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Abstract: This study addresses the challenge of estimating high-dimensional covariance matrices in
financial markets, where traditional sparsity assumptions often fail due to the interdependence of
stock returns across sectors. We present an innovative element-aggregation method that aggregates
matrix entries to estimate covariance matrices. This method is designed to be applicable to both
sparse and non-sparse matrices, transcending the limitations of sparsity-based approaches. The
computational simplicity of the method’s implementation ensures low complexity, making it a
practical tool for real-world applications. Theoretical analysis then confirms the method’s consistency
and effectiveness with its convergence rate in specific scenarios. Additionally, numerical experiments
validate the method’s superior algorithmic performance compared to conventional methods, as well
as the reduction in relative estimation errors. Furthermore, empirical studies in financial portfolio
optimization demonstrate the method’s significant risk management benefits, particularly its ability
to effectively mitigate portfolio risk even with limited sample sizes.

Keywords: covariance matrix; factor models; high dimensionality; portfolio allocation; element
aggregation
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1. Introduction

Covariance matrix estimation is essential in statistics [1], econometrics [2], finance [3],
genomic studies [4], and other related fields. This matrix quantifies the pairwise inter-
dependencies between variables in a dataset, and each element signifies the covariance
between two variables. The accuracy of this estimation is critical for statistical and data
analyses. As the size of the matrix increases, the efficiency of the estimation process often
decreases. Therefore, the development of efficient methods for this estimation remains
a significant research challenge. Various approaches concentrate on assuming specific
features in the matrix. Initial methods include principal component analysis (PCA) [5]
and factor models [6]. Other prevalent techniques encompass the constant correlation
approach [7], maximum likelihood estimation (MLE) [8], shrinkage methods [9,10], and so
on [11]. Notably, shrinkage methods have demonstrated exceptional efficacy in financial
portfolio allocation.

For the estimation of sparse or approximately sparse covariance matrices, various
element-wise thresholding techniques for the sample covariance matrix have emerged.
These include hard thresholding [12,13], soft thresholding with extensions [14], and adap-
tive thresholding [15,16]. Generally, these methods offer low computational demands and
high consistency. However, the resulting matrix might not always be semi-positive definite.
To address this, more sophisticated methods have been introduced to ensure the estimators
are semi-positive definite [17,18].

While the sparsity condition is often assumed in [6,19], it is not universally applicable.
For instance, in financial studies, variables such as stock returns often share common
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factors, making the sparsity assumption less appropriate. Instead, a more common pat-
tern in the covariance matrix of financial data is the clustering of entries. This occurs
because stocks within the same industry sector are often similarly correlated with stocks
from other sectors [20]. An illustrative example is provided by [21,22], who analyzed the
daily returns of nine companies on the New York Stock Exchange (NYSE) market based
on 2515 observations from 2000 to 2009. Their analysis revealed a matrix of correlation
coefficients without zero entries, with many coefficients sharing identical values. Using
statistical hypothesis testing, the correlation coefficients were grouped into five distinct val-
ues (0.27, 0.35, 0.56, 0.58, 0.69), shown in Figure 1a. A similar observation was made by [23].
When stocks are arranged in a particular order, the correlation coefficient matrix manifests
itself as a block-symmetric matrix, as depicted in Figure 1b, which can be written as

1 − 0.27 0 0
0 1 − 0.58 0
0 0 1 − 0.69

⊗ I3 +

0.27 0.35 0.35
0.35 0.58 0.56
0.35 0.56 0.69

⊗

1 1 1
1 1 1
1 1 1

,

where ⊗ is the Kronecker product. We will demonstrate later that this uncomplicated
framework is highly effective for estimating the covariance matrix in Corollary 3.

(a) Under the original order (b) Under the arranged order

Figure 1. Correlation coefficient matrix of the daily returns of 9 companies with stock symbols AIG,
BA, BAC, GS, INTC, JPM, MS, PG, and WFC on the NYSE market.

The proposed estimation method in this paper derives from the correlation matrix
structure mentioned earlier. This structure is widespread in numerous financial research
situations, encompassing sparse covariance matrices, the formerly noted block-wise co-
variance matrices, and all correlation coefficients in a global constant [24]. However, many
existing methods are unsuitable for estimating covariance matrices under this structure.
To broaden our scope, we delve into the estimation of covariance matrices with clustered
entries. To achieve this, we propose an element-aggregation method that is tailored to-
wards covariance matrix estimation. Moreover, we examine the theoretical properties of
our method and confirm its effectiveness through extensive numerical simulations and
real-world data analysis.

