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Abstract: The nonuniform sampling and reconstruction of bandlimited random signals in the SAFT
domain is discussed in the paper, where the nonuniform samples are obtained by randomly disturbing
the uniform sampling. First, we prove that the concerned nonuniform problem is equivalent to the
process of uniform sampling after a prefilter in the statistic sense. Then, an approximate reconstruction
method based on sinc interpolation is proposed for the randomized nonuniform sampling of SAFT-
bandlimited random signals. Finally, we offer the mean square error estimate for the corresponding
approximate recovery approach. The results generalize the conclusions of nonuniform sampling of
bandlimited random signals in the FrFT and LCT domains to the SAFT domain.

Keywords: special affine Fourier transform; randomized nonuniform sample; bandlimited random
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1. Introduction

The special affine Fourier transform (SAFT) was first proposed in [1] to model optical
systems. It offers a unified viewpoint of many known signal processing transforms, such
as Fourier transform (FT), fractional Fourier transform (FrFT), linear canonical transform
(LCT), Laplace transform (LT), and so on. It can also include some optical operations
on light waves, such as rotation, magnification, hyperbolic transformation, free space
propagation, Lens transformation, and so on. The SAFT is also called the offset linear
canonical transform (OLCT) since it is defined by offsetting two extra parameters on the
basis of the LCT [2]. It has been proven that the SAFT is a useful tool for signal processing,
communications, quantum mechanics and optics [3–6]. Many classical results such as Zak
transform, Poisson summation formula, uncertainty principles, and convolution theorems
are established in the SAFT domain [7–10].

We let

A =

[
a b u0

c d ω0

]
(1)

be a matrix with six real parameters satisfying ad − bc = 1. The continuous-time SAFT
associated with the parameter matrix A of signal f (t) is defined as in [1],

FA(u) = SAFT[ f ](u) =

{ ∫ +∞
−∞ f (t)KA(t, u)dt, b ̸= 0,
√

de jcd(u−u0)
2

2 + jw0u f [d(u − u0)], b = 0,
(2)
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where kernel function KA(t, u) is given by

KA(t, u) =

√
1

2π jb
e

jdu2
0

2b e
j

2b [at2+2t(u0−u)−2u(du0−bw0)+du2]. (3)

We only restrict our attention to the case of b ̸= 0 because case b = 0 is essentially a
chirp multiplication. We suppose that x and k are position and wave numbers, respectively;
then, it is shown in [1,7,11] that the SAFT can be understood as a general inhomogeneous
lossless linear mapping in phase space as[

x′

k′

]
=

[
a b

c d

][
x

k

]
+

[
u0

ω0

]
, (4)

which transforms any convex body into another convex body under any linear deforma-
tions, rotations, and translations in the phase space. Condition ad − bc = 1 is used to
guarantee that the area of the body is preserved by Transform (4). The definition in (2) is
just the integral representation of the wave function transform associated with (4), which is
derived by the authors in [1].

It can be verified that the inverse SAFT [12] is

f (t) = C
∫ +∞

−∞
FA(u)KA−1(u, t)du, (5)

where C = e
j
2 (cdu2

0−2adu0w0+abw2
0) and

A−1 :=

[
d −b bω0 − du0

−c a cu0 − aω0

]
. (6)

If matrix

A =

[
a b 0

c d 0

]
or A =

[
0 1 0

−1 0 0

]
, (7)

the SAFT reduces to LCT and FT, respectively.
Sampling and reconstruction builds a connection between the continuous signals and

the discrete digital signals, which is the theoretical basis of signal and processing. Beginning
with the Shannon’s sampling theorem of bandlimited signals [13], various samplings such
as nonuniform sampling, average sampling, dynamic sampling, random sampling, mobile
sampling, timing sampling, and multi-channel sampling have been generally studied for
signals bandlimited in the FT domain [14–17]. With the appearance and developments
of the more general transforms, the corresponding sampling theories are extended to the
signals bandlimited in the FrFT and LCT domains [3,5,18–22]. In particular, the sampling
problems associated with the SAFT have generated wide research interests in recent years
due to its extensiveness and flexibility [6,7,9,12,23–25], which can include more signal
models. For example, it is easy to verify that signal

f (t) = sinc(t)e−
it2
2 e−it (8)

is bandlimited in the SAFT domain associated with matrix

A =

[
1 1 1

0.5 1.5 0

]
. (9)

However, f (t) is not bandlimited in the FT domain. Of course, we also must pay attention
to the fact that a bandlimited signal space in the SAFT domain is not shift-invariant as

