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Abstract: Exploring the realm of extreme weather events is indispensable for various engineering
disciplines and plays a pivotal role in understanding climate change phenomena. In this study,
we examine the ability of 10 probability distribution functions—including exponential, normal,
two- and three-parameter log-normal, gamma, Gumbel, log-Gumbel, Pearson type III, log-Pearson
type III, and SQRT-ET max distributions—to assess annual maximum 24 h rainfall series obtained
over a long period (1972–2022) from three nearby meteorological stations. Goodness-of-fit analyses
including Kolmogorov–Smirnov and chi-square tests reveal the inadequacy of exponential and
normal distributions in capturing the complexity of the data sets. Subsequent frequency analysis
and multi-criteria assessment enable us to discern optimal functions for various scenarios, including
hydraulic engineering and sediment yield estimation. Notably, the log-Gumbel and three-parameter
log-normal distributions exhibit superior performance for high return periods, while the Gumbel and
three-parameter log-normal distributions excel for lower return periods. However, caution is advised
regarding the overuse of log-Gumbel, due to its high sensitivity. Moreover, as our study considers
the application of mathematical and statistical methods for the detection of extreme events, it also
provides insights into climate change indicators, highlighting trends in the probability distribution
of annual maximum 24 h rainfall. As a novelty in the field of functional analysis, the log-Gumbel
distribution with a finite sample size is utilised for the assessment of extreme events, for which
no previous work seems to have been conducted. These findings offer critical perspectives on
extreme rainfall modelling and the impacts of climate change, enabling informed decision making
for sustainable development and resilience.

Keywords: probability distribution functions; hydraulic works; climate change; goodness-of-fit

MSC: 62G32; 86A05

1. Introduction

Due to their impact on both the population and economy, extreme weather events
have become an issue of increasing interest. In particular, focus has been placed on extreme
precipitation events and, more specifically, their modelling [1]. Knowledge related to
such modelling is essential for the design or diagnosis of a wide range of systems and
infrastructures of interest in hydraulic, hydrological, and sedimentological engineering [2],
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and can also be very useful in assessing the effects of climate change and determining its
impact on a territory [3–5].

To this end, the study of distribution functions for modelling extreme hydrological
events has been carried out since the 18th century. This process has been accelerated
in recent decades with the advent of the digital computer, allowing for the analysis of
large hydrological databases. For example, in 1960, Greenwood and Durand provided
a guide to facilitate maximum likelihood estimations of the parameters of the gamma
distribution [6]. A decade later, Reich used the Gumbel, log-Gumbel, and log-Pearson type
III distributions to model a series of annual maximum instantaneous flood peak discharges
from 26 basins in Pennsylvania [7]. In the same year, the work of Sangal and Biswas on
the three-parameter log-normal distribution is noteworthy [8]. Two years later, a report
by Haan and Allen compared multiple regression and principal component regression
techniques on data matrices when applied to the problem of predicting water yield in
Kentucky [9]. In the same decade, Carey and Haan examined the problem of evaluating
and improving stochastic model parameter estimates [10]. They described a methodology
for assessing the ability of a parametric runoff model to improve short-term estimates of
stochastic model parameters by extending existing runoff records. Finally, we highlight
two more recent articles. In the first, Lone et al. obtained an improved Gumbel type II
distribution (NIGT-II) using a T-X transformation and the Gumbel type II model [11]. In the
second, Reinders and Muñoz showed that the basic hydroclimatic characteristics of a basin
have a significant influence on the choice of the statistical distribution representing annual
maxima [12]. At present, various extreme event distribution functions are used for the
implementation of models covering different fields, including health and finance, and are
even of interest for travel behaviour models in the organisation of road transport [11,13–15].
However, one of the first known applications of these functions was the estimation of flow
rates for the design of hydraulic and civil infrastructure in general [7–10].

In hydraulic, hydrological, and sedimentological engineering, the design or diagnosis
of certain structures for evacuation, control, or storage of water surface runoff or sedi-
ment transport usually involves small surface drainage or small basins. In such cases,
methodologies for estimating the design discharge based on series of streamflow records
are not generally applicable. A widespread alternative is the use of so-called hydromete-
orological methods, in which the design flow discharge is obtained through simulating
the rainfall–runoff transformation processes. Therefore, the application of these methods
requires characterisation of the rainfall regime in the basin or surface drainage of interest.
For this design purpose, national or regional maps of rainfall intensity–duration–frequency
relationships have been proposed (see, e.g., [16–18]), obtained from rain gauge network
databases. However, climate-change-induced increases in the magnitude or frequency of
multi-daily, daily, and sub-daily precipitation [19–23] may lead to obsolescence of these
mapping guides, thus providing underestimated values if these maps have not been up-
dated in recent years (see, e.g., [24–27]). In this context, the optimisation of methods for
fitting probability distribution functions to series of annual maximum daily rainfall records
provided by rain gauges located in or near the catchment under study has gained attention.