The rest of this paper is organized as follows. In Section 2, we propose the element-
aggregation method for covariance matrix estimation while also elucidating its implemen-
tation. Section 3 assesses the theoretical consistency of the estimation errors and exhibits
corresponding convergence rates. All theoretical proofs are in Appendixes A–F. Numer-
ical simulation analyses and real data analysis with portfolio allocation are presented in
Sections 4 and 5, respectively. Conclusions are provided in Section 6.
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2. Estimation and Implementation for Covariance Matrix

Suppose the multiple random variable X = (x1, ..., xp)⊤ has the covariance matrix
Σ = (σij)1≤i,j≤p, and samples Xi = (xi1, ..., xip)

⊤, i = 1, ..., n are generated from X. The
sample covariance matrix is defined as Σ̂ = (σ̂ij)1≤i,j≤p. For 1 ≤ i, j ≤ p,

σ̂ij = n−1
n

∑
ℓ=1

πℓ,ij,

where πℓ,ij = (xℓi − x̄i)(xℓj − x̄j) and x̄k = n−1 ∑n
ℓ=1 xℓk for k = 1, ..., p.

Motivated by the structure of the correlation matrix discussed in the introduction and
aiming to analyze the covariance matrices with clustered entries, we consider the following
specification for the covariance matrix. Let Ω = {σij : i < j} denote the collection of
off-diagonal elements in the covariance matrix Σ, and let the set of distinct elements in Ω
be represented by

ℵ = {ςk ∈ Ω : ςk ̸= ςk′ , ∀ 1 ≤ k ̸= k′ ≤ K},

where K is the cardinality of set ℵ, and K changes with p. In other words, σij ∈ ℵ for all
1 ≤ i < j ≤ p. For k = 1, ..., K, the index set of covariance matrix elements that are equal to
ςk is defined as

ℵk = {(i, j) : σij = ςk, 1 ≤ i < j ≤ p}.

In brief, ℵk stands for the category of ςk. Similarly, for 1 ≤ i < j ≤ p, the index set of
covariance matrix elements that are equal to σij is defined as

ℵij = {(a, b) : σab = σij, 1 ≤ a < b ≤ p}.

Then, for (i, j) ∈ ℵk, we have ℵij = ℵk.
If the sets ℵk, k = 1, ..., K are known, i.e., the indices for same elements in Σ are known,

then we can estimate ςk by averaging the sample covariance elements σ̂ij as follows for all
(i, j) ∈ ℵk,

ς̌k =
1

#ℵk
∑

(i,j)∈ℵk

σ̂ij

=n−1 1
#ℵk

n

∑
ℓ=1

∑
(i,j)∈ℵk

πℓ,ij,
(1)

where #ℵk is the cardinality of set ℵk. Thus, the covariance matrix Σ can be estimated by

Σ̌ = (σ̌ij), with σ̌ij = ς̌k, if (i, j) ∈ ℵk. (2)

Element-Aggregation Estimation Method (ELA)

We hereby introduce the element-aggregation (ELA) estimation method for estimation
purposes. As ℵk is unknown, we estimate ℵij, i.e., the category of each σij, as follows,

ℵ̃ij = {(a, b) : |σ̂ij − σ̂ab| < cϱ̂ij

√
log(p ∨ n)

n
, 1 ≤ a < b ≤ p}, (3)

where ϱ̂ij is a sample estimate of ϱij = Var(πij) and c is a tuning parameter. Regarding
the choice of this tuning parameter c, Cai and Liu [15] show that a good choice of the
tuning parameter c does not affect the rate of convergence but it does affect the numerical
performance of the estimators. The tuning parameter c can be taken as fixed at c = 2,
as suggested in [15], or it can be chosen empirically by cross-validation, such as via the
five-fold cross-validation method used in [12,15]. The tuning parameter c operates akin to
a significance level in statistical testing, and the 2-σ rule is widely endorsed for normally
distributed data, wherein approximately 95% of observations are encapsulated within the
interval of the mean plus or minus two standard deviations, denoted as [µ − 2σ, µ + 2σ]. In
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our simulations, we also discover that employing c = 2 as the tuning parameter for the
proposed ELA algorithm yields commendable performance in high-dimensional cases, and
does not differ significantly from the parameter optimization obtained by cross-validation.
Consequently, we adopt c = 2 as the tuning parameter for our subsequent analysis.