SAFT[ f (t − β)](u) = e
j

2b [2bβ(aω0−cu0)+bcβ(2u−aβ)]SAFT[ f ](u − aβ), (10)
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which is a different situation from the bandlimited space in the FT domain.
Signals in the real world often present random characteristics, and sampling for ran-

dom signals bandlimited in the FT domain has been generally studied [16,26–28]. In recent
years, there emerged a lot of research on the sampling of random signals bandlimited in the
FrFT and LCT domains [29–33], including uniform sampling and nonuniform sampling.
Nonuniform sampling is a more realistic sampling scheme due to the limitations of data
acquisition and processing ability. Various nonuniform sampling schemes such as the
periodic nonuniform model, the N-order recurrent nonuniform model, the migration of a
finite number of uniform samples, and the general nonuniform mode have been consid-
ered for random signals bandlimited in the LCT domain [33], respectively. In particular,
a randomized nonuniform sampling method with nonuniform samples being the random
perturbations of uniform grids and a class of approximate recovery approaches by using
sinc interpolation functions were studied in [30] for random signals bandlimited in the
LCT domain, which extends the corresponding results in the FT and FrFT domains [22,34].
For random signals bandlimited in the SAFT domain, the multichannel uniform sampling
theorems were established in [35], and the deterministic nonuniform sampling and re-
construction considered in [33] were studied in [12,36]. To the best of our knowledge,
the randomized nonuniform sampling for random SAFT-bandlimited signals is still not
seen. In the current paper, we study a kind of randomized nonuniform sampling method
for SAFT-bandlimited random signals, which is a generalization of [22,30] from the recon-
struction of random signals bandlimited in the FrFt and LCT domains to that of random
signals bandlimited in the SAFT domain.

The paper is organized as follows. In Section 2, we offer the definition for the power
spectral density in the SAFT domain. In Section 3, we study the nonuniform sampling
scheme and propose an approximate recovery approach. In Section 4, the mean square
error estimate for the proposed approximate recovery method is demonstrated.

2. Power Spectral Density in the SAFT Domain

Given probability space (Ω,F , p), x(t) is called to be a wide stationary stochastic
process if it has zero mean and the auto-correlation function

Rxx(t + τ, t) = E[x(t + τ)x∗(t)] (11)

is independent of t ∈ R, i.e., Rxx(t + τ, t) = Rxx(τ), where E[·] denotes mathematical
expectation and superscript ∗ stands for the complex conjugate. Two stochastic processes
x(t) and y(t) are said to be jointly stationary if x(t) and y(t) are both stationary and their
cross-correlation function

Rxy(t + τ, t) = E[x(t + τ)y∗(t)] (12)

is independent of t ∈ R , i.e., Rxy(t + τ, t) = Rxy(τ).
The SAFT cross-correlation function, the SAFT auto-power spectral density, and the

SAFT cross-power spectral density are defined as in [35]. For two random signals x(t) and
y(t), the SAFT auto-correlation function of x(t) is defined as

RA
xx(τ) = lim

T→+∞

1
2T

∫ T

−T
Rxx(t + τ, t)ej a

b tτdt. (13)

Similarly, the SAFT cross-correlation function of x(t) and y(t) is defined as

RA
xy(τ) = lim

T→+∞

1
2T

∫ T

−T
Rxy(t + τ, t)ej a

b tτdt. (14)

Remark 1. If random signal x̃(t) = x(t)ej a
2b t2

is stationary, then x1(t) = x̃(t)ej u0
b t is also

stationary. In fact,

Rx1x1(t + τ, t) = e
ju0τ

b Rx̃x̃(t + τ, t). (15)
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Moreover, one has

Rx̃x̃(t + τ, t) = E[x̃(t + τ)x̃∗(t)]

= E
[

x(t + τ)ej a
2b (t+τ)2

x∗(t)e−j a
2b t2
]

= E
[

x(t + τ)x∗(t)ej a
2b τ2

ej atτ
b

]
= Rxx(t + τ, t)ej atτ

b ej a
2b τ2

. (16)

Therefore, Rxx(t + τ, t)e
jatτ

b must be independent of t. In such a case, we have

RA
xx(τ) = Rx1x1(τ)e

−j a
2b τ2

e−j u0
b τ . (17)

We define the SAFT auto-power spectral density of the random signal x(t) by

PA
xx(u) =

√
1

−j2πb
e−j d

2b u2
e−j

du2
0

2b ej u
b (du0−bw0)FA

{
RA

xx(τ)
}
(u) (18)

and the SAFT cross-power spectral density of the random signals x(t) and y(t) as

PA
xy(u) =

√
1

−j2πb
e−j d

2b u2
e−j

du2
0

2b ej u
b (du0−bw0)FA

{
RA

xy(τ)
}
(u). (19)

It follows from (2) and (18) that

RA
xx(τ) = C ·

∫ +∞

−∞
PA

xx(u)1/

√
1

−j2πb
ej d

2b u2
ej d

2b u2
0 e−j u

b (du0−bw0)

√
1

−j2πb

× e−j a
2b (bw0−du0)