In order to improve our knowledge on the modelling of extreme precipitation using
distribution functions, we carried out a study of the models provided by 10 probability
distribution functions using annual maximum 24 h rainfall data obtained from three
different meteorological stations located in southern Spain. A total of 10 continuous
probability distribution functions were selected, adopting the criterion that they should
be commonly applied to hydroclimatic variables associated with extreme events [28,29].
The distribution functions used were as follows: (i) the exponential distribution [29],
(ii) the normal distribution [29], (iii) the two-parameter log-normal distribution [30], (iv) the
three-parameter log-normal distribution [8,31], (v) the gamma distribution [32], (vi) the
Gumbel distribution [33–35], (vii) the log-Gumbel distribution [36], (viii) the Pearson
type III distribution [34,37], (ix) the log-Pearson type III distribution [37–39], and (x) the
SQRT-exponential-type distribution of maximum [40,41].
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The aim of the present work is to carry out a comparative analysis of these 10 distribu-
tion functions and select those that best model the data provided by the three meteorological
stations, taking into account (i) goodness-of-fit tests, (ii) the cumulative probability and
return period obtained to establish design flow discharge in hydro-engineering with a
conservative approach [42], and (iii) best-performance functions for return periods not ex-
ceeding 50 years suitable for estimating mean annual sediment yields. The goodness-of-fit
tests used are the Kolmogorov–Smirnov test [29] and the chi-square test [43]. The return
periods considered range up to 500 years, which is suitable for most engineering applica-
tions [44]. Furthermore, return periods used to estimate mean interannual sediment yields
are up to 50 years, these being the most relevant periods [45]. The key innovation of this
paper is as follows: a methodology for selecting rainfall probability distribution functions
through the simultaneous application of two goodness-of-fit tests is established. These
functions can be selected to define design storms typically applied in hydrological engineer-
ing. Although the selection can be used appropriately in many fields, their suitability for
two hydrometeorological applications was taken into account in particular: (i) the design
of hydraulic infrastructure favouring the conservative side criteria with high return periods
of up to 500 years [44]; and (ii) the estimation of mean interannual sediment yields with de-
signed storms for which return periods up to 50 years are most relevant [45]. Similar recent
work ([46–54]) has considered annual maximum precipitation on hourly, daily, or monthly
time scales. However, the present work aims to distinguish itself through proposing a
combination of a larger number of probability distribution functions with a larger number
of goodness-of-fit tests, utilised together with multiple criteria for the final choice of the
most appropriate functions. The methodology, as a transversal analysis, also considers the
detection of the effect of climate change through the precipitation estimates used in the two
previous applications. At the same time, to the best of our knowledge, there have been
no previous analyses of the Gumbel type I and log-Gumbel functions, considering a finite
sample size, regarding their use in the context of the mentioned applications.

2. Materials and Methods
2.1. Methodology

The proposed methodology includes, broadly speaking, processes for the modelling of
extreme rainfall using probability distribution functions, their subsequent goodness-of-fit
test and, finally, a frequency analysis of the models whose fits have been accepted. The aim
is to select appropriate distribution functions for hydraulic, hydrological, and sedimen-
tological engineering, as well as to carry out a climate trend analysis. Figure 1 shows the
simplified procedure (only the main operations and their organic relationships are shown).

First, we obtained annual maximum 24 h rainfall data from three weather stations
located in southern Spain (Section 2.3 provides geographical information on these three
weather stations and relevant information on the obtained data). From a total of 38,725 daily
precipitation records provided by the State Meteorological Agency (AEMET is its acronym
in Spanish) [42], 117 annual maximum records were selected. We define the probability
distribution functions to be used and their parameters in Section 2.2. The distribution
functions used were the (i) exponential [29], (ii) normal [29], (iii) two-parameter log-
normal [30], (iv) three-parameter log-normal [8,31], (v) gamma [32], (vi) Gumbel [33–35],
(vii) log-Gumbel [36], (viii) Pearson type III [34,37], (ix) log-Pearson type III [37–39],
and (x) SQRT-exponential type distribution of maximum [40,41]. All calculations to fit the
curves to the data sets (parameter adjustment) were performed using R software (version
4.3.2) [55]. The parameter fitting results are provided in Section 3.1.
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Figure 1. Flow chart of the methodology. Only the main operations are shown.

As a preliminary visualisation of the fit of the functions to the data at each weather
station, plots of cumulative probability versus precipitation depth were obtained. These
plots were drawn using R software [55], and are shown in Section 3.1.

After calculating the parameters of the distribution functions, two different goodness-
of-fit tests were performed: (i) Kolmogorov–Smirnov [29] and (ii) chi-square [43] tests.
These tests were also carried out using R software [55]. The results of the goodness-of-fit
tests are provided in Section 3.1.

With the goodness-of-fit tests performed, we proceeded to select the probability distri-
bution functions that simultaneously satisfy both tests. It can be seen, from Section 3.1, that not
all distribution functions satisfied both goodness-of-fit tests for each of the weather stations.

The relationship between precipitation depth and return period was determined
using only the distribution functions that passed both goodness-of-fit tests. To be on
the safe side, a return period of 500 years was set as the upper limit [44]. Section 3.2
is dedicated to the calculation of this relationship; in addition, for each of the selected
functions and each of the weather stations, plots that relate the precipitation depth to
the return period—also drawn using R software [55]—are provided.With the previous
relationship established, a comparative multi-criteria analysis was carried out to select
the most appropriate distribution functions for each case. For some types of hydraulic
infrastructure, a distribution that gives a greater precipitation depth for high return period
values (T > 100 years) is preferred [56,57]. Meanwhile, in the case of the calculation of
the mean interannual sediment yield, the function that provides a greater precipitation
depth for low return period values (T < 50 years) is preferred [45]. This comparative
multi-criteria analysis is detailed in Section 3.2.

