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Abstract: Navigation aids play a crucial role in guiding ship navigation and marking safe water areas.
Therefore, ensuring the accurate and efficient recognition of a navigation aid’s state is critical for
maritime safety. To address the issue of sparse features in navigation aid data, this paper proposes
an approach that involves three distinct processes: the extension of rank entropy space, the fusion
of multi-domain features, and the extraction of hidden features (EFE). Based on these processes,
this paper introduces a new LSTM model termed EFE-LSTM. Specifically, in the feature extension
module, we introduce a rank entropy operator for space extension. This method effectively captures
uncertainty in data distribution and the interrelationships among features. The feature fusion
module introduces new features in the time domain, frequency domain, and time–frequency domain,
capturing the dynamic features of signals across multiple dimensions. Finally, in the feature extraction
module, we employ the BiLSTM model to capture the hidden abstract features of navigational signals,
enabling the model to more effectively differentiate between various navigation aids states. Extensive
experimental results on four real-world navigation aid datasets indicate that the proposed model
outperforms other benchmark algorithms, achieving the highest accuracy among all state recognition
models at 92.32%.

Keywords: navigation aids; state recognition; extended space; multi-domain features; hidden feature
extraction; maritime safety

MSC: 68T01

1. Introduction

Navigation aids are specialized floating devices used extensively in maritime naviga-
tion to assist with navigation and waterway positioning. Their primary functions include
indicating the position, direction, and boundaries of navigable channels as well as provid-
ing warnings of obstacles or hazardous areas in the water, such as reefs, shoals, or other
navigation impediments. These devices are typically equipped with distinctive identifying
features, such as unique shapes, colors, patterns, and markers, to ensure recognition under
various visual conditions. Moreover, certain aids to navigation are equipped with lights,
reflectors, or sound signals to enhance visibility and identifiability in conditions of reduced
visibility. As integral components of maritime traffic, navigation aids play an indispens-
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able role in maintaining navigation safety, fostering effective waterway management, and
ensuring the smooth and efficient flow of maritime traffic [1].

In the traditional maintenance and management of navigation aids, the predominant
approach has long been reliant on periodic manual inspections. However, due to the
scattered distribution of navigation aids, this inspection process is both time-consuming
and labor-intensive. With the rapid development of communication technology, various
countries have adopted the approach of installing sensors on traditional navigation aids [2].
By regularly collecting sensor data and conducting continuous monitoring, the subjectivity
bias associated with manual monitoring has been successfully mitigated, and the accuracy
of monitoring has been significantly enhanced. The recognition of navigation aid states
is typically achieved by collecting sensor data related to the aids which encompass infor-
mation on their positions, movements, and lighting apparatuses [3]. Specific models are
then employed to accurately discern whether the aids are operating normally or exhibiting
anomalies. Considering that navigation aid devices are commonly deployed in complex
and dynamic natural environments such as rivers and oceans, acquiring key environmental
features like water flow velocity, water level, maritime traffic volume, sunlight intensity,
and river surface wind force [3] poses considerable challenges. Currently, the feature data
collected by navigation aid sensors mainly include latitude, longitude, current, voltage,
and offset distance. The magnitude of these datasets, compounded by the absence or
indistinctness of pivotal information, introduces complexities in the effective interpretation
and analysis of data. Consequently, the development of models capable of efficiently and
accurately recognizing states of navigation aid in the presence of sparse features remains
an unresolved challenge for researchers in this field.

Given the limited research on navigation aids, which primarily focuses on aspects
such as the development of navigation aids [4–6], risk assessments of navigation aids [7,8],
and the impact of navigation aids on maritime transportation [9,10], we have opted to
conduct a review of the literature on status recognition in fields such as transportation.
Although the research subjects of these papers are not navigation aids, we believe that the
findings are applicable to a certain extent and can be generalized to the field of navigation
aids to some degree. Alharbi et al. [11] proposed an integrated model that combines long
short-term memory (LSTM) and convolutional neural networks (CNNs) for the precise
classification of electrocardiogram signals. The objective is to enhance the efficiency of
cardiovascular disease prevention and medical care. Mustaqeem et al. [12] proposed
a hierarchical convolutional LSTM network to enhance the accuracy of speech emotion
recognition. By employing deep feature extraction and optimizing using the center loss
function, the model achieved high recognition rates on prominent datasets. Chen et al. [13]
addressed the dependency on fault state monitoring data in fault detection by modifying
bidirectional long short-term memory (BiLSTM). The modification involved excluding
the input corresponding to a predicted outputted data point. Dong et al. [14] proposed a
mixed-truth-value CNN framework, TKRNet, which effectively addresses the counting
challenges in navigation aid state recognition through coarse-to-fine density maps and
an adaptive Top-k relation module. An et al. [15], based on the principles of calculus
and in conjunction with LSTM networks and a novel loss function, significantly enhanced
the accuracy and efficiency of state recognition under time-varying operating conditions.
Alotaibi et al. [16] developed a model that integrates LSTM with attention mechanisms to
enhance the accuracy of electromyographic signal recognition. By effectively incorporating
the advantages of time series analysis and focused attention, the experiment yielded a high
average accuracy of 91.5%. These scholarly works collectively underscore the superior
efficacy of LSTM models in the domain of state recognition, thereby providing a compelling
foundation for this study to further investigate and extend upon the capabilities of LSTM-
based methodologies.

