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Abstract: Recently, the number of Internet of Things (IoT)-connected devices has increased daily.
Consequently, cybersecurity challenges have increased due to the natural diversity of the IoT, limited
hardware resources, and limited security capabilities. Intrusion detection systems (IDSs) play a
substantial role in securing IoT networks. Several researchers have focused on machine learning
(ML) and deep learning (DL) to develop intrusion detection techniques. Although ML is good for
classification, other methods perform better in feature transformation. However, at the level of
accuracy, both learning techniques have their own certain compromises. Although IDSs based on
ML and DL methods can achieve a high detection rate, the performance depends on the training
dataset size. Incidentally, collecting a large amount of data is one of the main drawbacks that limits
performance when training datasets are lacking, and such methods can fail to detect novel attacks.
Few-shot learning (FSL) is an emerging approach that is employed in different domains because of its
proven ability to learn from a few training samples. Although numerous studies have addressed the
issues of IDSs and improved IDS performance, the literature on FSL-based IDSs is scarce. Therefore,
an investigation is required to explore the performance of FSL in IoT IDSs. This work proposes an
IoT intrusion detection model based on a convolutional neural network as a feature extractor and a
prototypical network as an FSL classifier. The empirical results were analyzed and compared with
those of recent intrusion detection approaches. The accuracy results reached 99.44%, which shows a
promising direction for involving FSL in IoT IDSs.

Keywords: few-shot learning; intrusion detection system; cybersecurity; Internet of Things;
prototypical networks

MSC: 68M25

1. Introduction

The Internet of Things (IoT) is becoming increasingly important in various areas,
such as smart cities, healthcare, manufacturing, smart government systems, and market-
ing. Connected IoT objects provide automation and aid in making fateful decisions. The
rapid growth and heterogeneity of an increasing number of IoT devices have intensified
cybersecurity challenges. The natural mobility of the IoT and the limited capability of com-
putational resources are jointly regarded as security limitations that increase the severity of
cybersecurity threats. The intrusion detection mechanism plays an essential role in securing
IoT networks. Since the 1970s, traditional intrusion detection has been used mainly to
detect attacks and intrusion in the computer field and to enhance security by monitoring
networks [1]. In the past decade, network evolution has resulted in scaling and fasting of
the network, which allows numerous applications to rely on the network and exchange
critical data through the network. Traditional IDSs failed to fulfill the requirements of a
large-scale advanced network in terms of detection accuracy. To overcome the capability
issues in intrusion detection in traditional IDSs, researchers have focused on utilizing the
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advantages of machine learning (ML) and deep learning (DL) techniques, which have
recently exploded in popularity. An ML-based intrusion detection system (IDS) is a simple
system for classifying network traffic by using ML mainly to detect attack patterns or
abnormal traffic [2]. Both ML and DL techniques have shown tremendous improvements in
intrusion detection. However, even if ML is good for classification, other methods perform
better in feature transformation. For instance, ML has limited tuning capabilities, whereas
DL can handle large amounts of data and can be tuned in various ways. However, both
the ML approach, which heavily relies on statistical characteristics, and the DL approach,
powered by large high-quality datasets, encounter difficulties when attempting to learn
from a small number of examples.

1.1. IDS Using ML and DL

The performance of ML and DL models is typically dependent on the size of the
dataset; large datasets lead to good classification performance, whereas small datasets
might lead to overfitting issues [3]. Network IDSs based on supervised DL techniques
require a large amount of labeled data to be generalized successfully; however, gathering
massive malicious data as samples to train DL classifiers is cost-prohibitive, and the
field is continually developing, making these data useless or obsolete [4]. The process of
data collection is difficult, challenging, and sometimes impossible. Security and privacy
regulations are among the challenges faced in data collection, as is the lack of dataset
availability attributable to rare occurrences, especially in IoT networks. Apart from the
limitations and prohibitive dataset collection in DL and ML, the training technique is
complex and consumes a large amount of computational resources, which constrains the
IoT. Moreover, ML and DL IDS-based methods suffer from detection accuracy issues and
cannot detect novel attacks in some cases, such as zero-day attacks [5,6]. Today’s artificial
intelligence (AI) applications (e.g., ML and DL) learn from large amounts of data, but the
eventual objective of AI is to be as intelligent as humans. AI is inspired by the human
brain; hence, machines should reduce the gap between AI and the human brain, avoid the
complexity of the AI learning process, and easily learn new concepts by using only a few
examples. Researchers have recently explored new AI techniques to fill this gap.

1.2. Few-Shot Learning

Few-shot learning (FSL) is the concept of accurately classifying objects by using a few
samples in a training dataset. The first FSL model was proposed by Fink [7], who embedded
samples in a kernel and successfully classified image objects to their proper class by using
only one example instead of a large training dataset. FSL has since received much attention
and is now a hot topic because of the scientific objective of AI in approaching human
capabilities and the industry requirement for ensuring low learning costs. The following
are some basic terminologies for FSL: N-way refers to the number of categories, while
K-shot represents the number of samples in each category [8]. One-shot FSL simply means
a one-sample-based configuration, while zero-shot FSL means the absence of samples,
which means that the module learns from a distinctive defined feature. However, FSL is
also the general term for all types of learning, known as low-shot learning. This method
supposes the inclusion of one to three samples but is not limited to those numbers; in
fact, it may contain fewer or more samples. The overall combination of N-way and K-shot
is known as a support set, in which the Q-query is a test sample that is not embedded
in the training set. An increase in the shot number (K-shot) improves the prediction
process. Meanwhile, a low number of N-ways implies improved performance [9]. The
embedding and use of FSL in IDS may aid in overcoming the issues of data collection,
rapidly training the model by using only a few samples, and harnessing the ability to
detect novel attacks. The advantages of few-shot learning classification include its strong
adaptability, low overheads in terms of resources, and the ability to transfer across various
scenarios easily [10]. However, existing FSL intrusion detection systems models are complex
and may be inappropriate for low-power networks such as IoT, and their performance
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is still not satisfying. In IDSs based on Siamese networks, it is challenging to control
randomness in pairwise selection and they perform poorly with imbalanced data. Several
scholars’ research has focused predominantly on studying FSL approaches in NIDS using
common, well-known standard datasets. However, there is a discernible paucity of research
specifically targeting Intrusion Detection Systems (IDSs) within the Internet of Things (IoT)
domain. Even though the IoT network is distinguished by its extensive scale and diversity,
it suffers from a diverse range of unpredictable attacks. Among the different types of
FSL approaches, the most common are the Siamese network (i.e., suitable for one-shot
models because it depends on two pairwise distance compressions) and the prototypical
network [11]. This prototypical approach computes the distance between the query and
support sets, in which the approaching component predicts the final result after comparing
the query samples’ distances to the shots of other support sets. This method differs from
the Siamese network, which uses individual shots in a pairwise manner. The prototypical
approach is suitable for multiclass classification; unlike the Siamese network, this approach
is rarely studied in IoT IDSs. To the best of our knowledge, the dataset employed in our
study has not previously been validated with few-shot learning (FSL) methodologies in
IDSs. In this research, we propose a multiclass classification intrusion detection system
(IDS) that leverages prototypical networks. The proposed model is specifically designed
to investigate the performance of IDSs within Internet of Things (IoT) networks when
only a few samples are available. Our model integrates few-shot learning (FSL) with a
deep learning (DL) model, specifically a one-dimensional convolutional neural network
(1D_CNN). This integration allows for efficient feature extraction and forms the backbone
of our classification process.

