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Abstract: The escalating intricacy of industrial systems necessitates strategies for augmenting the
reliability and efficiency of industrial machinery to curtail downtime. In such a context, predictive
maintenance (PdM) has surfaced as a pivotal strategy. The amalgamation of cyber-physical systems,
IoT devices, and real-time data analytics, emblematic of Industry 4.0, proffers novel avenues to refine
maintenance of production equipment from both technical and managerial standpoints, serving
as a supportive technology to enhance the precision and efficacy of predictive maintenance. This
paper presents an innovative approach that melds text mining techniques with the cyber-physical
infrastructure of a manufacturing sector. The aim is to improve the precision and promptness of
predictive maintenance within industrial settings. The text mining framework is designed to sift
through extensive log files containing data on the status of operational parameters. These datasets
encompass information generated by sensors or computed by the control system throughout the
production process execution. The algorithm aids in forecasting potential equipment failures, thereby
curtailing maintenance costs and fortifying overall system resilience. Furthermore, we substantiate
the efficacy of our approach through a case study involving a real-world industrial machine. This
research contributes to the progression of predictive maintenance strategies by leveraging the wealth
of textual information available within industrial environments, ultimately bolstering equipment
reliability and operational efficiency.

Keywords: predictive maintenance; text mining; finite automata; natural language processing;
log message; cyber-physical systems

MSC: 68T50; 90B25

1. Introduction

Industrial machinery forms the cornerstone of modern manufacturing processes,
facilitating large-scale production and promoting economic development in several sectors.
However, the reliability and efficiency of industrial machinery face ongoing challenges
due to factors such as wear and tear, unexpected breakdowns, and the need for routine
maintenance. In response, the field of industrial machine maintenance has undergone
substantial evolution, with a shift towards proactive, data-driven strategies aimed at
minimizing downtime, optimizing performance, and containing maintenance costs.

The issue of maintaining production equipment is fundamental for effectively manag-
ing the production processes of many manufacturing industries, prompting the develop-
ment of various maintenance approaches within the manufacturing sector.

Conventional maintenance strategies, such as reactive maintenance and preventive
maintenance based on fixed schedules, often fall short in addressing the dynamic and
intricate nature of modern industrial systems. Reactive maintenance, entailing responses
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to equipment failures as they occur, can result in costly unplanned downtime and pro-
duction losses. Conversely, preventive maintenance strategies, while effective in reducing
the likelihood of failures, may lead to unnecessary maintenance activities and increased
operational expenses.

In recent years, predictive maintenance (PdM) has emerged as a promising alternative,
harnessing advanced analytics, sensor technologies, and machine-learning algorithms to
forecast equipment failures before they happen. By continuously monitoring machine
health in real time and analyzing historical performance data, predictive maintenance
enables proactive interventions, such as timely repairs and component replacements,
thereby mitigating the risk of unplanned downtime and optimizing asset utilization.

As Industry 4.0 unfolds, traditional maintenance methodologies are being reexamined
to harness the potential of emerging technologies, thereby improving their effectiveness.
These new technologies afford intervention opportunities unattainable with traditional
approaches. As Industry 4.0 emerges, conventional maintenance practices are being reeval-
uated to leverage advancements in technology, thereby boosting their effectiveness. These
advancements present new opportunities for intervention that were previously inaccessible
through traditional methods.

Despite the potential of predictive maintenance, implementing effective PdM pro-
grams in industrial settings remains a complex and multifaceted challenge. Key consid-
erations encompass the selection of appropriate sensor technologies, the development of
robust predictive models, and the seamless integration of predictive maintenance into
existing maintenance workflows and organizational processes.

Building upon these principles, this study aims to utilize text mining methodologies
for predictive maintenance within the framework of a cyber-physical production system
(CPPS). During the manufacturing process, the CPPS gathers industrial data from various
sources such as machine tools and other equipment. These datasets can be examined using
computational linguistics techniques, particularly those related to tagged terminological
multiword units. The proposed system begins with the analysis of extensive textual data
generated by a machine tool, subsequently furnishing insights into the machine’s health
status and the potential implications of evaluated conditions on its future health state.

The paper is organized as follows:
Section 2 reviews relevant literature about maintenance and maintenance approaches

adopted in manufacturing industries, predictive maintenance approaches, text mining
technology, and the scientific foundations of our research.

In Section 3, the text mining approach that we propose for predictive maintenance
in Industry 4.0 scenarios is described, while in Section 4 we analyze its performances
and architecture.

In Section 5, we compare our proposal with other approaches for automatic predictive main-
tenance of industrial machines, considering both efficiency and computational performance.

In Section 6, we present the case study, based on real data from an Italian industry
operating in the automotive sector. In Section 7 are reported some future research directions,
while in Section 8 there are some conclusions.

