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Abstract: The solution to the problem of identifying objects in the IoT ecosystem of the Aral region is
analyzed. The problem of constructing a correct algorithm with linear closure operators of a model
for calculating estimates for identifying objects in the IoT ecosystem of the Aral region is considered.
An algorithm operator is developed, which is considered correct for the problem Z, is the sum of
q operators of the assessment calculation model, and is described by a set of numerical parameters
3 · n · m · q, where n is the number of specified features, m is the number of reference objects, and q
is the set of recognized objects. Within the framework of the algebraic approach, several variants
of linear combinations of recognition operators are constructed, the use of which gives the correct
answer on the control material, and this is proven in the form of theorems. The constructed correct
recognition algorithms, which are the easiest to use, where there is no optimization procedure, make
it possible to quickly solve the issue of identifying incoming information flows in the IoT ecosystem
of the Aral region.

Keywords: algebraic recognition; correct algorithm; ecosystem; IoT; analyzing; operation; associative;
commutative; distributive

MSC: 68T10

1. Introduction

In recent years, solutions to applied problems of classification recognition and predic-
tion have achieved great developments. In many real cases, the solution scheme remains
the same; the set of possible solutions is divided into subsets in such a way that solutions
that are close in some metric fall into one subset [1,2]. In the future, solutions that fall into
the same subset do not differ, and all objects corresponding to these solutions are included
in one class [3]. The information gained from past experience is presented in the following
form: various objects are described in some way and their descriptions are divided into
a finite number of non-overlapping classes [4]. When a new object appears, a decision
is made to assign it to one class or another [5]. It is proposed to choose a generalized
algorithm such that it achieves extreme forecasting quality [6]. Let us consider algorithmic
models for solving classification problems. Among these models, we can identify the most
frequently encountered ones when solving applied problems.

The work [7] discusses practical precedent-based recognition algorithms based on
logical or algebraic correction of various heuristic recognition algorithms. The recognition
problem is solved in two stages. First, algorithms of a certain group are applied indepen-
dently to recognize an arbitrary object, then an appropriate corrector is applied to calculate
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the final collective solution. The general concepts of the algebraic approach, descriptions of
practical algorithms for logical and algebraic correction, and the results of their practical
comparison are given.

In [8], the problem of classification (recognition) based on precedents was studied.
The issues of increasing the recognition ability and learning speed of logical correctors—
recognition procedures based on constructing correct sets of elementary classifiers—have
been studied. The concept of a correct set of elementary classifiers of a general form is intro-
duced, and on this basis, a qualitatively new model of a logical corrector is constructed and
studied. This model uses a wider class of correcting functions than previously constructed
models of logical correctors.

In ref. [9], the supervised classification problem with a large number of classes was
studied and the ECOS circuit (error output codes) was optimized. First, an initial binary
matrix was randomly formed, the number of rows was equal to the number of classes, and
each of the columns corresponded to the union of several classes into two macroclasses.
In the ECOS approach, the binary classification problem was solved for the recognized
object and each association. The object belonged to the class whose code string was closest.
A generalization of the ESOS approach was given, offering a solution to the discrete
optimization problem when searching for optimal associations, the use of the probabilities
of correct classification in dichotomous problems, and the degree of information content
of dichotomies. If the algorithms for solving dichotomous problems are correct, then the
algorithm for recognizing the original problem is also correct.

In ref. [10], the complexity of the logical analysis of integer data was studied. For
special problems of searching for frequent and infrequent elements in data, on the solution
of which the training of logical classification procedures is based, the asymptotics of the
typical number of solutions were given. The technical basis for obtaining these estimates
was the methods for obtaining similar estimates for the intractable discrete problem of
constructing (enumerating) dead-end coverings of an integer matrix, formulated in the
work as the problem of finding “minimal” infrequent elements. The new results mainly
concern the study of metric (quantitative) properties of frequently occurring elements.

The purpose of the research in this article is to develop effective object recognition
methods to solve the identification problem in the IoT ecosystem of the Aral region. The
objective of the research is to develop correct recognition algorithms based on an algebraic
approach in solving the problem of identifying [11–15] the flow of information in the IoT
ecosystem of the Aral region, which is described in detail in work [15] of the authors of this
paper.

The IoT ecosystem of the Aral region covers a network of sensors for determining
groundwater levels and salinity of water and soil and transmitting information via com-
munication channels to the system server for identification and further processing. This
article solves the applied problem of identification in the ecosystem of the Aral region,
where formulas for recognizing correct algorithms are specifically given. Moreover, the
correctness is proven in the theorems of this work in terms of the algebraic approach.

The public benefit of the results of this study is that the results are used in the ecosystem
of the Aral region in monitoring the use of water resources and calculating salinity levels
for agricultural use in an interactive mode.

The problems of recognizing disjoint classes are considered in refs. [8,16–18]. The
methodology used to develop and test the algebraic recognition approach was proposed
and described in the works of academician Yu.I. Zhuravlev and his students. In this
work, based on the idea of the algebraic approach of academician Yu.I. Zhuravlev, a much
simpler and significantly more efficient computational algorithm of the nearest neighbor
and an average distance algorithm are proposed for solving these problems using algebraic
methods. Methods have been developed that make it possible to more economically encode
the recognition operator, which reduces the required memory and more efficiently uses
the constructed correct algorithms for solving applied problems. The algebraic approach
shows that each algorithm A can be represented as A = B × C, two operators, recognition
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operator B, and the decision rule C. Within the framework of the algebraic approach,
several variants of linear combinations of recognition operators A are constructed, the use
of which gives the correct answer on the control material, and this is proven in the form of
theorems.

Thus, taking into account the analysis of the works of scientists in the field of recogni-
tion researched on the topic of the article, this work investigates the problem of constructing
a correct algorithm with linear closure operators for a model for calculating estimates. An
algorithm operator was developed, which is considered correct for problem Z, represents
the sum of q operators from the model for calculating estimates, and is described by a
set of 3 · n · m · q (where n is the number of predetermined features, m is the number of
reference objects, q is the set of recognized objects) numerical parameters. An operator
belonging to the linear closure of a model of the type of calculation of estimates was
constructed [19–22]. The completeness of the linear closure of this model was proven for all
problems in which for each class there is at least one stationary pair (u, v), and this correct
algorithm is written explicitly.

2. Models Based on the Calculation of Estimates

In the work [23], the so-called parametric recognition algorithms were considered, such
collections of algorithms in which each algorithm is encoded in a one-to-one way by a set of
numerical parameters. In these models, the proximity between parts of previously classified
objects and the object to be classified was analyzed [24]. Based on a set of estimates, a
general estimate for the object was developed and, according to the introduced decision
rule, the belonging of the recognized object to one or another class was determined [25,26].

In the article, as the initial model (A), a model was considered that is related to the
model for calculating estimates, supplemented by some simple type recognition algorithms:
the nearest neighbor algorithm, the average distance algorithm, etc.

A feature of the algorithms of this class is that for calculating estimates that determine
the belonging of a recognized object, there are simple analytical formulas that replace
complex enumeration procedures that arise when calculating proximity estimates using a
system of support sets [27].

In these models, the division of the algorithm into recognition operators and decision
rules was carried out in a natural way [28–32].

We will consider only algorithms represented in the form A = B · C, where B is
an arbitrary recognition operator. It turns out that an essential part of the algorithm
is the operator—B; decision rule—C can be made standard for all algorithms and pro-
grams. Any recognizing vote operator maps task Z to a numeric matrix of votes or scores
B(Z) =

∥∥Gij
∥∥

q·l , Gij = Gj
(
Si); moreover, the value Gij has a clear, meaningful interpreta-

tion. This value can be considered as the degree of belonging of the examined object Si

to the class expressed by a number Kj. After introducing appropriate normalizations, the
value Gij can also be considered as the value of the membership function of elements Si of
the set Kj.

Before introducing the submodel used in what follows, let us write how the algebra of
recognizing operators is constructed [33,34]. Let Z =

(
J, S̃2) be a fixed recognition problem

with classes K1, . . . , Kl , also let B1 and B2 recognize operators, c is a real number

Bi(Z) =
∥∥∥Gi

uv

∥∥∥
q·l

, i = 1, 2. (1)

Then, the sum and product of the operators B1 and B2 as well as the multiplication of
the operator by a real number is defined as follows

(B1 + B2)(Z) =
∥∥∥G1

uv + G2
uv

∥∥∥
q×l

(2)

(B1 × B2)(Z) =
∥∥∥G1

uv × G2
uv

∥∥∥
q×l

(3)
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(cB)(Z) = ∥c · G∥q×l , i = 1, 2. (4)

Obviously, all these operations are commutative and associative; moreover, the opera-
tion of addition is distributive with respect to the operation of multiplication by a number.
Due to these properties, if (B) is the original set of operators, a(B) is the closure of the
family (B) with respect to the introduced operations (algebraic closure) from a(B) can be
represented as operator polynomials ∑ bi1, . . . , bik, Bi1 · Bi2 · . . . · Bik.

Here, bik—constants and original operators Bik—play the role of variables for
ordinary polynomials.