On the other hand, taking advantage of the fact that the data from one of the weather
stations had a long time span (data from 1972), an additional comparative analysis of this
data set since 1972 with the same data set since 1990 was carried out to obtain indicators of
climate change. This process is discussed in Section 3.3, which also provides plots created
using R software [55].

2.2. Rainfall Probability Distribution Functions

Sections 2.2.1–2.2.10 present a summary of the formulation of each distribution func-
tion. Only accumulated frequency distribution functions and their parameters are ex-
plained. In order to fit distributions, parameters were estimated using one of the following
methods: (i) the method of moments or (ii) the method of maximum likelihood. Some
functions require numerical methods for adjustment with regional parameters. To clarify
the equations, the parameters for each function are differentiated with an individual index
for each case.
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2.2.1. Exponential Distribution

The exponential distribution function may take any value between 0 and ∞, with a
higher probability of occurrence for lower values. This function has some applications in
hydrology, for example, modelling the interarrival time of droughts and other events such
as a rainy day (according to a precipitation threshold value of rainfall in a day) [29].

The associated cumulative distribution function is defined in Equation (1), where the
probability of obtaining a lower value than the variable x is as follows:

F(x) = 1 − e−λx, x ≥ 0, (1)

where λ is known as the rate parameter and is formulated, using the method of moments,
as follows:

λ =
1
x

, (2)

where x is the sample mean.

2.2.2. Normal Distribution

The normal distribution, also known as the Gaussian or bell curve, is the most common
continuous distribution. In hydrology, many variables may be found to follow a normal
distribution, such as temperature, relative humidity, and wind velocity. The distribution of
rainfall over long periods (e.g., monthly and yearly totals) is often found to follow a normal
distribution [29].

The cumulative distribution function of the normal distribution is given by:

F(x) =
1√

2πσ2

∫ x

−∞
e−(t−µ)2/(2σ2)dt, σ > 0, (3)

where µ is the mean and σ2 is the variance; thus, using the method of moments, we obtain:

µ = x, (4)

σ = Sx, (5)

where x and Sx are the sample mean and sample standard deviation, respectively.

2.2.3. Two-Parameter Log-normal Distribution

The two-parameter log-normal distribution function is a continuous probability distri-
bution function of a random variable whose log transformation follows a normal distribu-
tion [30]; that is, if Y = ln(X) follows a normal distribution, then X follows a two-parameter
log-normal distribution. The two-parameter log-normal distribution is mostly applicable
for variables such as the monthly precipitation depth or basin water yield, but can also be
applied to extremes of variables at monthly and annual scales [29].

Its cumulative distribution function is given by:

F(x) =
∫ x

0

1
t σy

√
2π

e−(ln(t)−µy)2/(2σ2
y )dt, x ≥ 0, σy > 0, (6)

where, if Y = ln(X) is the logarithmic transformation, then µy (scale parameter) and σy
(shape parameter) are the mean and standard deviation of the variable Y, respectively.
Hence, using the method of moments, we obtain:

µy = y, (7)

σy = Sy, (8)

where y = ln(x) is the logarithmic transformation of the sample, and y and Sy are its mean
and standard deviation, respectively.
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2.2.4. Three-Parameter Log-normal Distribution

The three-parameter log-normal distribution is simply the usual two-parameter log-
normal distribution with a location shift; that is, if Y = ln(X − z0) follows a normal
distribution, then X follows a three-parameter log-normal distribution, where z0 is called
the threshold parameter [31]. The distribution can be applied for frequency analysis of
floods or monthly and annual water yield [8].

Its cumulative distribution function is given by:

F(x) =
∫ x

z0

1
(t − z0) σy

√
2π

e−(ln(t−z0)−µy)2/(2σ2
y )dt, σy > 0, x ≥ z0, (9)

where, if Y = ln(X − z0) is the logarithmic transformation of the shifted variable X, then
µy (scale parameter) and σy (shape parameter) are the mean and the standard deviation of
the variable Y, respectively. Hence, using the method of moments, we obtain:

µy = y, (10)

σy = Sy, (11)

where y = ln(x − z0) is the logarithmic transformation of the shifted sample, and y and
Sy are its mean and standard deviation, respectively. The calculation of the threshold
parameter, z0 (and the other two parameters, as they depend on z0), requires the use of
numerical methods. If N is the length of the sample, using the method of maximum
likelihood, the following expression is obtained:

f (z0) =
N

∑
i=1

(
1

xi − z0
(σ2

y − µy) +
ln(xi − z0)

xi − z0

)
= 0, (12)

where xi, i = 1, · · · , N is the i-th element of the ordered sample and f is a function defined
for the following purpose. The numerical method used to find an approximate solution to
the above expression is the secant method, which is:

zn+1 = zn −
zn − zn−1

f (zn)− f (zn−1)
f (zn), n ≥ 2. (13)

The desired approximations are obtained by combining this iterative method with
Equations (10)–(12). Note that the secant method requires two initial approximations for z0.
In this paper, we set z1 = x1 − 1 and z2 = z1 − 10. Furthermore, the maximum permissible
error is 10−5; that is, we calculated the z0 which verifies that | f (z0)| < 10−5 ≈ 0.

2.2.5. Gamma Distribution

The Gamma distribution function is a continuous probability distribution function
that is positively skewed on the positive side of the real line [29,32]. If X follows a gamma
distribution, then X takes non-negative values only. It is very useful for the description of
non-negative and asymmetric hydrological variables without the use of the logarithmic
transformation. For example, it has been applied for the description of storm precipitation
events [34].