The research is divided into six sections. The Section 1 presents the introduction. The
Section 2 highlights most related literature reviews. The Section 3 illustrates the proposed
method. The Section 4 shows the experimental implementation of the model and the results.
The Section 5 discusses the results and highlights important findings. The Section 6 is the
conclusion.

2. Literature Review

Intrusion detection is a rich area of study. Since the past decade, scientific researchers
have focused on improving the performance of IDSs. Moreover, embedding various ML
and DL algorithms in IDSs results in excellent performance and accuracy of the modeled
algorithm compared with traditional algorithms. However, in the case of a shortage of
anomalous samples, conventional ML cannot enhance the detection results, as ML and DL
are highly dependent on a large amount of training data that enable the efficient training of
models [12,13]. Classification is a difficult process. Several scholars have faced challenges
in improving the accuracy of classification techniques in ML by using datasets of limited
size because they have few features and because the classification model cannot generalize
patterns shown in training data. Yang et al. [14] proposed a method for creating Gaussian
distributions by using smoothness features. For outputs classified based on inputs, two
inputs that are close to each other result in outputs that are also close to each other. However,
the aforementioned methods suffer from issues of data replication and noise. Another
approach involves two methods proposed by Andonie [15], who utilized fuzzy ARTMAP
to train neural networks (NNs) on limited datasets. Nevertheless, the method is still limited
and is unscalable.

Despite other attempts, FSL has achieved good classification results by using few
samples. In contrast to typical ML approaches, FSL employs existing knowledge and
experience to aid in the exploration of new tasks [16]. Intrusion detection approaches based
on FSL can efficiently address the problem of a limited number of abnormal samples, reduce
complexity, and enhance the detection rate and overall accuracy. Moreover, the application
of FSL in intrusion detection has been reviewed in detail from different perspectives.

In terms of network intrusion detection, Chowdhury et al. [17] employed FSL by
utilizing a CNN for feature extraction in attribute learning, and this approach was applied
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as an SVM input. An experiment was conducted using the KDD99 and NSL-KDD datasets,
and experimental verification was performed. The findings suggest that the proposed
model can effectively classify any type of attack into five primary categories with an
accuracy level of 97.5%. The model can identify rare attack types by including only a
few samples in learning and can handle the sample imbalance problem; the proposed
model operates similarly to a hybrid CNN–SVM model. However, each model was trained
separately. Hence, this kind of training is ineffective at learning the feature representation
of sample data. In addition, scalability issues may occur when dealing with large amounts
of data as a result of the complex structure caused by utilizing an SVM with a Gaussian
kernel function as a classifier [18].

Similarly, YU and the Biennial Informatics Network (BIAN) [19] employed the advan-
tages of deep neural networks (DNNs) and CNNs to model an IDS via FSL. The aim of the
model was to overcome the lack of abnormal samples for effectively training advanced IDSs.
Some attack categories involve an extremely limited number of samples, which hinders an
IDS from detecting and referring to its proper class, especially for unbalanced datasets. The
multistage model used only a few samples in the support and testing dataset and embed-
ded DNN and CNN for use in feature extraction. The Euclidean distances between samples
were also computed. With only 1% of the dataset used, the model achieved a high accuracy,
which was 92.34% for the NSL–KDD dataset and 85.75% for the KDDTrainC + dataset.
Moreover, compared with those of other approaches, the detection rates of rare analytes,
such as U2R and R2L, were fivefold greater for a small sample size. Both the accuracy
and false alarm rate were high, enhancing the overall IDS performance. In addition, FSL
depended on a balanced dataset only.

Hindy et al. [20] presented a novel approach based on FSL (one shot) to enhance
IDSs by using Siamese networks. The main challenge in current ML-based IDSs is that
supervised ML largely depends on a large number of cyber-attack incidents to be learned
as training requirements prior to achieving high accuracy detection. In addition, retraining
is needed when a new class of cyber-attack cannot be observed (zero-day attack). The
proposed approach utilized FSL to overcome the lack of cyber-attack incident numbers
needed for training and used only a single incident for each class. Furthermore, Siamese
networks use similarity pairs to differentiate classes. Similarity pair comparisons in Siamese
networks replace distinctive features. In contrast to traditional ML approaches, a Siamese
network needs to be directly connected to networks to learn similarities from previous
classes, consequently allowing an adapted IDS to detect new attacks without the need for
retraining. However, the model mentioned above did not support fewer than three classes
in each dataset, and the model could not be trained effectively given the 50% similarity
output. Furthermore, the technique of pair selection was performed randomly with the
constraint that the number of similar and dissimilar pairs must be equal. Adding distinctive
pairs or devolving a technique for pair combination might enhance the overall accuracy.