Note that if we have one algorithm for applying the original operators Bik to any problem
Z, then it is easy to construct an algorithm for applying the operator polynomial to Z.

For any operator polynomial, the algorithm to be applied to the problem is constructed
in a similar way: the original operators are applied to the problem, and then the resulting
matrices are multiplied by the corresponding scalars and finally added, as in the example
just considered. The evaluation matrix obtained by applying the algorithm a(B) from the
closure algebra does not allow such a simple interpretation as the matrix of the number of
votes in voting algorithms [16–18]. The new recognizing operators are a formal extension
of the original space of meaningful operators. Such formal extensions are often used in
mathematics; thus, the field of complex numbers is a formal extension of the field of real
numbers, for example, the process of formal Galois extensions is known. In the Galois
extension, an algebraic equation of any degree is solved elementarily. However, for a
long time, no physical interpretation of the Galois expansion was found [35]. Only in
recent years has it been established that the elements of the Galois extension are naturally
interpreted in connection with problems of error correction in information transmission.

There is currently no meaningful interpretation for the algebraic extension of the space
of operators. However, with the help of these extensions, difficult extremal problems are
relatively easily solved, including the problem of synthesizing an error-free algorithm for a
given recognition problem [36].

The degree of an operator polynomial is introduced similarly to the degree of an
ordinary polynomial in many variables from the terms:

bi1, . . . , bin Bi1 · Bi2 · . . . · Bik (5)

the term with the largest K equal, for example, is chosen, and the degree of the polynomial
is assumed to be equal to K. Based on the definition of the degree of polynomials, it is easy
to distinguish in the extension a(B) a system of nested extensions

a0{B} = {B}, a1{B} =
{
∑ bi{Bi}

}
, . . . , ak{B} =


the totality of all

polynomials of degree
not higher than K


obviously, a0{B} ≤ a1{B} ≤ . . . ≤ ak{B} . . . a{B} the set ak{B} is called the k-th power
extension of the original space of operators {B}. The set is of particular importance a1{B},
it consists of all possible linear forms from the original operators {B}. The elements are
represented as:

∑ biBi, Bi ∈ {B} (6)

When forming the elements included in the a1{B} operation, the product of operators
is not used [37,38]. Therefore, this extension is an extension of the original space using the
“+” operation, “multiplication by a number”; therefore, the set is a1{B}, also commonly
denoted as L{B} and is called a linear extension of the set {B}. And so, let a set of {A}
algorithms be given {A}, and each A is represented as A = B×C and {B} the initial model
of operators. We take a fixed decision threshold rule C(d1, d2). We introduce a family of
algorithms L{B} · C(d1, d2), . . . , ak{B} · C(d1, d2), . . . , a{B} · C(d1, d2) called, respectively,
a linear extension L{A}, an algebraic extension of the k-th degree ak{A}, and an algebraic
extension a{A} of a family of algorithms {A}.
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We see that the constructed sets of algorithms consist, in the execution of the corre-
sponding operators, and a fixed threshold decision rule c is applied to the result of the
operator’s action c(d1, d2).

Let some set of recognition problems be given {Z} and the initial set of recognizing
operators be chosen in some way {B}. Let also within the framework {B}, not for every
problem {B}, there exist an operator BZ and an algorithm BZ × CZ, which gives an error-
free solution to the problem Z. Then, the scheme for constructing a correct recognition
algorithm consists of the following steps:

Stage 1. Some extension is chosen ak{A} in which the existence of an error-free
solution is guaranteed for each problem Z from {Z}. In this case, it is natural to find, if
possible, the smallest degree of expansion of K [39]. The implementation of the first stage in
the literature is usually called the study of the completeness of the expansion. The theorems
proved in this case are usually analogous to the existence theorem.

Stage 2. In the chosen extension, ak{A} for an admissible problem Z, either an error-
free (correct algorithm) is constructed, or, if the former is associated with large computa-
tional difficulties, an algorithm for solving with respect to, which is sufficiently acceptable
in accuracy Z. The exact calculation of the minimum degree of K is a laborious task, which
at present can be solved only for relatively narrow classes of problems {Z}, and the original
family of algorithms {A}. Therefore, in the studies carried out for the minimum degree
of expansion, an upper estimate is constructed that guarantees the completeness of the
expansion. So, for the voting model, such an estimate is

K =

[
ln q+ln l+ln(d1+d2)+ln d2−ln d1

ln
(

1− 1
q

)
]

(7)

built in [16].
Here, q is the number of recognizable objects, l is the number of classes, d1, d2 and are

the parameters of the threshold decision rule.
For most real problems, this estimate is overestimated, and therefore, the algorithm

built in the second stage has computational redundancy. Of particular importance is the
fact that the above estimate is constructed for problems with intersecting classes, while the
majority of real problems are problems with non-intersecting classes. Later, we will see that
for a wide class of problems it is sufficient to consider the degree of 1, that is, to use only a
linear closure.

Algorithms of the class for calculating estimates allow solving recognition problems of
all types: assigning an object to one of the given classes, automatic classification, choosing
a feature system to describe recognition objects, and evaluating their effectiveness.

3. Algebraic Methods for Solving Recognition Problems with Non-Crossing Classes

In [12], algebraic methods for solving recognition problems with a finite number of
intersecting classes were developed. For each recognition problem Z in terms of algebra
over families of heuristic algorithms, a correct algorithm was constructed, e.g., an algorithm
that correctly classifies a given finite sample of objects for each of the classes. Due to the
fact that the problem with intersecting classes was considered, the algorithm constructed
in the above works is rather cumbersome [40–45]. The description of the algorithm itself
requires the use of large memory (the amount of memory grows proportionally) q2 · l2,
where q—the number of recognition objects in a given task, l—the number of classes. It
turns out that if we consider only problems with non-intersecting classes, then similar
algebraic methods can be used to obtain a much simpler description and a much more
effective computational algorithm.

Basic concepts and designations. Let a set of admissible objects be given {S} and it
is known that {S} can be represented as the sum of a finite number of disjoint subsets
Kj, j = 1, l called classes

{S} = K1
⋃

. . .
⋃

Kl , Ku
⋂

Kv = ∅, u = 1, l, v = 1, 2, . . . , u − 1, u + 1, . . . , l.
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Objects S are descriptions of some real objects using successive values of a finite
number of predefined features 1, 2, 3, . . . , n. Each attribute i can be associated with its set
of values Mi, which we will assume to be a metric space with distance ρi(xy). This paper
considers the following sets M1, . . . , Mn and metrics ρ1, . . . , ρn.

1. Mi—there is a finite or infinite interval, a half-interval, or a finite segment of the
numerical axis. Then, ρi(xy) = |x − y|. In this case, the sign i is called numerical.

2. Mi = {0, 1} then ρi(xy) = |x − y| the sign i is called binary.
3. Mi = 0, 1, . . . , ki − 1—a finite set of integers; then defined by the following Table 1:

Table 1. Set of integers.

Y
X 0 1 2 . . . . . . . . . Ki−1

0 0 ρ01 ρ02 . . . . . . . . . ρ0(ki−1)
1 ρ10 0 ρ12 . . . . . . . . . ρ1(ki−1)
2 ρ20 ρ21 0 . . . . . . . . . ρ2(ki−1)

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .
ki − 1 ρki−1,0 ρki−1,1 . . . . . . . . . . . . 0

There are zeros on the diagonal in the table, in addition (the table is symmetrical with
respect to the main diagonal).

Not every table of the specified type defines a metric. A necessary and sufficient
condition for the latter is the fulfillment of inequalities for any u, v, t such that 0 ≤ u, v, t ≤
k − 1 occurs ρ(u, v) = t.

These inequalities ensure that the triangle axiom holds true. Signs are called graded
or scalable.

4. Mi = {ai1, . . . , aik(i)} finite non-numeric set.

Then ρ(x, y) =

{
1, if x ̸= y
0, if x = y

.

The attribute in this case is called named.
In the future, we will consider only numerical, binary, graded, and named features.
A set {S} is a collection of sets; (a1(S), . . . , an(S)), such cases will be noted separately.
Consider the predicates Pi(S) = S ∈ Kj, j = 1, l. It is easy to notice that for each S, one

of these predicates is equal to 1 and the rest are equal to 0.
The task of recognizing Z is to use some information J0 about the sets {S}, K1, . . . , Kl

compute the value of the predicates Pj(S), for each finite number of objects S1, . . . , Sq ∈
{S}. In view of the previous remark, this is the same as specifying for each Si ∈ S̃q ={

S1, . . . , Sq} the number of the predicates t such that Pt
{

Si} = 1. The latter distinguishes
the recognition problem with non-overlapping classes from the general recognition problem.

For a complete formalization of the description of task Z, it is necessary to determine
the initial information J0.

In this paper, we restrict ourselves to only one type: J0—consists of an enumeration
of reference objects, for each of which the number of the class containing this object
is indicated.