Analogous to (1), we estimate the covariance matrix element σij by

σ̃ij = n−1 1
#ℵ̃ij

n

∑
ℓ=1

∑
(s,t)∈ℵ̃ij

πℓ,st, (4)

and Σ by Σ̃ = (σ̃ij). This is the element-aggregation (ELA) estimator of the covariance matrix.
In terms of computational complexity, the ELA process requires O(p2 log(p)) time,

where log(p) accounts for the binary search computation of ℵ̃ij in {σ̂ab : 1 ≤ a < b ≤ p}. In
comparison, element-wise thresholding has a computational complexity of O(p2). There-
fore, the ELA estimation calculation is only slightly more complex than the element-wise
thresholding approach.

3. Theoretical Properties

In this section, we provide the theoretical justification for the element-aggregation
estimation under the assumption of a normal distribution of X. The results can be proven
under more general conditions using more complicated techniques. Let ∥A∥ denote the
operator norm, i.e., ∥A∥ = {λmax(AA⊤)}1/2, where λmax(AA⊤) is the square root of the
largest eigenvalue of AA⊤.

Lemma 1. Let K be the number of different values of the off-diagonal elements in the covariance
matrix Cov(X) = Σ. Let ni,k be the numbers of elements that are equal to ςk in the i-th row of Σ,
i.e., ni,k = #{j : σij = ςk, 1 ≤ j ̸= i ≤ p}. If max

1≤i,j≤p
σij ≤ M0 for some constant M0 and

Var
( 1√

#ℵk
∑

(i,j)∈ℵk

πℓ,ij

)
= O(V2

k ), k = 1, ..., K,

where Vk = Var(ς̌k) and ς̌k is the estimate in (1), then the covariance matrix estimator Σ̌ in (2) has
the following estimation error

∥Σ̌ − Σ∥ = OP

(√ log(p ∨ n)
n

) K

∑
k=1

nj,k√
#ℵk

Vk.

An important characteristic is that the effect of dimension on the estimation error is
regulated by a slowly varying function, log(p). Lemma 1 could also be extended to the
case that ℵk is unknown. In such cases, we need to identify the corresponding category ℵk.
To simplify the explanation, we will use ℵij here, since ℵij = ℵk if (i, j) ∈ ℵk.

Lemma 2. Suppose X is normally distributed with max
1≤i,j≤p

σij ≤ M0 for some constant M0. If

√
n min{|ςk − ς j|, k ̸= j}/(log(p ∨ n))1/2 → ∞,

then the identification by (3) is consistent, i.e., for any (i, j) ∈ ℵk,

Pr
( ⋃

1≤i,j≤p
{ℵ̃ij ̸= ℵij}

)
→ 0.

Theorem 1. With the above notation, if the conditions in Lemmas 1 and 2 are satisfied, then

∥Σ̃ − Σ∥ = OP

(√ log(p ∨ n)
n

) K

∑
k=1

nj,k√
#ℵk

Vk. (5)
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Below, we give some special cases of Theorem 1, and show the convergence rates in
Corollaries 1–3.

Corollary 1. Suppose Σ = (σij)1≤i,j≤p is sparse with a number of non-zero elements in each row
of o(p), i.e., c(p)/p → 0, where c(p) = maxj ∑

p
i=1(σij ̸= 0). If the conditions in Theorem 1

hold, then

∥Σ̃ − Σ∥ = OP

(
c(p)

√
log(p ∨ n)

n

)
.

This result is a special case in [12]. It could be extended to more general cases.

Corollary 2. Suppose X = (x1, ..., xp)⊤ follows normal distribution with Σ = (ς|i−j|)1≤i,j≤p. If
|ςk| = O(ck) for some c < 1, then

∥Σ̃ − Σ∥ = OP

(
log(p)

√
log(p ∨ n)

n

)
.

Finally, we consider a simple block covariance matrix with the matrix in Figure 1b as a
special case.