Wang et al. [17] introduced an innovative CNN-LSTM architecture for equipment
health monitoring, demonstrating the feasibility of state recognition in raw datasets with-
out the necessity for extensive feature engineering. Building upon this foundation, our
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research extends these methodologies by enhancing feature learning to improve recognition
accuracy, thereby addressing gaps not yet fully explored [17]. Zhao et al. [18] utilized a
BiLSTM network to analyze data from smartphone sensors, such as accelerometers and
gyroscopes, circumventing the limitations of sole reliance on GPS data. However, given
the complex environmental conditions of buoys, which preclude the acquisition of diverse
sensor data, our study employs advanced feature processing techniques to enhance feature
representation, thereby improving state recognition accuracy under conditions of limited
feature availability. Mekruksavanich et al. [19] demonstrated the capability of deep learning
frameworks to process complex time series data and extract meaningful features, inspiring
our application of deep learning, particularly LSTM techniques, to extract intricate features
from limited sensor data for more precise state recognition. Our work not only inherits
methodologies from these studies but also innovatively expands upon them to meet the
unique requirements of buoy state recognition, aiming to facilitate more accurate state
recognition under conditions of feature sparsity through feature extension. However, when
confronted with specific sparse datasets, relying solely on raw data may not accurately
identify the working state of a device.

Some researchers attempt to improve state recognition accuracy by integrating data
from sensors such as smartphones. Wang et al. [20] significantly enhanced the accuracy
and efficiency of transportation mode detection through the multimodal sensors of smart-
phones. Wang et al. [21] presented a traffic mode detection method based on low-power
sensors in smartphones and LSTM. The utilization of these sensors resulted in the successful
achievement of a 96.9% recognition rate for traffic modes. Drosouli et al. [22] successfully
elevated the accuracy of traffic mode detection by applying an optimized LSTM model to
multimodal sensor data from smartphones. Wang et al. [20] further leveraged data from
smartphone sensors to construct a neural network model, significantly improving the accu-
racy of identifying different traffic states. Shi et al. [23] constructed a gait recognition LSTM
network based on multimodal wearable inertial sensor data with features automatically
extracted. Nevertheless, the methods proposed in these studies still face limitations in
obtaining data, and the correlation with device states is not sufficiently prominent.

Some studies focus on processing raw features to obtain a more comprehensive dataset.
In [24], the researchers propose an Extended Space Forest (ESF) method for decision tree
construction, enhancing the performance of ensemble algorithms by introducing original
features and their random combinations into the training set. Dhibi et al. [25] innovatively
combined multiple learning models and kernel principal component analysis for feature
extraction and selection, significantly enhancing the accuracy and decision efficiency of
diagnosis. Wen et al. [3] enhanced the accuracy of navigation aids status recognition by
generating additional features through the use of Extended Space Forests and integrating
temporal domain feature fusion to capture the dynamic changes and temporal correlations
of data, achieving a maximum precision of 84.17%. Sun et al. [26] proposed an end-to-
end intelligent bearing-fault-diagnosis method that combines 1D convolutional neural
networks (1DCNNs) and LSTM networks, eliminating the need for manual feature extrac-
tion. This approach avoids errors caused by reliance on expert experience and incomplete
information, achieving an average fault identification accuracy of 99.95%. Malik et al. [27]
carried out training by utilizing an extended feature space generated through an analysis
of the original feature space, incorporating the original features, supervised randomized
features, and unsupervised randomized features. Xu et al. [28] employed a combination
of multiscale rotation reconstruction and subspace-enhanced features in a mixed space-
enhancement process, effectively enhancing the method’s performance through various
feature combination strategies. Wang et al. [29] refined features by comparing the overall
contributions of each feature to the construction of classification regression trees in a cross-
validation framework. This process aids the model in better capturing latent relationships
within the data. Nonetheless, acquiring data from sensors and obtaining deep features
containing more information from a limited set of features still present a certain level of
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complexity. Thus, the research methods employed in the literature mentioned above have
certain limitations.

This research paper elaborates on a new LSTM-based model that is based on rank
entropy extended space, along with multi-domain feature fusion and hidden feature
extraction techniques, to achieve highly accurate classifications of navigation aid states. The
core innovation of this model lies in the introduction of a space-extending operator called
“rank entropy”. This operator not only provides a different framework for quantifying and
comparing the uncertainty of various features in the dataset but also facilitates an insightful
understanding of complex data structures. Additionally, the model designs a unique multi-
domain feature fusion method which captures and analyzes the inter-dependencies of
signals in the time and frequency domains. This module comprehensively and precisely
reflects dynamic changes in navigation aid states. Finally, through the application of
hidden feature extraction techniques, the model further explores and extracts abstract
representations from the data, enhancing the recognition and understanding of multi-level
features related to navigation aid states. The integration of these three different modules
allows the model to fully leverage and enrich the features of the dataset, resulting in
considerable accuracy in navigation aid state recognition.

The main contributions of this paper are as follows:

• This study represents the first introduction of a new feature-processing framework in
the field of maritime safety, with a specific focus on navigation aids under complex
conditions. By employing advanced feature-processing techniques, our approach
accurately captures relationships among features and comprehensively considers the
impact of multidimensional characteristics, leading to a more precise identification of
the operational status of navigation aids.

• We propose three independent feature-processing modules. The feature expansion
module utilizes the rank entropy operator to capture associations between features.
The feature fusion module integrates features from the time domain, frequency do-
main, and time–frequency domain, capturing the correlation of signals in both the
time and frequency domains, providing a more comprehensive reflection of the dy-
namic evolution of navigation aids states. The feature extraction module, through the
BiLSTM model, better captures the abstract representation of navigation aids signals.

• We conducted a comprehensive comparison of our model with deep learning network
models such as LSTM, BiLSTM, 1DCNN, and LSTM-CNN. Through experimental
validation on four actual navigation aids datasets collected by the Guangzhou Mar-
itime Safety Administration, the results indicate that our proposed model significantly
surpasses current leading methods in terms of performance. This provides strong
support for research and practical applications in the field of maritime navigation.

