for equal sample sizes n1 = n2 = n
(say) < 25 and ≥ 25. The bias values of the simulation varied from −0.0027 to 0.0018 for the
µ̂PT1 and µ̂PT2 values. The simulated biases were found to be very close to zero, indicating
that the proposed testimators are indeed unbiased estimators for the common mean µ. The
values of µ̂PT1 were more stable than the µ̂PT2 values in the sense that while the MSE of the
simulation varied from 0.3634 to 0.0002 for the µ̂PT1 values, the range of the MSE for the
µ̂PT2 values was 3.1211 to 0.0000. This was anticipated as µ̂PT2 is the result of solving a set
of non-linear equations, which could include just a small amount of computational errors
in the overall sample variation. As δ increased, it may be noted that the MSE in general
decreased. Furthermore, it can be observed that the µ̂PT2 was better than µ̂PT1 for extreme
values of δ. Moreover, choices 1 and 2 were discovered to be extremely near to one another,
suggesting that there is most likely little difference in these two test results.

Table 3. MSE (bias) of the proposed testimators for different choices of δ (n < 25).

δ

(n1, n2) Testimator Choice 0.1 0.2 0.5 1.0 2.0 5.0 10.0

(5, 5) µ̂PT1 1 0.3634 0.2691 0.1537 0.1038 0.0768 0.0537 0.0364
(−0.0003) (−0.0019) (−0.0004) (−0.0010) (0.0002) (0.0009) (−0.0007)

µ̂PT1 2 0.3427 0.2635 0.1554 0.1057 0.0774 0.0502 0.0310
(−0.0003) (−0.0014) (−0.0003) (−0.0010) (0.0004) (0.0006) (−0.0004)

µ̂PT2 1 3.1133 1.5097 0.5592 0.2660 0.1326 0.0538 0.0300
(0.0008) (−0.0020) (−0.0001) (−0.0010) (0.0000) (0.0013) (−0.0002)

µ̂PT2 2 3.1211 1.5110 0.5575 0.2641 0.1307 0.0523 0.0288
(0.0008) (−0.0014) (0.0001) (−0.0011) (0.0001) (0.0016) (0.0000)

(10, 10) µ̂PT1 1 0.1103 0.1097 0.0755 0.0512 0.0378 0.0220 0.0110
(0.0004) (−0.0019) (0.0000) (−0.0001) (−0.0003) (−0.0002) (0.0000)

µ̂PT1 2 0.1211 0.1180 0.0758 0.0513 0.0375 0.0204 0.0103
(0.0000) (−0.0018) (0.0001) (−0.0001) (−0.0003) (−0.0002) (0.0000)

µ̂PT2 1 1.7093 0.8138 0.2704 0.1156 0.0513 0.0164 0.0084
(0.0003) (−0.0027) (−0.0001) (−0.0002) (−0.0002) (0.0000) (0.0000)

µ̂PT2 2 1.7106 0.8147 0.2697 0.1152 0.0495 0.0146 0.0072
(−0.0001) (−0.0027) (0.0002) (−0.0002) (−0.0003) (0.0001) (0.0000)

(15, 15) µ̂PT1 1 0.0640 0.0641 0.0497 0.0339 0.0248 0.0128 0.0064
(0.0000) (−0.0004) (0.0018) (−0.0011) (−0.0008) (0.0000) (0.0001)

µ̂PT1 2 0.0674 0.0709 0.0501 0.0339 0.0246 0.0122 0.0063
(0.0001) (−0.0003) (0.0017) (−0.0010) (−0.0006) (0.0000) (0.0001)

µ̂PT2 1 1.1867 0.5545 0.1768 0.0710 0.0282 0.0069 0.0031
(−0.0010) (−0.0006) (0.0018) (−0.0011) (−0.0007) (0.0003) (−0.0010)

µ̂PT2 2 1.1868 0.5547 0.1764 0.0713 0.0266 0.0056 0.0023
(−0.0009) (−0.0003) (0.0017) (−0.0010) (−0.0007) (0.0002) (−0.0010)

