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Abstract: Finite Gaussian mixture models are powerful tools for modeling distributions of random
phenomena and are widely used for clustering tasks. However, their interpretability and efficiency
are often degraded by the impact of redundancy and noise, especially on high-dimensional datasets.
In this work, we propose a generative graphical model for parsimonious modeling of the Gaussian
mixtures and robust unsupervised learning. The model assumes that the data are generated indepen-
dently and identically from a finite mixture of robust factor analyzers, where the features’ salience
is adjusted by an active set of latent factors to allow a violation of the local independence assump-
tion. For the model inference, we propose a structured variational Bayes inference framework to
realize simultaneous clustering, model selection and outlier processing. Performance of the proposed
algorithm is evaluated by conducting experiments on artificial and real-world datasets. Moreover,
an application on the high-dimensional machine learning task of handwritten alphabet recognition
is introduced.

Keywords: Bayesian inference; feature selection; mixture of factor analyzers; robust clustering;
structured variational Bayes

MSC: 62H30; 62F15; 62H22

1. Introduction

Finite Gaussian mixture models are powerful tools for modeling distributions of
random phenomena. They are widely used for unsupervised classification tasks and lay
the foundation for many deep learning-based clustering algorithms, e.g., [1,2]. However,
competitive performance of the Gaussian mixture model cannot be expected on high-
dimensional datasets due to the curse of dimensionality [3]. The impact of redundancy
and noise can degrade the model’s interpretability and efficiency, which is crucial in many
application fields such as molecular biology and the clinical medicine [4]. Since the intrinsic
dimensions of high-dimensional data are usually much less than their original feature space,
it is possible to improve the clustering performance via dimension-reduction methods [5].

Feature-selection approaches are designed to retain a subset of features that are in-
formative and discriminant for clustering. The two-stage methods implement the feature
selection and clustering separately, which consider the preselected features as input with-
out regarding the subsequent clustering algorithms [6,7]. But as choosing the feature
subset and clustering are highly dependent problems, to circumvent the loss of informa-
tion, incorporating the feature selection in the clustering algorithms and constructing an
integrated objective function is suggested [3,4]. Pan and Shen [8] proposed a penalized
likelihood approach for unsupervised feature selection where they used an L1 penalty to
shrink the component means. A similar approach was also suggested in [9], where the
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feature-selection consistency via the penalization was further studied. However, as both ap-
proaches are highly dependent on the choosing of penalization parameters, cross-validation
or criterion-based model selection is required to tune the parameters.

A different stream of research casts the feature selection as parameter-estimation prob-
lems [4,10–12], where the random variable “feature saliency” is introduced to quantify the
relevance of features to class assignment. This approach is efficient as neither combinatorial
search through the feature subsets nor tuning of parameters is required. The feature selec-
tion and the clustering can be performed simultaneously in a principled and automatic way.
Zhang et al. [13] extended this method to the Student’s t mixture model, which has higher
tolerance to outliers and therefore is more robust for clustering and feature selection. As an
extension to the work of Zhang et al., Sun and Zhou [14] made a full-Bayesian treatment for
the model and proposed the structured variational Bayesian (VB) approach, which takes
into consideration the estimation uncertainty of all model parameters and can deliver a
tighter bound to the marginal likelihood than the mean-field approximated VB algorithms.
Their model was extended further in [3] to consider the class-specific feature saliency for
Bayesian feature selection.

Feature-selection approaches commonly assume that the features are conditionally
independent given the latent class variable, which is equivalent to adopting a diagonal
component covariance matrix structure in the Gaussian mixture model. While this as-
sumption greatly facilitates computational efficiency, it can be easily violated in real-world
datasets [15]. For the linear regression analysis, Fan et al. [16] conducted a synthetic study
indicating that when the covariates are highly correlated exact recovery of the active set
from the solution path of LASSO will be difficult. For classification, as has been mentioned
in [17], ignoring the dependence relationship across features may undermine the reliability
of the algorithms and lead to misleading conclusions about the features’ salience.

In [18], the local independence assumption for the Gaussian mixture model was
relaxed by a block-diagonal specification of the component covariance matrix, where the
features are partitioned into several disconnected groups in each class. However, as the
total number of block-diagonal structures increases as the Bell number [19], searching for
the optimal model can be difficult, especially in the high-dimensional cases. Galimberti
and Soffritti [18] proposed a hierarchical aggregative strategy based on the BIC criterion to
perform a nonexhaustive search of the structures. But this method cannot promise to find
the optimal model. Ruan et al. [20] extended the graphical LASSO method to the context of
the Gaussian mixture model and proposed a penalized likelihood approach for a sparse
solution of the component covariance matrices. But the penalization parameters still need
to be selected.

Different to the block-diagonal specification, the model of mixture of factor analyz-
ers assumes a factor analysis-based decomposition structure for the component covari-
ance matrices, where the local dependence between features is explained by a few latent
factors [21–24]. Typically, the number of factors for each component needs to be specified
in advance of the model fitting or the model-selection criterion used to select the optimal
number of factors. However, while presetting of the number may lead to over-fitted or
over-simplified models, conducting exhaustive searches over the model space is computa-
tionally expensive. The shrinkage prior methods were proposed to achieve an automatic
latent dimension reduction. Wang and Lan [25] imposed automatic relevance determina-
tion prior [26] on the factor loading matrices. Multiplicative Gamma process shrinkage
priors [27] in the infinite factor analysis was used by Murphy et al. [28]. They also sug-
gested an adaptive Gibbs sampling algorithm where the factors with negligible loadings
are removed gradually during the iterations. Therefore, the computational efficiency can
be improved.

In this paper, we develop further the Student’s t mixture model of Sun and Zhou [14]
for Bayesian clustering and feature selection to tackle the cases where features are correlated
in the mixture component. While the model in [14] defines the feature saliency under the
local independence assumption, we introduce the factor-adjusted feature saliency, where
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the salience of each feature is evaluated by conditioning on the latent factors. Taken as a
whole, the extension produces parsimonious, flexible and robust modeling for the mixture
of factor analyzers. Moreover, motivated by the Bayesian model selection method in [29]
for the linear regression analysis, instead of using the shrinkage priors, we propose an
automatic inference scheme for the number of factors by introducing the random variable
of factor activity. Then, the problems of feature selection, latent dimension reduction,
outlier processing and clustering can be integrated together as the inference for a Bayesian
hierarchical latent variable model. We continue the work in [14] to adopt a full Bayesian
treatment, where proper prior distributions are assumed for the model parameters. The
structured VB inference framework that improves the evidence lower bound (ELBO) for the
proposed model is presented, where a “drop-out” sampling technique [30] can be applied
immediately to ease the computation.

The rest of this paper is organized as follows: In Section 2, we introduce the Student’s
t mixture model proposed by Sun and Zhou [14], which has provided the base of our study.
In Section 3, we develop the proposed mixture of robust factor analyzers, which is present
as a hierarchical latent variable model for Bayesian inference. In Section 4, the structured
VB inference framework for the proposed model is established. Section 5 justifies the
performance of the developed model and algorithm on the synthetic data and presents
the evaluation results based on some real-world datasets. Section 6 concludes this paper,
points out the limitations and suggests future research directions.

2. The Student’s t Mixture Model for Feature Selection

We present the proposed hierarchical latent variable model starting from the Student’s
t mixture model defined in [14]. Denote the set of i.i.d. observations as Y = {yn}N

n=1, where
yn = (yn1, yn2, . . . , ynd)

T ∈ Rd is the d-dimensional feature data for the nth individual. The
finite mixture model for clustering assumes that the data for each individual are generated
from a class-specific distribution but with the class label missing, then it marginally follows
a finite mixture distribution. Throughout the paper, we denote the number of mixture
components or equally the number of classes as K. The latent class label for the nth
individual is denoted as zn which takes value in {1, 2, . . . , K}. The clustering is realized
by assigning each individual the class label where it has the highest posterior probability
of belonging.

The Student’s t mixture model given in [14] assumes that the features are conditionally
independent given the hidden class label and each follows a Student’s t distribution.
Moreover, the relevance or irrelevance of feature to data separation is taken into account
by introducing the Bernoulli latent variables ϕn = (ϕn1, ϕn2, . . . , ϕnd)

T , which gives the
mixture density of yn as

p(yn|ϕn, Θ1) =
K

∑
k=1

πk

d

∏
l=1

[
St(ynl |µkl , σkl , vkl)

ϕnlSt(ynl |µ0l , σ0l , v0l)
1−ϕnl

]
. (1)

St(y|µ, σ, v) is the density function of the Student’s t distribution with mean, precision
and degrees of freedom as µ, σ and v, respectively. For l = 1, 2, . . . , d, ϕnl ∈ {0, 1}, if
ϕnl = 1, then the lth feature is relevant to the class assignment; if ϕnl = 0, then the lth
feature is irrelevant and follows a common distribution independent of the class assign-
ment. For k = 1, 2, . . . , K, the parameter πk (πk > 0 and ∑K

k=1 πk = 1) is the mixing
proportion of class k. Let Θ1 = {π, µ, σ, v} denote the set of unknown parameters in model
(1), where π = (π1, π2, . . . , πK)

T , µ =
{

µ0l , {µkl}K
k=1

}d
l=1, σ =

{
σ0l , {σkl}K

k=1
}d

l=1 and

v =
{

v0l , {vkl}K
k=1

}d
l=1.