The remaining sections of this research paper are organized as follows: Section 2
provides a detailed exposition of the three feature-processing methods proposed in this
paper. Section 3 details the experimental results, and Section 4 summarizes the study and
discusses its limitations.

2. Materials and Methods

This chapter provides a detailed introduction to the proposed EFE-LSTM model
framework, depicted in Figure 1.

The model consists of three main modules: a feature extension module, a feature fu-
sion module, and a feature extraction module. Firstly, in the feature extension module, the
rank entropy operator is introduced, integrating the concept of entropy into the extended
space algorithm. This operator effectively captures the uncertainty of data distribution and
complex relationships between features, greatly enhancing the model’s ability to handle
and understand high-dimensional, complex data. Next, in the feature fusion module,
we conduct in-depth feature fusion from three different dimensions: the time domain,
frequency domain, and time–frequency domain. The core advantage of this stage lies in
the ability to comprehensively consider the relevant characteristics of signals in the time
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and frequency domains, comprehensively revealing dynamic changes in the navigation
state. This multidimensional fusion not only improves the accuracy of recognizing the
time patterns and spectral features of navigation signals but also significantly enhances the
uniqueness and expressiveness of the model’s features. In the feature extraction module,
we employ the BiLSTM model to extract hidden features. The bidirectional modeling
capability of the BiLSTM model demonstrates outstanding performance in capturing the
spatiotemporal correlations of time series data. Through this step, the model can more ac-
curately grasp the abstract features of navigation signals, thereby effectively distinguishing
subtle differences between various navigation aid states. Finally, after finely processing
the original features through the three aforementioned modules, the LSTM base model is
employed for navigation state recognition.

Figure 1. The framework of the EFE-LSTM model.

2.1. Feature Extension Module

The Extended Space Forest (ESF) [24] method marks a progressive strategy in building
decision trees, incorporating an innovative training tactic that employs both the existing
features and those created via random combinations. This approach of feature amalga-
mation not only broadens the diversity of data portrayal but also elevates data collection
quality. The ESF algorithm exhibits exceptional performance in classification predictions,
surpassing traditional approaches, particularly in situations with datasets containing a
limited number of features.

The core concept of this module rests on the generation of new features through the
application of a series of simple yet effective feature-generating operators (such as sum, diff,
multiply, and tanh_multiply) on randomly paired sets of original features. The detailed
procedure for this method is outlined in Table 1, where feaX and feaY denote any two
features from the original dataset. To eliminate bias arising from predetermined feature
ordering, the algorithm initially randomizes the arrangement of all features, subsequently
selecting pairs from this randomized set for operation to create new features. With n
original features, the theoretical maximum number of feature pairs that can be generated is
n ∗ (n − 1)/2, which could potentially lead to duplicate features. Consequently, this study
opts to generate only n/2 new features at a time, and through a process repeated twice,
it effectively generates a total of n new features. The process flow of the ESF algorithm is
illustrated in Figure 2.
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Entropy plays a pivotal role in information theory, in which it serves as a metric for
quantifying the uncertainty and information content associated with random variables.
Within the domain of state recognition, the field of feature engineering strives to identify
features that exhibit enhanced discriminative capabilities across distinct categories. The
incorporation of entropy values is primarily geared toward cultivating a profound compre-
hension of the information interdependencies among features, thereby increasing feature
distinctiveness and consequently optimizing model performance.

Table 1. Feature-generating operators.

Operator Name Equation

Sum NewFea = f eaX + f eaY
Diff NewFea = f eaX − f eaY

Multiply NewFea = f eaX × f eaY
Tanh_multiply NewFea = tanh( f eaX × f eaY)

Figure 2. ESF algorithm flowchart.

To begin, we calculate the entropy value for each feature and normalize it to serve
as a coefficient for the original feature. This step is designed to introduce information
interplay among features, leveraging the entropy value to precisely evaluate each feature’s
significance. Features with high entropy, indicative of a wealth of information, are accorded
great weight, while features with low entropy, indicating a dearth of information, receive
a correspondingly reduced weight. This augmentation significantly bolsters the model’s
capacity to acquire data, especially in complex datasets in which the interrelationship
between features assumes heightened significance. The process for generating new features
is as follows:

NewFea = w1 · x1 + w2 · x2. (1)

Here, x1 and x2 represent any two original features, and w1 and w2 represent the
entropy values of the corresponding x1 and x2.

To broaden our analytical scope, we develop a method for determining the relative
ranking of each sample’s features and design a new operator named rank entropy. Its
fundamental principle unfolds as follows: initially, we employ an exponential function
to map each feature value of every sample to the realm of probability, ensuring that data
points with lower rankings receive higher probabilities. Specifically, for the ith sample
(i = 1, 2, 3, . . . , m), the probability mapping process for the jth (j = 1, 2, 3, . . . , n) feature
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value can be elucidated through the ensuing equation, where xij represent the jth feature
value of the ith sample., and rij denotes the rank of xij within the feature values, ranging
from 1 to n. The parameter λ is a modifiable factor that regulates the steepness of the
probability distribution. Through the computation of Equation (2), we derive the probability
distribution p(xij) among the features.

p(xij) = e−λ·rij ·xij . (2)

Subsequently, we substitute these probability values into Equation (3) to calculate the
feature entropy H(xi), where xi denotes the ith sample vector. By calculating the entropy
value of each sample for the jth feature, a new feature f eaN1 = [H(x1), H(x2), ..., H(xm)]T

can be obtained.

H(xi) = −
n

∑
j=1

p(xij) log(p(xij)). (3)

In comparison to traditional extended space operators such as sum, diff, etc., this
operator enables us to calculate the rank entropy value between any two features. This rank
entropy value can be perceived as a new feature, serving to more accurately capture the
interrelations between features, thereby enhancing model performance and the precision of
data analysis.