Corollary 3. Suppose Σ = ΛM ⊗ Im + ΦM ⊗ Ξm where Im is a m × m identity matrix, ΛM is
a diagonal matrix, Ξm is a m × m matrix with all elements 1, and ΦM is an M × M symmetric
matrix. If M is fixed as p → ∞, then we have

||Σ̃ − Σ|| = OP(n−1/2).

Remark 1. Since the dimension M of the matrix ΦM and the diagonal matrix ΛM assumed
in Corollary 3 are fixed (p → ∞), the different values for their matrix elements are at most
M(M + 1)/2 and M, respectively, so Σ also has at most M(M + 3)/2 different values, which is
fixed at p → ∞. By Lemma 2, the estimates Λ̃M and Φ̃M satisfy the rate of OP(n−1/2), i.e., for
any δ > 0, a subset of the probability space Sn : Pr(Sn) > 1 − δ can be found, such that

||Λ̃M − ΛM|| = OP(n−1/2), ||Φ̃M − ΦM|| = OP(n−1/2).

where Σ̃ = Λ̃M ⊗ Im + Φ̃M ⊗Ξm. Using the eigenvalue and Kronecker product properties, we show
in the Appendixes A–F that the covariance matrix estimate Σ̃ also has the same rate OP(n−1/2).
That is, since the number of selectable elements of the covariance matrix is determined by a fixed M,
which is not dependent on p, the rate of convergence for the covariance matrix estimate Σ̃ is also
independent of p.

Our ELA method efficiently estimates the covariance matrix with the above structure,
demonstrating both efficiency and dimensional independence. Mathematically, this block-
wise structure is straightforward. Furthermore, we hypothesize that these conclusions can
be extended to more general block-wise matrices, such as the Khatri–Rao product or the
Tracy–Singh product [25].

4. Numerical Simulation

Our study presents the ELA method to estimate the covariance matrix using an element-
aggregation idea. The ELA method is designed for simplicity and clarity, making it easy
to implement. The steps for implementing the method were thoroughly detailed in the
preceding section. This section focuses on comparing the algorithmic performance of
the proposed method with several estimation methods for high-dimensional sparse and
non-sparse covariance matrices. We compare our ELA estimation method with multiple
established methods: (1) the adaptive thresholding method [15], (2) the POETk method [19]
with k = 0, 1, 2, . . . factors, and (3) the Rothman method [18].
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The numerical simulation focuses on the relative matrix errors when estimating the
covariance matrix and the correlation coefficient matrix. To estimate the covariance matrix,
first standardize each variable. Then, multiply the elements of the correlation coefficient
matrix by the sample standard deviations of each random variable. This effectively trans-
forms the estimation of the covariance matrix into the estimation of the corresponding
correlation coefficient matrix. Thus, the ELA method’s efficiency and accuracy in capturing
the underlying data structure can be comprehensively assessed through the dual focus on
both covariance and correlation coefficient matrix estimations.

The metric employed to compare the estimation efficiency between these estimation
methods is the average matrix loss over 500 replications. The matrix losses are measured
by the spectral norm of the correlation coefficient matrix and the covariance matrix, similar
to that performed in [18]. To aid visualization, we define the relative estimation errors
between the estimated matrix and the actual matrix for both the correlation coefficient
matrix R and the covariance matrix Σ as follows:

ecor =
∥R̂ − R∥
∥R∥ × 100%, ecov =

∥Σ̂ − Σ∥
∥Σ∥ × 100%.

where ∥A∥ = {λmax(AA⊤)}1/2 denote the operator norm. The next simulation compares
the relative matrix estimation errors for various matrix types and algorithms, but also
shows how the matrix estimation error changes as the matrix dimension p increases, in
order to demonstrate more clearly the superiority of the proposed estimation algorithm.

The following three covariance matrices Σ = (σij)1≤i,j≤p are considered.

Example 1. σij =
√

ijρ|i−j| with ρ = −0.9.

Example 2. σij = (ij)1/4rij where rii = 1, rij = 0.6|i − j|−1uij for i ̸= j and uij = uji are IID
uniform on [0, 1]. A similar example was used in [16].