2. Literature Review
2.1. Maintenance

Maintenance is defined as

“The combination of all technical and administrative actions, including supervision, which
ensure that a system is in its required functioning state” [1].

It encompasses a variety of tasks directed towards restoring an asset to a condition
where it can efficiently fulfill its intended functions. The maintenance of production
equipment holds paramount importance for managing the production processes of man-
ufacturing industries effectively. The primary objective of maintenance is to minimize
production downtimes, ultimately striving for zero breakdowns. The economic significance
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of maintenance has spurred scholarly interest in investigating various aspects related to
maintaining physical resources, encompassing techniques and management methods [2].

The emergence of Industry 4.0, grounded in a suite of technologies such as cyber-
physical systems, Industrial Internet of Things (IIoT), and big data analytics [3], has spurred
the evolution of maintenance strategies. These technologies enable seamless integration of
data from diverse sources, including sensors, actuators, and operational databases, facili-
tating comprehensive condition monitoring and predictive analytics. Recent research in
industrial machinery maintenance has delved into the utilization of Industry 4.0 technolo-
gies [4,5], particularly concerning predictive maintenance approaches ([6–8]). Leveraging
cyber-physical systems as the technological backbone, predictive approaches based on text
mining [9] and machine learning [10] have been explored to enhance the performance of
the maintenance process.

This paper is a heavily revised and expanded version of [9].

2.2. Maintenance Approaches

The process of equipment maintenance is typically initiated either as a planned in-
tervention or in response to an emergency request stemming from equipment failure. To
aid practitioners in understanding the complexity of the maintenance system, concep-
tual models have been proposed based on unplanned maintenance (UM) and planned
maintenance (PM) activities ([11,12]). The model represented in Figure 1 illustrates the
classification scheme adopted in this paper; see [13] for an updated classification scheme,
which presents, in broad terms but with a greater level of detail, the main distinctions re-
ported in Figure 1 between unplanned maintenance and planned maintenance and, within
the planned maintenance category, between preventive and predictive maintenance.

Figure 1. Classification of approaches to machine tool maintenance.

The most basic method of equipment maintenance is unplanned maintenance (UM)
(see Section 2.2.1 and refer to the yellow left branch of Figure 1). Planned maintenance
(PM) (see the right orange branch of Figure 1) includes various aspects of planned mainte-
nance interventions, divided into two main strategies: preventive maintenance (PvM) (see
Section 2.2.2) and predictive maintenance (PdM) (see Section 2.2.3).

2.2.1. Unplanned Maintenance

UM has a reactive behavior and encompasses two main strategies:

• Opportunistic maintenance (OM), which strives to turn a failure event into an oppor-
tunity for improvement; for instance, if a production line stops because of a machine
failure, the maintenance team can conduct inspections on other machines in the line
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while the repair is underway. A classification of opportunistic maintenance models
can be found in Di Dio et al. ([14]).

• Breakdown maintenance (BM), also known as corrective maintenance (CM) or run-
to-failure or reactive maintenance, refers to maintenance activities performed on
industrial machinery or equipment to identify and rectify the causes of failures in
a failed system (Wang et al., 2014). Unlike preventive maintenance, which involves
scheduled inspections and servicing to prevent failures, corrective maintenance occurs
after a breakdown has occurred and aims to restore the equipment to its normal
operating condition. In Wang et al. ([15]), a comprehensive corrective maintenance
scheme for engineering equipment is proposed.

2.2.2. Planned Maintenance: Preventive Maintenance (PvM)

A primary type of PM is preventive maintenance (PvM) [1], which aims to reduce the
probability of occurrence of specific failure modes or to detect hidden failures. PvM activi-
ties are geared towards repairing equipment, such as replacing key components, to prevent
breakdowns. PvM involves monitoring the machine state to identify unsatisfactory condi-
tions necessitating maintenance intervention. Three specialized maintenance techniques
are commonly employed within PvM: autonomous, time-based, and condition-based, all
aimed at predicting equipment failures to apply corrective maintenance promptly.

• The simplest form of PvM is autonomous maintenance (AM), defined by regular tasks
involving equipment monitoring, adjustments, and basic maintenance by machine
operators, and the process is commonly referred to as routine activity. A simplified
approach to autonomous maintenance is outlined in a study by Gajdzik et al. [16].
Additionally, preventive maintenance (PvM) can utilize time-based methods.

• Time-based maintenance (TBM) is a maintenance strategy based on fixed time in-
tervals, where predefined maintenance tasks are performed regularly according to
predetermined schedules. Maintenance decisions in TBM are triggered solely by time,
with preventive repairs determined through failure time analysis ([17]). TBM strives
to mitigate system degradation by executing preventive maintenance tasks while the
system remains operational ([18]).