The cumulative distribution function of the gamma distribution is:

F(x) =
1

βαΓ(α)

∫ x

0
tα−1e−t/βdt, x ≥ 0, α > 0, β > 0, (14)

where α and β are the shape and scale parameters, respectively, and Γ(α) is the value of the
gamma function, defined as follows:

Γ(α) =
∫ ∞

0
xα−1e−xdx. (15)
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If α is a positive integer, the gamma distribution can be treated as the sum of expo-
nentially distributed random variables, each with the same parameter. The parameter α
is the number of random variables following an exponential distribution and 1/β is the
parameter of the exponential distributions. For this reason, the exponential distribution is
a particular case of the gamma distribution, where α = 1 and 1/β is the parameter of the
exponential distribution [29].

To fit the distribution, we apply the method of moments, and thus obtain:

α =
x2

S2
x

, (16)

β =
S2

x
x

, (17)

where x and Sx are the sample mean and standard deviation, respectively.

2.2.6. Gumbel Distribution

The Gumbel distribution is also called the extreme value distribution type I, which
was first defined by Gumbel [33–35]. The Gumbel distribution function is used to study
variables such as the monthly and annual maximum values of 24 h rainfall or basin water
yield [29]. It is also used for the frequency analysis of flood peak discharge.

Its cumulative distribution function is:

F(x) = e±e
±(x−β)

α , −∞ < x < ∞, α > 0, −∞ < β < ∞, (18)

where α and β are the scale and location parameters, respectively; the minus sign implies
the maximum value, and the plus sign implies the minimum value. In this paper, we are
only interested in the maximum value, so we only use the minus sign.

According to Gumbel [33,35], fitting the distribution presents an additional difficulty,
in that the following set of values has to be calculated:

yi = − ln
(

ln
(

1 + N
i

))
, i = 1, · · · , N, (19)

where N is the sample length and i is the position of the data in the series between 1 and N.
Parameters in their general form for the Gumbel distribution are as follows:

α =
Sx

σy
, (20)

β = x −
µy

α
, (21)

where x and Sx are the sample mean and standard deviation, respectively, and µy and σy
are the mean and standard deviation of the set of values defined in Equation (19).

2.2.7. Log-Gumbel Distribution

The Log-Gumbel distribution is a continuous probability distribution of a random
variable, defined such that its logarithmic transformation follows a Gumbel distribution;
that is, if Y = ln(X) follows a Gumbel distribution, then X follows a log-Gumbel distri-
bution. It is a particular case of the Frèchet function (extreme value distribution type II)
with a position parameter equal to zero [36]. As a novelty in the field of functional analysis,
the log-Gumbel distribution with finite sample size has not yet been utilised in the field
of extreme events. The log-Gumbel distribution (with infinite sample size) is commonly
used in rainfall analysis, as precipitation data tend to fit this distribution better after a
logarithmic transformation. This is particularly useful for analysing extreme rainfall events,
such as high or very low rainfall.
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The log-Gumbel cumulative distribution function is:

F(x) = e±e
±(ln(x)−β)

α , x > 0, α > 0, −∞ < β < ∞, (22)

where α and β are the scale and location parameters, respectively; the minus sign implies
the maximum value, and the plus sign implies the minimum value. We are only interested
in the maximum value, so the plus sign will not be used.

To fit the curve, using the method of moments, we obtain the following equations:

x =
Sx Γ(1 − α)√

Γ(1 − 2α)− Γ2(1 − α)
, (23)

β = ln
(

x
Γ(1 − α)

)
, (24)

where x and Sx are the sample mean and standard deviation, respectively, and Γ is the
gamma function defined in Equation (15). Equation (23) can be solved using a numerical
method (e.g., the Newton–Raphson method) to obtain an estimate of the scale parameter α.
An estimate of the location parameter β is then obtained using Equation (24).

2.2.8. Pearson Type III Distribution

The Pearson type III distribution is also called the three-parameter gamma distribution,
as it is simply the usual two-parameter gamma distribution with a location shift [34,37].
The annual maximum flood peak discharge is generally described using a Pearson type III
distribution [29].

Its cumulative distribution function is:

F(x) =
1

βαΓ(α)

∫ x

x0

(t − x0)
α−1e−(t−x0)/βdt, x ≥ x0, α > 0, β > 0, (25)

where α, β, and x0 are the shape, rate, and threshold parameters, respectively, and Γ(α)
is the value of the gamma function defined in Equation (15). Applying the method of
moments, the following is obtained:

α =
4

C2
s (x)

, (26)

β =
Cs(x)Sx

2
, (27)

x0 = x − 2Sx

Cs(x)
, (28)

where x, Sx, and Cs(x) are the sample mean, standard deviation, and skewness
coefficient, respectively.