2.2. Feature Fusion Module

This module focuses on introducing the time domain, frequency domain, and time–
frequency domain features adopted in this study, along with their corresponding computa-
tional formulas.

(1) Time domain features: The temporal features employed in this study include the
following: the mean value Ft1, variance Ft2, mean square value Ft3, root mean square
value Ft4, maximum value Ft5, minimum value Ft6, peak value Ft7, peak-to-peak
value Ft8, and root amplitude Ft9. Additionally, dimensionless indicators include
skewness Ft10, kurtosis Ft11, a waveform indicator Ft12, a peak indicator Ft13, an
impulse indicator Ft14, a clearance indicator Ft15, a skewness indicator Ft16, and a
kurtosis indicator Ft17 [30].

(2) Frequency domain features: The frequency domain describes the relationship between
the frequency and amplitude of a signal, usually with frequency as the independent
variable and amplitude as the dependent variable. By employing a Fourier transform,
the time-domain signal is mapped to the frequency domain. Subsequently, based
on the frequency distribution characteristics and trends of the signal, the navigation
state or fault conditions of the beacon can be determined. Frequency domain analyses
include methods such as spectrum analysis, energy spectrum analysis, and envelope
analysis. A basic introduction to these methods is provided below.

(1) Spectral analysis: A spectrum analysis usually provides more intuitive feature
information than time-domain waveforms. For a time-domain signal x(t), its
spectrum X( f ) can be obtained through the Fourier transform:

X( f ) =
∫ ∞

−∞
x(t)e−j2π f tdt. (4)

Here, X( f ) is the frequency domain representation, f is the frequency, and x(t)
is the original time-domain signal.

(2) Energy spectral analysis: The energy spectrum is the magnitude squared of the
signal’s Fourier transform, representing the distribution of energy across dif-
ferent frequencies. The energy spectrum E( f ) of a signal x(t) can be expressed
as follows:

E( f ) = |X( f )|2. (5)

where |X( f )| is the magnitude of the Fourier transform X( f ) of the signal x(t).
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(3) Envelope analysis: An envelope analysis extracts low-frequency signals from
high-frequency signals. From a time-domain perspective, it is equivalent
to extracting the envelope trajectory of a time-domain waveform. First, the
analytic signal xa(t) of the signal x(t) can be obtained via the Hilbert transform:

xa(t) = x(t) + jx̂(t). (6)

where x̂(t) is the Hilbert transform of x(t). The envelope E(t) can then be
determined by calculating the magnitude of the analytic signal:

E(t) = |xa(t)| =
√

x(t)2 + x̂(t)2. (7)

(3) Time–frequency domain features: Time–frequency analysis methods provide a more
comprehensive description of the relationship between frequency, energy, and time
for non-stationary signals. Classical methods for analyzing non-stationary signals
include the short-time Fourier transform (STFT) [31] and wavelet decomposition [32],
both of which serve as important tools in the analysis of non-stationary signals. These
methods can effectively illustrate variations in the frequency and energy of a signal at
different time points. The STFT is suited for signals whose frequency content changes
gradually over time, whereas wavelet decomposition is more appropriate for signals
with sharp transitions or localized features.

(1) Short-time Fourier transform: The STFT operates by sliding a window across
the signal and performing a Fourier transform on the signal within this window.
This approach reveals the frequency content of the signal at various time
instances. The formula for STFT is expressed as follows:

STFT{x(t)}(τ, ω) =
∫

x(t)w(t − τ)e−jωtdt. (8)

Here, x(t) represents the original signal, w(t− τ) denotes the window function
centered at τ, and ω is the frequency variable.

(2) Wavelet decomposition: Wavelet decomposition involves analyzing the signal
using a series of wavelet functions derived by scaling and translating a mother
wavelet. This method provides insights into the signal’s characteristics at
different scales (frequencies) and locations (times). The wavelet decomposition
is formulated as follows:

Wx(a, b) =
∫

x(t)
1√
a

ψ

(
t − b

a

)
dt. (9)

In this equation, x(t) is the original signal, ψ(t) is the mother wavelet function,
a is the scaling parameter, and b is the translation parameter.

Multi-domain feature fusion is a data-processing process aimed at enhancing the
feature representation of time series datasets. The key steps of this process are as follows:

(a) For each feature column, we employ a time window with a length of n to slide over
each sampling data point, including the current sampling point and its adjacent two
sampling points.

(b) Calculate specific time domain or frequency domain features, such as the standard
deviation, spectral analysis short-time Fourier transform, etc.

(c) Finally, add the calculated new features to the original feature columns to extend the
feature set.

This process enables us to capture local features of time series data while integrating
time domain, frequency domain, and time–frequency domain information, thereby improv-
ing the diversity and information density of data features. The process of multi-domain
feature fusion is depicted in Figure 3.
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Figure 3. The process of the feature fusion module.

2.3. Feature Extraction Module

This paper constructs a BiLSTM architecture, as depicted in Figure 4. Utilizing it as a
feature converter, the input navigation data are mapped to a new feature space to more
effectively express the temporal dependencies within the data. The network comprises an
input layer, two LSTM layers, two fully connected layers (FCs), and an output layer.