• Another preventive technique is condition-based maintenance (CBM) [19], which
monitors the actual condition of assets to inform maintenance decisions. CBM pre-
scribes maintenance based on physical variables indicating decreasing performance or
imminent failure. Introduced as an alternative to TBM, CBM addresses its limitations
and serves as a decision-making method covering equipment condition evaluation
and maintenance decision processes ([20]).

2.2.3. Planned Maintenance: Predictive Maintenance (PdM)

The second type of PM is predictive maintenance (PdM), which employs specialized
techniques to analyze equipment states during operation, predicting when equipment will
fail. This predictive capability allows for timely maintenance interventions to prevent break-
downs. PdM can be viewed as a specific form of CBM ([21]). Both predictive maintenance
(PdM) and condition-based maintenance (CBM) share a proactive approach to ensuring
machine health, employing innovative maintenance methodologies, like the Internet of
Things, data analysis, and machine learning. However, they diverge significantly in their
methodologies. CBM operates on the basis of real-time machine condition monitoring: a
single observation can suffice to identify substantial deviations from expected operating
modes, guiding maintenance decisions promptly. Conversely, PdM techniques center
around repeated observations of the overall machine health, accumulating a historical
record of past behaviors. These observations are then leveraged to derive predictions
regarding future equipment failures, facilitating a proactive maintenance approach.

This distinct perspective has profound implications for PdM, especially concerning
the application of Industry 4.0 technologies to address maintenance challenges. In Figure 1,
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PdM occupies a different level compared with AM, TBM, and CBM, because PdM focuses
on predicting future failures and requires maintaining a history of past equipment behavior.

2.3. Predictive Maintenance Approaches

Predictive maintenance (PdM) is rooted in the recognition that the majority of failures
that occur following a degradation process do not occur suddenly or instantaneously.
The goal of predictive maintenance is to reduce uncertainty in maintenance activities by
identifying issues before potential damage occurs. Choosing the appropriate method for
predictive maintenance in industrial machinery depends on several factors, including
machinery requirements, industry type, available resources, and desired sophistication
level. Predictive maintenance systems vary in complexity, capability, and application,
but share the common goal of minimizing downtime, reducing maintenance costs, and
optimizing equipment performance in industrial settings. Efficient methods for predictive
maintenance include:

Machine learning-based (or data-driven) (ML) systems [22–25], which utilize historical
data, sensor readings, and other parameters to predict equipment failures and recommend
maintenance actions, optimizing maintenance schedules. ML systems, being machine
learning-based, may require a pre-training phase but do not analyze textual semantics;
and condition monitoring systems (CMSs) [26–28], which continuously monitor machinery
condition by collecting and analyzing real-time sensor data.

Further methods for predictive maintenance are much more hardware driven, as
they base their analysis predominantly on the acquisition of some parameters related
to the machine’s hardware, analyzing the cumulative damage and degradation of the
components. These methods include vibration analysis systems [29–31], infrared thermography
systems [32], oil analysis systems [33], ultrasonic monitoring systems [34], and prognostics and
health management (PHM) systems [35–37], which integrate data analysis with physics-based
models to predict equipment health and estimate the remaining useful life. These methods
detect machine deterioration when it is already occurring, albeit at an early stage. Therefore,
they may not be suitable for detecting potential problems before they arise. Combining
these technologies with CMS and ML methods, which offer predictive and early detection
capabilities, can provide the most comprehensive approach to predictive maintenance.

2.4. Text Mining

Text mining [38–44], also referred to as text analytics or text data mining, constitutes
an interdisciplinary domain amalgamating various technologies such as natural language
processing (NLP), statistical methods, computer science, and machine learning. Its primary
objective is to automatically extract knowledge and meaningful information from unstruc-
tured or semi-structured natural language textual documents. Unlike conventional web
searches where users typically pursue known information, text mining delves into the dis-
covery of new, obscure data that may not be readily apparent through individual perusal of
existing text documents. Positioned as a specialized offshoot of data mining [42,45,46], text
mining narrows its focus specifically on the analysis of textual documents, distinguishing
itself from the broader spectrum of techniques employed in data mining across diverse
data types.

Its application extends to critical domains including social media analytics, search
engines, email and document filtering, product recommendation analysis, fraud detec-
tion, and customer relationship management systems. Within these domains, text mining
serves various purposes such as feature extraction and document classification, summa-
rization, topic modeling, trend analysis, named entity recognition, opinion mining, and
sentiment analysis.