(20, 20) µ̂PT1 1 0.0466 0.0448 0.0368 0.0253 0.0184 0.0090 0.0047
(0.0005) (−0.0006) (0.0000) (0.0002) (0.0005) (0.0000) (−0.0002)

µ̂PT1 2 0.0473 0.0486 0.0374 0.0253 0.0182 0.0088 0.0047
(0.0005) (−0.0006) (−0.0002) (0.0003) (0.0005) (0.0000) (−0.0002)

µ̂PT2 1 0.9059 0.4190 0.1317 0.0504 0.0177 0.0032 0.0012
(0.0010) (−0.0006) (0.0001) (0.0003) (0.0004) (0.0002) (−0.0003)

µ̂PT2 2 0.9060 0.4191 0.1314 0.0508 0.0164 0.0022 0.0007
(0.0010) (−0.0007) (−0.0001) (0.0003) (0.0004) (0.0002) (−0.0003)
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Table 4. MSE (bias) of the proposed testimators for different choices of δ (n ≥ 25).

δ

(n1, n2) Testimator Choice 0.1 0.2 0.5 1.0 2.0 5.0 10.0

(25, 25) µ̂PT1 1 0.0370 0.0348 0.0291 0.0202 0.0146 0.0070 0.0037
(−0.0001) (0.0005) (0.0001) (0.0003) (0.0004) (−0.0002) (−0.0001)

µ̂PT1 2 0.0371 0.0360 0.0297 0.0202 0.0144 0.0069 0.0037
(−0.0001) (0.0005) (0.0000) (0.0002) (0.0004) (−0.0002) (−0.0001)

µ̂PT2 1 0.7298 0.3360 0.1045 0.0387 0.0119 0.0015 0.0004
(−0.0003) (0.0006) (0.0000) (0.0003) (0.0004) (−0.0001) (−0.0003)

µ̂PT2 2 0.7298 0.3360 0.1043 0.0389 0.0111 0.0010 0.0002
(−0.0003) (0.0007) (−0.0001) (0.0003) (0.0004) (−0.0001) (−0.0003)

(50, 50) µ̂PT1 1 0.0183 0.0169 0.0140 0.0101 0.0070 0.0034 0.0018
(−0.0005) (−0.0007) (−0.0009) (0.0003) (0.0005) (0.0000) (0.0000)

µ̂PT1 2 0.0183 0.0169 0.0142 0.0101 0.0069 0.0034 0.0018
(−0.0005) (−0.0007) (−0.0009) (0.0004) (0.0004) (0.0000) (0.0000)

µ̂PT2 1 0.3675 0.1686 0.0515 0.0167 0.0032 0.0001 0.0001
(−0.0005) (−0.0005) (−0.0008) (0.0004) (0.0006) (0.0000) (0.0003)

µ̂PT2 2 0.3675 0.1686 0.0515 0.0168 0.0030 0.0001 0.0001
(−0.0005) (−0.0005) (−0.0009) (0.0004) (0.0007) (0.0000) (0.0003)

(100, 100) µ̂PT1 1 0.0091 0.0084 0.0068 0.0050 0.0034 0.0017 0.0009
(−0.0001) (0.0000) (−0.0004) (0.0000) (0.0000) (0.0001) (−0.0001)

µ̂PT1 2 0.0091 0.0084 0.0068 0.0050 0.0034 0.0017 0.0009
(−0.0001) (0.0000) (−0.0004) (0.0000) (0.0000) (0.00001) (−0.0001)

µ̂PT2 1 0.1840 0.0845 0.0256 0.0073 0.0010 0.0000 0.0000
(−0.0001) (0.0001) (−0.0004) (0.0000) (0.0001) (0.0004) (0.0000)

µ̂PT2 2 0.1840 0.0845 0.0256 0.0073 0.0010 0.0000 0.0000
(−0.0001) (0.0001) (−0.0004) (0.0000) (0.0001) (0.0004) (0.0000)

(500, 500) µ̂PT1 1 0.0018 0.0017 0.0013 0.0010 0.0007 0.0003 0.0002
(0.0001) (0.0000) (0.0000) (0.0000) (0.0000) (0.0001) (0.0000)