Furthermore, an FSL-based NIDS was designed by Xu et al. [21], who developed
network intrusion detection based on meta-learning associated with FSL for traffic classifi-
cation. This method was developed to overcome the limitations of conventional ML IDSs.
However, numerous attack incidents, such as zero-day assaults, are needed for training;
such incidents are rare in some cases and difficult to collect. On the basis of the meta-
learning system, the advantages of DNNs were utilized to develop the approach known as
FC-Net. FC-Net included two architectures: F-Net and C-Net. F-Net was used for feature
extraction, while C-Net was used for feature compression in the network. This system
could solve a binary classification problem by creating sufficient prior knowledge, which
was achieved by generating large numbers of mapped pair features, comparing them, and
calculating the proper classification of whether an attack was real. As the model was well
trained on the original dataset, on the basis of sufficient prior knowledge, FSL could be
applied using only a few samples and achieved good performance and high accuracy in de-
tecting attacks. Furthermore, novel attacks could be detected. The model achieved 98.88%
accuracy and 99.62% accuracy on different datasets. Although the model was scalable and
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could be applied using various algorithms, the approach ignored the worldwide spatial
distance between classes, which is detrimental to the further development of recognition
accuracy [22].

Wang et al. [22] developed a novel approach for FSL based on the Siamese capsule
network to enhance network intrusion detection with unsupervised training data. The lack
of training data is one of the obvious challenges of advanced network IDSs, as it strongly
affects the performance and detection accuracy. In addition, this approach has failed to
detect unknown attacks. The proposed approach aimed to address the abovementioned
issues. The training data consisted of three types: normal attack, sufficient attack, and scarce
attack. In the training phase, K-means clustering was used to resample unsupervised row
data from various known attack types and normal traffic to determine subtype numbers,
which were subsequently used to construct FSL classes (C-way). The capsuleNet method
was used to directly extract features. The resampled balance data extracted from the raw
data and the data from scarce attacks were embedded as a training dataset to train the
Siamese capsule network. The value K (number of samples in each class) was adaptive; this
feature means that the number of samples in each class (C-way) varies. In an imbalanced
dataset, FSL distinguishes between normal and abnormal sets based on learned distinctive
features, whereas a balanced FSL training set represents a support set for testing to detect
anomalous behavior. In the testing phase, a similarity measurement was used to classify
test samples from the support set based on the most similar samples by using an extracted
feature in the Siamese capsule network. Although the proposed approach achieved a high
accuracy rate of 96.26%, the model was dependent on two parallel Siamese capsule network
mechanisms, and the model is difficult to apply to actual IDSs. Furthermore, the approach
requires considerable computing resources, and time information for the experiment and
detection process was missing in the study.

Liang et al. [23] introduced a MicroserviceOriented intrusion detection model based
on variational FSL to address distributed imbalanced data issues in the industrial IoT.
Intrusion detection is a part of the microservice distributed industrial IoT environment. Tra-
ditional deep learning algorithms typically require a tremendous amount of training data to
enhance detection performance in a large-scale interconnected IoT distributed environment.
However, in such an IoT environment, the resources of each node are limited, and storage
and computational constraints hinder the fulfillment of deep learning training data require-
ments. Furthermore, dealing with imbalanced datasets with low computing resources is
another challenge for enhancing intrusion detection performance. Therefore, OICS-VFSL is
proposed to overcome these gaps. The “optimized intra/interclass structure-based varia-
tional FSL” model incorporates FSL with variational feature representations. The model is
simply divided into intraclasses and interclasses, the first for distance optimization by using
variational feature representation and the other for feature concatenation. The detection
rate of intelligent multiclasses by using imbalanced data exceeded 0.98 for attack data and
0.99 for normal data. However, additional experimental evaluation is needed because the
results may change when the proposed approach is applied to a complex environment with
a distributed IoT.

Similarly, Zhou et al. [24] presented FSL-SCNN, which is an intelligent image anomaly
detection model that utilizes FSL based on a Siamese network and a CNN to cope with
scarce imbalanced data in industrial CPSs. Several AI techniques may be used to enhance
the detection of abnormal or attack signals generated from various surveillance and other
sensor devices. However, in such a hybrid cyber-physical industrial environment, real-time
detection may be challenging because of the large number of complicated structures and
large amounts of data generated by various distributed devices. In an attempt to enhance
the detection accuracy and mitigate overfitting issues when using only a few samples, the
FSL-SCNN model was developed to calculate the distance based on the FSL input samples
by using SCNN to determine the optimal feature representation and to effectively detect
and classify cyber-physical attacks, including novel attacks utilized by the Siamese network.
The overfitting problem was resolved by reducing the original features to a less dimensional
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representation. Although the model has high performance compared with other models,
embedding large amounts of data and more complex scenarios in the experiment may
change the results.

In another work, a novel network intrusion detection method integrating FSL was
introduced by Iliyasu et al. [4] based on incorporating two learning techniques: a supervised
autoencoder and discriminative representation learning. Current ML-based IDSs have a
substantial rate of false alarms; as a result, this sector is a hotbed of research. In contrast,
DL instruction detection approaches aid in mitigating the false alarm rate. However, large
datasets are required for DL algorithms. Dataset collection is difficult, especially when the
size of the dataset is large; moreover, in the field of cybersecurity, regular updates occur,
and several new attacks emerge. Therefore, the proposed method aimed to overcome the
limitations of DL and ML intrusion detection methods based on the use of an FSL technique,
which can enhance IDS accuracy with only a few samples. The method includes two main
phases: first, a supervised autoencoder is merged, and discriminative representation
learning is used to develop a feature extraction model. In the second phase, a classifier is
trained over a feature extractor; thus, the classifier model can generalize from only a few
samples. Although the model reached a 99.8% detection rate by using only a few samples
for certain types of attacks, it performed poorly for others. (Table 1) summarized literature
review that utilized FSL in intrusion detection systems.

In an IoT MQTT network, Alaiz et al. [25] presented a novel intrusion detection method
for detecting intrusion in an IoT environment that uses the MQTT protocol. The proposed
model utilized XGBoost, LSTM, and GRU for a strong IDS to classify three classes of attacks.
The model demonstrated remarkable validation performance on an MQTT dataset via
multiclass classification, as 93.37% of the LSTM images were used, whereas 96.08% of the
GRU images were used to indicate higher results. However, the model was tested on only
three classes. On one dataset, additional classes and datasets may aid in better validation
and lead to more accurate results.

Similarly, a deep learning IDS for IoT networks based on a DNN was proposed by
Khan et al. [26], and the model utilizes an ANN on an IDS to distinguish between normal
traffic and different types of attacks. The classification performance reached a high accuracy
of 99% in binary classification and 98% in multiclass classification.