The prior distribution of ϕn is given by

p(ϕn|β) =
d

∏
l=1

p(ϕnl |βl) =
d

∏
l=1

βl
ϕnl (1 − βl)

1−ϕnl , (2)
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where the ϕnl ’s are assumed to be mutually independent. The parameter βl for the Bernoulli
distribution of ϕnl is called the feature saliency [4] of the lth feature. It measures the
importance of the feature for class assignment and is estimated to realize a “soft” feature
selection. Denote β = {βl}d

l=1.
The observed-data likelihood function can be obtained by integrating over the latent

variables ϕn in model (1), which gives

p(yn|Θ2) =
K

∑
k=1

πk

d

∏
l=1

[
βlSt(ynl |µkl , σkl , vkl) + (1 − βl)St(ynl |µ0l , σ0l , v0l)

]
, (3)

where Θ2 = {π, µ, σ, v, β}. Statistical inference directly on the observed-data likelihood is
difficult. In [14], the VB inference method was adopted where the complete-data likelihood
is given by

p(yn, un, ϕn, zn|Θ2) =
K

∏
k=1

[
πk p(yn|un, ϕn, zn = k, µ, σ)p(un|ϕn, zn = k, v)p(ϕn|β)

]δzn ,k
. (4)

At the right-hand side of (4), δzn ,k is the Kronecker delta function. The latent variables
un = (un1, un2, . . . , und)

T are introduced by noting that the Student’s t distribution can be
written as a convolution of a Gaussian and a Gamma distribution [3,14]. It follows that

p(yn|un, ϕn, zn = k, µ, σ) =
d

∏
l=1

p(ynl |unl , ϕnl , zn = k, µ, σ)

=
d

∏
l=1

[
N (ynl |µkl , σklunl)

ϕnlN (ynl |µ0l , σ0lunl)
1−ϕnl

]
, (5)

and

p(un|ϕn, zn = k, v) =
d

∏
l=1

p(unl |ϕnl , zn = k, v)

=
d

∏
l=1

[
G
(

unl

∣∣∣vkl
2

,
vkl
2

)ϕnl
G
(

unl

∣∣∣v0l
2

,
v0l
2

)1−ϕnl
]

. (6)

N (y|µ, σ) represents the Gaussian density function with mean µ and precision σ and
G(u|a, b) is the Gamma density function

G(u|a, b) =
baua−1

Γ(a)
exp(−bu). (7)

Note that by integrating over un, ϕn and zn in (4), the observed-data likelihood (3) can
be recovered.

3. Towards the Mixture of Robust Factor Analyzers

To tackle the cases where features are correlated in the mixture component, we relax
the local independence assumption in [14] by specifying for each class a latent factor model.
Specifically, for class k, we introduce the latent factors xnk = (xnk1, xnk2, . . . , xnkpk

)T , where
xnkj’s are i.i.d. from the distribution N (0, 1) and pk is the number of latent factors. After
conditioning on xnk, the features are assumed mutually independent within the class, which
corresponds to a modification of model (1) as follows:

p(yn|ϕn, xn, Θ3) =
K

∑
k=1

πk

d

∏
l=1

[
St(ynl |wT

kl xnk + µkl , σkl , vkl)
ϕnlSt(ynl |wT

kl xnk + µ0l , σ0l , v0l)
1−ϕnl

]
, (8)
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where wkl ∈ Rpk are the factor loadings for the lth feature in class k. Denote xn = {xnk}K
k=1

and Θ3 = {π, µ, σ, v, w} where w =
{
{wkl}d

l=1

}K
k=1. In model (8), ϕnl indicates the

relevance of the lth feature to class assignment after adjustment by the latent factors.
Correspondingly, βl that defines the distribution of ϕnl in (2) represents the factor-adjusted
feature saliency.

Typically, in each local factor model, the latent dimensions pk need to be specified.
With overly high dimensions, the model may over-fit the data, yielding poor interpretations
and hardening the computation, while with low and inadequate dimensions, the model
may not be flexible enough to capture the correlations between features in each class. To
enable an automatic determination, we treat the problem as another feature-selection task,
but now the “features” become the latent factors. Starting from a sufficiently large pk,
we introduce in class k the Bernoulli latent variables rnk = (rnk1, rnk2, . . . , rnkpk

)T , where
rnkj ∈ {0, 1} with rnkj = 1 indicating that the factor xnkj is active and rnkj = 0 inactive.
Model (8) then becomes

p(yn|ϕn, xn, rn, Θ3) =
K

∑
k=1

πk

d

∏
l=1

[
St(ynl |wT

klRnkxnk + µkl , σkl , vkl)
ϕnlSt(ynl |wT

klRnkxnk + µ0l , σ0l , v0l)
1−ϕnl

]
, (9)

where Rnk = diag(rnk) and we denote rn = {rnk}K
k=1. When rnkj’s all equal zero, the model

reduces to the Student’s t mixtures of model (1).
The prior distribution of rnk is given by

p(rnk|ρk) =
pk

∏
j=1

p(rnkj|ρkj) =
pk

∏
j=1

ρkj
rnkj(1 − ρkj)

1−rnkj , (10)

where we have assumed prior independence between the entries of rnk. Denote
ρk = {ρkj}

pk
j=1 and ρ = {ρk}K

k=1. In accordance with the concept of feature saliency,
we call ρkj the factor activity. It is the probability that the jth factor in class k is active. The
problem of finding latent dimensions then can be cast as a parameter-estimation problem,
i.e., the estimation of ρ.

Our modeling of rnk, k = 1, 2, . . . , K to select the active factors in each class is inspired
by the normal-zero model proposed in [29], which introduces the indicators to select
automatically the important covariates in linear regression. The difference is that we have
defined the indicators as latent variables for each individual, while the normal-zero model
introduces the indicators as model parameters. In our model, the parameters ρ that define
the Bernoulli distributions of the indicators are the key quantities for model selection and
will be inferred under a Bayesian inference framework, while following the normal-zero
model ρ are treated as hyper-parameters and typically need to be specified.

Note that the conditional probability of (9) defines a mixture of robust factor analyzers.
The factor model for class k can be written as

yn = WkRnkxnk + Φnµk + (I − Φn)µ0 + εn, (11)

where Wk = [wk1, wk2, . . . , wkd]
T is the d× pk factor loading matrix. Denote µk = (µk1, µk2, . . . ,

µkd)
T , µ0 = (µ01, µ02, . . . , µ0d)

T and Φn = diag(ϕn). The latent factors xnk follow the
distribution of N (0, Ipk ), where Ipk is the identity matrix of order pk. The distributions for
ϕn and rnk are defined in (2) and (10), separately. εn = (εn1, εn2, . . . , εnd)

T , where εnl’s are
mutually independent given zn and

p(εnl |ϕnl , zn = k, σ, v) = St(εnl |0, σkl , vkl)
ϕnlSt(εnl |0, σ0l , v0l)

1−ϕnl . (12)

By introducing the latent variable unl distributed according to (6), we have

p(εnl |unl , ϕnl , zn = k, σ) = N (εnl |0, σklunl)
ϕnlN (εnl |0, σ0lunl)

1−ϕnl . (13)
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The complete-data likelihood p(yn, un, ϕn, xn, rn, zn|Θ) for the proposed hierarchical
latent variable model, where Θ = {π, µ, σ, v, β, w, ρ} can be factorized as

p(yn, un, ϕn, xn, rn, zn|Θ) =
K

∏
k=1

[
πk p(yn|un, ϕn, xnk, rnk, zn = k, µ, σ, w)

× p(un|ϕn, zn = k, v)p(ϕn|β)p(xnk)p(rnk|ρk)
]δzn ,k

, (14)

where

p(yn|un, ϕn, xnk, rnk, zn = k, µ, σ, w) =
d

∏
l=1

p(ynl |unl , ϕnl , xnk, rnk, zn = k, µ, σ, w)

=
d

∏
l=1

[
N (ynl |wT

klRnkxnk + µkl , σklunl)
ϕnlN (ynl |wT

klRnkxnk + µ0l , σ0lunl)
1−ϕnl

]
, (15)

corresponding to a modification of conditional probability (5) for the Student’s t mixture
model.