The input layer is responsible for receiving input sequences Xi−1, Xi, Xi+1, . . . in which
each X represents a different time step of the input feature vector. The first LSTM layer
processes the input sequence in the forward direction, with each unit containing a Constant
Error Carousel (CEC) for storing and forgetting information as the memory component and
a hidden state h representing the network’s short-term memory. The second LSTM layer,
similar to the first, processes the sequence in the reverse direction, enabling the network
to utilize information from future time steps during training [33]. The subsequent two
fully connected layers (FCs) are dense layers, with each neuron connected to all neurons
in the preceding layer, facilitating the nonlinear transformation of learned features. The
ReLU activation function applied after each FC layer introduces nonlinearity, assisting
the network in learning complex data patterns. The output layer provides the final out-
puts Yi−1, Yi, Yi+1, . . ., corresponding to the predictions of the input sequence after being
processed by the network.

Finally, the hidden features extracted from the first fully connected layer are labeled
as f eaN3. The deep temporal features learned by the BiLSTM reveal critical information
about the navigation state, such as variations, periodicities, or anomalous behaviors in the
navigation signals, which are not directly evident in the original features. Combining these
hidden features with the original features provides a rich feature set for classifier training,
enhancing the model’s recognition accuracy and robustness.

Figure 4. The architectural diagram of the feature extraction network.
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2.4. LSTM

The long short-term memory (LSTM) neural network, a specialized variant of recur-
rent neural networks, demonstrates outstanding performance in sequence modeling and
processing, rendering it a crucial algorithm in the realm of deep learning. In recent years,
significant progress has been made in LSTM research, particularly in the domain of state
recognition [34–37]. Conventional recurrent neural networks are plagued by issues such as
gradient vanishing and exploding, rendering them unsuitable for effective long-sequence
modeling. In contrast, LSTM networks incorporate temporal memory units, enabling
the adept assimilation of dependencies across varying temporal scales within time series
data. Consequently, LSTM exhibits notable efficacy in handling and forecasting events
characterized by intervals and delays in time series data. Within the LSTM hidden layer,
the computational process of an individual neuron encompasses updating cell states and
calculating output values. Internally, each neuron is equipped with three gating functions:
the forget gate, input gate, and output gate. These gating functions judiciously regulate
input values, memory states, and output values. The structural configuration of a neuron
is delineated in Figure 5, with the mathematical formulations for the forget gate, input gate,
and output gate denoted, respectively.

Figure 5. The hidden layer structure of LSTM.

ft = σ
(

W f ht−1 + W f xt + b f

)
. (10)

it = σ(Wiht−1 + Wixt + bi). (11)

ot = σ(Woht−1 + Woxt + bo). (12)

In these equations, ht−1 represents the hidden state from the previous time step, and
sigma denotes the sigmoid function. ft, it, and ot denote the computed results of the
forget gate, input gate, and output gate states, respectively. W f , Wi, and Wo are the weight
matrices corresponding to the forget gate, input gate, and output gate, respectively. b f , bi,
and bo represent the bias terms associated with the forget gate, input gate, and output gate.
The final output of the LSTM is jointly determined by the output gate and the cell state.

C̃t represents the candidate value vector, and the product of the input value and the
candidate value vector is utilized to update the cell state. The computational process is
delineated as follows. Here, Wc represents the weight matrix of the input unit state, bc is
the bias term associated with the input unit state, and tanh denotes the activation function.
The forget gate regulates the extent to which information is discarded from the current cell
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state. ot represents the output value of the neuron, and ht signifies the hidden state at the
current time step.

C̃t = tanh(Wcht−1 + Wcxt + bc). (13)

Ct = ftCt−1 + iC̃t. (14)

ht = ot tanh(Ct). (15)

f (x) =
1

1 + e−x . (16)

f (x) = tanh(x). (17)

2.5. Hyperparameter Optimization

The Adam optimizer was utilized in this study to minimize the cross-entropy loss
function, with a learning rate set to 0.001. To alleviate overfitting and expedite model
convergence, dropout and batch normalization techniques were applied [38–40]. The
dropout rate was set to 0.3, and the batch size was set to 100. Detailed architecture
specifications of the LSTM model can be found in Table 2.

Table 2. LSTM model summary

Layer (Type) Output Shape Param

lstm_1 (LSTM) (None, 256) 268,288
dense_3 (Dense)) (None, 256) 65,792

activation_3 (Activation) (None, 256) 0
dropout_2 (Dropout) (None, 256) 0

batch_normalization_2 (Batch Normalization) (None, 256) 1024
dense_4 (Dense) (None, 64) 16,448

activation_4 (Activation) (None, 64) 0
dropout_3 (Dropout) (None, 64) 0

batch_normalization_3 (Batch Normalization) (None, 64) 256
dense_5 (Dense) (None, 2) 130

activation_5 (Activation) (None, 2) 0

3. Data Source Description and Analysis of Results

This section aims to validate the effectiveness of the algorithm proposed in this paper
through comprehensive experiments. Firstly, we conducted an experimental analysis
using four different datasets from the Guangzhou Maritime Bureau. We comprehensively
compared and evaluated the navigation aid state recognition results of our proposed EFE-
LSTM algorithm combined with a classic LSTM algorithm [41] and an LSTM model with
three modules. Subsequently, to verify the stability and reliability of the experimental
results, we compared our EFE-LSTM algorithm with other algorithms such as BiLSTM,
1DCNN and LSTM_CNN. To mitigate the impact of random factors on the experimental
results, we conducted five repetitions of the experiments and recorded the average results.