Prajisha et al. [27] presented an efficient IDS that combines the chaotic SALP swarm
algorithm with LightGBM and achieved outstanding accuracy on a variety of datasets. The
accuracy of ECSSA-LightGBM is 99.38% for MC-IoT; that of ECSSA-LightGBM is 98.91%
for MQTT-IoT-IDS2020; and that of ECSSA-LightGBM is 98.35% for MQTTset. However,
the proposed IDS is inapplicable for detecting CoAP attacks in the IoT network.

Hindy et al. [28] conducted several experiments to study the performance of an IDS
based on ML on the MQTT-IOT-2020 dataset via six different ML techniques: logistic
regression (LR), Gaussian naïve Bayes (NB), k-nearest neighbors (k-NN), support vector
machines (SVMs), decision trees (DTs), and random forests (RFs). The results of the
experimental study indicate significant accuracy. However, ML methods perform well only
when the data are sufficient for training.

Zeghida et al. [29] developed an ensemble learning-based IDS that included bagging,
boosting, and stacking to enhance the accuracy and strength of classifying attacks in the
MQTT IoT network. The model has high accuracy. In terms of stacking, accuracy averages
in the range of 95.43% to 95.38% are obtained for RF, bagging, AdaBoost, HistGradientboost,
and the XGB classifier. Model tests that use one dataset and an additional dataset may
provide accurate validation.

Similarly, Chesney et al. [30] presented an MQTT IoT- IDS based on both DL and ML
techniques. The techniques for DL included random forest, logistic regression, decision
tree, K-nearest neighbors, and support vector machine (SVM) methods; for DL techniques,
a CNN was utilized. The experiments show good accuracy, with a binary average of 90%.
However, the DL techniques used in this method failed to detect aggressive scan attacks, as
the accuracy was 63%.
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Mosaiyebzadeh et al. [31] proposed a model for NIDS DL based on IoT networks that
combines three techniques: CNN, RNN, and LSTM. An experiment was conducted on the
MQQ-IoT2020 dataset, and the average accuracy was 97%. However, given the nature of
DL, the model requires a large dataset. The experiment should be extended to other IoT
datasets for further verification.

Table 1. Summary of reviewed literature on IDSs based on FSL.

Reference Dataset Performance Limitation

[17] KDD99
NSL-KDD Accuracy = 97.5%

The training is conducted in two
totally separated processes which may
affect the efficiency and the scalability.

[19]

NSL-KDD
KDDTrainC

+
UNSW-NB15

Accuracy = 92.34%
using less than 2%

dataset

False alarm rate is high.
FSL requires a balanced dataset.

[20]
CICIDS2017
KDD Cup’99

NSL-KDD

Accuracy = 84% for
CICIDS2017

88% for KDD
Cup’99 and 91% +

for NSL-KDD

The model does not support less than three classes.
Pair selection in SN requires enhanced

technique as it is carried out randomly with
equality constraints for both similarity

and dissimilarity.

[21]

ISCX2012FS
CICIDS2017FS

(real traffic
+

source data)

Accuracy = 98.88%,
99.62%

The approach does not consider the worldwide spatial
distance between classes, which is detrimental to the

further development of recognition accuracy.

[22] CICIDS-2017
UNSW_NB15

Accuracy = 95.25%,
96.26%
91.28%,
93.69%

Depends on two parallel Siamese capsule network
mechanisms, making it challenging to apply to actual

intrusion detection systems. Real-time detection is
essential; detecting time info is missing in the paper.

Requires huge computing resources.

[23] NSL-KDD
CIC-IDS2017 DR = 99%

Requires more experiment evaluation
in complex IoT environments.

Should have used a dataset designed
especially for IoT.

[24] UNSW-NB15 F1 = 93.06%

Applied only in a simple scenario. The model is required
to be implemented in more

complex scenarios for more evaluations and accuracy
improvement.

[4] CIC-IDS2017 NSL-KDD Accuracy = 81%
Performance requires improvement. Dataset used in the
comparison evaluation experiment is different than that

used in the main model experiment.

Nonetheless, the model is quite complex and may consume large amounts of resources, which is a challenge in
IoT networks.

3. Proposed Method

The proposed methodology consists of four phases: dataset selection, dataset prepos-
sessing, feature extraction, and classification. Figure 1. illustrates a broad overview of
the methodology.
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3.1. Dataset Selection

Given that related work has focused mainly on IoT networks, we conducted compre-
hensive scholarly reviews of various types of IoT datasets. On the basis of these reviews,
we selected recent, network-simulated, and various scenarios involving different types
of attacks. The dataset should also be reliable and effective for IDS classification and fea-
ture extraction. Therefore, the experiments were conducted using the MQTT-IoT-IDS2020
dataset. Furthermore, we used a common IDS dataset to emphasize that our work can be
evaluated with other works by using the FSL approach in IDS. To the best of our knowledge,
the MQTT-IoT-IDS2020 dataset has not been used in FSL IDSs.

3.1.1. MQTT-IOT-IDS2020 Dataset

The MQTT-IoT-IDS2020 dataset is an IoT network dataset generated by Hendy et al. [32].
The dataset contributes to the IoT cybersecurity committee and is considered the first dataset
simulated in the IoT MQTT network. The dataset is generated using various IoT sensor
devices and aimed at recoding five different types of normal and attack behaviors. The
dataset mainly consists of five classes: one normal sample record and four different types
of attack. The first attack type is called Scan_A, which represents an aggressive scan attack.
The second attack is recorded as Scan_sU, which refers to a UDP scan, and DDP stands
for the user diagram protocol. The third one is Sparta, which is short for Sparta SSH brute
force attack. The fourth record, MQTT_BF, represents MQTT brute force.

3.1.2. CIC_IDS2017 Dataset

The term deception in the “CICIDS2017” dataset typically consists of three parts: CIC,
IDS, and 2017. CIC stands for the Canadian Institute for Cyber Security, while IDS refers
to an IDS; the last number, 2017, is the date of release. The CICIDS2017 dataset [33] is one
of the most common datasets used in IDSs. This scheme has been widely emphasized
in several IDS studies. The dataset is rich in content because it contains various types of
intrusion attacks. Among the 15 classes, 1 class is normal and the rest are different types of
cyber intrusion attacks, such as botnet, SQL injection, and DDoS attacks.

3.2. Dataset Preprocessing

Preprocessing is a crucial step before training. Data preprocessing steps generally
include filtering, cleaning, normalization, and removing unnecessary values in the datasets.
Accuracy and classification performance mainly depend on the dataset’s reliability. A
dataset that contains noise or inaccurate data may cause misclassification and affect the
prediction efficiency [34].