2.2.9. Log-Pearson type III Distribution

The log-Pearson type III distribution is a continuous probability distribution of a
random variable with the logarithmic transformation that follows a Pearson type III dis-
tribution; that is, if Y = ln(X) follows a Pearson type III distribution, then X follows a
log-Pearson type III distribution [37–39]. Similarly to the Pearson III distribution, it is
used in hydrology for frequency analysis. If the observations present a very high positive
skew, then the log-Pearson type III distribution is suitable for modelling. This logarithmic
transformation reduces the skewness, and can even transform positively skewed data into
negatively skewed data [29].
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The log-Pearson type III cumulative distribution function is:

F(x) =
1

βαΓ(α)

∫ x

ex0

(ln(t)− x0)
α−1e−(ln(t)−x0)/β

t
dt, x ≥ ex0 , α > 0, β > 0, (29)

where α, β, and x0 are the shape, rate, and threshold parameters, respectively, and Γ(α)
is the value of the gamma function defined in Equation (15). Changing the variable
(ln(t)− x0)/β = u and putting y = (ln(x)− x0)/β, we get

F(y) =
1

Γ(α)

∫ y

0
uα−1e−udu, y ≥ 0, α > 0, β > 0, (30)

which is a simplified form of Equation (29). The method of moments is used to fit the
distribution to the curve, thus obtaining the parametric estimate. If z = ln(x) is the
logarithmic transformation of the sample, then

α =
4

C2
s (z)

, (31)

β =
Cs(z)Sz

2
, (32)

x0 = z − 2Sz

Cs(z)
, (33)

where z, Sz, and Cs(z) are the mean, standard deviation, and skewness coefficient of the
log transformation of the sample, respectively.

2.2.10. SQRT-Exponential-Type Distribution of the Maximum (SQRT-ET Max)

This distribution was first used in Japan to model extreme rainfall, and is commonly
used in the field of hydrological engineering in Spain. Its cumulative distribution function,
according to Etoh and Murota [40], is as follows:

F(x) = e−k(1+
√

αx)e−
√

αx
, x ≥ 0, k > 0, α > 0, (34)

where k and α are the frequency and scale parameters, respectively. To fit the curve,
the Ferrer method [41] is used, which is defined as follows:

ln(k) =
6

∑
i=0

ai ln(Ci
v), (35)

ln(I1) =
6

∑
i=0

bi(ln(k))i, (36)

α =
I1 k

2x(1 − e−k)
, (37)

where x and Cv are the sample mean and sample coefficient of variation, and ai and bi are
tabulated parameters used to adjust the dependence relationships with Cv.

2.3. Rainfall Data Sets

Data are available from three weather stations located in Andalusia (southern Spain),
specifically located in the province of Cadiz. The annual maximum 24 h rainfall data
were obtained from these stations. The first station is Castellar de la Frontera, with data
from 1972 to 2022, the second is the Almodovar reservoir station, with data from 1990 to
2022, and the third is Jimena de la Frontera, with data from 1990 to 2022. Table 1 indicates
the geographical locations of these three weather stations. Although the Castellar de la
Frontera weather station provides data from 1972, we initially only use data from 1990
for comparison of the three weather stations with each other. Later on, all available data
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from this weather station are used. Table 2 presents a statistical summary of the 1990–2022
data sets.

Table 1. Geographical coordinates of the three weather stations.

Weather Station Latitude * Longitude * Elevation (m asl) Interval (Years) Number of Data

Castellar de la Frontera 36º17′18′′ −5º25′02′′ 45 1972–2022 51
Almodovar reservoir 36º09′15′′ −5º39′03′′ 105 1990–2022 33
Jimena de la Frontera 36°26′18′′ −5°27′16′′ 203 1990–2022 33

* Coordinate system: ETSR89/UTM zone 30N.

Table 2. Statistical variables of the annual maximum 24 h rainfall data sets.

Statistical Variable\Weather Station Castellar de la Frontera Almodóvar Reservoir Jimena de la Frontera

Sample size 33 33 33
Annual mean rainfall (mm) 100.83 76.30 84.24
Standard Deviation (mm) 45.55 30.55 33.24

Coefficient of Variation 0.45 0.40 0.39
Coefficient of Skewness 1.13 0.68 0.83

3. Results and Discussion
3.1. Definitions and Goodness-of-Fit of Probability Distribution Functions

Applying Equations (1)–(37) to the recorded annual maximum 24 h rainfall series for
the period of 1990–2022, the equations for the three case studies were obtained. Table 3
shows the parameters of each probability distribution function for each weather station.

Table 3. Adjusted parameter values.

Distribution\Weather
Station Castellar de la Frontera Almodóvar Reservoir Jimena de la Frontera

Exponential λ = 0.00992 λ = 0.01310 λ = 0.01187

Normal µ = 100.83330 µ = 76.30000 µ = 84.23939
σ = 45.54813 σ = 30.54912 σ = 33.23942

Two-parameter log-normal µy = 4.52146 µy = 4.25790 µy = 4.36285
σy = 0.43368 σy = 0.39976 σy = 0.37760

Three-parameter log-normal
µy = 4.22574 µy = 4.09640 µy = 3.65457
σy = 0.56942 σy = 0.46174 σy = 0.72495
z0 = 20.89191 z0 = 9.62717 z0 = 35.04865

Gamma α = 4.90080 α = 6.23809 α = 6.42278
β = 20.57487 β = 12.23131 β = 13.11571

Gumbel α = 39.95810 α = 26.79989 α = 29.16002
β = 79.30348 β = 61.85993 β = 68.52766

Log-Gumbel α = 0.26082 α = 0.23983 α = 0.23733
β = 4.39828 β = 4.14231 β = 4.24393

Pearson type III
α = 3.12134 α = 8.65029 α = 5.84278
β = 25.78101 β = 10.38684 β = 13.75129
x0 = 20.36200 x0 = −13.54917 x0 = 3.89355