In the field of natural language processing (NLP), text annotation denotes the procedure
of appending pertinent information or labels to textual data. The objective is to augment the
comprehension of the text by furnishing supplementary context, structure, or significance.
The quality of text annotation is critically important. The creation of annotated datasets
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can be accomplished manually by human annotators, given that it frequently demands
industry expertise to guarantee precise and meaningful labeling. However, automation
utilizing specific tools or pre-existing datasets is also feasible.

Text mining plays a fundamental role in research [47,48] and medicine [49–54], and has
important applications in several other fields, such as psychiatry [55], risk management [56],
financial domains [57], finance [58], service management [59], social networks [60], so-
cial media [61], education and training [62], policy-making [63], and agriculture [64],
among others.

In [43], a text mining system is classified into pre-processing, text representation, and
four operational phases:

1. Pre-processing;
2. Text representation;
3. Dimensionality reduction;
4. Features extraction;
5. Document classification;
6. Evaluation.

In the first two phases, the central aim is to transform unstructured text into structured
features, with the goal of standardizing the input text into a uniform format to make it
suitable for analysis. This entails cleaning and preparing raw text data, removing irrelevant
or unnecessary characters and words, converting text to lowercase (or uppercase), handling
special characters, and tokenizing the document, which involves subdivision of the text
into single words or sentences. Figure 2 in [41] visually illustrates the interactions among
the four operational phases (phases 3–6), providing a comprehensive depiction of the
subsequent stages of the text mining process.

Figure 2. Text mining system phases (from [41]).

2.5. Scientific Foundations of the Research

To efficiently analyze log files emitted by industrial machines and predict potential
future malfunctions, we utilize AUTOMETA, a text mining system introduced in prior
works ([65,66]). AUTOMETA employs finite automata and a coherent formalization of
natural language, focusing on the universal concept of units of meaning.

AUTOMETA identifies multiword units within natural language texts, such as log
messages, associating an alert level with the message cluster. It operates by mapping
digitized text to an ontology covering all possible log message types. The algorithm, cus-
tomized for processing lengthy log messages comprised of varying word counts, operates
by reading input text character by character at runtime. Simultaneously, it identifies all
multiword units, even if they partially or fully overlap.

The system’s foundation stems from decades of joint research in computer science
and computational linguistics, marking a significant evolution from its predecessor, CAT-
ALOGA [67]. Beginning in 2021, a comprehensive process of redefinition, redesign, and
rewriting of CATALOGA culminated in the development of the AUTOMETA system pro-
totype. While retaining the general approach and some ontologies (subject to review),
every other aspect underwent thorough redesign, including technology, algorithms, data
structures, source code, and interface. The scientific underpinnings of AUTOMETA trace
back to studies on Lexicon-Grammar (LG) ([68–72]), mainly those dealing with the cre-
ation and use of terminological electronic dictionaries, and finite automata-based string
matching ([73–79]).
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3. System Description

The proposed methodology focuses on condition monitoring systems (CMSs) and
entails the ongoing analysis of log messages generated continuously by a data source
connected to industrial machinery.

The entire process is schematized in Figure 3.

Figure 3. System process diagram.

3.1. LOG Messages

Log messages originating from industrial machines represent a sequential compilation
of contextual data integral to the machining process, offering invaluable real-time or near-
real-time insights for monitoring, analyzing, and optimizing machine performance and
operational health.

Generated by the machine’s control system and pertinent auxiliary data sources such
as sensors and auxiliary equipment, this information primarily pertains to routine machine
operations, encompassing operational status updates, performance metrics, and occasional
asynchronous event notifications. These events may span from critical machine failures to
minor anomalies or slight deviations from the expected operational parameters.

By amalgamating and correlating these log messages, a comprehensive overview
of the machine’s functionality can be constructed. Such a holistic approach fosters a
deeper comprehension of the intricate interplays and dependencies within the industrial
ecosystem. Moreover, log messages play a central role in predictive maintenance strate-
gies, empowering proactive intervention to prevent potential downtimes and enhance
operational efficiency.

Log messages are stored in text files, with each line representing a single message entry.
The content of these log messages may vary depending on the context and objectives of the
logging system. Nonetheless, even with potential variations in format or the arrangement
of elementary data, a typical log message from an industrial machine comprises several
common types of information:

Machine ID: A unique identifier denotes the machine from which the
message originated.

Date/time: The date and time at which the event or message was generated.
Component: Text strings are employed to logically group messages, where com-

ponents may represent various subsystems or components of the
machine, such as “Controller”, “Database Server”, or “Motor Drive”.
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Process: Identification of the running process that generated the message,
typically including the full path and filename, and sometimes the
module name.

Process ID (PID): An integer that uniquely identifies the running process.
Operation performed: Details about the specific operation or event that occurred. This

could include commands executed, sensor readings, status updates,
or any other relevant information about the machine’s activities.