3.1. Data Description and Preprocessing

Ensuring diversity in datasets is crucial when evaluating the performance of the
navigation aid state recognition model. The data employed in this study originate from
the historical records of four navigation buoys managed by the Guangzhou Maritime
Bureau. It’s pertinent to note that within the context of this study, the term “navigation
aids” refers explicitly to buoys. These datasets encompass various features of the buoys,
including longitude, latitude, voltage, current, and offset distance. Specifically, Figure 6
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illustrates the geographical coordinates of the four buoys, namely, Beihai Port Buoy No.
19 (Beihai No. 19), Huizhou Port Buoy No. 5 (Huizhou No. 5), Houjiang Waterway Buoy
No. 3 (Houjiang No. 3), and Guang’ao Port Area Buoy No. 1 (Guang’ao No. 1), with
coordinates as follows: 109°5′36.48′ ′ N, 21°29′54.45′ ′ E; 114°38′39.87′ ′ N, 22°36′52.49′ ′ E;
116°57′31.23′ ′ N, 23°28′12.92′ ′ E; and 116°46′8.87′ ′ N, 23°9′52.56′ ′ E. A detailed descrip-
tion of each dataset is provided in Table 3. The diversity and richness of these datasets
hold significant implications for assessing the performance of the navigation buoy state
recognition model.

In order to guarantee the model’s robustness and accuracy, this paper employs a range
of meticulous data preprocessing techniques. Using historical record table data for Beihai
No. 19 as a case study, the dataset spans from 9 September 2019 to 11 July 2023. A portion
of the data is displayed in Table 4.

Firstly, we conducted rigorous data cleaning to eliminate samples with abnormal
values or errors, which is crucial for reducing interference factors in the dataset. Secondly,
when dealing with missing data, this paper adopted a mean imputation strategy to maintain
data integrity and availability as much as possible. Next, to enhance the stability of model
training and accelerate the convergence speed, we normalized the dataset. This step
involved mapping different feature data into a standardized numerical range, effectively
reducing biases caused by varying feature scales during the model training process. The
normalization formula is presented below:

x′ =
x − xmin

xmax − xmin
(18)

Here, x represents the original data, x′ represents the normalized data, and xmin and
xmax represent the minimum and maximum values within the feature vector, respectively.

Figure 6. Schematic diagram of the position of the light buoy.
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Table 3. The description of each dataset.

Dataset ID Dataset Name Sample Quantity Feature Quantity

1 Beihai No. 19 26,727 5
2 Huizhou No. 5 5152 5
3 Houjiang No. 3 4891 5
4 Guang’ao No. 1 17,016 5

Table 4. Partial data of Yangjiang Port navigation aid dataset.

Acquisition Time Latitude Longitude Voltage Current Offset Distance

9 September 2019 15:04:36 21.48142333 109.08951500 12.3 0 9.7579337793
9 September 2019 15:30:43 21.48151500 109.47328333 12.3 0 8.4548264142
9 September 2019 17:30:46 21.48174833 109.08964500 12.3 0 10.062118750

... ... ... ... ... ...
11 July 2023 13:38:13 21.49850000 109.09360500 13.700 0 13.305813355
11 July 2023 13:48:59 21.49850000 109.09360500 13.700 0.35 9.8824060802
11 July 2023 14:00:47 21.49850500 109.09360500 13.700 0.36 9.6478582663

3.2. Model Evaluation Metrics

When it comes to identifying the state of a navigation aid, there is a significant
imbalance in sample categories. If we only use accuracy as the sole evaluation criterion,
models that tend to classify unknown samples as majority classes (normal labels) will be
considered to have better performance. To avoid this issue, we chose to use several other
evaluation criteria, including accuracy, precision, recall, and F1 score, when measuring the
performance of the model. The F1 score is a calculation definition that takes into account
both precision and recall, providing us with a more comprehensive measure of the model’s
performance [42].

Accuracy =
TP + TN

TP + FP + TN + FN
(19)

Precision =
TP

TP + FP
(20)

Recall =
TP

TP + FN
(21)

F1 = 2 × Precision × Recall
Precision + Recall

(22)

3.3. Assessment Results
3.3.1. Experimental Comparison of Extended Space Operators

In a paper by Amasyali, M.F. et al. [24], the concept of extended space was introduced
for the first time. However, although traditional extension methods provided a larger
feature space for data, they failed to fully exploit the information within the original
features. To address this issue, our research innovatively introduces the concept of entropy
and proposes a novel rank entropy for feature extraction. This rank entropy not only
considers the distribution characteristics of the data but also comprehensively captures the
complexity and uncertainty of features within the framework of information theory. The
experimental results, as presented in Table 5, validate the effectiveness and superiority of
our method in feature extraction.
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Table 5. Comparison of performance among different extended space operators.

Operator Mean Accuracy Mean Recall Mean Precision Mean F1

/ 60.53% 74.87% 60.53% 53.59%
Sum 61.03% 71.86% 61.02% 55.39%
Diff 63.10% 74.44% 63.09% 58.22%

Multiply 62.65% 74.10% 62.65% 57.59%
Tanh_multiply 62.99% 73.89% 62.97% 58.31%

Entropy 62.06% 73.31% 62.05% 56.80%
Rank entropy (Proposed) 71.63% 78.66% 71.62% 69.68%

Note: Bold numbers represent the best performance among each evaluation metric. Under-
lined numbers indicate the second-best performance.

In Table 5, “/” denotes direct model training using the original dataset, while “sum”,
“diff”, “multiply”, and “tanh_multiply” represent traditional extended space operators;
“entropy” signifies the direct introduction of entropy as a coefficient, and “rank entropy”
is the ranking entropy proposed in this paper. All results in the table represent outcomes
averaged across the four datasets. The optimal results are highlighted in bold, while the
second-best results are underscored.

As illustrated in Table 5, upon the introduction of the extended space operators, an
overall improvement in the model’s performance was observed. Among the traditional
extended space operators, the “diff” operator exhibited the best performance across four
evaluation metrics. Specifically, compared to the direct use of the original dataset, the “diff”
operator significantly improved both the average accuracy and average precision by 2.57%
and 2.56%, respectively. In terms of the average F1 score, the improvement reached 4.63%
when using the “diff” operator compared to the original features. Despite a slight decrease
of 0.43% in the average recall rate, considering all four metrics together, the use of the
“diff” operator for extended space still shows significant advantages. This indicates that
traditional extended space operators effectively enhance the overall performance of the
model while maintaining balance.