Log-Pearson type III
α = 209.02380 α = 26784.68000 α = 40.28394

β = 0.03000 β = 0.00244 β = 0.05949
x0 = −1.74854 x0 = −61.16749 x0 = 1.96626

SQRT-ET max k = 74.35251 k = 146.62250 k = 160.01050
α = 0.49941 α = 0.80863 α = 0.75068
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Kolmogorov–Smirnov and chi-square tests were conducted to evaluate the goodness-
of-fit of the 10 selected probability distribution functions with respect to the calculated
plotting positions through the Weibull formula: F(xi) =

i
n+1 , i = 1, · · · , n (where xi are

the data occupying position i after incremental sorting of data, and n is the total number
of data). Figures 2–4 show the goodness-of-fit of the probability distribution functions for
each of the three rain gauges. It can be seen that, for all three stations, the worst fit was
obtained for the exponential function.
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Figure 2. Cumulative probability versus precipitation depth for the probability distribution functions
at the Castellar de la Frontera weather station.
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Figure 3. Cumulative probability versus precipitation depth for the probability distribution functions
at the Almodovar reservoir weather station.
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Figure 4. Cumulative probability versus precipitation depth for the probability distribution functions
at the Jimena de la Frontera weather station.

From the Kolmogorov–Smirnov and chi-square goodness-of-fit tests, we obtained the
p-value, that is, the smallest value of the significance level (α) at which the hypothesis
that the distributions fit the data is rejected. In this study, the significance level was set to
0.05; thus, the hypothesis was accepted if the p-value was greater than 0.05 and rejected
otherwise. Regarding the Kolmogorov–Smirnov goodness-of-fit test, Table 4 shows the
p-values obtained for each of the probability distribution functions and each of the weather
stations. The p-values less than or equal to 0.05 are written in red, indicating that the
hypothesis was rejected in these cases, and the highest p-value for each weather station
is written in blue, indicating the distribution function that best fit the weather station
data in the Kolmogorov–Smirnov sense. It can be seen that only the exponential function
was rejected (with respect to the series of the three rain gauges) and that the best-fitting
functions in terms of the Kolmogorov–Smirnov criteria were Pearson type III, log-Pearson
type III, and three-parameter log-normal for the weather stations of Castellar de la Frontera,
Almodovar reservoir, and Jimena de la Frontera, respectively.

Table 4. Kolmogorov–Smirnov test p-values.

Distribution\Weather
Station Castellar de la Frontera Almodóvar Reservoir Jimena de la Frontera

Exponential 3.728 × 10−4 3.528 × 10−4 2.226 × 10−5

Normal 0.7149 0.4795 0.1047

Two-parameter log-normal 0.8864 0.9945 0.5170

Three-parameter log-normal 0.9241 0.9934 0.8213

Gamma 0.9322 0.9393 0.3666

Gumbel 0.9437 0.9616 0.4402

Log-Gumbel 0.1578 0.3789 0.1612
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Table 4. Cont.

Distribution\Weather
Station Castellar de la Frontera Almodóvar Reservoir Jimena de la Frontera

Pearson type III 0.9536 0.8908 0.3862

Log-Pearson type III 0.9167 0.9946 0.7183

SQRT-ET max 0.7595 0.9361 0.6407

Numbers written in red correspond to p-values ≤ 0.05 (hypothesis rejected), while those written in blue correspond
to the highest p-value at each weather station (best-fitting function).

In the case of the chi-square goodness-of-fit test, we proceeded in the same manner,
and Table 5 shows the obtained p-values. Again, the exponential function was rejected for
all three rain gauge series, and the normal distribution was also rejected for the Jimena
de la Frontera data set. The best-fitting distributions, in terms of the chi-square test, were
Gumbel for the Castellar de la Frontera weather station, gamma and Gumbel for the
Almodovar reservoir (with the same p-value), and log-Pearson type III for the Jimena de la
Frontera pluviometer.

Table 5. Chi-square test p-values.

Distribution\Weather Station Castellar de la Frontera Almodóvar Reservoir Jimena de la Frontera

Exponential 9.5 × 10−6 4.66 × 10−6 5.19 × 10−7

Normal 0.2526 0.3092 0.0433

Two-parameter log-normal 0.2526 0.6805 0.1696

Three-parameter log-normal 0.1895 0.3322 0.0656

Gamma 0.4631 0.8159 0.1090

Gumbel 0.5340 0.8159 0.1396

Log-Gumbel 0.0850 0.0977 0.1159

Pearson type III 0.3346 0.4281 0.2346

Log-Pearson type III 0.0609 0.4706 0.2519

SQRT-ET max 0.2262 0.3188 0.2298

Numbers written in red correspond to p-values ≤ 0.05 (hypothesis rejected), while those written in blue correspond
to the highest p-value at each weather station (best-fitting function).

Regarding the Gumbel distribution, it can be seen that it performed very well in both
goodness-of-fit tests (it was the best-fitting distribution in two of the three cases for the chi-
square goodness-of-fit). We would like to point out that, in this work, we use the Gumbel
distribution with a finite sample size, unlike most studies that have used an infinite sample
size (e.g., [47]). Therefore, although it did not give a good fit in some studies, the finite
sample size Gumbel yielded a good fit and was even preferable to other distributions when
calculating interannual sediment emissions in this study [45].