Result or status: The outcome or status of the operation performed. This could indi-
cate success, failure, warnings, errors, or other relevant states. The
result may be presented as a free-form text string or a predefined
code indicating the status.

Each message is uniquely identified by its date/time stamp, considering that the same
message can be issued multiple times by the same machine, albeit never concurrently. To
integrate messages from multiple data sources related to the same machine, assigning a
unique ID to each data source could facilitate correlation.

3.2. System Preliminary Phase

The preliminary phase comprises three distinct one-time sub-phases for each of the
data sources associated with the industrial machine. These sub-phases are conducted either
during the initial installation process or following significant modifications to the data
source infrastructure. Some of the sub-steps of the preliminary phase must be conducted in
close collaboration with the company’s machinery experts.

In the first sub-step, the task involves identifying, selecting, and normalizing all
relevant log messages from the individual data source. Subsequently, each identified
message is associated with its corresponding alert level. This association aids the algorithm
in proactively identifying potential machine malfunctions. Finally, the third sub-step entails
constructing the computer data structure utilized by the algorithm.

The preliminary process is schematized in the central part of Figure 3; in orange are
the steps that must be carried out in close collaboration with machine industry experts.

3.2.1. Preliminary Sub-Step 1: Data Selection and Normalization

The process of identifying and normalizing all relevant log messages emitted by a
data source associated with an industrial machine comprises the following stages:

1. Identification of all message types: this initial stage involves identifying every possible
type of message that can be generated.

2. Relevance-based log messages selection. Each selected message type should contain
only relevant information and will constitute the initial segment of every element
within the ontology. This stage is carried out in strict collaboration with the machine’s
domain experts.

3. Semantic data normalization: in this stage, the focus is on aligning the data with
standardized semantics and formats.

3.2.2. Preliminary Sub-Step 2: Assigning Alert Level to Each Log Message

This stage involves developing a linguistic model that assigns an alert level, based
on a chromatic scale, with each message obtained from the previous step. This stage is
carried out in strict collaboration with the machine’s domain experts. The defined levels
are as follows:

White Level (All Clear): Signifies that everything is
functioning properly.

Yellow Level (Minor—Caution): Indicates occasional anomalies that have
occurred, none of which are critical, and
the system can continue operating
without issues.
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Orange Level (Moderate—Act Promptly): Indicates significant anomalies or a group-
ing of basic anomalies that, if recurring,
could impact production continuity.

Red Level (Severe—Immediate Action Required): Signifies the presence of severe anoma-
lies within the system that could signif-
icantly disrupt production activities.

Black Level (Emergency Shutdown): Indicates that the system is at risk of
irreversible equipment or product fail-
ures and requires an immediate halt.

3.2.3. Preliminary Sub-Step 3: Data Structure Establishment

In this stage, a digital data structure is established to encompass all potential “composite
messages” structured as a dictionary. This dictionary plays a pivotal role in the algorithms’
processing of source messages, where each entry comprises a “message” in the first segment
and its corresponding general alert level in the second segment.

In this context, the term “dictionary” refers to the conventional computer science data
structure used to host a collection of objects ([76]). Essentially, a dictionary constitutes a
collection of pairs (entries) structured as (k, v), where k represents the (typically unique)
key and v denotes the value associated with k. Upon presentation of a key, the dictionary
retrieves the associated value. This dynamic data structure allows entries to be inserted,
deleted, and modified as needed.

3.3. System Algorithmic Steps

The algorithm operates on a set L = w1, w2, . . . , wm of m log messages (m ≥ 1), where
each wj = wj1 , wj2 , . . . , wjn (1 ≤ n ≤ Log_Max_length) is associated with its respective alert
level, Awj . In practical terms, wj comprises a log message along with its alert level. The
algorithmic process consists of a one-time pre-processing phase and a two-stage processing
phase: matching and analysis.

The algorithmic process is schematized in the lower part of Figure 3.

3.3.1. Pre-Processing

The system builds a data structure based on the finite automaton and initializes the
analysis system. This phase occurs only once, during the startup of the data source builder,
and its duration is linearly proportional to the sum of the lengths of all dictionary entries,
measured as the total number of characters in the messages.

3.3.2. Matching

The automaton continuously processes input log messages character by character,
with each character of the input text mapping to a state of the finite automaton. It advances
through the automaton based on the characters of the input text, without revisiting past
characters. Upon reaching a final state corresponding to the end of a message, the au-
tomaton outputs the associated alert level. The number of state transitions executed by
the automaton is equivalent to the number of characters in the input text. Consequently,
the algorithm operates in linear time relative to the number of characters in the input text,
irrespective of the dictionary size (i.e., the set of all possible log messages). This phase is
repeated for each generated log message.