Furthermore, the direct introduction of the concept of entropy does not lead to a signif-
icant performance improvement. Although the “entropy” operator exhibits improvements
across all metrics compared to the original model, the improvement is relatively modest. In
this context, the proposed “rank entropy” operator stands out. Compared to the traditional
extended space operator “diff”, “rank entropy” achieves a significant enhancement in all
evaluation metrics. Specifically, relative to “diff”, “rank entropy” improves the average
accuracy, recall, precision, and F1 score by approximately 8.53%, 4.22%, 8.53%, and 11.46%,
respectively. This indicates that the “rank entropy” operator successfully introduces a
more effective feature extraction mechanism, significantly improving the model’s ability to
identify navigation aid states. All subsequent experiments in the following text are based
on the proposed “rank entropy” operator introduced in this paper.

3.3.2. Select Multi-Domain Features

Through the multi-domain feature fusion method proposed in this paper, the original
dataset’s 5 features were extended to 260. An analysis of the features revealed inconsistent
correlations between different features and relatively high similarity among some feature
values. A PCA was employed for dimensionality reduction, allowing for the elimination of
insignificant principal components while retaining maximal data variance. According to
the analysis results, the cumulative variance of the first 30 principal components reached
90%, with the remaining components contributing insignificantly to the total variance.
Consequently, analyzing these principal components is sufficient for achieving a dimen-
sionality reduction, ensuring the preservation of essential data information. The specific
retention states of feature vectors are delineated in Table 6. Following the PCA-based
dimensionality reduction, the overall relationships within the dataset are preserved, critical
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data information is retained, and a substantial reduction in computational load is achieved
during the feature extraction process.

Table 6. Preserved features.

Domain Reserved Features

Time domain

root amplitude
variance

skewness indicator
kurtosis indicator

Frequency domain spectral analysis

Time–frequency domain wavelet decomposition

3.3.3. Comparison with Other Feature Extraction Models

In this study, we designed and compared multiple deep-learning models to extract
effective hidden features from navigation aid state data. Specifically, we developed four dif-
ferent model architectures: the LSTM model [43], BiLSTM model [44], 1DCNN model [45],
and LSTM-CNN model [46], each comprising two respective feature extraction layers and
two fully connected layers. All models use the output of the first fully connected layer
as the extracted hidden features. The “/” in Table 7 represents direct utilization of raw
features without extraction.

As is evident from Table 7, BiLSTM demonstrates significant advantages over other
models in multiple key performance indicators. Specifically, BiLSTM achieves an accuracy
of 68.35% and an F1 score of 65.51%, reflecting its outstanding performance in overall
prediction accuracy and true positive identification. Moreover, BiLSTM exhibits impressive
performance in recall and precision, reaching 74.85% and 68.35%, respectively, highlighting
its efficient performance in true positive identification and prediction accuracy. These data
unequivocally indicate the exceptional performance of BiLSTM in the complex task of
extracting features from time-series data.

Table 7. Comparison with other feature extraction models.

Model Mean Accuracy Mean Recall Mean Precision Mean F1

/ 60.53% 74.87% 60.53% 53.59%
LSTM 62.60% 73.45% 62.60% 57.02%

1DCNN 66.86% 74.48% 66.87% 63.15%
LSTM_CNN 67.10% 73.87% 67.11% 63.97%

BiLSTM 68.35% 74.85% 68.35% 65.51%

Note: Bold numbers represent the best performance among each evaluation metric.

3.3.4. Comparison of Performance among Different Modules

Next, a detailed comparative analysis of the performance of the standard LSTM, rank
entropy LSTM (RE-LSTM), multi-domain feature fusion LSTM (MD-LSTM), and hidden
feature extraction LSTM (HF-LSTM) models and the LSTM model incorporating rank
entropy extension, multi-domain feature fusion, and hidden feature extraction (EFE-LSTM)
was conducted across various datasets, as shown in Figure 7.
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Figure 7. Comparison of classification accuracies of five models.

Firstly, the introduction of rank entropy results in increases in accuracy for LSTM on
the BeiHai and GuangAo datasets by approximately 0.13 and 0.07, respectively, compared
to the standard LSTM. This highlights its effectiveness in capturing the importance of
sequence elements, emphasizing its crucial role in enhancing the model’s understanding
of inherent relationships within the data. Secondly, introducing the multi-domain feature
fusion module provides a noticeable improvement in model performance. On the BeiHai,
HuiZhou, and GuangAo datasets, TF-LSTM shows an accuracy increase of approximately
0.4 to 0.5 relative to the standard LSTM. This suggests that by fusing multi-domain features,
the model can more comprehensively capture changes in the temporal dimension, enhanc-
ing its adaptability in the context of complex and variable data backgrounds. Thirdly, the
introduction of the hidden feature extraction module leads to a slight increase in accuracy
for LSTM on the BeiHai and GuangAo datasets relative to the standard LSTM, with an
improvement of about 0.2 to 0.3. On the HuiZhou dataset, the improvement for HF-LSTM
is more pronounced at around 0.2. This demonstrates that the hidden feature extraction
module has a significant positive effect on capturing abstract features within the data.