With regard to the two- and three-parameter log-normal distributions, we can observe
that both passed the goodness-of-fit tests, with the former performing better in the chi-
square tests and the latter in the Kolmogorov–Smirnov tests. In comparison with the
log-Pearson type III distribution, we can see that, in some cases, the two-parameter log-
normal had a better fit (e.g., Castellar de la Frontera, chi-square test), while, in others,
the three-parameter log-normal (e.g., Jimena de la Frontera, Kolmogorov–Smirnov test) or
the log-Pearson type III (e.g., Almodovar reservoir, Kolmogorov–Smirnov test) performed
better. Referring to the work of Yuan et al. [46], they found that the log-Pearson type III was
the best-fitting distribution for 14 of the 15 selected sites, with log-normal and Gumbel as
the second best-fitting distributions. Note that [46] only used the two-parameter log-normal
distribution and not the three-parameter log-normal.
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After both analyses, it was not possible to establish the same functions for the rainfall
data sets associated with the three weather stations according to the validation criteria of
the goodness-of-fit tests. This is due to the fact that the weather stations were located in an
area that does not exceed the regional scope. Therefore, each rainfall data set requires a
preliminary selection of the functions to be used in terms of goodness-of-fit test validation,
regardless of the applications envisaged for different return periods. Consequently, in the
following, only those probability distribution functions that did not suffer any rejection
in the goodness-of-fit tests were used; in particular, the exponential and normal functions
were excluded from the rest of the study.

In view of these results, future work could explore the replacement of the exponential
function by alternative distributions based on the function proposed by Lindley [58–61].

3.2. Cumulative Distribution Function Frequency Analysis

The return period (T) can be defined as the average time lapse for an event of a given
magnitude to be equalled or exceeded in a statistical sense, for example, when the average
period that must elapse before the maximum annual value of the daily precipitation depth
at a given geographical point is equalled or exceeded.

Let X be the random variable representing the annual maximum 24 h rainfall and F be
its cumulative distribution function. Suppose a certain rainfall event whose precipitation
depth value is x mm occurs. Then, 1− F(x) is the probability that the event will be exceeded
in a year. If we now consider the random variable representing the number of years until
this event is exceeded (τ), it is easy to see that τ follows a geometric distribution with the
parameter 1 − F(x). Thus, the return period (T) for this rainfall event will be the mean of τ;
that is,

T = τ =
1

1 − F(x)
. (38)

From Equation (38), we obtain

x = F−1
(

1 − 1
T

)
, (39)

which represents the precipitation depth as a function of the return period.
Equation (39) was used for all cumulative distribution functions examined that were

not rejected by a goodness-of-fit test. Figures 5–7 show the application of this equation
for T from 1.2 to 500 years, while Figures 8–10 show the same for T from 1.2 to 50 years.
Figures 5 and 8 correspond to Castellar de la Frontera, Figures 6 and 9 to Almodovar
reservoir, and Figures 7 and 10 to Jimena de la frontera.

In hydraulic, hydrological, and sedimentological engineering, one of the most well-
established criteria for decision making is based on adopting predictions that are on the
safe or conservative side. For example, the predictions of those functions that provide
the highest values of precipitation depth for a given return period are generally chosen.
In this sense, from Figures 5–7, it can be seen that, for high return periods (T > 100 years),
the function that provides a greater depth of precipitation is the log-Gumbel distribution,
although it can also be seen that this function has an anomalous sensitivity with respect
to the others; as such, its use is not advisable as, due to this sensitivity, it may be abruptly
modified when data are added to the series. Furthermore, the use of the Gumbel, log-
Pearson type III, and SQRT-ET max functions cannot be discouraged, as their use is well
established, for example, in the United States and Spain. The three-parameter log-normal
also performed well in this case. From Figures 8–10, it can be seen that, for low return
periods (T < 50), the Gumbel and three-parameter log-normal functions provided values
on the conservative side.
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Figure 5. Precipitation depth against return period for the probability distribution functions and T
from 1.2 to 500 years at the Castellar de la Frontera weather station.
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Figure 6. Precipitation depth against return period for the probability distribution functions and T
from 1.2 to 500 years at the Almodovar reservoir weather station.
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Figure 7. Precipitation depth against return period for the probability distribution functions and T
from 1.2 to 500 years at the Jimena de la Frontera weather station.
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Figure 8. Precipitation depth against return period for the probability distribution functions and T
from 1.2 to 50 years at the Castellar de la Frontera weather station.
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Figure 9. Precipitation depth against return period for the probability distribution functions and T
from 1.2 to 50 years at the Almodovar reservoir weather station.
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Figure 10. Precipitation depth against return period for the probability distribution functions and T
from 1.2 to 50 years at the Jimena de la Frontera weather station.

3.3. Indicators of the Impact of Climate Change on Extreme Precipitation Events

In this section, we identify the indicators that highlight the effect of climate change on
extreme precipitation events. For this purpose, only the complete data set of the Castellar
de la Frontera weather station was utilised, that is, all data from 1972 to 2022. This database
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was chosen as it is reliable and spans a long time period [45]. The result was compared
with that obtained with the data of the same station spanning from 1990 to 2022.

First, Table 6 shows a comparison of the statistical variables of the two data sets.
We calculated the parameters of the probability functions that had not been previously
excluded (i.e., not rejected) for this new data set. In addition, we performed the relevant
goodness-of-fit tests on these probability functions. Table 7 reports these results. Note
that, in this case, the log-Gumbel was rejected by the chi-square test and the best-fitting
distributions were the Pearson type III distribution according to the Kolmogorov–Smirnov
criteria and the two-parameter log-normal and gamma distributions according to the
chi-square criteria.