For non-overlapping classes, information J0 can also be in the form of a learning
table Tnml , where n—determines the number of features, m—the number of objects, l—the
number of classes:
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Jo = Tnml =



a11 a12 . . . a1n
. . . . . . . . . . . .

am11 am12 . . . am1n

K1

. . . . . . . . . . . . . . .
amj−11 amj−12 . . . amj−1n

. . . . . . . . . . . .
amj1 amj2 . . . amjn

Kj

. . . . . . . . . . . . . . .
aml−1,1 aml−1,2 . . . aml−1,n

. . . . . . . . . . . .
am1 am2 . . . amn

Kl



(8)

We will use such standard information presented in the form of a table. We will
always count:

S1, . . . , Sm1—belongs to Ki (9)

Smj−1 , . . . , Smj —belongs to Kj (10)

Sml−1+1, . . . , Sm—belongs to Kl (11)

We introduce important notation for what follows:{
Smj−1 , . . . , Smj

}
= K̃j, {S1, . . . , Sm}/K̃j = CK̃j, j = 1, 2, . . . , l, m0 = 0.

The set K̃j consists of all reference objects belonging to the class Kj.
In recognition problems with intersecting classes, algorithms A were considered such

that A(Z) = A
{

J0, S̃q} =
∥∥xij

∥∥ where xij = Pi
(
Si).

These algorithms calculate information vectors for each object

α̃
(

Si
)
= (αi1, αi2, . . . , αil) =

(
P1

(
Si
)

, P2

(
Si
)

, . . . , Pl

(
Si
))

and are called correct for problem Z.
For problems with intersecting classes, arbitrary binary vectors can be used as infor-

mation vectors.
For problems with non-intersecting classes, only those containing exactly one-unit

coordinate are informational, the rest of the coordinates are equal to zero. The last remark
will be essential in what follows.

Let A be an arbitrary algorithm that translates the recognition problem Z, with l—classes,
Z =

{
J0, S̃q} into the matrix of answers

∥∥βij
∥∥

q×l, A
(

J0, S̃q) = ∥∥βij
∥∥

q×l, βij ∈ {0, 1, ∆}.
Equality βij = 1, βij = 0, βij = ∆ means, respectively, that the algorithm A calculated

for the object Si : Si ∈ Kj, Si /∈ Kj, turns out to be from the calculation of the object’s
belonging Si to the class Kj. If βij ∈ {0, 1}, then this also does not mean that, that βij =

Pj
(
Si) is, the algorithm can also make errors in addition to failures.

Such algorithms are called incorrect for problem Z. Obviously, correct algorithms are
a special case of incorrect ones.

For arbitrary incorrect algorithms (and hence for correct ones) hold.

Theorem 1. Each algorithm A can be represented as A = B × C (multiplication means sequential
execution), and if A(Z) =

∥∥βij
∥∥

q×l , βij ∈ {0, 1, ∆} that B(Z) =
∥∥aij

∥∥—numerical matrix,

C
(∥∥aij

∥∥
q·l

)
=
∥∥βij

∥∥
q·l .

Theorem 1 [16] shows that each algorithm A can be divided into two successive stages.
In the 1st stage, task Z is converted into a numerical matrix of standard sizes q—rows,
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l—columns, the number of rows is equal to the number of recognized objects, and the
number of columns is equal to the number of classes.

In the 2nd stage, according to this numerical matrix, answers are finally formed to
questions about the belonging of objects Si, . . . , Sq to classes K1, . . . , Kl .

The value aij is naturally interpreted as the values of the measures of belonging of
objects Si to classes Kj. Stage B is called the recognition operator, stage C is the decision rule.

In what follows, only threshold decision rules are considered.

C∗
(∥∥aij

∥∥
q·l

)
=
∥∥C
(
aij
)∥∥

q·l (12)

The rule is applied element by element. Let a be a number and d1, d2 also be numbers
(thresholds) and 0 < d1 < d2, then

C∗(a) =


1, if a > d2

0, if a < d1

∆, if d1 < a < d2

(13)

4. Basic Model of Recognizers (B)
Simple Heuristic Operators

Let, according to the accepted notation, the initial information J0 presented in the form
of a table Tnml (see Section 3).

Also let the set of features 1, 2, . . . , n be divided into subsets

M̂1 = {1, 2, . . . , n1}, M̂2 = {n1 + 1, . . . , n2}, M̂3 = {n2 + 1, . . . , n3}, M̂4 = {n3 + 1, . . . , n}

numerical, binary, graded, and named features.
For each of the signs, a metric M̂1 is introduced ρi(x, y) = |x − y|.
For each of the features included in M̂2, M̂4, a metric is introduced

ρi(x, y) =

{
1, x ̸= y
0, x = y

(14)

For each of the graded features included in M3, either a metric is specified ρi(x, y) =
|x − y|, or a metric is defined using a table specifying (x, y) values for each pair ρi(x, y)
(See the definition of the metric in Section 3).

Let S = (a1, . . . , an), S′ = (b1, . . . , bn) admissible objects.
Let us put

ρ1(S, S′) = min
i=1,n

ρi(ai, bi) (15)

ρ2
(
S, S′) = 1

n

√
n

∑
i=1

ρ2
i (ai, bi) (16)

ρ
αβ
3
(
S, S′) = α · ρ1

(
S, S′)+ β · ρ2

(
S, S′) α + β = 1, 0 ≤ α ≤ 1 (17)

We introduced two fixed metrics ρ1, ρ2 and a family of metrics ρ
αβ
3 depending on the

parameter in the space of admissible objects α. Any of the introduced metrics can be used
in the operator described below.

The nearest neighbor operator β1
min is as follows:

(a) in the selected metric ρ of the three entered, the following are calculated ρ(S, S′) =
ρ(t), t = mj−1 + 1, . . . , mj distance from the recognized object S to the objects included
in the set K̃j.

(b) The value is calculated mintρ(t) = pj(S), j = 1, 2, . . . , l, t = mj−1 + 1, . . . , mj.
(c) The values are formed in the following way:
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Gj(S) = 1
pi(S)+1 , j = 1, 2, . . . , l, B1

min(S) =
(
G1(S), . . . , Gj(S), . . . , Gl(S)

)
(18)

The greater the value, the closer in the selected metric is the recognizable object to the
object Gj(S) closest to it from, K̃j, to the object included in the learning table and belonging
to the class Kj. Obviously, if the operator B1

min is consistently presented with a set of
recognizable objects S1, . . . , Sq, then they will translate it into a matrix

∥∥Gj
(
Si)∥∥

q·l .
Thus

B1
min
(
Tnml , S̃q) = B1

min(Z) =

∥∥∥∥∥∥∥∥∥∥

G1(S′) . . . Gj(S′) . . . Gl(S′)
. . . . . . . . . . . . . . .

G1
(
Si) . . . Gj

(
Si) . . . Gl

(
Si)

. . . . . . . . . . . . . . .
G1(Sq) . . . Gj(Sq) . . . Gl(Sq)

∥∥∥∥∥∥∥∥∥∥
(19)

The system of operators described by us B1
min is somewhat different from the operators

that are commonly called nearest neighbor operators. However, we have retained the
operator’s schematic diagram.

5. Average Distance Operator B1
sr

Clause

(a) of the definition of this operator, exactly repeats the corresponding clause of the
definition of the operator B1

min.

(b) The value is calculated 1
mj−mj−1

mj

∑
t=mj−1+1

ρ(t) = ρj(S)

(c) as in the definition, B1
min it is calculated Gj

(
Si) = 1

ρj(S)+1 j = 1, 2, . . . , l

As for the operator B1
min, it is easy to see that

B1
sr(Z) = B1

sr
(
Tnml , S̃q) =

∥∥∥∥∥∥∥∥∥∥

G1(S′) . . . Gj(S′) . . . Gl(S′)
. . . . . . . . . . . . . . .

G1
(
Si) . . . Gj

(
Si) . . . Gl

(
Si)

. . . . . . . . . . . . . . .
G1(Sq) . . . Gj(Sq) . . . Gl(Sq)

∥∥∥∥∥∥∥∥∥∥
(20)

Voting Type Operators

Let the objects in the training information Kj belong to the class Su1, . . . , Sut, those
Kj = {Su1, . . . , Sut}.

In our notation Sui =
{

aui1 , . . . , auin
}

.
As before, ρ1, . . . , ρn we denote the metrics in the sets M1, . . . , Mn of feature values

1, 2, . . . , n. Let us enter the parameters: εrv ≥ 0, r = u1, . . . , ut, v = 1, 2, . . . , n.
These parameters will further define the proximity function for the recognized object

and the set K̃j. Parameters are also entered prv > 0, r = u1, . . . , ut, v = 1, 2, . . . , n.
The parameter prv is the weight of the v-th feature in the reference object Sr. There are

no other parameters. The operator is defined as follows. In the set of pairs, (r, v) : r = u1, . . .,
ut, v = 1, . . . , n a subset is distinguished Ω, which is called the support set of operators in
what follows.

If the recognized object is equal to S = (a1, . . . , an), then the proximity function
B
(
Ω, S, K̃j

)
is introduced as follows: if the (r, v) ∈ Ω inequalities ρv(arv, atv) ≤ εrv that

B
(
Ω, S, K̃j

)
= 1.