A representation of the correlation matrix of numeric features in the MQTT-IoT2020
dataset is illustrated in Figure 2, and Table 2 shows the total number of samples in the
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dataset. In the cleaning process, all nonvalues were removed; three columns were discarded:
namely, the SADDR and DADDRS columns. Regarding properly handled categorical
information, a prototype can be encoded with one hot encoding, the port number for (sport
and dport) resulting in high cardinality; thus, one hot encoding would be extremely sparse.
Instead, we treated them numerically, which is not a straightforward progress because it
contains hexadecimal values. We also converted the Boolean data into integer values to
normalize the categorical data immediately after encoding. Furthermore, any class can be
included because each class has sufficient samples for FSL. Furthermore, in the CICIDS2017
dataset, we additionally excluded three classes to reduce the number of classes and avoid
overnormalizing these classes. The total number of CICIDS2017 records in the dataset is
2,803,743, with 79 feature dimensions. In addition, we removed the unnecessary columns
such as: “Flow Packets/s”, and “Flow Bytes/s”.
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Table 2. Total number of samples in the dataset.

Sample Type Number of Samples

normal 188,378

scan_sU 22,434

scan_A 19,907

mqtt_bruteforce 14,544

sparta 14,116

3.3. Proposed FSL Model Architecture

The proposed model consists of two main steps. The first is a 1D CNN with five
layers initially utilized for feature extraction. The second is where the output data are
transferred to an FSL classifier; in our case, we applied a prototypical network technique
for multiclass classification.

3.3.1. Feature Extraction (1D CNN)

Recently, numerous scholars have developed IDSs based on the CNN technique.
Various methods have been studied using CNNs, such as 1D CNNs, two-dimensional
CNNs, and three-dimensional CNNs. The 1D FSL (1D CNN) is a deep learning model
that can analyze historical and sequential data and network traffic flows; this model
has demonstrated outstanding performance in IDSs and has been extensively studied
in various IDS studies. On the basis of previous reviews by scholars, we believe that
1D CNN is suitable for feature extraction, especially for complex IoT networks, for the
following reasons:

• The ability to extract vital exceptional patterns from raw data and excellent perfor-
mance in predicting anomalies in packets in the traffic flow.

• The complexity and dimensionality of the input data are minimized, which can con-
tribute to improving the efficiency and accuracy of an IDS.

• Overcoming the two major challenges in an IDS, which are noise and an imbalanced
dataset [35].

• Adapting to various kinds of network attacks, such as DoS, DDoS, and PortScan
attacks, by employing a variety of structures and parameters [36].

For feature extraction, a preprocessed dataset was passed to one dimension of the
5-layer convolutional neural network model. The dataset was divided into 60% training set
and 40% temporary set: X_train, X_temp, y_train, and y_temp. In addition, the temporary
set was split equally into validation and test sets: (X_val, X_test, y_val, y_test). Furthermore,
the training data were balanced using RandomOverSampler. Balanced data allow the next
step to be taken to take advantage of preparing the weighted training, test, and validation
datasets. Therefore, we created DataLoader without the sampler (as the data are already
balanced). The training rate was set to (0.01), and to avoid overfitting issues, we set the
regularization parameter to (0.0001) and the batch size to 128.

The five layers of a 1D CNN are utilized to extract complex features from the MQTT-
IoT2020 dataset in IoT networks. Figure 3 shows additional details about each layer. The
input data are expected to have a dimension of input_dim. The 1D CNN is reshaped to have
a single channel (1) because it is a 1D convolution neural network, Conv1d. The conv1d is
applied with 64 filters (out_channels), a kernel size of 3, and a padding of 1. This step is
followed by batch normalization and ReLU activation. This process is repeated with increas-
ing numbers of filters (64 > 128 > 256 > 256 > 128), batch normalization, and rectified linear
unit (ReLU) activation after each convolution. Convolutional layers: the convolutional
layers are designed to capture hierarchical features from the input data. Fully connected
(linear) layers: after the convolutional layers, the data are flattened (torch.flattening) and
passed through a fully connected layer with input_dim * 128 input features (128 features
from each of the 128 filters in the last convolutional layer). Output layer: the output layer
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consists of a linear layer with num_classes output units for classification. The sample class
shape is torch. Size (25, 28) torch, Size (25) torch, Size (50, 28) torch, and Size (50). The 1D
five-layer CNN is the backbone of the prototypical network classifier and acts as an input.
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3.3.2. Classifier Model (Prototypical Networks)

In this research, we use a multiclassification method. In the classification process for
our model, we utilized the prototypical network approach, where the Euclidean distance
plays an essential role in computing the distance metrics among all support sets and
queries. The prototype Euclidean distance produces optimal cluster representations given
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the support set labels. Figures 4 and 5 briefly show that the classification process uses a
prototypical network. All the output weights extracted from the 1D_CNN feature extraction
passed the classifier, which counted all feature vectors and computed the ratio at the end.
The FSL model is implemented in different scenarios based on the number of samples (k)
per class (N). The first structure of FSL using a prototypical network is the N-way K-shot,
where N = 5 refers to the number of classes, and K = 5, meaning each class in the N-way
consists of 5 samples, thus forming a 5-way 5-shot scenario. The second scenario is a 5-way
10-shot setting, where the number of classes (way) remains the same, and the number of
samples in each class is K = 10. The query set, on the other hand, is configured as a 10-query
set for evaluating the model. The 5-way classes represented in the support set are the
classes of sample types: normal, scan_sU, scan_A, mqtt_bruteforce, and spart. However,
the query set represents the evaluation samples that should be correctly classified to the
corresponding class based on the nearest calculated distance to the support set prototype.
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The Euclidean distance computes the distance of each sample in the query set and
matches it to the nearest distance of the corresponding class. Algorithm 1 provides a
high-level illustration of the process of training loss computation for prototypical networks
for each episode as follows:

1. Centroid Calculation:

In centroid calculation, Equation (1) is used to compute the centroid by averaging
the feature embeddings f (xs) of support samples (xs, ys) belonging to class k. The term
“Euclidean distance” is implied in the calculation of distances.

ck =
1∣∣∣D{Sk}

∣∣∣ ∑(xs , ys)∈ D{Sk}
f (xs) (1)
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ck: The centroid or prototype of class k. This point represents the “average” of all samples
in class k.
DSk: The set of support samples for class k. These samples are used to calculate the centroid.
|DSk|: The number of support samples for class k.
xs: A support sample.
f (xs): The feature embedding of support sample, xs, represented as a vector in the
feature space.
∑(xs , ys)∈ D{Sk}

f (xs): The sum of feature embeddings of all support samples in class k.
1∣∣∣D{Sk}

∣∣∣ : Used to calculate the average of feature embeddings.