In the following, we denote the set of latent variables as H = {hn}N
n=1 where

hn = {un, ϕn, xn, rn, zn}. Then, the complete-data likelihood for the whole dataset can
be written as

p(Y,H|Θ) =
N

∏
n=1

p(yn, hn|Θ). (16)

Full Bayesian treatment to the latent variable model requires specification of the prior
distributions associated with the model parameters. We assume that

p(Θ) = p(π)p(µ)p(σ)p(β)p(w)p(ρ), (17)

and

p(π) = Dir(π|α0),

p(µ) =
d

∏
l=1

[
p(µ0l)

K

∏
k=1

p(µkl)

]
=

d

∏
l=1

[
N (µ0l |s0l , λ0)

K

∏
k=1

N (µkl |s0l , λ0)

]
,

p(σ) =
d

∏
l=1

[
p(σ0l)

K

∏
k=1

p(σkl)

]
=

d

∏
l=1

[
G
(

σ0l

∣∣∣η0

2
,

ξ0

2

) K

∏
k=1

G
(

σkl

∣∣∣η0

2
,

ξ0

2

)]
,

p(β) =
d

∏
l=1

Beta(βl |κ1, κ2),

p(w) =
K

∏
k=1

d

∏
l=1

p(wkl) =
K

∏
k=1

d

∏
l=1

N (wkl |0, m0Ipk ),

p(ρ) =
K

∏
k=1

pk

∏
j=1

Beta(ρkj|τ1, τ2), (18)

where Beta(β|a, b) represents the Beta density function

Beta(β|a, b) =
βa−1(1 − β)b−1

B(a, b)
, (19)

and

Dir(π|α) = Γ(∑K
k=1 αk)

∏K
k=1 Γ(αk)

K

∏
k=1

πk
αk−1, (20)

is the Dirichlet density. In the above specifications, the conjugate priors are used. The
parameters in the priors, including κ1, κ2, τ1, τ2, m0, λ0, η0, ξ0, s0 and α0 where s0 = {s0l}d

l=1
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and α0 = (α01, α02, . . . , α0K)
T , are considered as hyperparameters. It is noticeable that we

do not assume any prior for the degrees of freedom v0l’s and vkl’s. Since there are no
conjugate priors, we follow the practice in [3,14] to seek for the point estimates for them.

The plate diagram of the proposed hierarchical latent variable model is shown in
Figure 1. The arrows in the diagram indicate the dependencies. The original model of Sun
and Zhou [14] is depicted in blue.
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Figure 1. Plate diagram of the proposed hierarchical latent variable model.

4. Inference on the Model
4.1. Brief Introduction to VB Method

To infer from the posterior distribution of the latent variables and the parameters, com-
putation of the evidence p(Y) is required. However, the computation involves integration
over the latent variables and the parameters, which is intractable for our model. In this
paper, we resort to the VB method for model inference. It is designed to maximize a lower
bound of log p(Y). Assuming posterior independence between the latent variables and the
parameters, the evidence lower bound (ELBO) is defined by

L(q(H), q(Θ), Y) = Eq(H)q(Θ)

[
log

p(Y,H|Θ)p(Θ)

q(H)q(Θ)

]
≤ log p(Y), (21)

where q(H) and q(Θ) are auxiliary posteriors for the latent variables and the parameters,
respectively. A coordinate ascent search method [31] can be applied to iteratively maximize
the ELBO. At the tth iteration, it implements the VB expectation (VB-E) step and the VB
maximization (VB-M) step as follows:

VB-E step: q(t+1)(H) = arg max
q(H)

L(q(H), q(t)(Θ), Y);

VB-M step: q(t+1)(Θ) = arg max
q(Θ)

L(q(t+1)(H), q(Θ), Y). (22)

4.2. Tree-Like Factorization of the Auxiliary Posterior

In this paper, we apply the tree-like factorization proposed in [3,14] to the auxiliary
posterior of the latent variables. The resultant structured VB method can be viewed as a
partially collapsed VB [32], which can reach a tighter lower bound for log p(Y) than the
mean-filed approximated VB method [13].

As the observations are mutually independent, q(H) has the form

q(H) =
N

∏
n=1

q(hn). (23)
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Tree-like factorization assumes that the auxiliary posterior q(hn) can be factorized as

q(hn) =
K

∏
k=1

{
q(un|ϕn, zn = k)q(ϕn)q(xnk|rnk)q(rnk)q(zn = k)

}δzn ,k
. (24)

As entries of the noise term in the local factor model are assumed to be mutually
independent, q(hn) can be further factorized as

q(hn) =
K

∏
k=1

{
d

∏
l=1

[(
q(unl |ϕnl = 1, zn = k)q(ϕnl = 1)

)ϕnl
(
q(unl |ϕnl = 0)q(ϕnl = 0)

)1−ϕnl
]

× q(xnk|rnk)q(rnk)q(zn = k)

}δzn ,k

. (25)

Different from [3,14], we do not keep the posterior dependence of ϕnl on zn and when
ϕnl = 0 the auxiliary posterior of unl is assumed to be independent of zn, though the closed
forms of the posteriors are available when retaining the dependencies. We found that the
above specifications lead to more robust inference results. As in [29,33], we assume a full
factorization for q(rnk), i.e.,

q(rnk) =
pk

∏
j=1

q(rnkj) =
pk

∏
j=1

q(rnkj = 1)rnkj q(rnkj = 0)1−rnkj . (26)

Additionally, the auxiliary posterior q(Θ) is assumed to be its full factorized form

q(Θ) = q(π)q(µ)q(σ)q(β)q(w)q(ρ)

= q(π) ·
d

∏
l=1

[
q(µ0l)

K

∏
k=1

q(µkl)

]
·

d

∏
l=1

[
q(σ0l)

K

∏
k=1

q(σkl)

]
·

d

∏
l=1

q(βl) ·
K

∏
k=1

d

∏
l=1

q(wkl) ·
K

∏
k=1

pk

∏
j=1

q(ρkj). (27)

For ease of exposition, we use n, l, j and k in the following to denote the index of the
individual, the feature, the latent factor and the class, respectively. We omit the iteration
indexes (t) and (t + 1) and without loss of generosity deliver the update during one
iteration of the algorithm. We use ⟨·⟩ to denote the expectation operation with respect to
the current auxiliary posteriors.

4.3. Auxiliary Posteriors of the Latent Variables: VB-E Step

The VB-E step updates the auxiliary posterior q(hn) of the latent variables following
the factorizations of (25) and (26).

(i) q(unl |ϕnl , zn): Through some mathematical manipulations (see the Supplementary
Materials for the details), we obtain

q(unl |ϕnl = 1, zn = k) = G(unl |âkl , b̂k
nl),

q(unl |ϕnl = 0) = G(unl |â0l , b̂0
nl), (28)

where

âkl =
vkl + 1

2
, b̂k

nl =
vkl + ⟨σkl⟩⟨(ỹk

nl − µkl)
2⟩

2
,

â0l =
v0l + 1

2
, b̂0

nl =
v0l + ⟨σ0l⟩∑k⟨δzn ,k⟩⟨(ỹk

nl − µ0l)
2⟩

2
, (29)

and ỹk
nl = ynl − wT

klRnkxnk. Note that
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⟨(ỹk
nl − µkl)

2⟩ =
(
ynl − ⟨µkl⟩

)2
+ λ̂−1

kl − 2
(
ynl − ⟨µkl⟩

)
⟨wkl⟩T⟨Rnkxnk⟩

+ tr
(
⟨wklwkl

T⟩⟨xnkxnk
T ⊙ rnkrT

nk⟩
)
,

⟨(ỹk
nl − µ0l)

2⟩ =
(
ynl − ⟨µ0l⟩

)2
+ λ̂−1

0l − 2
(
ynl − ⟨µ0l⟩

)
⟨wkl⟩T⟨Rnkxnk⟩

+ tr
(
⟨wklwkl

T⟩⟨xnkxnk
T ⊙ rnkrT

nk⟩
)
, (30)

where λ̂kl is the precision of posterior q(µkl) and λ̂0l is the precision of q(µ0l). We denote
the trace operator as tr(·) and the Hadamard product operator between two matrices as ⊙.