Otherwise B
(
Ω, S, K̃j

)
= 0.

In other words, the proximity function is equal to 0 if Ω there is a pair (r, v) in such
that ρv(arv, atv) > εrv. The number of votes Gj(S) for S is calculated in the following way:

Gj(S) =

(
∑

(r,v)∈Ω
prv · B

(
Ω, S, K̃j

))
.
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Obviously, if the proximity function B for a set Ω is 0, then the number of votes
in this set for a recognized object is 0. If B = 1, then the number of votes is equal to
Gj(S) = ∑

(r,v)∈Ω
prv.

In this case, the number of votes is equal to the sum of the weights of pairs (r, v)—a
sign-reference for all pairs included in Ω.

If a problem with non-intersecting classes is considered, then the sets K̃j, j = 1, 2, . . . , n
in the learning information do not intersect, and therefore, the parameters εrv, prv are
determined independently for each class K.

Thus, we have completely defined the operator that translates the training information
and the object S into a numeric string (G1(S), . . . , Gl(S)).

Similarly, the set of recognizable objects S1, . . . , Sq is translated by the operator into a
numerical matrix of voices

∥∥Gj
(
Si)∥∥

q·l .
For problems with intersecting classes, in place of the parameters εrv, prv, one should

consider εd
rv, pd

rv and enter them independently for each class. Thus, different parameters
can be assigned to the same pair (r, v), Sr ∈ J0(n, m, l), 1 ≤ v ≤ n different parameters can
be compared ε1

rv, . . . , εl
rv, p1

rv, . . . ,lrv. But Gj(S) only Sd
rv, pd

rv.
The constructed voting model is an essential generalization of the basic model. Indeed,

in order to obtain a basic model from it, it is necessary to set the parameter εrv equal for
different and identical v, and the parameters prv = prγv.

The fact that in this model one support set is considered, in contrast to the basic model,
is not a limitation, since sums of operators can be considered. One can obtain an operator
operating on an arbitrary system of support sets.

We will mainly explore this voting model. Let us show that already in a linear closure,
under the fulfillment of natural assumptions, it is possible to construct an algorithm that is
correct for any preassigned control sample.

The construction of the operator of this algorithm is very simple, and, accordingly, the
algorithm, with a sufficiently large volume of training sample, gives the correct answer
almost everywhere. In real calculations, it is not necessary to remember all the parameters,
prv · εrv it is enough to limit ourselves to only a small part.

6. Completeness of Linear Closure of the Second Model Voting

We will consider problems with non-overlapping classes K1, . . . , Kl and assume that
the information J0 is given in the form of a learning table Tnml . The task of recognition will
be to classify the final sample S1, S2, . . . , Sq, Si = (bi1, bin).

As before, in what follows, we will assume that in the recognizable sample K̃j the
objects belong to the class Sqj−1+1, . . . , Sqj , q = 0, ql = q.

The purpose of this section is to single out a set of basic operators of the considered
model for calculating estimates, construct their linear closure, and prove the fact that for
each class object K̃j from the sample these operators S̃q form a sufficiently Gj large estimate
Gu and for u ̸= j.

All basic operators, as well as operators from the linear closure, will be
constructed explicitly.

We will first need a standard condition relating the type of training information Tnml
and a recognizing sample, S̃q namely, we will assume that:

for any two different objects Su, Sv from the collection S̃q among the objects included
in Tnml and belonging to the class K, there is such an object St and such a sign, r what
ρr(atr, bur) ̸= ρ(atr, bur).

In this case, it is customary to say that objects from the system S̃q are pairwise
non-isomorphic.

When proving the completeness of a linear closure, we will rely on the notion of a
marked pair. Since in this paper only problems with non-overlapping classes are considered,
the notion of a marked pair will be somewhat changed.
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Definition 1. Pair (Su, j), Su ∈ S̃q, S̃u ∈ Kj, 1 ≤ j ≤ l is called marked in the operator B if
Bv(Z) = ∥atv∥q·l , 1 ≤ v ≤ w, auj ≥ 1, |arw| < δ → 0 for all S such that S̃u ∈ Kr, r = 1, 2, . . . , l.

From the definition of a marked pair, it can be seen that such a pair appears in the
operator B if: auj = Gj(Su) the estimate for an object Su by class Kj is large enough, all
estimates atv = Gv

(
St) for the case when the object St does not belong to the class Kv are

sufficiently small in absolute value.
Let B1, . . . , Bw be given in some model such that each pair (Su, j), Su ∈ Kj is marked

with at least one operator B1.

Theorem 2. There is a linear combination
n
∑

i=1
aiBi = B̃ ∈ L̃{B} such that Ã = B̃ · C, C the

threshold decision rule algorithm is correct for problem Z.

Proof of Theorem 2. Recall that the threshold decision rule C is defined by the relation
C
(
∥atv∥q·l

)
= ∥C(atv)∥q·l .

C(a) =


1, if a > C2

0, if a < C1, 0 ≤ C1 ≤ C2

∆, if C1 ≤ a ≤ C2

(21)

Since every pair (Su, j), such that S̃u ∈ Kj, Su ∈ S̃q is marked by some operator
Bv, 1 ≤ v ≤ w, this operator is worth the evaluation Guj = Gj(Su) ≥ 1.

All other systems either mark or do not mark this pair. Operators that do not mark
a pair (Su, j) give an estimate that does not exceed an arbitrarily small value in absolute
value δ; therefore, one can choose δ such that

δ < C1
W(C1+C2)

(22)

W—number of operators in the system C1, C2—parameters of the decision rule C.
Let us put

B̃ = (C1 + C2)(B1 + . . . + Bw) (23)

Consider what estimate the operator will build B̃ for an object Su from the class Kj.
The couple (Su, j) is marked. This means that the operator Bv constructs an estimate not
less than 1. The remaining operators either also construct an estimate for this pair not
less than 1, or an estimate less than δ and in turn, δ inequality Equation (22) holds. In the
worst case, all other operators construct S̃q negative small estimates for to Kj. Then, if the
estimate Su for Kj in the operator B̃ is denoted by G̃uj then from Equation (23) it is easy to
obtain the inequality:

G̃uj ≥ (C1 + C2) ·
(

1 − w−1
w · C1

C1+C2

)
> (C1 + C2) ·

(
1 − C1

C1+C2

)
= C2 (24)

Applying the decision rule, we get that C
(
G̃uj
)
= 1, and algorithm A establishes this

inclusion.
This is true for any pair (Su, j) such that Su ∈ S̃q, S̃u ∈ Kj, j = 1, . . . , l since all such

pairs are marked by some operator from the system B1, . . . , Bw.
Now, let Su ∈ S̃q be G̃ur the estimate built by the operator for the object Su according

to the class Kr. Since Su does not belong, Kr the pair (Su, r) is not marked in any of the
operators B1, . . . , Bw. Consequently, each of these operators constructs an estimate for Su

the class Kr that does not exceed in absolute value δ, from the definition of the operator B̃
and the estimate δ that

∣∣G̃ur
∣∣ < (C1 + C2)W ·

(
C1

(C1+C2)W

)
= C1.
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It can be seen from the definition of decision rule C that the algorithm Ã = B̃ · C
establishes the inclusion Su ∈ K, this is true for any pair (Su, r) such that Su ∈ S̃q, Su ∈
Kr, j = 1, 2, . . . , l.

The theorem has been proven.

The purpose of further constructions is to find a system of operators B1, . . . , Bw that,
for an arbitrary problem Z =

(
Tmnl , S̃q), mark any pair (Su, j) such that Su ∈ S̃q, Su ∈

Kj, j = 1, 2, . . . , l and do not mark any pair (Su, Kr), Su ∈ S̃q, S̃u ∈ Kr, j = 1, . . . , l.
If we manage to find such a system B1, . . . , Bw, then, according to A, the algorithm

correctly solves problem Z. The correct algorithm for Z can be written as:(
(C1 + C2)

w

∑
i=1

Bi

)
· C = A

Consider a sample S̃q =
{

Si, . . . , Sq}, Si = (bi1, . . . , bin) and a system of operators B(j)
such that all parameters εuv, Puv, u = 1, . . . , mj−1, mj+1, . . . , m, v = 1, 2, . . . , n are chosen the
same: εuv = 0, Puv = ε ≥ 0, where ε is a sufficiently small number.

In other words, this means that if all pairs S̃u ∈ Kj(u, v) are assumed to be small,
εuv, Puv, v = 1, 2, . . . , m, u = mj−1 + 1, . . . , mj no restrictions are imposed on the
parameters yet.

Let B be an arbitrary operator from B(j) and S = (a1, . . . , an) an arbitrary
admissible object.

Let also B(S) =
(

Gj
1(S), . . . , Gj

j(S), . . . , Gj
l (S)

)
.

Lemma 1. Let 0 ≤ Gj
t(S) < m · n · ε, t = 1, 2, . . . , j − 1, j + 1, . . . , l.

Proof of Lemma 1. When forming a value, Gj
t(S) only pairs (u, v) are considered such that

u = mt−1 + 1, . . . , mt, v = 1, . . . , n only objects belonging to the class are considered Kj.