3.3.3. Analysis

Upon receiving a request from the matching algorithm, the system initiates the analysis
of the acquired alert levels. After parsing the log file or a segment of it and determining
the alert levels for each message, the system can assess the machine’s health status based
on the frequency and severity of the extracted alerts. It is capable of promptly responding
to highly critical alerts, evaluating a cluster of alerts over a period to anticipate potential
future critical situations, or analyzing an entire historical sequence of alerts in batches.
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Following the analysis, the system may trigger automated safeguard protocols, prompt
human expert intervention, or recommend minor adjustments to be implemented during
the next scheduled maintenance interval.

4. System Performances
4.1. Algorithms’ Performances

The system employs a finite automaton to traverse input text in search of log messages.
Upon reaching a state corresponding to the end of a log message, it generates the associated
semantic domain. The algorithms exhibit high efficiency, speed, and precision, enabling them
to detect all occurrences of log messages, even in cases of partial or complete overlap.

Pre-processing: Initially, the system constructs a finite automaton in the computer’s mem-
ory for the entire set of log messages. This process occurs once per session
and whenever the reference ontology changes.
The time complexity of the pre-processing phase, denoted by the total
number of elementary algorithmic steps (and hence the number of state
transitions in the finite automaton), is O(m) [73], where m is linearly
proportional to the sum of the lengths of all entries in the dictionary
with n elements, given by m = ∑n

i=1 length(ai). This implies that the
time required is linearly proportional to the number of characters in
the dictionary.

Processing: The automaton continuously processes lines of input text, character by
character, without revisiting previously read characters. Each character
guides the automaton through its state transitions, and, upon reaching
a state corresponding to the end of a log message, it emits the asso-
ciated alert. Consequently, analyzing a text of k characters requires k
state transitions.
All log messages are simultaneously recognized in a single pass, even
if they partially or fully overlap, regardless of their length. Thus, the
algorithm operates in linear time relative to the number of characters in
the input text [73], and its performance remains unaffected by the size of
the ontologies (i.e., the set of all possible log messages). Furthermore, it
operates entirely within the computer’s main memory.

Analysis: At the conclusion of the matching phase, once the input text has been
fully processed, the system tallies the frequency of each alert detected
and suggests a classification for the input text.

4.2. System Architecture

The system runs on a standard architecture, using an INSPIRON 16 (by Dell Technolo-
gies, Round Rock, TX, USA) laptop, with 11th Generation Intel(R) Core(TM) (by INTEL,
Santa Clara, CA, USA) i7-11800H CPU at 2.30GHz, 32.0GB of RAM, and runs Microsoft
Windows 11 Home 64-bit ver. 22H2. It does not require specialized hardware such as a ded-
icated video card or large mass-memory, nor does it have specific software requirements.

The software was developed using the latest version (12) of Embarcadero RAD Studio
(https://www.embarcadero.com/products/rad-studio, accessed on 19 February 2024), a
robust RAD visual software development tool based on an object-oriented programming
language. It includes 1711 lines of code organized into 27 operational modules, with nine
methods dedicated to managing the interface, and uses 26 predefined libraries.

5. Performances Comparison

We first compare the efficiency of our method, which is part of the CMS family and is
based on dictionaries created by human experts rather than automatic pre-training, with other
CMS/ML-type methods (Section 2.3). Next, we compare the computational performance of
our approach, based on the use of finite automata, with database-based approaches.

https://www.embarcadero.com/products/rad-studio
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5.1. Efficiency

The proficiency of our proposal in detecting patterns, trends, and even subtle anoma-
lies within the log data facilitates early issue detection, enabling timely proactive mainte-
nance planning and minimizing downtime. The system can trigger immediate activation
of safeguard procedures, either automatically or through human intervention.

Sometimes, a machine failure can be preceded by a series of apparently regular but
anomalous behaviors, all recorded in these log messages. These “weak” signals are easily
picked up by our system, but rarely by other systems.

A notable strength of our approach lies in its hardware independence. Once associated
with a comprehensive dictionary encompassing all possible messages, the predictive main-
tenance system becomes adaptable across various types of machinery and equipment,
enhancing its versatility and scalability.

Moreover, our method transcends traditional maintenance by offering performance opti-
mization capabilities. Through refined programming, it can analyze data and pinpoint areas
for enhancement, facilitating proactive adjustments to improve efficiency and productivity.

By leveraging dictionaries built by human experts, our approach may offer several
advantages over automatic pre-training methods (ML), such as:

Domain expertise: human experts can provide deep domain knowledge and insights
into the specific characteristics and nuances of the machinery and processes involved. This
can result in more accurate and contextually relevant dictionaries tailored to the unique
requirements of the industry.