In the sequel, we use ⟨·⟩1
k and ⟨·⟩0 to distinguish between the expectations regarding

q(unl |ϕnl = 1, zn = k) and q(unl |ϕnl = 0). As with the property of Gamma distribution,
we obtain

⟨unl⟩1
k =

âkl

b̂k
nl

, ⟨log unl⟩1
k = ψ(âkl)− log(b̂k

nl),

⟨unl⟩0 =
â0l

b̂0
nl

, ⟨log unl⟩0 = ψ(â0l)− log(b̂0
nl), (31)

where ψ(·) is the digamma function.
(ii) q(ϕnl): Define

q(ϕnl = 1) = exp

{
∑
k
⟨δzn ,k⟩

[
1
2
⟨log σkl⟩+

vkl
2

log
vkl
2

− log Γ
(vkl

2

)
− âkl log b̂k

nl + log Γ(âkl)

]
+ ⟨log βl⟩

}
,

q(ϕnl = 0) = exp

{
1
2
⟨log σ0l⟩+

v0l
2

log
v0l
2

− log Γ
(v0l

2

)
− â0l log b̂0

nl + log Γ(â0l) + ⟨log(1 − βl)⟩
}

. (32)

Then, q(ϕnl) can be obtained by

q(ϕnl = 1) =
q(ϕnl = 1)

q(ϕnl = 1) + q(ϕnl = 0)
, (33)

and q(ϕnl = 0) = 1 − q(ϕnl = 1). Denote ⟨ϕnl⟩ = q(ϕnl = 1) and ⟨1 − ϕnl⟩ = q(ϕnl = 0).
(iii) q(xnk|rnk): The posterior q(xnk|rnk) is multivariate Gaussian with precision matrix

and mean vector as

Ĉk
n(rnk) = I + Ank ⊙ rnkrT

nk, f̂ k
n(rnk) = Ĉk

n(rnk)
−1Rnktnk, (34)

where

Ank = ∑
l

[
⟨ϕnl⟩⟨σkl⟩⟨unl⟩1

k + ⟨1 − ϕnl⟩⟨σ0l⟩⟨unl⟩0
]
⟨wklw

T
kl⟩,

tnk = ∑
l

[
⟨ϕnl⟩⟨σkl⟩⟨unl⟩1

k
(
ynl − ⟨µkl⟩

)
+ ⟨1 − ϕnl⟩⟨σ0l⟩⟨unl⟩0(ynl − ⟨µ0l⟩

)]
⟨wkl⟩. (35)

(iv) q(rnk): The posterior q(rnkj) can be obtained by

q(rnkj = 1) =
q(rnkj = 1)

q(rnkj = 1) + q(rnkj = 0)
, (36)

and q(rnkj = 0) = 1 − q(rnkj = 1), where
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q(rnkj = c) = exp
[
− 1

2
⟨log |I + Ank ⊙ rnkrT

nk|⟩

+
1
2

tr⟨(I + Ank ⊙ rnkrT
nk)

−1(Rnktnk)(Rnktnk)
T⟩

+ c⟨log ρkj⟩+ (1 − c)⟨log(1 − ρkj)⟩
]

, (37)

with c ∈ {0, 1}. The expectations in (37) are taken by fixing rnkj = c. Denote ⟨rnkj⟩ = q(rnkj = 1)
and ⟨1 − rnkj⟩ = q(rnkj = 0).

When posterior independence is assumed between xnk and rnk or xnk is observable as
in the regression models of [29,33], q(rnkj) can be derived analytically and the expectations
in (30) regarding q(xnk, rnk) can be obtained in closed form using the results:

⟨Rnk⟩ = diag
(
⟨rnk⟩

)
,

⟨rnkrT
nk⟩ = ⟨Rnk⟩ ⊙ ⟨I − Rnk⟩+ ⟨rnk⟩⟨rnk⟩T ,

⟨xnk⟩ =
(
I + Ank ⊙ ⟨rnkrT

nk⟩
)−1⟨Rnk⟩tnk,

⟨xnkxT
nk⟩ =

(
I + Ank ⊙ ⟨rnkrT

nk⟩
)−1

+ ⟨xnk⟩⟨xnk⟩T . (38)

However, the computation in high-dimensional cases is obstructed as it involves multipli-
cation and inversion of large-scale matrices.

The sparse property of the indicator vector rnk motivates us to resort to a “drop-out”
sampling scheme [30], where the conditioning of xnk on rnk does not influence the efficiency
of the algorithm. Specifically, we keep a random sample r̂nk from q(rnk) at each iteration
of the algorithm and use it as an imputation for rnk to update the remaining auxiliary
posteriors. During this process, the connections to the latent factor with smaller q(rnkj = 1)
have higher chance of drop out. Simplification of the computation can be realized, for
example, in Equation (30),

⟨wkl⟩T⟨Rnkxnk⟩ =
(
R̂nk⟨wkl⟩

)T(I + Ank ⊙ r̂nk r̂T
nk
)−1R̂nktnk,

⟨wklwkl
T⟩⟨xnkxT

nk ⊙ rnkrT
nk⟩ =

(
⟨wklw

T
kl⟩ ⊙ r̂nk r̂T

nk
)[(

I + Ank ⊙ r̂nk r̂T
nk
)−1

+
(
I + Ank ⊙ r̂nk r̂T

nk
)−1(R̂nktnk

)(
R̂nktnk

)T(I + Ank ⊙ r̂nk r̂T
nk
)−1

]
, (39)

where the latent dimensions to be tackled are reduced due to the sparse property of the
random sample r̂nk. For the multiplication and inversion computations, only the entries of
vector or matrix corresponding to r̂nkj ̸= 0 need to be involved.

To obtain a random sample from q(rnk), we update the entries of r̂nk one by one
through a single turn of Gibbs sampling, where the sampling probability for r̂nkj has the
form in (37) but with the expectation replaced by the current imputation of r̂nk,−j.

(v) q(zn): To update q(zn = k), we define the quantity

q(zn = k) = exp

{
∑

l
⟨ϕnl⟩

[
1
2
⟨log σkl⟩+

vkl
2

log
vkl
2

− log Γ
(vkl

2

)
− âkl log b̂k

nl + log Γ(âkl)

]
− 1

2 ∑
l
⟨1 − ϕnl⟩⟨σ0l⟩⟨unl⟩0⟨(ỹk

nl − µ0l)
2⟩ − 1

2
log

∣∣I + Ank ⊙ r̂nk r̂T
nk
∣∣

− 1
2

tr
[(

I + Ank ⊙ r̂nk r̂T
nk
)−1

+
(
I + Ank ⊙ r̂nk r̂T

nk
)−1(R̂nktnk

)(
R̂nktnk

)T(I + Ank ⊙ r̂nk r̂T
nk
)−1

]
+ ∑

j

[
⟨rnkj⟩

(
⟨log ρkj⟩ − log⟨rnkj⟩

)
+ ⟨1 − rnkj⟩

(
⟨log(1 − ρkj)⟩ − log⟨1 − rnkj⟩

)]
+ ⟨log πk⟩

}
. (40)
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Then,

q(zn = k) =
q(zn = k)

∑k′ q(zn = k′)
. (41)

4.4. Auxiliary Posteriors of the Parameters: VB-M Step

The VB-M step updates the posterior q(Θ) for the parameters following the factoriza-
tion in (27). Through mathematical manipulation (see the Supplementary Materials for the
details), we have

q(π) = Dir(π|α̂),
q(βl) = Beta(βl |κ̂1l , κ̂2l),

q(ρkj) = Beta(ρkj|τ̂1kj, τ̂2kj), (42)

where

α̂ = (α̂1, α̂2, . . . , α̂K)
T , α̂k = α0k + ∑

n
⟨δzn ,k⟩,

κ̂1l = κ1 + ∑
n
⟨ϕnl⟩, κ̂2l = κ2 + ∑

n
⟨1 − ϕnl⟩,

τ̂1kj = τ1 + ∑
n
⟨δzn ,k⟩⟨rnkj⟩, τ̂2kj = τ2 + ∑

n
⟨δzn ,k⟩⟨1 − rnkj⟩. (43)

The posterior q(wkl) is given by

q(wkl) = N (wkl |m̂kl , M̂kl), (44)

where

M̂kl = m0I + ∑
n
⟨δzn ,k⟩

(
⟨σkl⟩⟨ϕnl⟩⟨unl⟩1

k + ⟨σ0l⟩⟨1 − ϕnl⟩⟨unl⟩0
)
⟨xnkxT

nk ⊙ rnkrT
nk⟩,

m̂kl = M̂−1
kl ∑

n
⟨δzn ,k⟩

[
⟨σkl⟩⟨ϕnl⟩⟨unl⟩1

k
(
ynl − ⟨µkl⟩

)
+ ⟨σ0l⟩⟨1 − ϕnl⟩⟨unl⟩0(ynl − ⟨µ0l⟩

)]
⟨Rnkxnk⟩. (45)