µ̂PT1 2 0.0018 0.0017 0.0013 0.0010 0.0007 0.0003 0.0002
(0.0001) (0.0000) (0.0000) (0.0000) (0.0000) (0.0001) (0.0000)

µ̂PT2 1 0.0368 0.0169 0.0051 0.0013 0.0002 0.0000 0.0000
(0.0001) (0.0000) (0.0000) (0.0000) (−0.0001) (0.0001) (0.0000)

µ̂PT2 2 0.0368 0.0169 0.0051 0.0013 0.0002 0.0000 0.0000
(0.0001) (0.0000) (0.0000) (0.0000) (−0.0001) (0.0001) (0.0000)

For the sample sizes, n1 and n2 are drastically different from each other (i.e., 0.2 <
n1/n2 < 5.0); the MSE curves of µ̂PT1 and µ̂PT2 cross each other only once (from small
values of δ to large, or vice versa), as shown in Table 5. As δ increases, it may be noted that
the MSE in general decreases and µ̂PT2 is certainly getting better than µ̂PT1 . In some cases,
for δ in the middle (i.e., δ = 0.5), there may not be any statistical difference between the
two simulated MSE; but for δ too small the µ̂PT1 is certainly better than the µ̂PT2 . Moreover,
for values of δ that are too small, choices 1 and 2 are discovered to be extremely near to one
another. However, for large values of δ, choice 2 is certainly better than choice 1.

Figures 1 and 2 present a summary of the RE results for the proposed testimators across
varying values of δ, with n1 fixed at 15. It is noteworthy that as sample size 2 (n2) increases, the
RE generally rises. Specifically, for µ̂PT1 , the RE typically increases initially but then declines as δ
increases, as depicted in Figure 1. Conversely, for µ̂PT2 , the RE generally ascends with increasing
δ values, which is also illustrated in Figure 2.

Figures 3–5 outline the RE outcomes for µ̂PT1 across different values of δ and under
scenarios of unequal and equal sample sizes. Notably, when δ > 0.5, the RE remains nearly
constant across various significance levels (α) for µ̂PT1 . Again, it can be noted that when
δ = 1, the RE initially reaches a maximum magnitude and decreases for further increases
in δ. Conversely, for µ̂PT2 , when n1 is larger than n2 and has an equal sample size, the RE
remains consistent across different α levels, as illustrated in Figures 6 and 7. However,
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in cases where n1 is less than n2, the RE varies across different α values, with α = 0.1
exhibiting the highest RE values, as illustrated in Figure 8.

Table 5. MSE (bias) of the proposed testimators for different choices of δ (n1 ̸= n2).

δ

(n1, n2) Testimator Choice 0.1 0.2 0.5 B 2.0 5.0 10.0

(10, 25) µ̂PT1 1 0.0843 0.0741 0.0496 0.0295 0.0184 0.0090 0.0043
(0.0015) (−0.0003) (0.0008) (0.0011) (0.0000) (0.0002) (−0.0005)

µ̂PT1 2 0.0850 0.0769 0.0499 0.0293 0.0182 0.0084 0.0041
(0.0015) (−0.0003) (0.0009) (0.0011) (0.0000) (0.0002) (−0.0005)

µ̂PT2 1 0.3586 0.1355 0.0491 0.0260 0.0153 0.0057 0.0027
(0.0019) (−0.0010) (0.0009) (0.0009) (0.0001) (0.0002) (−0.0005)

µ̂PT2 2 0.3585 0.1344 0.0481 0.0263 0.0149 0.0054 0.0026
(0.0019) (−0.0009) (0.0009) (0.0009) (0.0001) (0.0002) (−0.0005)

(25, 10) µ̂PT1 1 0.0425 0.0449 0.0368 0.0294 0.0248 0.0148 0.0084
(−0.0005) (−0.0007) (0.0008) (−0.0003) (−0.0008) (0.0007) (0.0001)

µ̂PT1 2 0.0476 0.0502 0.0371 0.0297 0.0246 0.0145 0.0084
(−0.0004) (−0.0008) (0.0007) (−0.0004) (−0.0009) (0.0007) (0.0001)