2
e−j d

2b u2
e−j u

b (bw0−du0−τ)e−j u0
b τe

−j a
2b τ2

du

= C ·
∫ +∞

−∞
PA

xx(u)e
j d

2b u2
0 e−j a

2b (bw0−du0)
2
ej u

b τe−j u0
b τe

−j a
2b τ2

du

= e
j
2 (cdu2

0−2adu0w0+abw2
0)
∫ +∞

−∞
PA

xx(u)e
j d

2b u2
0 e−j a

2b (bw0−du0)
2
ej u

b τe−j u0
b τe−j a

2b τ2
du

=
∫ +∞

−∞
PA

xx(u)e
−j a

2b τ2
ej 1

b (u−u0)τdu. (20)

We let F1(u) = FA{ f1(t)}(u) and F2(u) = F1(u)H(u). The multiplicative filtering in
the SAFT domain which was introduced in [35] is demonstrated in Figure 1.

Figure 1. Multiplicative filtering in the SAFT domain.

We define normalized convolution

( f Θg)(t) =
1√
2π

∫
R

f (x)g(t − x)e−j a
2b (t2−x2)dx (21)

for f , g ∈ L2(R) [5]. Then, we have the following conclusion:
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Proposition 1. We let

H(u) =
1√
2π

∫ +∞

−∞
h(t)e−j (

u−u0)
b tdt. (22)

Then, the multiplicative filter in Figure 1 is equivalent to

f2(t) = ( f1Θh)(t). (23)

Proof. We only need to prove

FA{( f1Θh)(t)}(u) = F1(u)H(u). (24)

It follows from the definition of the SAFT that

FA{( f1Θh)(t)}(u)

=
∫
R
( f1Θh)(t)

√
1

2π jb
e

jdu2
0

2b e
j

2b [at2+2t(u0−u)−2u(du0−bw0)+du2]dt

=
1√
2π

∫
R

∫
R

f1(x)h(t − x)e−j a
2b (t2−x2)

√
1

2π jb
e

jdu2
0

2b e
j

2b [at2+2t(u0−u)−2u(du0−bw0)+du2]dxdt

=
∫
R

f1(x)

√
1

2π jb
e

jdu2
0

2b e
j

2b [ax2+2x(u0−u)−2u(du0−bw0)+du2]dx
1√
2π

∫
R

h(t − x)e
j
b t(u0−u)e−

j
2b [2x(u0−u)]dt

=
∫
R

f1(x)

√
1

2π jb
e

jdu2
0

2b e
j

2b [ax2+2x(u0−u)−2u(du0−bw0)+du2]dx
1√
2π

∫
R

h(t)e−j (
u−u0)

b tdt

= F1(u)H(u). (25)

Lemma 1 ([35]). We suppose that x(t) and y(t) are the input and output random signals in
Figure 1, respectively; then,

PA
xy(u) = H(u)PA

xx(u) (26)

and
PA

yy(u) = |H(u)|2PA
xx(u). (27)

3. Nonuniform Sampling and Approximate Recovery

The sampling and reconstruction of random signals bandlimited in the SAFT domain
based on nouniform samples with random characteristics are studied in this section.

Definition 1 ([35]). We say that random signal x(t) is SAFT-bandlimited (or bandlimited in the
SAFT domain) if its SAFT power spectral density PA

xx(u) satisfies

PA
xx(u) = 0, |u| > ur, (28)

where ur is called the bandwidth.

Lemma 2. We suppose that random signal x(t) is SAFT-bandlimited with bandwidth ur and
x̃(t) = x(t)ej a

2b t2
is stationary. Then, x1(t) is FT-bandlimited with bandwidth ur

b and the power
spectral density satisfies supp{Px1x1(u)} ⊆ [− ur

b , ur
b ].

Proof. Since x1(t) is stationary, it follows from (17) and (18) that
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PA
xx(u) =

√
1

−j2πb
e−j d

2b u2
e
−j d

2b u2
0 ej u

b (du0−bw0)FA

{
RA

xx(τ)
}
(u)

=

√
1

−j2πb
e−j d

2b u2
e
−j d

2b u2
0 ej u

b (du0−bw0)FA

{
Rx1x1(τ)e

−j a
2b τ2

e−j u0
b τ
}
(u)

=

√
1

−j2πb
e−j d

2b (u
2+u2

0)ej u
b (du0−bw0)

∫ +∞

−∞
Rx1x1(τ)e

−j a
2b τ2

e−j u0
b τ

×
√

1
2π jb

e
jdu2

0
2b e

j
2b [aτ2+2τ(u0−u)−2u(du0−bw0)+du2]dτ

=
1

2πb

∫ +∞

−∞
Rx1x1(τ)e

−j u
b τdτ

=
1

2πb
Px1x1

(u
b
)
. (29)

Note that PA
xx(u) = 0, |u| > ur. Then, the desired result is proven.