The posteriors q(µ0l) and q(µkl) are given by

q(µ0l) = N (µ0l |ŝ0l , λ̂0l), q(µkl) = N (µkl |ŝkl , λ̂kl), (46)

where

λ̂0l = λ0 + ⟨σ0l⟩∑
n
⟨1 − ϕnl⟩⟨unl⟩0,

ŝ0l = λ̂−1
0l

(
λ0s0l + ⟨σ0l⟩∑

n,k
⟨δzn ,k⟩⟨1 − ϕnl⟩⟨unl⟩0⟨ỹk

nl⟩
)

,

λ̂kl = λ0 + ⟨σkl⟩∑
n
⟨δzn ,k⟩⟨ϕnl⟩⟨unl⟩1

k ,

ŝkl = λ̂−1
kl

(
λ0s0l + ⟨σkl⟩∑

n
⟨δzn ,k⟩⟨ϕnl⟩⟨unl⟩1

k⟨ỹ
k
nl⟩

)
. (47)

In addition, the posteriors q(σ0l) and q(σkl) are updated as

q(σ0l) = G(σ0l |
η̂0l
2

,
ξ̂0l
2
), q(σkl) = G(σkl |

η̂kl
2

,
ξ̂kl
2
), (48)

where
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η̂0l = η0 + ∑
n
⟨1 − ϕnl⟩,

ξ̂0l = ξ0 + ∑
n,k

⟨δzn ,k⟩⟨1 − ϕnl⟩⟨unl⟩0⟨(ỹk
nl − µ0l)

2⟩,

η̂kl = η0 + ∑
n
⟨δzn ,k⟩⟨ϕnl⟩,

ξ̂kl = ξ0 + ∑
n
⟨δzn ,k⟩⟨ϕnl⟩⟨unl⟩1

k⟨(ỹ
k
nl − µkl)

2⟩. (49)

The degrees of freedom v0l can be obtained by solving the nonlinear equation

∑
n
⟨1 − ϕnl⟩

[
1 + log

(v0l
2

)
− ψ

(v0l
2

)
+ ⟨log unl⟩0 − ⟨unl⟩0

]
= 0. (50)

Similarly, vkl can be obtained by solving

∑
n
⟨δzn ,k⟩⟨ϕnl⟩

[
1 + log

(vkl
2

)
− ψ

(vkl
2

)
+ ⟨log unl⟩1

k − ⟨unl⟩1
k

]
= 0. (51)

4.5. Algorithm

The developed structured VB algorithm is summarized in Algorithm 1. The optimiza-
tion process can be monitored via the ELBO (21). The computation of the ELBO is detailed
in Appendix A.

Algorithm 1 Proposed Structured VB Algorithm for Robust Clustering and Model Selection

Require: training data yn, 1 ≤ n ≤ N, the number of clusters K;
Ensure: the response probabilities, the centroids, the saliency of features, the factor loading

matrices, the activity of factors;
1: while the evidence lower bound L increases more than ϵ and the number of iteration is

less than IterMax do
2: VB-E step
3: Update q(unl |ϕnl , zn) according to (28) for 1 ≤ l ≤ d and 1 ≤ n ≤ N;
4: Update q(ϕnl) according to (33) for 1 ≤ l ≤ d and 1 ≤ n ≤ N;
5: Update q(xnk|rnk) according to (34) for 1 ≤ k ≤ K and 1 ≤ n ≤ N;
6: Update q(rnk) according to (36) for 1 ≤ k ≤ K and 1 ≤ n ≤ N: run a single turn of

Gibbs sampling for a sample from q(rnk);
7: Update q(zn) according to (41) for 1 ≤ n ≤ N;
8: VB-M step
9: Update q(π), q(βl) and q(ρkj) according to (42) for 1 ≤ l ≤ d, 1 ≤ j ≤ pk and

1 ≤ k ≤ K;
10: Update q(wkl) according to (44) for 1 ≤ l ≤ d and 1 ≤ k ≤ K;
11: Update q(µ0l) and q(µkl) according to (46) for 1 ≤ l ≤ d and 1 ≤ k ≤ K;
12: Update q(σ0l) and q(σkl) according to (48) for 1 ≤ l ≤ d and 1 ≤ k ≤ K;
13: Update v0l and vkl according to (50) and (51) for 1 ≤ l ≤ d and 1 ≤ k ≤ K;
14: end while

We apply K-mean clustering for initialization of the VB algorithm and initialize a
large p (p < min(d, N)) for the latent dimensions of the K local factor models. At each
iteration, we randomize the updating order of r̂nkj’s in the Gibbs sampling step to avoid
co-adaptation. To further accelerate the algorithm, we make the number of factors adaptive.
The empirical estimator of factor activity, i.e.,

ρ̂kj =
∑n⟨δzn ,k⟩⟨rnkj⟩

∑n⟨δzn ,k⟩
, (52)
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is computed at the end of each iteration. If ρ̂kj = 0, then we remove the jth latent factor
from the kth local factor model. The pruning is carried out after a burn-in period of
the algorithm.

4.6. Interpreting the Model

The expectation of feature saliency βl can be used to show the informative degree of
features after being adjusted by latent factors, which is given by

⟨βl⟩ =
κ̂1l

κ̂1l + κ̂2l
. (53)

In addition, the expectation of factor activity ρkj can be applied to evaluate the ex-
planatory power of latent factors in each class, which can be obtained as

⟨ρkj⟩ =
τ̂1kj

τ̂1kj + τ̂2kj
. (54)

We also consider the reconstruction performance of the proposed algorithm. The
centroid of each class is estimated by

⟨µ̃k⟩ = ⟨B⟩⟨µk⟩+ ⟨I − B⟩⟨µ0⟩, (55)

where ⟨B⟩ = diag(⟨β1⟩, ⟨β2⟩, . . . , ⟨βd⟩), ⟨µk⟩ = (ŝk1, ŝk2, . . . , ŝkd)
T and

⟨µ0⟩ = (ŝ01, ŝ02, . . . , ŝ0d)
T . Then, reconstruction for the nth individual in class k can be

computed as
ŷn = ⟨Wk⟩⟨Rnkxnk⟩+ ⟨µ̃k⟩, (56)

where ⟨Wk⟩ = [m̂k1, m̂k2, . . . , m̂kd]
T and ⟨Rnkxnk⟩ is obtained from the VB-E step after the

algorithm converges.

5. Experiment Study
5.1. Experiments on Synthetic Data

In this section, we justify the developed model and the structured VB algorithm using
controlled experiments. We continue the experiments in [14] with the same synthetic data
where the features were generated independently in each component. An additional set of
data was generated where we imposed correlation between features within the mixture
component. The proposed model and algorithm was compared with the semi-Bayesian
clustering model and algorithm in [10], called varFnMS, in which a finite mixture of Gaus-
sian is adopted and a mean-field VB is applied and compared with the full-Bayesian model
and algorithm in [14], denoted varFnMS-T, which is based on the mixture of Student’s t
distribution and uses the structured VB algorithm.

The synthetic data in [14] contain 800 data points from four well-separated classes. The
data are 10-dimensional with two influential features located around the class centers (0, 3),
(1, 9), (6, 4) and (7, 10) with identity covariance matrices in each class. The remaining eight
“noisy” features were sampled from N (0, 1). We made randomly 1% of the data outliers by
adding noises sampled uniformly from [−10, 10]10. The features are mutually independent
in each class, which is consistent with the assumption underlying varFnMS and varFnMS-T.
In the additional set of data, the local independence assumption is violated. We assigned a
four-factor model for class 1, a two-factor model for class 2, a one-factor model for class 3
and no factor in class 4. The mean vector of each factor model remained the same as that in
the “locally independent” data. The factor loading matrices were generated randomly with
each entry from N (0, 1). The noise term in each class was generated from N (0, I10).

The proposed algorithm, denoted as varFnMS-TFA, the varFnMS and the varFnMS-T
were carried out twenty times, separately. The number of clusters K was set as four. The
K-mean clustering algorithm was used to initialize the posterior q(zn). The feature saliency
and factor activity were both initialized as 0.5. The hyperparameters α0k, κ1, κ2, τ1, τ2, λ0, m0,
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η0 and ξ0 were set to be 10−5 and s0 was set as the empirical mean of the feature data. We
assumed a nine-factor model for each class at the beginning and initialized the posterior
means of the latent factors by sampling from N (0, I9). The algorithm terminates when the
difference of the ELBO between two consecutive iterations is less than 10−7 or the maximum
number of iterations (IterMax = 500) is reached. To avoid the “label switching” problems,
we labeled the obtained clusters from the twenty repeated experiments by matching with
the true classification of the data.