From these pairs, in turn, pairs are selected that are included in the reference set Ωt.
Let us denote the number of pairs from Kt

⋂
Ωt through nt. Obviously, there is an

inequality: nt ≤ n(mt − mt−1) < n · m
Since Puv = ε when comparing the elements a, (the value of the feature in the recog-

nizable object S, Gj
t(S) either 0 can be added to the value, if pv(atv, auv) > εuv = 0, or the

value Puv = ε if pv(atv, auv) ≤ εuv = 0.
If from the last assertion, as well as from the inequality, one easily obtains:
Consequence: Let Bj ∈ B(j), B(Z) = B(Tmnl , Sq) =

∥∥∥aj
rt

∥∥∥
q·l

.

Then the elements—aj
rt at t ̸= j satisfy the inequalities:

0 ≤ aj
rt < n · m · ε, r = 1, 2, . . . , q

The proof of the corollary is obtained if we consistently apply Lemma 1 to recognizable
objects S1, . . . , Sq from the sample S̃q.

We see that the operator B from the family (B) constructs numerical matrices in which
the elements of all columns except the j-th can be made arbitrarily small with an appropriate
choice of the value of ε. If it is required that aj

rt < δ, it is enough to put ε = δ
n·m .

Consider now a pair (u, v) such that 1 ≤ v ≤ n, in other words, an object Su ∈ K̃j.
The pair (u, v) corresponds to the element in the learning table auv. In the control sample,
as was previously accepted, the objects belong to the class and the rest of the objects do
not belong to the class. For brevity, we will assume that the objects that do not belong
K̃j form the class Qj, and the remaining objects form the class CQj. Consider the values
pv(auv, btv), t = 1, q, that is, the distance of the value v-th of the feature on the object Su, in
the learning table Tmnl to the value of that feature in St from Sq.
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Let us arrange the objects from S̃q in ascending order of value pv(auv, btv), t = 1, q,
objects with equal values of elements, arrange among themselves in an arbitrary way.

We get:
Sr1 , Sr2 , . . . , Sri , . . . , Srq

0 ≤ pv(auv, br1v) ≤ pv(auv, br2v) ≤ . . . ≤ pv

(
auv, brqv

)
Let us assign to the objects of the sequence the sign “+” if they belong to the class

and Qj the sign “−” if they belong to the class CQj. The result might be, for example, the
following sequence:

S+r1 , S+r2 , S−r3 , S−r4 , S+r5 , . . . , etc.

Definition 2. A pair (u, v) is called stationary if in the constructed sequence the signs “+, −” take
place equal to one change of sign, and if the change of sign occurs on the elements Sri , Sri+1 then:

pv(auv, briv) < pv
(
auv, bri+1v

)
Otherwise, the pair (u, v) is called non-stationary.

Let us first consider the case when for each number j = 1, 2, . . . , l there is at least one
pair (u, v) stationary. In this case, the basic operators from the family B(j) are relatively
easy to define, in different ways for the following two cases:

(A) The sequence has the form S+r1 , . . . , S+ri , S−ri+1 , . . . , S−rq , that is relatively auv all
objects of the class Qj are closer than all objects of class CQ, then the operator Bj ∈ B(j)
is redefined as follows:

1. The support set Ωj is composed of one stationary pair (u, v), 1 ≤ v ≤ n, u ∈{
mj−1, . . . , mj

}
.

2. εuv = 1
2 pv
(
auv, bri+1 , V

)
other εrw = 0.

3. P = N otherwise Puw = ε′ j, ε′ j—a fairly small value.

(B) The sequence looks like S−rt , . . . , S+ri , S+ri+1 , . . . , S+rq . The operator is searched in
the form Bj1 − Bj2 ; Bj1 , Bj2 ∈ B(j). As before, in both operators, the support set Ω, is
composed of one critical pair (u, v). Puv = N, other Prw = ε′. But:
In operator Bj1 : εuv = pv

(
auv, brqv

)
+ 1.

In operator B : εuv = 1
2
[
pu
(
auv, bri−1v

)
+ pv

(
auv, brq

)]
.

Thus, we completely defined the operators B1 ∈ B(1), B1 ∈ B(l).
Let the result of applying the operator Bj to the problem Z = (Tmnl , Sq) be denoted
by ∥brt∥q·l .

Lemma 2. If Sr ∈ CQ
(
Sr ∈ S̃q)⋂Kj then if Sr ∈ CQ then bj

rj = 0.

Proof of Lemma 2. 1. Consider the first case of defining the operator Bj. Then, there is a
stationary pair (u, v) for which the descriptions of the above sequence are as follows:

S+r1 , . . . , S+rw , S−rw+1 , . . . , S−rq

where

Q = {Sr1 , . . . , Srw}, CQ = {Srw+1 , . . . , Srq}, pv(auv, brwv) < pv
(
auv, brw+1v

)
(25)

When defining the operator B, the quantities εv are chosen in such a way that the
following inequalities are satisfied:

pv(auv, brwv) < εv < pv
(
auv, brw+1v

)
(26)
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From inequality [19], it is easy to see that for each object from Q the proximity function
for this S over the reference set Si, Ω = {(u, v)} is equal to 1. Therefore, bij = N, i =
ri, . . . , rw.

Similarly, the proximity function for objects from CQ is Ω = {(u, v)} equal to 0. And
therefore, bj

ij = 0, i = rw + 1, . . . , rq.

2. Consider the second case in the definition of the operator Bj. In this case, there is a
stationary point (u, v) and the sequence corresponding to it has the form:

S−r, . . . , S−rw, S+rw+1, . . . , S+rq; Q =
{

Srw+1, Srq
}

, CQ =
{

Sr1, . . . , Srw
}

(27)

In the operator, Bj the value εv is chosen in such a way that the proximity function for
the reference value Ωj = {(u, v)} is equal to 1 for all objects from the selection S̃q.

Therefore, if Bij(Z) =
∥∥∥bij

rt

∥∥∥
q·l

, then bij
rt = N, r = 1, q.

In the operator Bjr(Z) =
∥∥∥bji

rt

∥∥∥
q·l

, the value εv is chosen in such a way that the

proximity function in the reference set Ωj = {(u, v)} is equal to 1 for objects from CQ, and
is equal to 0 for objects from Q. That is why{

bjr
rj = N, Sr ∈ CQ

bjr
rj = 0, Sr ∈ Q

(28)

From equality [21,22], and also from the fact that Bj = Bj1 − Bj2 equalities follow:{
bj

rj = N, Sr ∈ CQ

bj
rj = 0, Sr ∈ Q

(29)

The Lemma is proven.

Consider now the operator: B = B1 + . . . + Bl and put B(Z) = B
(
Tmnl , S̃q) = ∥brt∥q·l .

In Lemma 2, when applying the operator, Bj, the elements of all columns with the
exception of j are not exceeded.

Objects Sr ∈ Kj obtain grade N.
Objects Sr ∈ Kj

⋂
S̃q obtain grade 0.

Because brt = b1
rt + . . . + bl

rt by definition of the operator Bj, then if

Sr ∈ Kj
⋂

S̃q ⇒ brj ≥ N + m · n · (l − 1) · ε (30)

S ∈ CKj
⋂

S̃q ⇒
∣∣brj
∣∣ ≤ m · n · l · ε (31)

Having appropriately chosen the values, N, ε and using Theorem 3, we prove the theorem.

Theorem 3. If in the problem Z for each number j = 1, l there is a stationary pair, then the

algorithm A =

(
(C1 + C2)

l
∑

i=1
Bi
)
· (C(C1, C2)) is correct for problem Z.

Since the operator we have constructed (C1 + C2)
l

∑
i=1

Bi belongs to the linear closure

of a model of the type of calculation of estimates, then we proved the completeness of the
linear closure of this model for all problems in which for each class there is at least one
stationary pair, (u, v), and moreover, we wrote this correct algorithm A explicitly.

The verification of the fact that such a stationary pair really exists is not difficult.
For this, enough for each pair (u, v), where u = mj−1 + 1, . . . , mj, v = 1, 2, . . . , n

calculate all pv(auv, biv), i = 1, 2, . . . , q and check whether all inequalities of the 1st or 2nd
group are fulfilled simultaneously. If all inequalities of groups 1 and 2 are simultaneously
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satisfied, then the pair (u, v) is stationary and can be constructed Bj in the same way as
was performed in the proof of the theorem.

The conditions for the existence of a stationary pair essentially mean the following:
There is an element Su, Su ∈ Kj and features in the learning table Tmnl .
1. The distance according to the V attribute from Sv to all elements of the control

sample that belong is Kj strictly less than all such distances for objects of the control sample
that do not belong to K;

2. The distance according to the V attribute from the object in the control sample that
does not belong is Kj less than all such distances for the objects of the control sample that
belong to Kj.