First, we show that the proposed nonuniform sampling is equivalent to the process of
uniform sampling after a prefilter in the statistic sense.

Theorem 1. We suppose that random signal x(t) is SAFT-bandlimited with bandwidth ur and
x̃(t) = x(t)ej a

2b t2
is stationary. Then, the nonuniform sampling of x(t) at sampling points

tn = nT + ξn (Figure 2) is identical to the uniform sampling after SAFT filter h1(t) as in Figure 3
in the sense of second-order statistic characters, that is,

Ry1y1(nT, (n − k)T) = E[Rx1x1(kT + ξn − ξn−k)], (30)

where T ≤ TN = πb
ur

, {ξn} is a sequence of independent identically distributed random variables
with zero mean in interval (−T/2, T/2). Moreover,

H1(u) = ϕξ

(u
b

)
=

1√
2π

∫ +∞

−∞
h1(t)e−j (

u−u0)
b tdt, (31)

and ϕξ(u) denotes the characteristic function of ξn.

Figure 2. The nonuniform sampling process.

Figure 3. The equivalent system of the nonuniform sampling, where the filtering through filter h1(t)
means that ỹ(t) = 1√

2π

∫
R x̃(s)h1(t − s)ds.
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Proof. Note that y(t) = (xΘh1)(t). Then, it follows from Lemma 1 that

PA
yy(u) = |H1(u)|2PA

xx(u). (32)

Moreover, one has

y1(t) = y(t)ej a
2b t2

ej u0
b t

=
1√
2π

ej u0
b t
∫
R

x(s)h1(t − s)ej a
2b s2

ds

=
1√
2π

ej u0
b t
∫
R

x̃(s)h1(t − s)ds. (33)

Hence, we have

Ry1y1(t + τ, t) =
1

2π
ej u0

b τ
∫
R

∫
R

h∗1(s)Rx̃x̃
(
τ − s′ + s

)
h1
(
s′
)
ds′ds, (34)

which is independent of t and y1(t) is stationary. It follows from (20) and (32) that

RA
yy(kT) =

∫ ur

−ur
PA

yy(u)e
−j a

2b (kT)2+j 1
b (u−u0)kTdu

=
∫ ur

−ur
|H1(u)|2PA

xx(u)e
−j a

2b (kT)2+j 1
b (u−u0)kTdu. (35)

This together with (17) obtains

Ry1y1(nT, (n − k)T) = Ry1y1(kT)

= RA
yy(kT)ej a

2b (kT)2
ej u0

b kT

= ej a
2b (kT)2

ej u0
b (kT)

∫ ur

−ur
|H1(u)|2PA

xx(u)e
−j a

2b (kT)2+j 1
b (u−u0)kTdu

=
∫ ur

−ur
|H1(u)|2PA

xx(u)e
j u

b kTdu. (36)

Combining (17) and (20), we have

E[Rx1x1(kT + ξn − ξn−k)]

= E
[

RA
xx(kT + ξn − ξn−k)ej a

2b (kT+ξn−ξn−k)
2
ej u0

b (kT+ξn−ξn−k)
]

= E
[∫ ur

−ur
PA

xx(u)e
−j a

2b (kT+ξn−ξn−k)
2+j 1

b (u−u0)(kT+ξn−ξn−k)du · ej a
2b (kT+ξn−ξn−k)

2
ej u0

b (kT+ξn−ξn−k)

]
= E

[∫ ur

−ur
PA

xx(u)e
j u

b (kT+ξn−ξn−k)du
]

=
∫ ur

−ur
PA

xx(u)e
j u

b kTE
[
ej u

b (ξn−ξn−k)
]
du. (37)

We let Z = ξn − ξn−k and fZ(η) be its probability density function. We suppose that
fξ(η) is the common probability density function of ξn and ξn−k, which are independent
and have identical distributions; then,

fZ(η) =
[

fξ(·) ∗ fξ(−·)
]
(η), (38)

where ∗ denotes the convolution operator. Moreover, one has
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E
[
ej u

b (ξn−ξn−k)
]
=
∫ +∞

−∞
fZ(η)ej u

b ηdη

=
∫ +∞

−∞

[
fξ(·) ∗ fξ(−·)

]
(η)ej u

b ηdη

=
∫ +∞

−∞
fξ(η)ej u

b ηdη ·
∫ +∞

−∞
fξ(−η)ej u

b ηdη

=
∣∣∣ϕξ

(u
b

)∣∣∣2, (39)

where

ϕξ(u) =
∫ +∞

−∞
fξ(η)ejuηdη. (40)

Substituting (39) into (37) obtains

E[Rx1x1(kT + ξn − ξn−k)] =
∫ ur

−ur

∣∣∣ϕξ

(u
b

)∣∣∣2PA
xx(u)e

j u
b kTdu. (41)

This together with H1(u) = ϕξ

( u
b
)

and (36) proves the desired result.