µ̂PT2 1 1.9706 0.9876 0.3855 0.1896 0.0924 0.0305 0.0102
(−0.0006) (−0.0009) (0.0009) (−0.0001) (−0.0002) (0.0013) (0.0000)

µ̂PT2 2 1.9708 0.9881 0.3858 0.1896 0.0918 0.0293 0.0090
(−0.0004) (−0.0012) (0.0008) (0.0000) (−0.0001) (0.0013) (0.0000)

(50, 10) µ̂PT1 1 0.0207 0.0218 0.0195 0.0172 0.0156 0.0108 0.0070
(−0.0003) (−0.0003) (0.0007) (0.0002) (0.0005) (−0.0002) (0.0001)

µ̂PT1 2 0.0222 0.0236 0.0196 0.0173 0.0155 0.0107 0.0070
(−0.0005) (−0.0005) (0.0007) (0.0002) (0.0005) (−0.0002) (0.0001)

µ̂PT2 1 2.0063 1.0067 0.4041 0.2046 0.1060 0.0445 0.0226
(−0.0001) (−0.0002) (0.0007) (0.0000) (0.0001) (−0.0003) (−0.0005)

µ̂PT2 2 2.0064 1.0068 0.4044 0.2047 0.1060 0.0444 0.0225
(−0.0003) (−0.0004) (0.0008) (0.0000) (0.0001) (−0.0003) (−0.0005)

(10, 50) µ̂PT1 1 0.0703 0.0538 0.0313 0.0172 0.0098 0.0044 0.0021
(0.0005) (0.0002) (0.0010) (−0.0003) (0.0003) (0.0001) (−0.0001)

µ̂PT1 2 0.0703 0.0545 0.0314 0.0171 0.0097 0.0042 0.0020
(0.0005) (0.0002) (0.0009) (−0.0004) (0.0003) (0.0001) (−0.0002)

µ̂PT2 1 0.1348 0.0671 0.0294 0.0152 0.0086 0.0034 0.0017
(−0.0002) (0.0008) (0.0011) (−0.0004) (0.0004) (0.0001) (−0.0002)

µ̂PT2 2 0.1347 0.0667 0.0291 0.0153 0.0085 0.0033 0.0016
(0.0001) (0.0000) (0.0000) (0.0000) (−0.0001) (0.0001) (0.0000)

Figure 1. Relative Efficiency of µ̂PT1 for various δ with fixed n1, and sample 2 denotes n2.
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Figure 2. Relative Efficiency of µ̂PT2 for various δ with fixed n1, and sample 2 denotes n2.

Figure 3. Relative Efficiency of proposed µ̂PT1 for various α, with fixed n1 = n2 = 10.

Figure 4. Relative Efficiency of proposed µ̂PT1 for various α, with fixed n1 = 50, n2 = 15.
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Figure 5. Relative Efficiency of proposed µ̂PT1 for various α, with fixed n1 = 10, n2 = 50.

Figure 6. Relative Efficiency of proposed µ̂PT2 for various α, with fixed n1 = n2 = 10.

Figure 7. Relative Efficiency of proposed µ̂PT2 for various α, with fixed n1 = 50, n2 = 15.
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Figure 8. Relative Efficiency of proposed µ̂PT2 for various α, with fixed n1 = 10, n2 = 50.

3.2. Asymptotic Normality

The asymptotic distribution of the estimated parameter µ̂PT1 can be derived from
the following facts. In cases where the value of F lies within the range of c1α and c2α, it
is evident that it follows a normal distribution with mean µ and variance τ2, and it is
independent of F. However, if the value of F is less than c1α or more than c2α, which
occurs asymptotically due to the inequality of σ2

1 and σ2
2 , the asymptotic distribution of

µ̂GD is also a normal distribution with mean µ and variance τ2. Similarly, the asymptotic
distribution of µ̂PT2 can be derived from the fact that the MLE of µ̂ML converges to a
normal distribution with mean µ and variance τ2. Thus, the asymptotic distribution of
µ̂PT1 ∼ N(µ, τ2) and µ̂PT2 ∼ N(µ, τ2) for a large sample size n, where n1 = n2 = n and
τ2 = {1/n}{(σ2

1 σ2
2 )/(σ

2
1 + σ2

2 )} = θ2/n, is presented in Appendixes A and B. The coverage
probability, determined by 100,000 replications, is above 95% for both proposed testimators
for various σ2

2 values, except for the case when n = 5, as reported in Table 6.