Customization: manual construction of dictionaries allows for customization and fine-
tuning based on specific use cases, machine types, and operational environments. This
flexibility enables the system to adapt and perform effectively in diverse industrial settings.

Interpretability: dictionaries built by human experts are typically more interpretable,
allowing users to understand and interpret the reasoning behind the system’s decisions.
This transparency can enhance trust and acceptance of the system among operators and
maintenance personnel.

Robustness: human-curated dictionaries can potentially capture subtle nuances and
variations in machine behavior that may be missed by automatic pre-training methods.
This can improve the system’s robustness and reliability in detecting anomalies and
predicting failures.

5.2. Computational Performance

We propose a linguistic-based text mining system that leverages a finite automaton
to effectively identify log messages from a dictionary of potential log messages within an
input text. Manually building dictionaries can be time- and labor-intensive, particularly
for large-scale deployments across multiple machines or industrial sites, while automated
pre-training methods could offer faster scalability in such scenarios. In reality, however,
the number of different log messages for a machine is often limited, so constructing the
ontology could be relatively quick.

In ML-based methods, a pre-training phase requires a high quantity of unfiltered data.
The system’s statistical engine enhances its performance as it processes more data, although
the semi-structured texts utilized for training may contain errors.

The main computational drawback of a dictionary-based method lies in managing
the dictionaries. They could require a high maintenance overhead: manual maintenance and
updates of dictionaries may be required periodically to ensure relevance and accuracy over
time. This can introduce additional overhead and resource requirements compared with
automatic pre-training methods.

Let us delve into the functionality of a CMS system that analyzes log messages emitted
by an industrial machine. Log messages are MWUs, which are “units of meaning” with
high semantic value, making their processing not straightforward. Usually, a system does
not possess explicit knowledge of multiword units (MWUs) or phrases as atomic entities;
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rather, it treats an MWU as a sequence of individual tokens. Each token is independently
considered during both model training and inference.

A multiword unit (MWU) can be extensive, comprising any number of basic words.
Additionally, two distinct MWUs might partially or entirely overlap. In contrast to single
words, an MWU lacks an “end unit” symbol, such as a space or punctuation.

From an algorithmic standpoint, a traditional database-like approach relying on word
matching (e.g., log messages) against a dictionary proves to be highly time-consuming and
is contingent upon the size of the dictionary. As the dictionary grows larger, the waiting
time for a response increases proportionally.

In a log file input text X containing n words, identifying a single log message from
a dictionary, D, with m items requires O(log m) accesses to D to verify if the first word in
X is an item in D. If it is not, we have to verify if the combination of the first and second
words in X forms an item in D, which also requires O(log m) accesses to D, and so on.
Thus, the identification of a log message in a text with n words requires O(n2) searches
in the ontology because, for each word, we have to try the chains with all its successive
words, and each search in an ontology with m items costs O(log m) accesses. In the worst
case, we have to access the dictionary for all the words in X, i.e., n times. Since X contains
n words, in the worst case, the total number of accesses to D is O(n2 log m) to identify all
the log messages within X.

Contrarily, in our method, the processing time for a text of k characters only neces-
sitates O(k) state transitions on a finite automaton. Consequently, identifying all the log
messages within X entails linear time relative to the number of characters in the text. This is
facilitated by our method’s ability to concurrently identify all partially or fully overlapping
log messages, without additional effort.

Let us now normalize the concept of word and character, and say that a word is
composed, on average, of c characters. Thus, our approach requires O(k) elementary
operations, where k = nc, so our method requires O(nc) elementary operations, while the
other methods require O(n2 log m) elementary operations and, since c is a small integer
(the average length of a word), our method is linear and the others are quadratic.

Moreover, in the case of deletion, insertion, or modification of an entry in an ontology,
maintaining order within the ontology is essential. Such operations necessitate at least
O(log m) accesses to the ontology, potentially involving physical movement of entries from
one memory area to another.

In contrast, our proposal eliminates the need for sorting the dictionary. Therefore,
adding, modifying, or deleting one or more entries incurs virtually no computational cost.
We simply insert a new word at the end of the ontology or modify/delete a word without
affecting others. Additionally, in our method, the entire ontology resides within a finite
automaton, typically in the central memory of a computer. Conversely, in other approaches,
elementary operations access a computer’s secondary memory.

Our method operates independently of the length and number of elementary words in
a log message. It can effectively manage large dictionary sizes without encountering issues.
Additionally, it seamlessly identifies all partially or fully overlapping log messages without
requiring any additional computational effort. Moreover, our method directly recognizes
log messages while reading the input text, without providing any form of feedback.