Consider the 2nd case, when the construction of a correct algorithm in a linear closure is
quite simple. As before, we arrange the objects of the control set S̃q in sequence by increasing
the distance from some value of the feature u, in the reference Sw, Sw ∈ K̃j, 1 ≤ u ≤ n.
We put the constructed sequence over the elements of the sequence with the sign “+”, if,
Sri ∈ Kj and the sign “−”, if Sri ∈ CKj denoted by π(w, u). Let us find in this sequence the
last element in order S+rp, this element must also be such that the next element S−rp has
the property:

pv(awu, brtu) < pv

(
awu, brpu

)
The set of elements of the sequence π(w, u) following the element S+rt is denoted

by M−(w, u).

We introduce the set M−
j =

⋃
Sw∈K̃j

n⋃
u=1

M−(w, u).

Similarly to the previous one, in each sequence, we select the first element in order
S+rt , and moreover, such that S−rp the inequality holds for the previous element:

pv

(
awu, brpu

)
< pv(awu, brtu)

Element S+rt in the sequence π(w, u) is denoted by M+(w, u). We introduce the set

M+
j =

⋃
Sw∈K̃j

n⋃
u=1

M+(w, u) (32)

Definition 3. The problem Z =
(

J, S̃q) is called monotonic if for each j = 1, 2, . . . , l one of the
two equalities is satisfied:

S̃q ⋂CK̃j = M−
j (33)

S̃q ⋂ K̃j = M+
j (34)

The meaning of the monotonicity condition is as follows, an arbitrary reference object
is chosen to belong to K̃j and an arbitrary feature with number u, in the control sample S̃q

we select all objects that do not belong to the class K̃j and such that, relative to the selected
feature, they are farther from Sw than all objects S̃q belonging to the class K̃j.

The set of all such objects not belonging to the class K̃j is denoted by M−(w, u).
Condition [17] is that if all elements of the set M−

j (w, u) are summed up, then all elements
from the control sample that do not belong to the class are obtained K̃j.

Construction of operators Bj, j = 1, 2, . . . , for a monotonic problem Z.
1. The choice of the reference subset Ω, since the problem Z is monotone, then one

of the conditions [17] or [18] is satisfied, the choice of the reference set is the same in both
cases, so we will assume that we have:

S̃q ⋂CKj = M−
j

⋃
Sw∈K̃j

n⋃
u=1

M−(w, u) (35)
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The set M−(w, u) forms a cover of the set S̃q ⋂CK, but this cover may be redundant,
in other words, some sets M−(w, u) may be removed so that the cover remains a cover.
Removing such extra sets, we construct irreducible covers for S̃q ⋂CKj.

Let the constructed irreducible cover have the form:

S̃q ⋂CKj = M−(w1, u1)
⋃

. . .
⋃

M−(w2, u2) (36)

Then, Ωj = {(w1, u1), . . . , (w2, u2)}.
Choice of options ε̃ j.
All parameters of this group, with the exception of the parameters, εwiui , i = 1, 2, . . . ,

are chosen so large that the following inequalities are satisfied: pv(arvbiv) < εrv, i =
1, 2, . . . , q or εrv = max

i=1,q
pv(arv, biv) + 1.

The parameters εwiui =
1
2 (pui(awiui btui ) + p(awiui btui )) are chosen so that the following

inequalities hold:
In the sequence π(wi, ui), we find the last element S+p and the element following it

S−t, then pui

(
awiui bpui

)
< εwiui < pui (awiui btui ) or εwiui =

1
2 (pui (awiui btui ) + p(awiui btui )).

This choice of parameters εwiui occurs in cases where the relation is satisfied:
ε̃q ⋂CKj = M−

j . If this relation is not satisfied, but the relation ε̃q ⋂Kj = M+
j .

Then, the operator Bj is sought in the form of a difference Bj1 − Bj2 , and the values εij
are chosen differently for the operators that make up the difference.

Options p̃γ̃. The parameters γ(Si) = γi are assumed to be equal to a sufficiently small
value; δ more precisely, the value δ will be indicated later for all Si ∈ K̃j and also for such
Si numbers of which are not contained in the set W1, . . . , W2. For the rest Si, we assume:
γ(Si) = γi = N.

Similarly, Pu = . . . = Pur = N rest Pi, Pi = δ. The values N are chosen to be sufficiently
large; the exact values for N are given later. The operator definition Bj is complete for the
case: S̃q ⋂CKj = M−

j .

Theorem 4. The operator for calculating estimates defined above marks all objects from the class in
the control sample Kj and only them. In other words, if B(Z) =

∥∥Gij
∥∥

q·l and objects Su1 , . . . , Sun ∈
Kj at the remaining objects do not belong to the control sample Kj, then Gut j ≥ N, t = 1, K∣∣Gvj

∣∣ < δ, V /∈ {u1, . . . , uk}.

Proof of Theorem 4. Threshold parameters εuv and reference sets were chosen in such a
way that for each object Sup =

(
bup1 , . . . , bupn

)
from Kj the relation was fulfilled pv

(
auvbupv

)
≤ εuv in such a way, according to the constructed support set, the proximity function is
equal to 1, and the total estimate is not less than ∑

(u,v)
puv · γuv ≥ N · N = N2 > N.

If the object of the control set does not belong, then Kj it has a mark (−)(u, v) in the
sequences, and therefore there is such a pair π(by the definition of a monotone problem)
that in the sequence π(u, v) this element is after all elements Kj, then εuv they are chosen
so that the corresponding inequality pv(auvbiv) ≤ εuv violated. In this case, the proximity
function for the object Si ∈ CK̃j is equal to 0, and Gij = 0 < δ.

The evaluation operator constructed in this way puts large estimates for control
elements from K̃j, and small estimates for elements from CK̃j. The last assertion easily
implies the correctness of the algorithm composed of the previously defined operator and
the threshold decision rule.

The Theorem has been proven.

The proof for the 2nd case of the monotone problem is carried out according to the
same principle (see the proof for the stationary problem) only the operator is sought as the
difference between two operators.

The simple cases presented by us are an illustration for the proof of the main theorem
on the well-posedness of the linear closure. The proof of this theorem is technically more
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complicated, it is divided into a series of steps; however, each individual step implements
a construction of the same type that was used in the last theorems.

When proving the main theorem, in essence, it is the linear closure that is used.
The proof of the linear closure well-posedness theorem will be carried out in two

stages. In the first stage, we will introduce one additional constraint on the control objects
of the training sample.

Practical tasks really satisfy him. In the first stage, the well-posedness theorem will be
proved under this constraint.

Definition 4. Control objects S1, . . . , Sq are called consistent with objects S1, . . . , Sm if for each
pair Su, Sv, Su ∈ Kj, Sv /∈ Kj there is at least one object Sr ∈ Kj and attribute W such that
pw(arw, buw) < pw(arw, bvw).

The lack of consistency in the control sample means that in the control there are objects
Sv /∈ Kj that are closer in all respects to all objects in the class Kj. In this case, all learning
information is collected in such a way as to assign a closer object Sv to a class Kj with
greater preference than a more distant object Sq and thereby make a mistake.

We will first consider classes in which there are no such pathological cases, that is, the
situation when the control objects are consistent with the training ones.

Let, as before, the objects S1, . . . , Sm; Si = (ai1, . . . , ain) i = 1, n.
They form learning information J, and the objects Smj−1 + 1, . . . , Smj , m0 = 0, ml = m

belong to the class Kj and do not belong to other classes.
The objects S1, . . . , Sq, Si = (bi1, . . . , bin), j = 1, l, i = 1, q form a control sample and

the objects Sqj−1+1, . . . , Sqi belong to a class Kj and do not belong to other classes.
As before, we denote:

{S1, . . . , Sm}
⋂

Kj = K, {S1, . . . , Sm}\K̃j = CK̃j (37){
S1, . . . , Sq

}⋂
Kj = K1

j ,
{

S1, . . . , Sq
}
\K̃1

j = CK1
j (38)

Operator formation Bj, j = 1, l.
1. For all pairs (u, v) such that Sk ∈ CK̃j, V = 1, K we assume εuv = 0, puv = γuv = δ.
2. Consider an arbitrary control object St ∈ K1

j .

By the definition of a training-consistent control sample, for each Sr ∈ K1
j there is such

a pair (Sk, W), Sk ∈ Kj, 1 ≤ W ≤ n.
What pw(akw, btw) < pw(akw, brw). For the pair (k, w) we assume:

pkw = N, γkw = N, εkw = 1
2 (pw(akw, btw) + pw(akw, brw)) (39)

Obviously pw(akw, btw) < εkw < pw(akw, brw).
Let us include in the support set all pairs (k, w) for all Sr ∈ K1

j .

We have defined an auxiliary operator: Bt
j , 1 ≤ j ≤ l, St ∈ K1

j

Bj = ∑
St∈K1

j

Bt
j , j = 1, 2, . . . , l (40)

Formation of operator B. B =
l

∑
j=1

Bj

We need to study what numeric matrix the operator B translates into task Z, with a
training sample S1, . . . , Sm and a control sample S1, . . . , Sq. The evaluation of the elements
of this matrix will be performed sequentially by the steps of constructing the operator B.
The first step is to form the operator Bt

j .
Let Bt

j(Z) =
∥∥Gαβ(j, t)

∥∥
q·l .
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Lemma 3. If β ̸= j that Gαβ(j, t) · δ2 · n · m.