In the following, we offer an approximate recovery method for bandlimited signals in
the SAFT domain based on randomized nonuniform samples.

Lemma 3 ([34]). We suppose that random signal x(t) is bandlimited in the Fourier transform
domain with bandwidth ur

b ; {ξn} and {ζn} are two sequences of independent identically distributed
random variables with zero mean. Then, an approximate recovery formula of nonuniform sampling
for random signal x(t) can be represented by

x′′(t) =
T

TN

+∞

∑
n=−∞

x(tn)h2(t − t̃n), (42)

where h2(t) = sinc
(

urt
b

)
, sinc(x) ≜ sin x

x , tn = nT + ξn, and t̃n = nT + ζn.

Theorem 2. We suppose that random signal x(t) is SAFT-bandlimited with bandwidth ur and
x̃(t) = x(t)ej a

2b t2
is stationary. Then, x(t) can be approximated by

x̂(t) =
T

TN
e−j u0

b te−j a
2b t2

+∞

∑
n=−∞

x(tn)ej a
2b t2

n ej u0
b tn h2(t − t̃n), (43)

where tn and t̃n are as in Lemma 3.

Proof. It follows from Lemma 2 that x1(t) is FT-bandlimited with bandwidth ur
b . By (42),

one can obtain that

x′′1 (t) =
T

TN

+∞

∑
n=−∞

x1(tn)h2(t − t̃n) =
T

TN

+∞

∑
n=−∞

x(tn)ej a
2b t2

n ej u0
b tn h2(t − t̃n) (44)

is an approximation of x1(t). Note that x(t) = e−j u0
b te−j a

2b t2
x1(t). Then, x̂(t) in (43) is an

approximate recovery approach of x(t) and the proof is completed.

We let

x̄(t) =
T

TN

+∞

∑
n=−∞

x1(tn)h2(t − t̃n). (45)

Figure 4 shows the approximate recovery approach based on the sinc interpolation for
a SAFT-bandlimited random signal.
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Figure 4. The approximate reconstruction of a SAFT-bandlimited random signal.

4. Error Estimate for Nonuniform Sampling

Since the reconstruction provided in Theorem 2 is an approximate method, we
estimate the approximation error in this section.

Lemma 4. We let x1(t) and y1(t) be the input and output random signals of the FT multiplicative
filter as in Figure 5. Then,

Py1y1(u) =
∣∣∣ĥ3(u)

∣∣∣2Px1x1(u), (46)

where ĥ3(u) is the FT of h3(t), that is,

ĥ3(u) =
∫
R

h3(t)e−jutdt. (47)

Figure 5. A system equivalent to Figure 4.

Proof. Note that y1(t) =
∫ +∞
−∞ x1(t − u)h3(u)du. Then,

Ry1x1(t + τ, t) = E[y1(t + τ)x∗1(t)] =
∫ +∞

−∞
Rx1x1(τ − u)h3(u)du, (48)

which is independent of t. Moreover, one has

Ry1y1(t + τ, t) = E[y1(t + τ)y∗1(t)] =
∫ +∞

−∞
Ry1x1(τ + u)h∗3(u)du. (49)

Taking FT on both sides of (48) and (49) obtains

Py1x1(u) = ĥ3(u)Px1x1(u) (50)

and
Py1y1(u) = ĥ∗3(u)Py1x1(u). (51)

Combining (50) and (51) provides

Py1y1(u) =
∣∣∣ĥ3(u)

∣∣∣2Px1x1(u). (52)
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Theorem 3. We suppose that random signal x(t) is SAFT-bandlimited with bandwidth ur and
x̃(t) = x(t)ej a

2b t2
is stationary. We let v(t) be an additive stationary noise with zero mean and

power spectral density

Pvv(u) = T
∫ ur

−ur
PA

xx(u1)

[
1 −

∣∣∣ϕξζ

(u1

b
,−u

)∣∣∣2]du1, |u| ≤ ur

b
, (53)

where ϕξζ(s, t) is the joint characteristic function of random variables ξn and ζn. If v(t) is
uncorrelated with x(t) and ϕξζ(u,−u) is the frequency response of filter h3(t), then the model
described in Figure 5 is identical to the procedure represented in Figure 4 in the sense of second-order
statistic characters. Moreover,

E
[
|x̂(t)− x(t)|2

]
=
∫ ur

−ur
PA

xx(u)
∣∣∣1 − ϕξζ

(u
b

,−u
b

)∣∣∣2du

+
T

2πb

∫ ur

−ur
PA

xx(u)
∫ ur

−ur

[
1 −

∣∣∣ϕξζ

(u
b

,−u1

b

)∣∣∣2]du1du. (54)