Finally, the EFE-LSTM model, integrating the rank entropy, multi-domain feature
fusion, and hidden feature extraction modules, demonstrates outstanding performance
across all datasets. The EFE-LSTM model achieves an accuracy increase of approximately
0.4 on the BeiHai dataset relative to the standard LSTM, while the improvements on
the HuiZhou and GuangAo datasets are more significant, ranging from 0.4 to 0.5. This
further validates that by integrating different feature fusion modules, our model can more
comprehensively and accurately capture key features in multidimensional time data. This
provides an effective and comprehensive modeling approach for multidimensional time
data classification tasks, as demonstrated by experimental validation. Even without relying
on a complex network structure, the proposed method achieves highly accurate navigation
state recognition, highlighting the robust performance and practical value of this approach.

3.3.5. Comparison of Performance among Different Models

Finally, this paper provides a comprehensive comparison of different models in the
navigation aid state recognition task, as depicted in Table 8. Compared to 1DCNN, EFE-
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LSTM demonstrates more stable and significant improvements in accuracy. Across various
datasets, EFE-LSTM’s accuracy increases by approximately 0.12 to 0.28 relative to 1DCNN.
In comparison to LSTM-CNN, EFE-LSTM exhibits a more noticeable improvement in
accuracy. Across multiple datasets, EFE-LSTM’s accuracy increases by about 0.05 to 0.16
compared to LSTM-CNN. When compared to BiLSTM, EFE-LSTM consistently shows
higher accuracy across multiple datasets, with an improvement ranging from 0.28 to 0.41.
Relative to TCN, EFE-LSTM also achieves higher accuracy, with an improvement ranging
from 0.16 to 0.27.

In summary, EFE-LSTM outperforms models such as 1DCNN, LSTM-CNN, BiLSTM,
and TCN in multidimensional time data classification tasks. Its performance improvement
is not only remarkable across various datasets but also demonstrates significant advantages
in capturing time series information and handling complex associations in comparisons
with different models.

Table 8. Performance metrics for different methods on four datasets.

Beihai No. 19

Method Confusion Matrix Mean
Accuracy

Mean
Precision

Mean
Recall

Mean
F1

961.8 48.4
0.6511 0.7505 0.6507 0.6134LSTM 656.6 353.6

907.8 102.4
0.6602 0.7124 0.6606 0.6352BiLSTM 584.2 426

947.2 63
0.7821 0.8125 0.7821 0.77671DCNN 377.2 633

971.8 38.4
0.7614 0.8119 0.7614 0.7514LSTM-CNN 443.6 566.6

1004.2 6
0.9922 0.9921 0.9922 0.9922EFE-LSTM 9.8 1000.4

Huizhou No. 5

Method Confusion Matrix Mean
Accuracy

Mean
Precision

Mean
Recall

Mean
F1

185 14
0.7010 0.7547 0.7008 0.6841LSTM 105 94

164.8 34.2
0.7020 0.7173 0.7022 0.6969BiLSTM 84.4 114.6

180.6 18.4
0.7231 0.7584 0.7233 0.71331DCNN 91.8 107.2

181.2 17.8
0.7085 0.7497 0.7087 0.6959LSTM-CNN 98.2 100.8

189.4 9.6
0.9191 0.9212 0.9191 0.9189EFE-LSTM 22.6 176.4

Houjiang No. 3

Method Confusion Matrix Mean
Accuracy

Mean
Precision

Mean
Recall

Mean
F1

175.4 8.8
0.5994 0.7013 0.5996 0.5418LSTM 138.8 45.4

177.2 7
0.5874 0.7001 0.5875 0.5199BiLSTM 145 39.2

173.6 10.6
0.5993 0.6890 0.5995 0.54561DCNN 137 47.2

171.6 12.6
0.5988 0.6788 0.5995 0.5456LSTM-CNN 135.2 49

166 18.2
0.8334 0.8404 0.8339 0.8325EFE-LSTM 43.2 141
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Table 8. Cont.

Guang’ao No. 1

Method Confusion Matrix Mean
Accuracy

Mean
Precision

Mean
Recall

Mean
F1

598.4 21.2
0.5734 0.6913 0.5734 0.4956LSTM 507.4 112.2

584.2 35.4
0.5689 0.6636 0.5699 0.4978BiLSTM 498.8 120.8

577.6 42
0.6067 0.6876 0.6074 0.55991DCNN 445.4 174.2

598.2 21.4
0.5778 0.6947 0.5778 0.5030LSTM-CNN 501.8 117.8

588.4 31.2
0.9385 0.9387 0.9387 0.9385EFE-LSTM 45 574.6

Note: The gray background in the confusion matrix cells highlights true positives and true negatives.

4. Conclusions

This paper introduces the EFE-LSTM model, which achieves significant progress in the
recognition of navigation beacon states through the integration of entropy space extension,
multi-domain feature fusion, and hidden feature extraction. Its primary advantage lies in
extending the feature space through rank entropy, allowing for a more nuanced understand-
ing of complex signal patterns by capturing uncertainty in data distribution. Additionally,
the model integrates time and frequency domain features, providing a multidimensional
and comprehensive representation of the data, which is crucial for accurately capturing
the dynamic evolution of navigation beacon states. Finally, extracting hidden features
from the data to capture abstract representations of beacon signals further enhances the
modeling capability for navigation beacon states. Compared to traditional models, the
proposed EFE-LSTM model achieved average accuracy rates of 99.22%, 91.91%, 83.34%,
and 93.85% on four datasets, respectively. This represents an improvement of over 20% in
accuracy compared to the best-performing model in traditional models for navigational
beacon state recognition, highlighting its robustness in handling complex multidimensional
temporal data.

Future research should focus on enhancing the real-time performance of the model and
further optimizing computational efficiency to ensure that the model maintains excellent
performance when processing large datasets. Additionally, exploring a variety of feature
extension methods to enhance the model’s generalizability will be an important research
direction. Moreover, constructing more complex deep learning models to delve deeper into
the intrinsic connections among data could also improve the accuracy of status recognition.
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