2. Loss L1 Calculation:

This computes the loss L1 for a query sample xq belonging to class k with respect to
its centroid ck. The squared Euclidean distance between the feature embedding f

(
xq
)

of
the query sample and the centroids of all classes is used in the calculation. It involves the
SoftMax operation and negative logarithm to obtain the cross-entropy loss; the equation is
as follows.

L1 = − log(
exp

(
− ∥ f

(
xq
)
− ck ∥2 /2σ2)

∑k′ exp
(
− ∥ f (x_q)− c_

(
k′
)
∥2 /2σ2

) ) (2)

L1: The loss for query sample xq belonging to class k.
f (xq): The feature embedding of query sample xq.
ck: The centroid or prototype of class k.
∥ f

(
xq
)
− ck ∥2: The squared Euclidean distance between the feature embedding of the

query sample and the centroid of class k.
exp

(
− ∥ f

(
xq
)
− ck ∥2 /2σ2): The exponential of the negative squared distance, scaled

by 2σ2. Measures similarity between the query sample and class k’s centroid.
∑k′ exp(− ∥ f (x_q)− c_(k

′
) ∥2 /2σ2): Sum of similarities between the query sample and

centroids of all classes.
exp(−∥ f (xq)−ck∥2/2σ2)

∑k′ exp(−∥ f (x_q)−c_(k′) ∥2/2σ2)
: SoftMax of negative squared distances, yielding a probability

distribution over classes.

3. Intra-class Loss L{in} Calculation:

Lin = − log(
exp

(
− ∥ f

(
xq
)
− ck ∥2 /2σ2)

∑k′ exp
(
− ∥ f

(
xq
)
− ck′ ∥2 /2σ2

) ) (3)

This computes the loss Lin for a query sample xq within the same class. The loss is
calculated similarly to L1, but with a slight difference in the calculation of distances. It also
involves comparing the Euclidean distances between the feature embedding f

(
xq
)

of the
query sample and the centroids of all classes.

4. Out-of-distribution Loss Lout Calculation:

Lout = − log
1

| DOOD |∑(xs ,ys)∈DOOD

exp
(
− ∥ f

(
xq
)
− ck′ ∥2)

∑k′′ exp
(
− ∥ f

(
xq
)
− ck′′ ∥2

) (4)

This equation computes the loss Lout for out-of-distribution samples. It is based on the
Euclidean distance between the feature embeddings of the query sample and the centroids,
similar to L1 and Lin. However, it involves summing over all out-of-distribution samples
and the centroids, where DOOD is the set of out-of-distribution samples, F

(
xQ

)
is the feature

embedding of a query sample xq′ , and ck′ is the centroid for class k′.
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Algorithm 1: Training Episode Loss Computation for Prototypical Networks

Require: Meta-training set : Dtrain = (xi, yi)
Ntain
i=1 , where yi ∈ {j}

Mtrain
j=1 , and Mtrain > 2.

Require: Nway Number of classes in the meta-training set.
Require: Nshot Number of query samples per class.
Require: Nquery Number of classes in the meta-training set.
Ensure: The loss L for a randomly generated training episode.
1. VID ←RandomSample jj = 1Mtrain,K ▷ Randomly select K classes for the
episode.
2. for k in {1, 2, . . ., K} do
3. Dk← RandomSample (DVk,Nshot + Nquery) ▷ Sample support and
query samples.
4. DSk,DQk←SplitDk, Nshot ▷ Split samples into support and query
sets.
5. Calculate ck by using Equation (1)
6. End for
7. VOOD← RandomSample jj = 1Mtrain VID,1 ▷ Select a class not in VID for
out-of-distribution samples.
8. DOOD← RandomSample DVOOD, NOOD. ▷ Sample out-of-distribution samples.
9. L← 0
10. for k in {1, 2, . . ., K} do
11. for (xq, yq) in DQk do
12. Calculate L1 and Lin by using Equations (2) and (3);
13. L← L + 1

K·Nquery
· (L1 + Lin)

14. end for
15. end for
16. for (xq, yq) in DOOD do
17. Calculate Lout by using Equation (4) on DOOD;
18. L← L + 1

NOOD
· Lout

19. end for

The model learns to classify query samples based on their similarity to the corre-
sponding centroids of each class, which are computed from the support samples. The
loss functions encourage the model to correctly classify both in-distribution and out-of-
distribution samples. The model is trained to minimize these loss functions. The input
of the model contains the original feature extracted from 1D_CNN and sets a prototype
per class. Sequentially, the forward method defines how the prediction is performed after
removing the fully connected layer and computes the main vectors and feature distance for
each query shot and the prototype for all shots in each class to make it ready for prediction.
Once the forward method is successfully applied, score calculations are performed later to
classify the query shot as belonging to the correlated classes, and the query is classified
as the class with the highest score, which is the lowest computed distance. In terms of
the obtained optimal accurate classification, the training process is trained and evaluated
for several tasks in 20 epochs. The model parameters are adjusted to backpropagate the
gradients, and the loss is computed for each iteration. Additionally, the algorithm calculates
and outputs the epochs and calculates the average loss. In the tuning process, we monitored
the best result from the epochs; we defined this as the best validation accuracy to reach the
optimal value fund during the iteration.

4. Experiment and Results

In this research, we initially conducted the experiment by using an HP notebook with
an Intel Gen8 CPU and 12 GB of RAM. Eventually, we moved the experiment to Google
Colab for mobility. The language used was Python 3.10, and the main libraries used were
as follows: torch, numpy, pandas, matplotlib, matplotlib, seaborn, sklearn, and easyfsl.
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4.1. Implementation

In our task, we implemented our model by using various scenarios to test and evaluate
the module. Initially, we started by setting up the FSL architecture. First, FSL is set as
5-way, 5-shot, and 10-query sets. The second step increases the number of samples per
class to 10; the details are shown in Table 3. For evaluation and verification, by using
two FSL architectures (i.e., 5-way 5-shot architecture and 5-way 10-shot architecture), we
implemented the original feature space, which refers to the features that are not extracted
from 1D_CNN in the dataset. Furthermore, we tested this approach by using random
initialization, which means that the 1D_CNN model is not trained but rather given random
weights; then, on those random weights, we extracted features.