Proof. It follows from Theorem 2 that

x̄(t) = x̂(t)ej u0
b tej a

2b t2
=

T
TN

+∞

∑
n=−∞

x(tn)ej a
2b t2

n e
ju0tn

b h2(t − t̃n). (55)

Then, one has

Rx̄x̄(t, t − τ) =

(
T

TN

)2
E

[( +∞

∑
n=−∞

x(nT + ξn)ej a
2b (nT+ξn)

2
e

ju0(nT+ξn )
b h2(t − nT − ζn)

)
·

( +∞

∑
k=−∞

x∗(kT + ξk)e
−j a

2b (kT+ξk)
2
e
−ju0(kT+ξk )

b h∗2(t − τ − kT − ζk)

)]

=

(
T

TN

)2 +∞

∑
n=−∞

+∞

∑
k=−∞

E
[

Rx1x1 (nT − kT + ξn − ξk)h2(t − nT − ζn)h∗2(t − τ − kT − ζk)
]
. (56)

Moreover, it can be represented by two terms as

Rx̄x̄(t, t − τ) =

(
T

TN

)2
Rx1x1(0)

+∞

∑
n=−∞

E
[

h2(t − nT − ζn)h∗2(t − τ − nT − ζn)
]

+

(
T

TN

)2

∑
n ̸=k

E
[

Rx1x1(nT − kT + ξn − ξk)h2(t − nT − ζn)h∗2(t − τ − kT − ζk)
]

∆
= I + I I. (57)

Note that ∑
n

ej(u2−u1)nT = 2π ∑
k

δ
(
(u2 − u1)T − 2πk

)
and

h2(t) =
1√
2π

∫
R

H2(u)ej u
b tdu =

b√
2π

∫
R

H2(ub)ejutdu. (58)

These together with the fact that H2(u) = π√
2πur

χ[−ur ,ur ](u) show that

I =
1

2π

(
Tb
TN

)2
Rx1x1 (0)

∫
R

∫
R

H2(bu1)H∗
2 (bu2)ej(u1−u2)teju2τ

+∞

∑
n=−∞

ej(u2−u1)nT E
[
ej(u2−u1)ζn

]
du1du2

=

(
Tb
TN

)2
Rx1x1 (0)

∫ ur
b

− ur
b

1
T
|H2(bu)|2ejuτdu

= T
(

b
TN

)2 1
2π

[∫ ur
b

− ur
b

Px1x1 (u1)du1

] ∫ ur
b

− ur
b

|H2(bu)|2ejuτdu

=
T

4π2

∫ ur
b

− ur
b

ejuτ

[∫ ur
b

− ur
b

Px1x1 (u1)du1

]
du. (59)
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Moreover, we have

I I =
(

bT
2πTN

)2

∑
n ̸=k

E
[∫ ur

b

− ur
b

Px1x1 (u)e
ju(nT−kT+ξn−ξk)du

∫
R

H2(bu1)eju1(t−nT−ζn)du1·∫
R

H∗
2 (bu2)e−ju2(t−τ−kT−ζk)du2

]
=

(
bT

2πTN

)2

∑
n ̸=k

∫ ur
b

− ur
b

∫
R

∫
R

Px1x1 (u)H2(bu1)H∗
2 (bu2)eju2τej(u1−u2)tej(u−u1)nTe−j(u−u2)kT

· E
[
ejuξn e−juξk e−ju1ζn eju2ζk

]
du1du2du

=

(
bT

2πTN

)2 ∫ ur
b

− ur
b

∫
R

∫
R

Px1x1 (u)H2(bu1)H∗
2 (bu2)ϕξζ(u,−u1)ϕ

∗
ξζ(u,−u2)eju2τej(u1−u2)t

·
(
∑
n

ej(u−u1)nT)(∑
k

e−j(u−u2)kT)du1du2du −
(

bT
2πTN

)2 ∫ ur
b

− ur
b

∫
R

∫
R

Px1x1 (u)H2(bu1)H∗
2 (bu2)

· ϕξζ(u,−u1)ϕ
∗
ξζ(u,−u2)eju2τej(u1−u2)t

(
∑
n

ej(u2−u1)nT)du1du2du

=

(
b

TN

)2∫ ur
b

− ur
b

Px1x1 (u)
∣∣ϕξζ(u,−u)

∣∣2|H2(bu)|2ejuτdu−

T
2π

(
b

TN

)2∫ ur
b

− ur
b

∫ ur
b

− ur
b

Px1x1 (u1)
∣∣ϕξζ(u1,−u)

∣∣2|H2(bu)|2ejuτdu1du

=

(
b

TN

)2 ∫ ur
b

− ur
b

|H2(bu)|2ejuτ

[
Px1x1 (u)

∣∣ϕξζ(u,−u)
∣∣2 − T

2π

∫ ur
b

− ur
b

Px1x1 (u1)
∣∣ϕξζ(u1,−u)