Proof of Lemma 3. The formation of estimates with respect to the class Bβ is carried out
for some of the pairs (u, v) such that for each such pair the term included in the estimate
does not exceed: Puγn = δ · δ = δ2.

The total number of pairs (u, v), Su ∈ CKj is obviously n ·
(
m −

(
mj − mj−1

))
< n · mj.

From this, it easily follows that Gαβ(j, t) · δ2 · n · m.
The Lemma is proven.

Lemma 4. If β ̸= j, Sα ∈ CKj, that Gαβ(j, t) = 0.

Proof of Lemma 4. In the base set of the operator Bt
j for each element Sα ∈ CKj there is a

pair (k, w), Sk ∈ Kj, 1 ≤ w ≤ n such that pw(akw, btw) < pw(akw, bαw).
By choosing the parameters Ekw, as shown above, we obtain pw(akw, btw) > εkw.
According to the definition of the proximity function for the unique support set of

the operator Bt
j , for the object Sα it is equal to 0. Therefore, Gαβ(j, t) ≥ 0, which proves

the Lemma.

Lemma 5. Gαβ(j, t) ≥ N2.

Proof of Lemma 5. For each pair (k, w) included in the base set of the operator, Bt
j the

parameter εkw, is chosen so that p(akw, btw) > εkw. Due to inequality, the proximity func-
tion in the base set of the operator Bt

j is equal to 1; therefore, Gtj(j, t) = ∑
(k,w)

Pkwγkw =

∑ N · N > N2.
The Lemma is proven.

Let Bj(Z) =
∥∥Gαβ(j)

∥∥
q·l , j = 1, l.

By definition of the operator Bj.

Gαβ(j) = Gαβ(j, qj−1 + 1) + . . . + Gαβ(j, qj) (41)

Using the matrix
∥∥Gαβ(j, t)

∥∥
q·l and Equation (41), we obtain the following inequalities:{

Gjα(j) ≥ N2, α = qi−1 + 1, . . . , qi

Gjα(j) = 0, α = 1, 2, . . . , qi−1, qi+1, . . . , q
(42)

True 0 ≤ Gαβ(j) ≤ q · n · δ2 for others αβ.

S
S′

...
Sqj−1

Sqj−1+1

...
St−1

St

St+1

Sqj

...
Sq

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

1 2 . . . j − 1 j j + 1 . . . l
0 0 0 0 0 ≤ Gαβ(j) ≤ q · n · δ2 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 0 0 0 0
0 0 0 0 ≥ N2 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 ≥ N2 0 0 0

. . . . . . . . . . . . . . . . . . . . .
0 0 0 0 ≥ N2 0 0 0
0 0 0 0 0 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 0 0 0 0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
Because B =

l
∑

j=1
Bj.
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And
∥∥Gαβ

∥∥
q·l is the matrix into which the operator transforms the problem, then

Gαβ =
l

∑
j=1

Gαβ(j), α = 1, q, β = 1, l.

Lemmas 3–5 clearly imply the following inequalities Gαβ ≥ 1 · N2, β = 1, l at β =
j, α = qj−1 + 1, . . . , q; q0 = q, q1 = q.

For everyone else α, β: 0 ≤ Gαβ ≤ n · m · l · δ2.
C1, C2 is a decision rule; then, we can choose the values in such a way δ, N that the

algorithm A = B · C(C1, C2) will give correct answers for all elements S1, . . . , Sq across all
classes K1, . . . , Kl .

Recall that the decision rule (C1, C2) is applied to numerical matrices element by ele-

ment, that is, C
(∥∥Gαβ

∥∥
q·l

)
=
∥∥∥C
(
Gαβ

)
q·l

∥∥∥ and C
(
Gαβ

)
=


1, Gαβ > C2

0, Gαβ < C1, 0 < C1 < C2

∆, C1 ≤ Gαβ ≤ C2

.

From the definition of the decision rule and inequalities, it is clear that the parameter
N must be chosen so that the inequality 1 · N2 > C2.

Therefore, one can put N =
√

C2
l + 1.

With this choice of the parameter N, each of the objects Sqj−1+1, . . . , Sqj will be assigned
by the algorithm A to the class Kj.

It follows from the definition of the threshold decision rule and inequalities that the
parameter δ can be chosen so that the inequality n · m · l · δ2 < C1.

Therefore, it suffices to take as δ any positive quantity satisfying the inequalities

δ <
√

C1
n·m·q·l .

In this case, each of the objects S1, . . . , Sqj−1 Sqj+1 , . . . , Sq will not be assigned to the
class Kj, j = 1, l, q1 = 0, ql = q.

We have proven.

Theorem 5. A = B · C(C1, C2) with threshold decision rule C and operator B.

B =
l

∑
j=1

Bj, Bj = ∑
St∈Kj

Bt
j

Operators Bt
j are operators for calculating estimates, correct for the problem Z ={

S1, . . . , Sm,
∥∥αij

∥∥
m·l , S1, . . . , Sq

}
.

Each of the operators Bj is specified by a set of numerical parameters εuv, puv, where
u = 1, m, v = 1, n. m—the number of objects in the learning sample, n—the number of features
participating in the description of objects, that is, a set of 3 · n · m numerical parameters.

From all that has been said above, it follows that with the described choice of pa-
rameters N, the matrix

∥∥βij
∥∥

q·l , into which the problem Z is converted by the algorithm

A = B · C(C1, C2).
As follows:
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S1

Sq1

...
Sq1+1

Sqj

...
Sqj+1

...
Sql−1

...
Sql−1+1

...
Sq

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

1 2 . . . j . . . l
1 0 . . . 0 . . . 0

. . . . . . . . . . . . . . . . . .
1 0 . . . 0 . . . 0
0 1 . . . 0 . . . 0

. . . . . . . . . . . . . . . . . .
0 0 . . . 1 . . . 0

. . . . . . . . . . . . . . . . . .
0 0 . . . 0 . . . 0

. . . . . . . . . . . . . . . . . .
0 0 . . . 0 . . . 1

. . . . . . . . . . . . . . . . . .
0 0 . . . 0 . . . 1

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
Here, the operator B in terms of elementary operators has the form B =

l
∑

j=1
∑

St∈Kj

Bt
j

that is, the operator B belongs to the linear closure of the previously introduced families of
estimation algorithms.

Significant memory is required to write code B; however, when solving real applied
problems, the operator code can be placed in the RAM of modern computers. So, if
n = 100, m = 50, q = 100, that is, the training material consists of 50 objects described by
100 features, and it is required to store 1.5 × 1076 numbers in memory.

In the future, we will consider methods that make it possible to more economically
encode the operator B, which will reduce the required memory and more efficiently use the
constructed correct algorithms for solving applied problems.

Summarizing all the above, we can state that we have proved the theorem.

Theorem 6. Algorithm

A =

 l

∑
j=1

∑
St∈Kj

Bj(St) · C(C1, C2)


with an operator from the linear closure of the score, the calculation model is correct for problem Z,
and the operator is the sum of q operators from the score calculation model and is described by a set
of 3 · n · m · q numerical parameters.

The only condition for constructing a correct rule is the consistency of the training
control sample.

7. Results

In [15], the use of Internet of Things technologies in ecology (using the example of
the Aral Sea region) as a system is proposed (Figure 1). The system was developed as a
website. The Django framework was used to develop the server side of the system and
Vue.js was used to develop the client side as a single page application (SPA) using the
Quasar GUI framework. To start the system, you need to open this website ecoaral.uz in
one of the modern browsers. After this, the main window of the system will be reflected on
the browser page.

ecoaral.uz
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Figure 1. Scheme of functioning of the IoT environmental monitoring system.

In this article, to identify input information flows, we considered the so-called para-
metric recognition algorithms, i.e., such sets of algorithms in which each algorithm is
one-to-one encoded by a set of numerical parameters. These models analyze the proximity
between parts of previously classified objects and the object to be classified. Based on a
set of assessments, a general assessment of the object is generated and, according to the
introduced decision rule, the belonging of the recognized object to one or another class
is determined.

In this article, as the initial model (A), we consider a model related to the model for
calculating estimates, supplemented with some simple recognition algorithms such as the
nearest neighbor algorithm, the average distance algorithm, etc.

The peculiarity of algorithms of this class is that in order to calculate estimates that
determine the identity of a recognized object, there are simple analytical formulas that
replace complex enumeration procedures that arise when calculating proximity estimates
using a system of support sets.

In these models, the division of the algorithm into recognition operators and decision
rules is carried out in a natural way.