The ELBO reached and the classification error rate comparing the clustering with
the original grouping of the data via the three algorithms with the two synthetic datasets
are presented in Table 1. For the dataset where features are mutually independent within
class, the classification accuracy of varFnMS-TFA is slightly higher than the other two
algorithms, but the difference is not evident. For the dataset generated with correlated
features, the proposed algorithm shows significantly higher accuracy than the other two
algorithms under the local independence assumption. Moreover, the ELBO reached via
varFnMS-TFA is the highest on average in both datasets and the discrepancy is enlarged
where the features are locally correlated. As seen in Figure 2, it successfully captures the
correlation across features through the latent factors.

Table 1. Evidence lower bound (ELBO) and classification error obtained via varFnMS, varFnMS-T
and varFnMS-TFA for the two synthetic datasets where the features are locally independent and
correlated, separately.

Independent Correlated

Algorithm ELBO Error ELBO Error

varFnMS −13,320.803 0.076 −16,868.400 0.351
(136.822) (0.118) (113.338) (0.071)

varFnMS-T −13,140.178 0.073 −16,468.433 0.302
(763.027) (0.111) (135.973) (0.083)

varFnMS-TFA −9082.876 0.071 −8854.751 0.051
(3320.315) (0.109) (2696.577) (0.053)

(a)

(b)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2. Factor activity estimated by the proposed algorithm for the two synthetic datasets where
the features are locally (a) independent and (b) correlated, separately.

The estimated factor activity in each class by the proposed algorithm (averaged over
the twenty repeats) for the two synthetic datasets is presented in Figure 2. Generally, the
algorithm recovers the ground truth in both datasets. It can be seen in subplot (a) that there
is no significantly active factor across the four classes for the “locally independent” data
and the true pattern of factor activity in the “locally correlated” data is recovered as shown
in subplot (b).

Figure 3 compares the estimated feature saliency for the two synthetic datasets. As
shown in subplot (a), the three algorithms make the same good estimation on the feature
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saliency when the features are independent within class. But when the dependence rela-
tionship is imposed, the proposed algorithm shows apparently different behavior from the
other two algorithms as shown in subplot (b). While varFnMS and varFnMS-T estimate
the salience of a feature that could be confounded by the other features, varFnMS-TFA
gives the factor-adjusted feature saliency, where the confounding effects are resolved by
the latent factors.
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Figure 3. Feature saliency estimated via varFnMS (left), varFnMS-T (middle) and varFnMS-TFA (right)
for the two synthetic datasets where the features are locally (a) independent and (b) correlated, separately.

In Table 2, the estimated class centroids in the two synthetic datasets (averaged
over the twenty repeats) are present. When features are generated independently within
class, the three algorithms exhibit comparable performance and recover the real centroids
approximately. But with correlations imposed, the estimation accuracy by varFnMS or
varFnMS-T is apparently degraded. In class 1, 2 and 3, they misestimate the means of
the first two features that are salient and the variations of estimation are significantly
enlarged compared with the results of varFnMS-TFA. In comparison, the varFnMS-TFA
algorithm that considers the local dependence relationships gives more accurate and stable
estimation results.

Table 2. The centroids estimated via varFnMS, varFnMS-T and varFnMS-TFA for the two synthetic
datasets where the features are locally independent and correlated, separately.

Independent Correlated

Class 1 varFnMS varFnMS-T varFnMS-TFA varFnMS varFnMS-T varFnMS-TFA

µ11 = 0 0.405 (0.791) 0.399 (0.910) 0.392 (0.906) 0.739 (1.056) 0.064 (0.569) 0.019 (0.140)
µ12 = 3 3.289 (0.664) 3.178 (0.471) 3.223 (0.670) 3.922 (1.405) 1.771 (1.270) 3.093 (0.201)
µ13 = 0 0.000 (0.037) −0.107 (0.497) −0.116 (0.490) −0.314 (0.760) −1.730 (0.952) −0.001 (0.121)
µ14 = 0 −0.007 (0.049) 0.041 (0.178) −0.027 (0.096) −0.009 (0.776) −1.053 (0.814) −0.025 (0.078)
µ15 = 0 0.002 (0.043) −0.025 (0.098) 0.000 (0.044) −0.271 (0.915) −1.748 (0.869) −0.020 (0.041)
µ16 = 0 0.005 (0.044) −0.086 (0.393) −0.031 (0.121) 0.011 (0.210) −0.390 (0.428) 0.000 (0.000)
µ17 = 0 −0.016 (0.043) −0.073 (0.292) −0.017 (0.046) −0.185 (0.543) 0.060 (0.537) −0.014 (0.046)
µ18 = 0 −0.007 (0.039) −0.051 (0.194) −0.032 (0.119) −0.004 (0.448) 0.340 (0.670) −0.052 (0.180)
µ19 = 0 0.034 (0.050) 0.075 (0.228) 0.015 (0.032) 0.019 (0.866) 1.410 (0.979) −0.012 (0.028)

µ1,10 = 0 −0.021 (0.040) −0.168 (0.662) −0.034 (0.125) 0.026 (0.422) 0.262 (0.237) −0.004 (0.030)
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Table 2. Cont.

Independent Correlated

Class 2 varFnMS varFnMS-T varFnMS-TFA varFnMS varFnMS-T varFnMS-TFA

µ21 = 1 1.332 (0.650) 1.096 (0.447) 1.058 (0.282) 2.000 (0.939) 1.129 (0.678) 1.049 (0.151)
µ22 = 9 8.798 (0.802) 8.875 (0.478) 8.793 (0.862) 6.712 (1.229) 6.762 (0.863) 9.012 (0.101)
µ23 = 0 0.100 (0.472) 0.136 (0.622) 0.040 (0.209) −0.024 (0.984) 0.340 (0.315) 0.008 (0.066)
µ24 = 0 0.002 (0.057) 0.015 (0.047) 0.008 (0.035) 0.071 (0.738) 0.487 (0.792) 0.042 (0.091)
µ25 = 0 −0.207 (0.926) −0.228 (1.006) −0.192 (0.865) −0.028 (0.647) 0.394 (0.321) −0.011 (0.028)
µ26 = 0 −0.049 (0.138) −0.049 (0.167) −0.012 (0.037) −0.107 (0.566) 0.124 (0.305) 0.004 (0.019)
µ27 = 0 −0.034 (0.200) −0.053 (0.231) −0.001 (0.027) −0.293 (0.578) −0.468 (0.615) −0.007 (0.031)
µ28 = 0 −0.083 (0.367) −0.094 (0.423) −0.093 (0.417) −0.052 (0.684) −0.213 (0.314) 0.008 (0.067)
µ29 = 0 0.036 (0.189) 0.039 (0.202) 0.004 (0.033) −0.340 (0.611) −0.702 (0.637) −0.009 (0.027)

µ2,10 = 0 0.009 (0.129) 0.018 (0.193) 0.040 (0.245) −0.099 (0.550) −0.147 (0.160) 0.002 (0.032)

Class 3

µ31 = 6 5.684 (1.136) 5.691 (0.998) 5.758 (0.767) 4.773 (1.507) 5.313 (1.603) 6.013 (0.158)
µ32 = 4 4.392 (0.843) 4.514 (1.246) 4.553 (1.464) 3.962 (0.782) 3.644 (0.726) 4.174 (0.656)
µ33 = 0 −0.082 (0.504) 0.056 (0.402) 0.064 (0.215) 0.206 (0.502) 0.127 (0.454) 0.018 (0.049)
µ34 = 0 0.114 (0.570) −0.015 (0.722) −0.063 (0.631) 0.053 (0.466) −0.204 (0.516) 0.006 (0.037)
µ35 = 0 −0.025 (0.289) −0.015 (0.330) 0.062 (0.305) 0.197 (0.517) 0.131 (0.428) −0.011 (0.019)
µ36 = 0 −0.181 (0.557) −0.032 (0.632) −0.087 (0.854) 0.076 (0.390) 0.064 (0.196) 0.002 (0.008)
µ37 = 0 −0.137 (0.646) −0.176 (0.761) −0.213 (0.649) 0.269 (0.495) 0.703 (0.619) −0.005 (0.051)
µ38 = 0 −0.241 (0.744) −0.332 (0.946) −0.141 (0.465) −0.170 (0.599) 0.216 (0.427) 0.010 (0.034)
µ39 = 0 0.030 (0.270) −0.030 (0.196) −0.017 (0.158) −0.023 (0.711) 0.468 (0.629) −0.012 (0.033)

µ3,10 = 0 −0.309 (0.771) −0.304 (0.767) −0.142 (0.416) −0.017 (0.512) 0.068 (0.156) −0.001 (0.030)