∣∣2du1

]
du

=
1

2π

∫ ur
b

− ur
b

ejuτ

[
Px1x1 (u)

∣∣ϕξζ(u,−u)
∣∣2 − T

2π

∫ ur
b

− ur
b

Px1x1 (u1)
∣∣ϕξζ(u1,−u)

∣∣2du1

]
du. (60)

Substituting (59) and (60) into (57) obtains

Rx̄x̄(t, t − τ) =
T

4π2

∫ ur
b

− ur
b

(∫ ur
b

− ur
b

Px1x1(u1)
[
1 −

∣∣ϕξζ(u1,−u)
∣∣2]du1

)
ejuτdu

+
1

2π

∫ ur
b

− ur
b

ejuτ Px1x1(u)
∣∣ϕξζ(u,−u)

∣∣2du. (61)

Similarly, we can obtain

Rx̄x1(t, t − τ) =
1

2π

∫ ur
b

− ur
b

Px1x1(u)e
juτϕξζ(u,−u)du. (62)

Therefore, we have

Px̄x̄(u) = Px1x1(u)
∣∣ϕξζ(u,−u)

∣∣2 + T
2π

∫ ur
b

− ur
b

Px1x1(u1)
[
1 −

∣∣ϕξζ(u1,−u)
∣∣2]du1 (63)

and
Px̄x1(u) = Px1x1(u)ϕξζ(u,−u). (64)

It follows from Lemma 4 that the first term of Px1x1(u)
∣∣ϕξζ(u,−u)

∣∣2 in (63) is the FT
power spectral density of y1(t) in Figure 5. Furthermore, since x̄(t) = y1(t) + v(t) and v(t)
is uncorrelated with x(t), then

Rx̄x̄(t + τ, t) = E
[
(y1(t + τ) + v(t + τ))(y1(t) + v(t))∗

]
= Ry1y1(t + τ, t) + Ry1v(t + τ, t) + Rvy1(t + τ, t) + Rvv(t + τ, t)

= Ry1y1(t + τ, t) + Rvv(t + τ, t). (65)



Mathematics 2024, 12, 1092 12 of 15

Moreover, one has
Px̄x̄(u) = Py1y1(u) + Pvv(u), (66)

which shows that the second term in (63) is just the power spectral density of v(t), that is,

Pvv(u) =
T

2π

∫ ur
b

− ur
b

Px1x1(u1)
[
1 −

∣∣ϕξζ(u1,−u)
∣∣2]du1

= T
∫ ur

−ur
PA

xx(u1)

[
1 −

∣∣∣ϕξζ

(u1

b
,−u

)∣∣∣2]du1, |u| ≤ ur

b
. (67)

Therefore, the model described in Figure 5 is identical to the procedure represented in
Figure 4 in the sense of second-order statistic characters.

Next, we estimate E
[
|x̂(t)− x(t)|2

]
. Let ε(t) = x̂(t)− x(t). Combining (29) and (63),

we obtain

PA
x̂x̂(u) =

1
2πb

Px̄x̄(
u
b
)

=
1

2πb
Px1x1(

u
b
)
∣∣∣ϕξζ

(u
b

,−u
b

)∣∣∣2 + T
4π2b

∫ ur
b

− ur
b

Px1x1(u1)

[
1 −

∣∣∣ϕξζ

(
u1,−u

b

)∣∣∣2]du1

= PA
xx(u)

∣∣∣ϕξζ

(u
b

,−u
b

)∣∣∣2 + T
2πb

∫ ur

−ur
PA

xx(u1)

[
1 −

∣∣∣ϕξζ

(u1

b
,−u

b

)∣∣∣2]du1. (68)

Similarly, we can obtain

PA
x̂x(u) = PA

xx(u)ϕξζ

(u
b

,−u
b

)
. (69)

In fact, it is easy to see that

Rx̄x1(t + τ, t) = E
[

x̂(t + τ)ej u0
b (t+τ)ej a

2b (t+τ)2
x∗(t)e−j u0

b te−j a
2b t2
]

= Rx̂x(t + τ, t)ej u0
b τej a

b tτej a
2b τ2

. (70)

Therefore, Rx̂x(t + τ, t)ej a
b tτ is independent of t due to (62). Then,

RA
x̂x(τ) =Rx̂x(t + τ, t)ej a

b tτ

=Rx̄x1(t + τ, t)e−j u0
b τe−j a

2b τ2
. (71)

Moreover, it follows from (19) that

PA
x̂x(u) =

√
1

−j2πb
e−j d

2b u2
e
−j d

2b u2
0 ej u

b (du0−bw0)FA

{
Rx̄x1(τ)e

−j u0
b τe−j a

2b τ2
}
(u)

=

√
1

−j2πb
e−j d

2b (u
2+u2

0)ej u
b (du0−bw0)