6. Case Study

In this paper, we present an analysis of a log file obtained from a real industrial
machine. The case study focuses on an actual company operating within the national
territory, specializing in the production of metal molds for other companies.

6.1. Source Data Description

During the preliminary phase, we examined 1200 log files, each comprising 1000 mes-
sages. The reference period extends from 6:05:01 on 13 February 2023, to 21:59:40 on 10
March 2023. The log file consists of four blocks of pertinent data and a fifth block, which
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is not relevant for analysis. Each field within these blocks is delimited by the semicolon
symbol (;). The fundamental details contained within the first four blocks are as follows:

Date/time of event recording (e.g., “13/02/2023 14:25:00”).
Process
ID

of the running process that generated the message
(e.g., “MSG_SYS”).

Operation performed (e.g., “Scrive”).
Execution status/result of the event (e.g., “Fine corsa asse. . . , Y+”).

Out of the total 1,200,000 messages (excluding empty ones, which amount to 1,199,784),
1714 contained different "semantic" content. To achieve this, we filtered out messages
without useful information and truncated the first 20 characters of each remaining line
(date and time). Subsequently, we identified all completely distinct messages and calculated
their frequencies.

In the subsequent step, we assigned an ALERT level to each of the 1714 different
messages. A “normalized” record consists of a line containing the following information,
separated by a hashtag:

Date/Time # Process ID # Operation # Execution status/result # “Alert Level”

6.2. Simulation Results
6.2.1. Preliminary Phase

During sub-step 1 of the preliminary phase (see Section 3.2.1), we identified 1714 dif-
ferent types of log messages. In sub-step 2 (see Section 3.2.2), each message was assigned an
alert level. In sub-step 3 (see Section 3.2.3), each log message along with its corresponding
alert level was stored in the dictionary. The total number of characters in the dictionary
is 154,928.

6.2.2. Algorithmic Phase 1: Pre-Processing

During the pre-processing phase, the system generated a finite automaton with
27,357 states. The time required to construct the finite automaton is practically instan-
taneous (8–10 s), irrespective of system overhead. The system necessitates 1176 MB of
random access memory (RAM) to store the entire finite automaton. Note that both the mem-
ory required by the finite automaton and the total number of characters in the dictionary
remain stable, since they depend on the total number of possible types of log messages.

6.2.3. Algorithmic Phase 2: Processing

In Phase 2 of the simulation, we employed a sample log message file obtained from
a real industrial machine. We discovered a total of 1,199,984 log messages, amounting to
59,637,872 characters in total (including spaces and punctuation), resulting in an average
length of 49.70 characters per log message. The automaton made a total of 119,279,005 for-
ward transitions, with an additional 1,212,637 transitions back to the root. The processing
time for our test data was approximately 5 s; this step does not require additional RAM.

6.2.4. Algorithmic Phase 3: Analysis

In Phase 3, during the analysis, we found the following distribution among the
1,199,784 alerts:

– 1,196,472 are white (99.72%) and 3312 are not white (0.28%);
– 1952 are yellow (0.17%) and 1360 (0.13%) are neither white nor yellow;
– 1352 are orange (0.11%);
– 8 are red (0.00067%).

In Figure 4, we report the general output with some of the log messages found.
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Figure 4. Case study results (4 weeks of logs).

7. Future Research Directions

As a first research direction, one could analyze log messages coming from a very long
period of time, such as one or more years of machine activity.

The current analysis focuses on the percentage of alert levels identified, but, as future
research directions, clusters, even small ones, could be identified in which the percentage
presence and/or relative disposition of some alerts could indicate potential future industrial
machine malfunctions.

Another line of research could be dictated by the analysis of messages coming from
multiple data sources connected to an industrial machine.

8. Conclusions

We present an innovative linguistic-based text mining approach that utilizes a finite
automaton to precisely identify log messages, drawn from an ontology of log messages,
continuously emitted by a data source connected to industrial machinery. Through the
integration of machinery and physical devices with text mining technologies, our proposal
facilitates the algorithmic prediction of anomalous behavior of industrial machines, even at
a very preliminary stage, aiming to prevent malfunctions or machine downtime before they
become manifest. The algorithms employed exhibit linear execution time on the number
of input characters, operate on a data structure entirely in RAM, and remain unaffected
by the data structure size, facilitating effortless modification without incurring additional
computational costs.

The system conducts continuous analysis without requiring the end of a shift or
machine stoppage. Upon identifying potential anomalies, it can trigger automatic safeguard
procedures, notify human experts, or schedule minor tuning operations.

Overall, our methodology promises enhancing predictive maintenance strategies in
industrial settings through the integration of industrial standard technologies and linguistic
(or rule-based) text mining.
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