Table 3. Total number of samples for each class.

Classes Shots Per Class Query Set Classes Attack Description

normal 5 shots and 10 shots 10 Being normal

scan_sU 5 shots and 10 shots 10 The attack aims to compromise port
services using UDP

scan_A 5 shots and 10 shots 10 Attack the explorer port for
malicious purposes

mqtt_bruteforce 5 shots and 10 shots 10 Attack target systems in the MQTT
network to perform brute force

sparta 5 shots and 10 shots 10
The attack technique aims to
analyze space and associated

cyber threats.

The main purpose of our research is to propose an IDS based on the FSL model by
using an IoT dataset; based on our knowledge, no previous work has used MQTT-IOT-
IDS2020 in FSL. Therefore, we could not compare our FSL results with those of similar
studies under the same FSL architectures and experimental circumstances. However, we
conducted a comprehensive comparison with several scholars who used deep learning and
machine learning-based intrusion detection systems on the MQTT-IOT-IDS2020 dataset.
Furthermore, we extended the experiment by using the CICIDS2017 dataset with a 5-shot
scenario, testing it with both original feature spaces and randomly initializing it for evalu-
ation. In addition, the 5-shot results are compared with another work used by the same
CICIDS2017 dataset in an IDS model based on FSL by using a 5-shot in a support set.

4.2. Results

In this section, we will illustrate all the generated results. The implementation was
conducted on two different datasets with three experiments per dataset. We start with the
main MQTT-IoT-IDS2020 dataset. The model is a multiclass classification model. Hence, the
result provided is an average measurement and is not converted to a binary classification.

4.2.1. MQTT-IOT-IDS2020 Dataset Results

The results for the MQTT-IoT-IDS2020 dataset are shown in Figure 6 and Table 4. The
proposed 1D_CNN + prototypical network model achieved very good results—99.28%
accuracy—and 99.28% for Presidion. The recall was 99.26%, while the F1-score was 99.27%.
Only 5-shot was used for the 5-way 5-shot and 5-way 10-shot FSL query sets. In addition,
when five shot in the support set were evaluated with a random model weight, the accuracy
was 85.93%, the precision was 86.62%, the recall was 85.93%, and the F1-score was 86.00%.
The third set of experimental results obtained using the original feature with 5 shots yielded
86.09% accuracy, 87.84% precision, and 86.09% recall; finally, the F1-score was 86.18%.
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Table 4. The 5-shot results for MQTT-IoT-IDS2020 dataset.

Method Accuracy Precision Recall F1-Score

Original features 86.09 86.84 86.09 86.18
Random model weights 85.93 86.62 85.93 86
1D_CNN + prototypical 99.28 99.28 99.26 99.27

The other experiment was conducted after increasing the number of shots per class
from 5 to 10, as shown in Figure 7 and Table 5. The experimental results generated from our
proposed model are as follows: the accuracy increased to 99.44%, the precision increased to
99.44%, the recall increased to 99.40%, and the F1-score increased to 99.42%. The results of
the experiment that implemented the random model weight yielded 86.38% accuracy and
87.09% precision, while the recall was 86.37% and the F1-score was 86.46%.
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Table 5. The 10-shot results for MQTT-IoT-IDS2020 dataset.

Method Accuracy Precision Recall F1-Score

Original features 86.87 87.69 86.87 86.95
Random model weights 86.38 87.09 86.37 86.46
1D_CNN + prototypical 99.44 99.44 99.4 99.42

The MQTT-IoT2020 5-way 5-shot and 10-shot comparative analysis results are illus-
trated in Figure 8 and Table 6. The comparative performance results for the MQTT-IoT2020
dataset using 5-shot and 10-shot are illustrated in Figures 9–12.
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Table 6. The 10-shot and 5-shot results for the MQTT-IoT-IDS2020 dataset.

Method Accuracy Precision Recall F1-Score

Original features 5-shot 86.09 86.84 86.09 86.18

Original features 10-shot 86.87 87.69 86.87 86.95

Random model weights 5-shot 85.93 86.62 85.93 86

Random model weights 10-shot 86.38 87.09 86.37 86.46

1D_CNN + prototypical 5-shot 99.28 99.28 99.26 99.27

1D_CNN + prototypical 10-shot 99.44 99.44 99.4 99.42
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4.2.2. CICIDS2017 Dataset Results

In this experiment, we used one FSL architecture that consisted of 12-way, 5-shot, and
10 query sets.

The results are illustrated in Figure 13 and Table 7. The first result for 5 shots is the
proposed 1D_CNN + prototypical network method, which is 93.13% accurate, 93.46%
precise, has 93.13% recall, and has an F1-score of 92.40%. The second result is for the
evaluation of random model weights, for which the accuracy is 44.27%, the precision is
45.40%, the recall is 44.27%, and the F1-score is 40.20%. The third results for the conducted
experiment by using the original features are as follows: 42.94% accuracy, 43.68% precision,
42.94% recall, and 38.67% F1-score.
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Table 7. The 12-way 5-shot results for the CICIDS-IDS2017 dataset.

Method Accuracy Precision Recall F1-Score

IDS17—original features 5-shot 42.94 43.68 42.94 38.67

IDS17—random model weights 5-shot 44.27 45.4 44.27 40.2

IDS17—1D_CNN + prototypical 5-shot 93.13 93.46 93.13 92.4
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5. Discussion

The results for the MQTT-IoT-IDS2020 dataset revealed small gaps in accuracy among
the three experiments conducted: namely, the 1D_CNN + prototypical network, which
were evaluated on random model weights; moreover, the original features are shown in
Figure 8. The accuracy of the 1D_CNN + prototypical network is high at 99.44%, while
the average accuracy of the random model weights and original features is 86%. The gap
is approximately 13%, which is considered a small gap. This scheme refers to the natural
status of the dataset itself. The MQTT-IoT-IDS2020 dataset was tested with various IDSs
based on ML and DL models, and a notably high performance was reached. However,
even though reaching high performance with only a few samples in training is challenging,
we compared our FSL model with modules that use large datasets in the training and
testing stages. Meanwhile, the difference between our proposed model and both evaluated
scenarios with (random weights and original features) is large in the CICIDS2017 dataset
experiments (approximately 50%), as illustrated in Figure 14. The proposed model accuracy
is 93.13%, while the other experiment has an average accuracy of 40%. This finding
emphasizes that the model functions well and that the accuracy varies from one dataset
to another. The comparative results between the two datasets were added to Table 8, as
was the CICIDS2017 12-way 5-shot comparative analysis result shown in Figure 14. The
accuracy comparison, recall, precision, and F1-score are illustrated in Figure 15, Figure 16,
Figure 17, and Figure 18, respectively.
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Figure 14. The 12-way 5-shot comparative analysis results for the CICIDS2017 dataset.