Table 6. Coverage probability for the proposed testimators for a fixed σ2
1 and n1 = n2 = n.

σ2
2

n 0.2 0.8 1.2 1.8

µ̂PT1 µ̂PT2 µ̂PT1 µ̂PT2 µ̂PT1 µ̂PT2 µ̂PT1 µ̂PT2

5 99.70 89.10 99.30 92.10 99.10 91.20 98.70 89.00
10 99.90 95.90 99.90 98.60 99.90 98.30 99.80 97.70
25 100.00 99.4 100.00 99.80 100.00 99.80 99.90 99.60
50 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

4. Application

The Environmental Protection Agency (EPA) of the United States provided a data set
to evaluate gasoline quality based on Reid vapor pressure (RVP); more information can
be found in the article by Yu et al. [27]. Occasionally, an EPA inspector would visit gas
pumps in the city, take gasoline samples of a particular brand, and measure the RVP on
the spot, which produced cheap and quick measurements. Once in a while, the inspector,
after measuring the RVP at the spot, would ship a gasoline sample to the laboratory
for a measurement of presumably higher precision at a higher cost. Two types of RVP
measurements were taken, X, the field measurement, and the lab measurement, Y, which
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were referred to as the same chemical (RVP). It was assumed that the measurements X and Y
had the common mean µ. Table 7 contains two independent samples of RVP measurements:
X, the field measurements, with a sample size of 45, and the lab measurements, Y, with a
sample size of 15.

Table 7. Field and lab data on Reid vapor pressure for newly reformulated gasoline.

X (field) 8.03 7.37 7.59 7.86 7.47 8.51 7.86 7.45 7.32 7.83 7.39 7.31 7.83 7.53 7.16
8.09 8.64 8.62 7.88 8.70 8.69 7.93 7.83 7.45 7.86 7.88 7.44 7.95 7.99 7.31
8.46 8.80 9.14 7.98 8.90 9.28 7.96 8.02 8.60 7.88 8.03 8.56 7.92 8.01 7.56

Average X (field) 8.19 8.27 8.45 7.91 8.36 8.83 7.92 7.77 7.79 7.86 7.77 7.77 7.90 7.84 7.34

Y (lab) 8.28 8.63 9.28 7.85 8.62 9.14 7.86 7.90 8.52 7.92 7.89 8.48 7.95 8.32 7.60

The Shapiro tests and Q–Q plots were conducted to assess the distribution of the
average field (X) and lab (Y) data. The findings showed that both sets of data exhibited
a normal distribution, where X ∼ N(µ, σ2

x) and Y ∼ N(µ, σ2
y ). The sample means were

calculated as X = 7.998 and Y = 8.283, with sample variances of s2
x = 0.131 and s2

y = 0.245,
respectively.

First of all, µ̂GDE, µ̂MLE, and µ̂PT were found to be very close to each other, indicating
that there is probably not much difference between these estimators’ in estimating the
common mean µ (Table 8). We do not want to draw any general conclusions here, but
our theoretical and simulated results indicate that our proposed preliminary testimator
µ̂PT = 8.140 is viable and could be used for this particular application if we assume that
σ2

x = σ2
y , as the sample of gasoline of a particular brand is drawn from the same gas pumps

in the city.

Table 8. Point estimates for Reid vapor pressure for newly reformulated gasoline.