We will only consider algorithms that can be represented in the form A = B · C, where
B is an arbitrary recognition operator. It turns out that an essential part of the algorithm is
the operator—B; the decisive rule is that C can be made standard for all algorithms and
programs. Any voting recognition operator maps task Z into a numeric matrix of votes or
ratings B(Z) =

∥∥Γij
∥∥

q·l Γij = Γj(S)
Moreover, the value Γij has a clear, meaningful interpretation. This value can be

considered as the degree of belonging of the examined object Si to class Kj, expressed as a
number. Let

(α̃ − β̃) =
6

∑
i=1

10

∑
j=1

∣∣αi − β j
∣∣→ min (43)

αi—these are sensor data, β j—salinity class parameters. Sensor data in Table 2: HCO3 (bi-
carbonate), Cl (chlorine), SO4 (sulfuric acid), Ca (calcium), Mg (magnesium), Na (sodium)
in Tables 3 and 4: Salinity is divided into five classes (non-saline, slightly saline, moderately
saline, highly saline, and very highly saline), and each class consists of 10 points.

If the sensor receives data ai and it checks the value ai − bi → min if the given condition
completed, and indicates which salinity class it belongs to. If the ai − bi → min values
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correspond to more than one salinity class, then the information was intercepted somewhere
(see Figure 2).

Table 2. Number of parameter votes.

Valid Valid Valid Valid Frequency Percent Valid Percent Cumulative
(HCO3) (Cl) (SO4) (Na) Percent

0.68 0.56 0.50 0.51 1 4.0 4.0 4.0
0.73 0.67 0.60 0.58 1 4.0 4.0 8.0
0.78 0.67 0.68 0.68 1 4.0 4.0 12.0
0.89 0.68 0.68 0.78 1 4.0 4.0 16.0
0.93 0.68 0.69 0.80 1 4.0 4.0 20.0
0.94 0.68 0.69 0.80 1 4.0 4.0 24.0
0.95 0.68 0.69 0.80 1 4.0 4.0 28.0
0.95 0.68 0.69 0.80 1 4.0 4.0 32.0
0.95 0.70 0.69 0.81 1 4.0 4.0 36.0
0.95 0.70 0.70 0.81 1 4.0 4.0 40.0
0.95 0.71 0.71 0.81 1 4.0 4.0 44.0
0.96 0.71 0.72 0.81 1 4.0 4.0 48.0
0.96 0.74 0.72 0.81 1 4.0 4.0 52.0
0.96 0.74 0.74 0.81 1 4.0 4.0 56.0
0.96 0.76 0.75 0.82 1 4.0 4.0 60.0
0.96 0.78 0.77 0.82 1 4.0 4.0 64.0
0.97 0.82 0.81 0.82 1 4.0 4.0 68.0
0.97 0.83 0.82 0.82 1 4.0 4.0 72.0
0.97 0.85 0.83 0.83 1 4.0 4.0 76.0
0.98 0.88 0.84 0.84 1 4.0 4.0 80.0
0.98 0.89 0.86 0.85 1 4.0 4.0 84.0
0.98 0.91 0.87 0.87 1 4.0 4.0 88.0
0.98 0.92 0.89 0.87 1 4.0 4.0 92.0
0.99 0.96 0.90 0.93 1 4.0 4.0 96.0
1.00 1.00 0.98 0.96 1 4.0 4.0 100.0

Total 25 100 100

Table 3. Descriptive Statistics.

No. Range Minimum Maximum Mean Std. Deviation Variance

ρi(HCO3) 25 0.32 0.68 1.00 0.9323 0.08130 0.007
ρi(Cl) 25 0.44 0.56 1. 00 0.7675 0.11096 0.012

ρi(SO4) 25 0.48 0.50 0.98 0.7528 0.10544 0.011
ρi(Na) 25 0.45 0.51 0.96 0.8007 0.09227 0.009
Valid 25 1.66 2.24 3.90 3.2533 0.34047 0.116

Table 4. Statistics.

ρi(HCO3) ρi(Cl) ρi(SO4) ρi(Na) Number of
Votes

Valid 25 25 25 25 25
Missing 0 0 0 0 0

To solve the problem of comparative classification in an information system in elec-
tronic resources based on an algorithm for calculating estimates, a correct algorithm
was used

A =

 l

∑
i=1

∑
St∈Kj

B
(
St) · C(C1, C2)

 (44)

The work of the recognition algorithm in this case is based on the analysis of the data
structure and its importance for classification purposes. With this approach, reliability is
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assessed by the quality of work of the recognition algorithm on control material. In other
words, the algorithm carries out a classification and its results are compared with those that
are known a priory. Obviously, with a sufficiently large volume of control, the results reflect
the quality of the algorithm. It was this approach that was implied and incorporated into
the software package, the application of which to the initial information made it possible
to obtain the following: relative weights of feature groups ρi(S, S′) = min p(ai − bi), vote
formula Gj

(
Si) = 1

ρj(S,S′)+1 and the sum of operators B1 + B2 + B3 + B4 = G1 + G2 + G3 +

G4.

Figure 2. Table of attributes belonging to classes.

Example for Cl:
ρ1(S, S′) = |0.001 − 0.5| = 0.499 ρ2(S, S′) = |0.004 − 0.5| = 0.496
ρ3(S, S′) = |0.015 − 0.5| = 0.485 ρ4(S, S′) = |0.02 − 0.5| = 0.48
ρ5(S, S′) = |0.025 − 0.5| = 0.475 ρ6(S, S′) = |0.035 − 0.5| = 0.465
ρ7(S, S′) = |0.045 − 0.5| = 0.455 ρ8(S, S′) = |0.055 − 0.5| = 0.445
ρ9(S, S′) = |0.07 − 0.5| = 0.43 ρ10(S, S′) = |0.09 − 0.5| = 0.41
ρ11(S, S′) = |0.12 − 0.5| = 0.38 ρ12(S, S′) = |0.16 − 0.5| = 0.34
ρ13(S, S′) = |0.2 − 0.5| = 0.3 ρ14(S, S′) = |0.24 − 0.5| = 0.26
ρ15(S, S′) = |0.29 − 0.5| = 0.21 ρ16(S, S′) = |0.32 − 0.5| = 0.18
ρ17(S, S′) = |0.36 − 0.5| = 0.14 ρ18(S, S′) = |0.46 − 0.5| = 0.04
ρ19(S, S′) = |0.57 − 0.5| = 0.07 ρ20(S, S′) = |0.59 − 0.5| = 0.09
ρ21(S, S′) = |0.61 − 0.5| = 0.11 ρ22(S, S′) = |0.63 − 0.5| = 0.13
ρ23(S, S′) = |0.64 − 0.5| = 0.14 ρ24(S, S′) = |0.68 − 0.5| = 0.18
ρ25(S, S′) = |1.3 − 0.5| = 0.8
G1(S, S′) = 1

0.499+1 = 0.6671 G2(S, S′) = 1
0.496+1 = 0.6684

G3(S, S′) = 1
0.485+1 = 0.6734 G4(S, S′) = 1

0.48+1 = 0.67567
G5(S, S′) = 1

0.475+1 = 0.67796 G6(S, S′) = 1
0.465+1 = 0.68259

G7(S, S′) = 1
0.455+1 = 0.68728 G8(S, S′) = 1

0.445+1 = 0.69204
G9(S, S′) = 1

0.43+1 = 0.6993 G10(S, S′) = 1
0.41+1 = 0.7092

G11(S, S′) = 1
0.38+1 = 0.7246 G12(S, S′) = 1

0.34+1 = 0.7462
G13(S, S′) = 1

0.3+1 = 0.79365 G14(S, S′) = 1
0.26+1 = 0.79365
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G15(S, S′) = 1
0.21+1 = 0.8264 G16(S, S′) = 1

0.18+1 = 0.8474
G17(S, S′) = 1

0.14+1 = 0.87719 G18(S, S′) = 1
0.04+1 = 0.9615

G19(S, S′) = 1
0.07+1 = 0.9345 G20(S, S′) = 1

0.09+1 = 0.9174
G21(S, S′) = 1

0.11+1 = 0.9009 G22(S, S′) = 1
0.13+1 = 0.8849

G23(S, S′) = 1
0.14+1 = 0.8772 G24(S, S′) = 1

0.18+1 = 0.84745
G25(S, S′) = 1

0.6+1 = 0.625

8. Conclusions

The solution to the problem of identifying objects in the IoT ecosystem of the Aral
region was analyzed. The problem of constructing a correct algorithm with linear closure
operators of a model for calculating estimates for identifying objects in the IoT ecosystem
of the Aral region was considered.

Within the framework of the algebraic approach, several variants of linear combina-
tions of recognition operators were constructed, the use of which gives the correct answer
on the control material, and this was proven in the form of theorems.

An operator belonging to the linear closure of the model of the type of calculation of
estimates was constructed, which was the sum of q operators of the model of calculation of
estimates and was described by a set of numerical parameters 3 · n · m · q, where n was the
number of specified characteristics, m was the number of reference objects, and q was the
set of recognized objects. The completeness of the linear closure of this model was proven
for all problems in which for each class there is at least one stationary pair (u, v), and this
correct algorithm A was written explicitly.

The results obtained in this article, namely the proven theorems, made it possi-
ble to construct correct algorithms on control material based on a combination of linear
recognition operators.

The constructed correct recognition algorithms, which are the easiest to use, where
there is no optimization procedure, made it possible to quickly solve the issues of identify-
ing incoming information flows in the IoT ecosystem of the Aral region.
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