Class 4

µ41 = 7 6.792 (0.752) 6.966 (0.130) 6.960 (0.123) 5.443 (1.236) 6.329 (0.899) 6.709 (1.289)
µ42 = 10 9.857 (0.521) 9.830 (0.689) 9.831 (0.688) 9.039 (1.183) 9.649 (0.623) 9.741 (0.995)
µ43 = 0 0.002 (0.051) −0.007 (0.060) −0.005 (0.045) 0.075 (0.100) 0.034 (0.079) −0.006 (0.046)
µ44 = 0 0.000 (0.053) 0.005 (0.036) 0.000 (0.021) −0.072 (0.111) −0.061 (0.129) 0.380 (1.725)
µ45 = 0 0.008 (0.043) 0.009 (0.041) 0.002 (0.032) 0.043 (0.175) −0.013 (0.096) −0.015 (0.027)
µ46 = 0 −0.003 (0.041) −0.003 (0.037) −0.006 (0.025) −0.017 (0.095) −0.044 (0.084) 0.002 (0.008)
µ47 = 0 −0.025 (0.063) −0.011 (0.058) 0.002 (0.026) 0.111 (0.117) 0.079 (0.098) −0.097 (0.425)
µ48 = 0 −0.003 (0.051) −0.005 (0.045) −0.004 (0.031) −0.053 (0.106) −0.026 (0.077) 0.081 (0.434)
µ49 = 0 0.029 (0.055) 0.021 (0.051) 0.016 (0.032) 0.071 (0.118) 0.050 (0.106) −0.011 (0.035)

µ4,10 = 0 −0.026 (0.048) −0.027 (0.049) −0.011 (0.036) −0.001 (0.059) 0.015 (0.053) −0.001 (0.031)

5.2. Experiments on Real Datasets

In this section, we apply the proposed model on the benchmark datasets: Iris, Olive,
Wine and WDBC. The Iris dataset is obtained from the R package “datasets”. Olive is the
Italian olive oil dataset and Wine the Italian wine dataset. They are both obtained from the
R package “pgmm”. WDBC is the Wisconsin diagnostic breast cancer dataset downloaded
from the UCI machine learning repository (https://doi.org/10.24432/C5DW2B; accessed
on 26 May 2023). For each dataset, we repeated each algorithm ten times and retrieved
the result with the highest value on ELBO. We set the initial dimensions of latent factors
for each dataset as d − 1, where d is the number of features in the data. Table 3 presents
the basic information for the four datasets and the classification error obtained. There is a
significant decrease on the classification error for the Olive data and a slight improvement
on the results for Iris and WDBC when using the proposed algorithm. The exception goes
to the Wine data, where the proposed algorithm gives results slightly inferior to varFnMS-T.

Figures 4 and 5 show the factor activity and feature saliency for the four benchmark
datasets. It can be seen from Figure 4 that strong factor activity is detected in Iris, Olive and
WDBC data. As shown in Figure 5, the patterns of estimated feature saliency are noticeably
changed when applying the proposed algorithm. The combined results indicate that the
correlation between features could interfere with our decision about the features’ relevance
and the classification of data.

https://doi.org/10.24432/C5DW2B
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Table 3. Classification error obtained via varFnMS, varFnMS-T and varFnMFAS-T for the four
benchmark datasets.

Dataset N d K varFnMS varFnMS-T varFnMS-TFA

Iris 150 4 3 0.093 0.093 0.020
Olive 572 8 3 0.203 0.199 0.042
Wine 178 27 3 0.079 0.062 0.073

WDBC 569 30 2 0.095 0.095 0.088

(a)

(b)

(c)

(d)

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4. Factor activity estimated via the proposed algorithm for the four benchmark datasets:
(a) Iris, (b) Olive, (c) Wine and (d) WDBC.
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Figure 5. Feature saliency estimated via varFnMS (left), varFnMS-T (middle) and varFnMS-TFA
(right) for the four benchmark datasets: (a) Iris, (b) Olive, (c) Wine and (d) WDBC. The saliency level
at 0.5 is marked by the red dotted line.
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5.3. Application on Handwritten Object Recognition

In this section, we apply the developed algorithm to the machine learning task of
handwritten alphabet recognition. The handwritten alphabet dataset is obtained from the
Kaggle webpage (https://www.kaggle.com/datasets/sachinpatel21/az-handwritten-alp
habets-in-csv-format/data; accessed on 26 May 2023). It contains more than 370,000 images
for the English alphabets (A–Z). The images are gray-scale in the size of 28 × 28 pixels.
We focus on separation of the handwritten alphabets A, B and C and reserve randomly
200 images for each of the alphabets. As the variability of some pixels in the image of
an alphabet is exactly zero, we may encounter the singularity problem during iterations
of the clustering algorithms. Therefore, pre-processing was implemented on the data as
detailed in Appendix B. In the proposed algorithm, the initial number of latent factors was
set as fifty for each class. The three algorithms attain the same classification error rate as
0.16. The patterns of feature saliency estimated via varFnMS, varFnMS-T and the proposed
algorithm are compared in Figure 6. The pixels are arranged along the x-axis column by
column in the 28 × 28-pixel image. The saliences for the margin of the image with almost
zero variability have been set as zero in the pre-processing stage. As can be seen from
Figure 6, for the potentially discriminant part of the image, while the other two algorithms
may have ambiguity concerning deciding the relevance of features, the evaluation based
on the proposed algorithm is clearer which could be an improvement by extracting the
confounding effects through latent factors.
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Figure 6. Feature saliency estimated via varFnMS (left), varFnMS-T (middle) and varFnMS-TFA
(right) for the handwritten alphabet data. The saliency level at 0.5 is marked by the red dotted line.

The centroids estimated via the three algorithms are shown in Figure 7, where the
reconstruction process of images via the proposed algorithm is also illustrated. The es-
timated centroid in each class can be calculated following (55), which is a mixing of the
class-specific mean and the background. The calculation is outlined by the red box, where
the centroid, the class-specific mean and the background are present from left to right,
successively. It can be seen that all three algorithms exhibit good performance with respect
to characterizing the alphabets. The estimated centroids can sketch the general appearance
of the alphabets. But it is noticeable that varFnMS and varFnMS-T make some mistakes
on estimation of the background. There should have been no handwritten stroke at the
bottom of the background image, since this distinguishes the images of alphabet A. The
proposed algorithm performs well with respect to reconstructing the images. An example
of reconstruction is present in subplot (c). Additional examples are present in Appendix C.
Generally, by adding the influence of latent factors, handwriting on the images becomes
legible. The factor loadings on the two most active factors for each alphabet are shown at
the right side of subplot (c). As can be seen, the information from latent factors plays an
important role in refining the images.

https://www.kaggle.com/datasets/sachinpatel21/az-handwritten-alphabets-in-csv-format/data
https://www.kaggle.com/datasets/sachinpatel21/az-handwritten-alphabets-in-csv-format/data
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Truth

(a)

(c)

(b)

Approx Means Factor loadings

Figure 7. Reconstruction of the handwritten alphabet image via varFnMS (a), varFnMS-T (b) and
varFnMS-TFA (c). The estimated centroids are outlined with a red box, where the centroid, the
class-specific mean and the background are present from left to right, successively.

6. Conclusions

In this paper, we developed a hierarchical latent variable model for robust clustering
and model selection. We considered the cases where features are correlated within mixture
components in a Student’s t mixture model. Factor-adjusted feature saliency was proposed
to evaluate the relevance of features to data separation. Automatic latent dimension
reduction was achieved by introducing the variables of factor activity. A full Bayesian
treatment was adopted and a structured VB inference framework was developed that have
enabled a tighter bond to the marginal likelihood and improved the inference accuracy.
Controlled experiments on synthetic and real-world datasets showed that the proposed
model is able to capture the correlation between features and shows better clustering
performance than the models relying on the local independence assumption. Application
of the developed algorithm on the high-dimensional handwritten alphabet data showed its
applicability and usefulness for image recognition and reconstruction.