µ̂GDE µ̂MLE µ̂Choice1
PT1

µ̂Choice2
PT1

µ̂Choice1
PT2

µ̂Choice2
PT2

8.097 8.028 8.140 8.140 8.140 8.140

5. Conclusions

The estimation of an unknown quantity using data from several independent but
non-homogeneous samples has drawn more attention in the last decade. The approach has
applicability in numerous fields, as seen by the variety of applications covered in Sinah
et al.’s [3] most recent book. This study’s primary focus was on the performance of the
proposed preliminary testimators µ̂PT1 and µ̂PT2 of a common mean with unknown and
possibly unequal variances. Our finding is that the proposed preliminary testimators µ̂PT1

and µ̂PT2 perform better than the popular unbiased estimators (GDE and MLE) based on
Relative Efficiency (RE). The considered testimators were better than the classical estimators
especially when σ2

1 = σ2
2 . For the balanced case, µ̂PT1 and µ̂PT2 using choice 2 seem to

uniformly outperform choice 1. It is hoped that this paper will stimulate further research in
studying the testimators of the common mean. It goes without saying that a large sample
size (n1, n2) will be more advantageous for using the proposed testimators.
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Appendix A

The simulation generated M = 100, 000 sets of data denoted as X1i, i = 1, . . . , n1, and
X2i, i = 1, . . . , n2. Each sample consisted of n1 = n2 = n draws from normal distributions
X1 ∼ N(µ, σ2

1 = 1) and X2 ∼ N(µ, σ2
2 ). Subsequently, we computed the estimated value

of µ̂PT1 and then adjusted µ̂∗
PT1

= (
√

nµ̂PT1)/(θ). Finally, a histogram was constructed to
visualize the distribution of these adjusted values.

Figure A1. Asymptotic distribution of µ̂PT1 for various σ2
2 and σ2

1 = 1 , with n1 = n2 = n.

Appendix B

The simulation generated M = 100, 000 sets of data denoted as X1i, i = 1, . . . , n1, and
X2i, i = 1, . . . , n2. Each sample consisted of n1 = n2 = n draws from normal distributions
X1 ∼ N(µ, σ2

1 = 1) and X2 ∼ N(µ, σ2
2 ). Subsequently, we computed the estimated value

of µ̂PT2 and then adjusted µ̂∗
PT2

= (
√

nµ̂PT2)/(θ). Finally, a histogram was constructed to
visualize the distribution of these adjusted values.
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Figure A2. Asymptotic distribution of µ̂PT2 for various σ2
2 and σ2

1 = 1 , with n1 = n2 = n.

References
1. Kifle, Y.G.; Moluh, A.M.; Sinha, B.K. Comparison of local powers of some exact tests for a common normal mean with unequal

variances. In Methodology and Applications of Statistics; Springer: Berlin/Heidelberg, Germany, 2021; pp. 77–101.
2. Meier, P. Variance of a weighted mean. Biometrics 1953, 9, 59–73. [CrossRef]
3. Sinha, B.K.; Hartung, J.; Knapp, G. Statistical Meta-Analysis with Applications; John Wiley & Sons: Hoboken, NJ, USA, 2011.
4. Wang, X.M.; Zhang, X.R.; Li, Z.H.; Zhong, W.F.; Yang, P.; Mao, C. A brief introduction of meta-analyses in clinical practice and

research. J. Gene Med. 2021, 23, e3312. [CrossRef] [PubMed]
5. Eberhardt, K.R.; Reeve, C.P.; Spiegelman, C.H. A minimax approach to combining means, with practical examples. Chemom.

Intell. Lab. Syst. 1989, 5, 129–148. [CrossRef]
6. Graybill, F.A.; Deal, R. Combining unbiased estimators. Biometrics 1959, 15, 543–550. [CrossRef]
7. Kubokawa, T. Admissible minimax estimation of a common mean of two normal populations. Ann. Stat. 1987, 1245–1256.

[CrossRef]
8. Brown, L.D.; Cohen, A. Point and confidence estimation of a common mean and recovery of interblock information. Ann. Stat.

1974, 2, 963–976. [CrossRef]
9. Cohen, A.; Sackrowitz, H.B. On estimating the common mean of two normal distributions. Ann. Stat. 1974, 1274–1282. [CrossRef]
10. Moore, B.; Krishnamoorthy, K. Combining independent normal sample means by weighting with their standard errors. J. Stat.

Comput. Simul. 1997, 58, 145–153. [CrossRef]
11. Huang, H. Combining estimators in interlaboratory studies and meta-analyses. Res. Synth. Methods 2023, 14, 526–543. [CrossRef]

[PubMed]
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