∫ +∞

−∞
Rx̄x1(τ)e

−j u0
b τe−j a

2b τ2

√
1

2π jb
e

jdu2
0

2b

· e
j

2b [aτ2+2τ(u0−u)−2u(du0−bw0)+du2]dτ

=
1

2πb

∫ +∞

−∞
Rx̄x1(τ)e

−j u
b τdτ

=
1

2πb
Px̄x1

(u
b

)
=

1
2πb

Px1x1

(u
b

)
ϕξζ

(u
b

,−u
b

)
= PA

xx(u)ϕξζ

(u
b

,−u
b

)
. (72)
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Hence, the SAFT auto-power spectral density of reconstruction error ε(t) is

PA
εε (u) = PA

x̂x̂(u)− PA
x̂x(u)− PA

xx̂(u) + PA
xx(u)

= PA
xx(u)

∣∣∣ϕξζ

(u
b

,−u
b

)∣∣∣2 + T
2πb

∫ ur

−ur
PA

xx(u1)

[
1 −

∣∣∣ϕξζ

(u1

b
,−u

b

)∣∣∣2]du1

− PA
xx(u)ϕξζ

(u
b

,−u
b

)
−
[

PA
xx(u)ϕξζ

(u
b

,−u
b

)]∗
+ PA

xx(u)

= PA
xx(u)

∣∣∣1 − ϕξζ

(u
b

,−u
b

)∣∣∣2 + T
2πb

∫ ur

−ur
PA

xx(u1)

[
1 −

∣∣∣ϕξζ

(u1

b
,−u

b

)∣∣∣2]du1, (73)

where we use the fact that PA
xx(u) is real due to (29). Note that

ε1(t) = ε(t)ej u0
b tej a

2b t2
= (x̂(t)− x(t))ej u0

b tej a
2b t2

= x̄(t)− x1(t). (74)

Then, ε1(t) is stationary. Moreover, it follows from (17) and (20) that

E
[
|ε(t)|2

]
= Rε1ε1 (0) = RA

εε(0) =
∫ ur

−ur

PA
εε (u)du =∫ ur

−ur

PA
xx(u)

∣∣∣1 − ϕξζ

(u
b

,−u
b

)∣∣∣2du +
T

2πb

∫ ur

−ur

PA
xx(u)

∫ ur

−ur

[
1 −

∣∣∣ϕξζ

(u
b

,−u1
b

)∣∣∣2]du1du. (75)

This completes the proof.

Remark 2. If ξn and ζn are equal to zero, then the sampling considered in the paper is just the
classical uniform sampling. In such a case, ϕξζ(s, t) ≡ 1. Then, we know from Theorem 3 that

E
[
|x̂(t)− x(t)|2

]
=
∫ ur

−ur
PA

xx(u)
∣∣∣1 − ϕξζ

(u
b

,−u
b

)∣∣∣2du

+
T

2πb

∫ ur

−ur
PA

xx(u)
∫ ur

−ur

[
1 −

∣∣∣ϕξζ

(u
b

,−u1

b

)∣∣∣2]du1du

= 0. (76)

We let T = TN = πb
ur

. The approximation of x(t) given in (43) reduces to

x̂(t) = e−j a
2b t2

+∞

∑
n=−∞

x(nT)ej a
2b (nT)2

ej u0
b (nT−t)sinc

(
ur(t − nT)

b

)
, (77)

which is just Theorem 3 in [35].

Remark 3. We provide a reconstruction method based on sinc interpolation for random signals
bandlimited in the SAFT domain, which is theoretically similar to that for the classical bandlimited
signals in the FT domain. However, the the numerical performance may show a different case,
because the strong and rapid oscillations of the chirp-modulation multiplier in the SAFT background
may cause instability against a minor jitter error. As we showed in (10), a bandlimited signal space
in the SAFT domain is not shift-invariant, which may require an additional step to identify both the
chirp and shift parameters from the data. However, although the support of the band-limitedness
is changed and the bandwidth could increase, a modest amount of oversampling can make up the
effects of missing the exact determination of the offset parameters to the reconstruction, because a
small shift of the signal only leads to a slight disturbance to the support in the SAFT domain.

5. Conclusions

Since the six-parameter SAFT has more flexibility relative to the four-parameter LCT
and can accommodate more signal models, we extend the sampling theory with samples
being the randomized perturbation of the classical uniform scheme from the FrFT and
LCT backgrounds to the SAFT-bandlimited random signals. We show that the proposed



Mathematics 2024, 12, 1092 14 of 15

nonuniform model is equivalent to the uniform sampling after a pre-filter in the statistic
sense. Moreover, an approximate recovery method based on the sinc functions and the
corresponding error analysis in the sense of mean square convergence are given for random
signals bandlimited in the SAFT domain.
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