Table 8. The 5-shot results for the MQTT-IoT-IDS2020 and CIC-IDS2017 datasets.

Method Accuracy Precision Recall F1-Score

MQTT—original features 5-shot 86.09 86.84 86.09 86.18

IDS17—original features 5-shot 42.94 43.68 42.94 38.67

MQTT—random model weights 5-shot 85.93 86.62 85.93 86

IDS17—random model weights 5-shot 44.27 45.4 44.27 40.2

MQTT_1D_CNN + prototypical 5-shot 99.28 99.28 99.26 99.27

IDS17-1D_CNN + prototypical 5-shot 93.13 93.46 93.13 92.4
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Figure 15. The 5-shot accuracy analysis results for the MQTT-IoT-IDS2020 and CICIDS2017 datasets.
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Figure 16. The 5-shot precision analysis results for the MQTT-IoT-IDS2020 and CICIDS2017 datasets.
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Figure 17. The 5-shot recall analysis results for the MQTT-IoT-IDS2020 and CICIDS2017 datasets.
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In addition, we conducted a comparison for verification between our proposed model
and other IDS models that use the MQTT-IoT-IDS2020 dataset. We compared the exper-
imental results with those of other IDS models that use ML- and DL-based IDSs, to the
best of our knowledge, no existing studies have employed the MQTT-IoT-IDS2020 dataset
within the context of Few-Shot Learning (FSL) models. A comparison summary has been
added to Table 9.

Table 9. Comparative analysis of IDS performance for the MQTT-IOT dataset.

Reference Year Dataset Method Result

[25] 2019
Their own gendered
dataset using MQTT

protocol

IDS based on XGBoost, RNN, LSTM,
and GRU

LSTM 93.37%
GRUs 96.08%

[26] 2021 MQTT-IoT-IDS2020 DNN (IDS based on ANN) 97.13%

[27] 2022 MC-IoT dataset, MQTT-IoT-IDS2020
dataset, MQTTset dataset

Chaotic salp swarm optimization
algorithm (ECSSA) and LightGBM

classifier

98.91% accuracy for
MQTT-IoT-IDS2020

[28] 2020 MQTT-IoT-IDS2020 6 different ML techniques Accuracy
avg—+90%

[29] 2023 MQTT dataset Ensemble learning (EL) including
bagging, boosting, and stacking Accuracy 95.38%

[30] 2022 MQTT-IoT-IDS2020 dataset Various ML and DL, RF, LR, DT,
K-N, SVM, DNN, CNN

Binary avg
—+90%

[31] 2021 MQTT-IoT-IDS2020 dataset (DNN), (LSTM), and mix of
(CNN-RNN-LSTM)

Accuracy
= 97.09%

[PROPOSED
MODEL] 2024 MQTT-IoT-IDS2020

dataset
CNN (1D_5CNN)

+ FSL (prototypical network)

Accuracy
10-shot = 99.44%
5-shot = 99.28%

Another comparison was conducted on the CICIDS2017 dataset with other IDS models;
the comparison was conducted on an IDS based on FSL, which used only a few samples
for classification, and the comparison has been added to Table 10. For further clarification
of the results, even though other models may reach higher accuracy, we set the proposed
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model as a multiclass classification, and this type of average classification’s accuracy is
usually lower than that of binary classification. Additionally, in the CICIDS2017 dataset, in
our experiment, 12 classes were used, and other models may use fewer classes, which may
increase the accuracy.

Table 10. Comparative analysis of FSL IDS performance for the CICIDS2017 dataset.

Reference Year Number of Shots Method Result

[37] 2023 1-shot Siamese network Overall accuracy
= 80–85%

[21] 2022 5-shot FC-NET (DL + Siamese N) Accuracy = 89.09%

[38] 2022 10-shot FS-IDS flow data encoding + feature fusion mechanism Accuracy: 93.60

[22] 2021 5-shot Siamese capsule network Accuracy = 93.87

[39] 2022 fewer than 20 Global-aware prototypical network
(GP-Net) Accuracy: 94.58

[40] 2022 10-shot FSL—parallelized triplet network Recall: 94.57

[41] 2023 5-shot CharNet (neuro-immune + character embedding) Accuracy: 95.94

[PROPOSED
MODEL] 2024 5-shot 1D CNN + prototypical network Accuracy = 93.13%

6. Conclusions

This study presented an IDS based on an FSL 1D_CNN prototypical network. The
model utilized a 1-dimensional 5-layer CNN to extract vital features that act as the backbone
of the FSL classifier, which is a prototypical network. The model mainly focused on lever-
aging IDSs in IoT networks and overcoming the limitation of acquiring enormous datasets
for DL training, which is scarce in some cases, especially for IoT networks, and mitigating
the need for labeling enormous amounts of data or oversampling and undersampling
approaches, which can cause some issues in performance. Two standard datasets are used
in the model: mainly the IoT dataset (MQTT-IoT-IDS2020) and extended to the CICIDS2017
dataset for more validation. The proposed model achieved an accuracy of 99.44% for the
MQTT-IoT-IDS2020 dataset and 93.13% for the CICIDS2017 dataset by using only 10 shots
(samples). Applying the few-shot learning technique to the IDS could enhance the detection
performance in IoT IDSs and overcome the challenging issues in IoT networks of collecting
and labeling huge amounts of data. However, the proposed model was applied to only
one IoT dataset as well as lacking the ability to detect novel attacks; our future work will
involve assessing its performance across diverse IoT datasets. Additionally, we plan to
extend the model by incorporating a new class specifically designed to detect unknown
attacks, thereby enhancing its ability to classify novel attacks as intrusions.
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