Table 6. Comparison of the statistical variables of the data from the Castellar de la Frontera weather
station from 1972 with the statistical variables of the data from the same station from 1990.

Statistical Variable Data from 1972 to 2022 Data from 1990 to 2022

Sample size 51 33
Annual mean rainfall (mm) 98.86 100.83
Standard deviation (mm) 44.73 45.55

Coefficient of variation 0.45 0.45
Coefficient of skewness 1.28 1.13

Table 7. Parameters and p-values for Castellar de la Frontera weather station with data from 1972
to 2022.

Distribution Parameters Kolmogorov–
Smirnov p-Values Chi-Square p-Values

Two-parameter log-normal µy = 4.50328 0.9014 0.5329
σy = 0.42481

Three-parameter log-normal
µy = 4.16548

0.9661 0.0836σy = 0.58296
z0 = 22.96894

Gamma α = 4.88552 0.9131 0.5329
β = 20.23507

Gumbel α = 38.10288 0.8282 0.4454
β = 77.94238

Log-Gumbel α = 0.26110 0.1023 0.0304
β = 4.37820

Pearson type III
α = 2.45770

0.9908 0.2996β = 28.52960
x0 = 28.74164

Log-Pearson type III
α = 85.35272

0.9473 0.2996β = 0.04598
x0 = 0.57857

SQRT-ET max k = 73.73947 0.8065 0.3667
α = 0.50806

Numbers written in red correspond to p-values ≤ 0.05 (hypothesis rejected), while those written in blue correspond
to the highest p-value at each weather station (best-fitting function).

It is interesting to note that the threshold parameters for the distributions that have
this type of parameter (i.e., three-parameter log-normal, Pearson type III, and log-Pearson
type III) were decreased in comparison to the series from 1990 when taking as reference
the series from 1972. We can see that the values of these parameters were 22.96894 (three-
parameter log-normal distribution), 28.74164 (Pearson type III distribution), and 0.57857
(log-Pearson type III distribution); recall that, for the series since 1990, the associated
values were 20.89191 (three-parameter log-normal distribution), 20.36200 (Pearson type III
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distribution), and −1.74854 (log-Pearson type III distribution). This is an indicator that the
minimum possible value of the annual maximum 24 h rainfall is decreasing.

We next applied Equation (39) to obtain the plots for the return period T (rejected dis-
tributions by a goodness-of-fit test are not plotted), and compared these plots with those for
the same station since 1990. This indicated that the annual maximum 24 h rainfall is increas-
ing for the same return period T. Figures 11–14 show these plots, with Figures 11 and 12
for T from 1.2 to 500 years and Figures 13 and 14 for T from 1.2 to 50 years. We can see
that the distributions that make this increase most evident are the three-parameter log-
normal distribution and the Gumbel distribution, although all of the plotted distributions
demonstrate this increase.
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Figure 11. Comparison between two-parameter log-normal, three-parameter log-normal, Pearson
type III, and log-Pearson type III distributions for T from 1.2 to 500 years.

Figure 12. Comparison between Gumbel, gamma, and SQRT-ET max distributions for T from 1.2 to
500 years.
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Figure 13. Comparison between two-parameter log-normal, three-parameter log-normal, Pearson
type III, and log-Pearson type III distributions for T from 1.2 to 50 years.

Figure 14. Comparison between Gumbel, gamma, and SQRT-ET max distributions for T from 1.2 to
50 years.

4. Conclusions

We carried out a study of the annual maximum 24 h rainfall data obtained from three
weather stations. Modelling was performed using 10 different probability distribution
functions, and the following results were obtained: (i) The selection of distribution functions
for hydrological modelling requires a preliminary choice based on a test-fit validation
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criterion, including rainfall data from weather stations in the same area. (ii) Based on the
three rainfall data sets and the climate area where the weather stations are located, two
functions were found that should not be used for modelling; namely, the cumulative normal
and exponential probability distribution functions were rejected by goodness-of-fit tests.
(iii) A frequency analysis of the cumulative distribution functions was performed, which
indicated that the best-performing distributions were the log-Gumbel and three-parameter
log-normal for high return periods (T > 100 years) and the Gumbel and three-parameter
log-normal for low return periods (T < 50 years). However, the use of the log-Gumbel is
discouraged, as it has a high sensitivity, while the use of the SQRT-ET max and log-Pearson
type III distributions cannot be discouraged, as they are known to perform well and have
been commonly used in different countries (e.g., USA and Spain).

Furthermore, a study comparing data from the Castellar de la Frontera weather station
since 1972 with data from the same station since 1990 was conducted in order to detect
indicators of the effects of climate change on extreme precipitation events. We detected that
the minimum possible value of the annual maximum 24 h rainfall is decreasing, while the
annual maximum 24 h rainfall is increasing for the same return period T.

One of the requirements of the procedure adopted in this work is the need to test a
high number of probability distribution functions, which a priori are recommended for the
type of hydroclimatic variable analysed. The selection criteria for these candidate functions
must be adapted to the new published findings, both to include new functions and to
discard some of those that have been habitually used. In this sense, it is advisable to include
candidate functions belonging to the Lindley family of distributions in future works.
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