In the proposed model, we take the number of clusters (number of components in
the mixture model) as fixed and given before inference. An ongoing work is to extend
our model to realize automatic selection of the number of clusters. We imposed the
Dirichlet prior on the mixing probabilities, which can act as a penalization to drive the
mixing probabilities associated with unnecessary components towards extinction. We
will also investigate the novel penalization methods proposed in [34] which result in
continuous objective functions and can shrink the mixing weights to exactly zero. Other
limitations include assuming that features are approximated Gaussian distributed in each
component. This assumption can be violated when the features only take positive values
or follow skewed distributions. Future work may consider extending the model to tackle
these scenarios.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/math12071091/s1, S1. Deriving the auxiliary posteriors of the
latent variables; S2. Deriving the auxiliary posteriors of the parameters.

https://www.mdpi.com/article/10.3390/math12071091/s1
https://www.mdpi.com/article/10.3390/math12071091/s1
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Appendix A

The evidence lower bound monitoring the optimization process of the proposed
algorithm can be evaluated as follows:

L = ∑
n,k,l

⟨δzn ,k⟩
[
⟨ϕnl⟩⟨log p(ynl |xnk, rnk, unl , ϕnl = 1, zn = k)⟩+ ⟨1 − ϕnl⟩⟨log p(ynl |xnk, rnk, unl , ϕnl = 0, zn = k)⟩

+ ⟨ϕnl⟩⟨log p(unl |ϕnl = 1, zn = k)− log q(unl |ϕnl = 1, zn = k)⟩
]

+ ∑
n,k

⟨δzn ,k⟩
[
⟨log p(xnk)− log q(xnk|rnk)⟩+ ⟨log p(rnk)− log q(rnk)⟩+ ⟨log p(zn = k)⟩ − log q(zn = k)

]
+ ∑

n,l

[
⟨1 − ϕnl⟩⟨log p(unl |ϕnl = 0)− log q(unl |ϕnl = 0)⟩+ ⟨log p(ϕnl)− log q(ϕnl)⟩

]
+ ∑

l
⟨log p(µ0l)− log q(µ0l) + log p(σ0l)− log q(σ0l) + log p(βl)− log q(βl)⟩

+ ∑
k,l
⟨log p(µkl)− log q(µkl) + log p(σkl)− log q(σkl) + log p(wkl)− log q(wkl)⟩

+ ∑
k,j
⟨log p(ρkj)− log q(ρkj)⟩+ ⟨log p(π)− log q(π)⟩. (A1)

Table A1 lists the computation for the expectations in the evidence lower bound (A1).

Table A1. Evaluation of the evidence lower bound.

Expectations of the Logarithm of Priors of the Latent Variables

⟨log p(ynl |xnk, rnk, unl , ϕnl = 1, zn = k)⟩ = 1
2 ⟨log σkl⟩+ 1

2 ⟨log unl⟩1
k −

1
2 ⟨σkl⟩⟨unl⟩1

k⟨(ỹ
k
nl − µkl)

2⟩+ const.
⟨log p(ynl |xnk, rnk, unl , ϕnl = 0, zn = k)⟩ = 1

2 ⟨log σ0l⟩+ 1
2 ⟨log unl⟩0 − 1

2 ⟨σ0l⟩⟨unl⟩0⟨(ỹk
nl − µ0l)

2⟩+ const.
⟨log p(unl |ϕnl = 1, zn = k)⟩ = vkl

2 log vkl
2 − log Γ

( vkl
2
)
+

( vkl
2 − 1

)
⟨log unl⟩1

k −
vkl
2 ⟨unl⟩1

k
⟨log p(unl |ϕnl = 0)⟩ = v0l

2 log v0l
2 − log Γ

( v0l
2
)
+

( v0l
2 − 1

)
⟨log unl⟩0 − v0l

2 ⟨unl⟩0

⟨log p(ϕnl)⟩ = ⟨ϕnl⟩⟨log βl⟩+ ⟨1 − ϕnl⟩⟨log(1 − βl)⟩
⟨log p(xnk)⟩ = − pk

2 log 2π − 1
2 tr⟨Ĉk

n(rnk)
−1 + f̂ k

n(rnk) f̂ k
n(rnk)

T⟩
⟨log p(rnk)⟩ = ∑j[⟨rnkj⟩⟨log ρkj⟩+ ⟨1 − rnkj⟩⟨log(1 − ρkj)⟩]

⟨log p(zn = k)⟩ = ⟨log πk⟩
⟨log p(π)⟩ = ∑k(α0k − 1)⟨log πk⟩+ const.
⟨log p(βl)⟩ = (κ1 − 1)⟨log βl⟩+ (κ2 − 1)⟨log(1 − βl)⟩+ const.
⟨log p(ρkj)⟩ = (τ1 − 1)⟨log ρkj⟩+ (τ2 − 1)⟨log(1 − ρkj)⟩+ const.
⟨log p(µkl)⟩ = − 1

2 λ0

[
λ̂−1

kl + (ŝkl − s0l)
2
]
+ const.

http://www.r-project.org/
http://www.r-project.org/
https://doi.org/10.24432/C5DW2B
https://www.kaggle.com/datasets/sachinpatel21/az-handwritten-alphabets-in-csv-format/data
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Table A1. Cont.

Expectations of the Logarithm of Priors of the Latent Variables

⟨log p(µ0l)⟩ = − 1
2 λ0

[
λ̂−1

0l + (ŝ0l − s0l)
2
]
+ const.

⟨log p(σkl)⟩ =
( η0

2 − 1
)
⟨log σkl⟩ − ξ0

2 ⟨σkl⟩+ const.
⟨log p(σ0l)⟩ =

( η0
2 − 1

)
⟨log σ0l⟩ − ξ0

2 ⟨σ0l⟩+ const.
⟨log p(wkl)⟩ = − pk

2 log 2π − 1
2 m0tr

(
M̂−1

kl + m̂klm̂T
kl

)
Expectations of the Logarithm of the Auxiliary Posteriors

⟨log q(unl |ϕnl = 1, zn = k)⟩ = âkl log b̂k
nl − log Γ(âkl) + (âkl − 1)⟨log unl⟩1

k − b̂k
nl⟨unl⟩1

k
⟨log q(unl |ϕnl = 0)⟩ = â0l log b̂0

nl − log Γ(â0l) + (â0l − 1)⟨log unl⟩0 − b̂0
nl⟨unl⟩0

⟨log q(ϕnl)⟩ = ⟨ϕnl⟩ log q(ϕnl = 1) + ⟨1 − ϕnl⟩ log q(ϕnl = 0)
⟨log q(xnk|rnk)⟩ = − pk

2 log 2π + 1
2 log |Ĉk

n(rnk)| − 1
2 pk

⟨log q(rnk)⟩ = ∑j[⟨rnkj⟩ log q(rnkj = 1) + ⟨1 − rnkj⟩ log q(rnkj = 0)]
⟨log q(π)⟩ = log Γ(∑k α̂k)− ∑k log Γ(α̂k) + ∑k(α̂k − 1)⟨log πk⟩
⟨log q(βl)⟩ = (κ̂1l − 1)⟨log βl⟩+ (κ̂2l − 1)⟨log(1 − βl)⟩ − logB(κ̂1l , κ̂2l)

⟨log q(ρkj)⟩ =
(

τ̂1kj − 1
)
⟨log ρkj⟩+

(
τ̂2kj − 1

)
⟨log(1 − ρkj)⟩ − logB(τ̂1kj, τ̂2kj)

⟨log q(µkl)⟩ = 1
2 log λ̂kl + const.

⟨log q(µ0l)⟩ = 1
2 log λ̂0l + const.

⟨log q(σkl)⟩ = η̂kl
2 log ξ̂kl

2 − log Γ
(

η̂kl
2

)
+

(
η̂kl
2 − 1

)
⟨log σkl⟩ − ξ̂kl

2 ⟨σkl⟩
⟨log q(σ0l)⟩ = η̂0l

2 log ξ̂0l
2 − log Γ

(
η̂0l
2

)
+

(
η̂0l
2 − 1

)
⟨log σ0l⟩ − ξ̂0l

2 ⟨σ0l⟩
⟨log q(wkl)⟩ = − pk

2 log 2π + 1
2 log |M̂kl | − 1

2 pk

Appendix B

Figure A1 shows the frequency histogram of the standard deviation for features in
the handwritten alphabet image. As can be seen, the values of standard deviation range
from 0 to 120 and a large proportion of the features have zero variance or comparably
small variance. Most of them lie on the marginal area of the image. To improve the
computational efficiency, we removed the features with standard deviation smaller than
ten at the pre-processing stage which left 400 features for the clustering task.

In addition, we observed the singularity problem during iterations of the clustering
algorithms as the variability of some pixels in the image of an alphabet is exactly zero.
This happens when the clustering of the images gets close to their original grouping. To
tackle the problem, we put a noise mask on the data. Each element of the noise mask was
generated from N (0, 0.1).
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Figure A1. Frequency histogram of the standard deviation for the features in the handwritten
alphabet data. The frequency bar corresponding to the standard deviation below 10 is marked in grey.
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Appendix C

Figure A2 presents the reconstructed images for the alphabet A, B and C by the
proposed algorithm.

T
ru
th

A
p
p
ro
x

T
ru
th

A
p
p
ro
x

T
ru
th

A
p
p
ro
x

Figure A2. Reconstructed images for the handwritten alphabet A, B and C by the proposed algorithm.
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