Example 3. Constant block matrix

Σ =

(
Σ1 Σ2
Σ2 Σ3

)
where Σ1 = 0.8Ξp/2 + 0.2Ip/2, Σ2 = −0.4Ξp/2, Σ3 = 0.3Ξp/2 + 0.7Ip/2, Ξp/2 is a (p/2)×
(p/2) matrix with all elements 1, and Ip/2 is the identity matrix of size p/2.

Remark 2. Due to the assumption of sparse covariance matrices in the adaptive thresholding
method, the POET0 method, and the Rothman estimation method [6,15,18], the covariance matrix
is estimated as a sparse matrix, where most of the matrix elements are estimated to be zero. This is
significantly different from the non-sparse covariance matrix in Example 3. The relative estimation
error of the covariance matrix estimated by these methods is relatively large compared to the sample
covariance estimation method. Therefore, the adaptive thresholding method, the POET0 method, and
the Rothman method cannot be used directly for Example 3.

Note that Σ can be written as

Σ = Σ0 + λ1ℓ1ℓ
⊤
1 + λ2ℓ2ℓ

⊤
2 ,

where Σ0 is a sparse matrix and λ1 and λ2 are the first two largest eigenvalues of Σ, with ℓ1 and
ℓ2 as the corresponding eigenvectors, respectively. By this decomposition, the POETk method with
k = 2 factors in [19] can be used, i.e., POET2 is applicable to the estimation for Example 3.

Random samples are generated from X ∼ N(0, Σ) with sample sizes n = (100, 200)
and p = (100, 500, 900, 1400, 1900, 2300, 2500). The averages of the relative estimation errors,
based on 500 replications, are depicted in Figures 2–4. The ELA method is represented by a
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solid red line. Only methods with a performance comparable to the best one are displayed
in each panel.

Figure 2. Relative estimation error for the correlation matrix (left) and the covariance matrix (right)
in Example 1 with sample sizes n = 100 and 200; the estimation is based on 500 replications per
data point.

Figure 3. Relative estimation error for the correlation matrix (left) and the covariance matrix (right)
in Example 2 with sample sizes n = 100 and 200; the estimation is based on 500 replications per
data point.
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Figure 4. Relative estimation error for the correlation matrix (left) and the covariance matrix (right)
in Example 3 with sample sizes n = 100 and 200; the estimation is based on 500 replications per
data point.

In Figure 2 for Example 1 with n = 100, our ELA estimator for the correlation coefficient
matrix R is slightly inferior to POET0 but exceeds Rothman. For the covariance matrix Σ,
our method slightly lags behind both POET0 and Rothman. However, with n = 200, the
ELA method outperforms them in both the correlation coefficient matrix and the covariance
matrix with p < 1000, ranking first for the correlation coefficient matrix and second for the
covariance matrix with p > 1000. In general, the ELA method is comparable to both POET
and Rothman for Example 1.

In Figure 3 for Example 2, the ELA estimator consistently outperforms both POET and
Rothman for both matrices when n = (100, 200). Although Remark 2 suggests that POET2
is suitable for Example 3, Figure 4 for Example 3 demonstrates the superior efficiency of
the ELA method over POET2 for both matrices with n = (100, 200). In summary, the ELA
method significantly outperforms both POET and Rothman for Examples 2 and 3.

Furthermore, we conducted a comprehensive analysis comparing the average computa-
tional time across 500 replications for our ELA method alongside the adaptive thresholding
method [15], the POET method [19], and the Rothman method [18]. These comparisons
are detailed in Table 1. The random samples are still generated from X ∼ N(0, Σ) with
Σ following Example 1, sample sizes n = (100, 200), and covariance matrix dimensions
p = (100, 500, 900, 1400, 1900, 2300, 2500). Notably, due to the POETk methods exhibiting
computational times that are broadly analogous for different values of k, we present only
the results for POET1.

Upon examination of Table 1, it is evident that, for lower dimensions of p = (100, 500),
the ELA method has a higher computational cost compared to the adaptive thresholding
and Rothman methods but outperforms the POET method. For p = (900, 1400), the ELA
method is slightly slower than adaptive thresholding but remains superior to both the
POET and Rothman methods. When dealing with higher dimensions of p = (2300, 2500),
the ELA method demonstrates a significant computational advantage over its counterparts.
This suggests that the ELA method scales more efficiently with increasing dimensionality,
which is a desirable attribute for high-dimensional data analysis.
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Table 1. The average computational time over 500 replications of the ELA method, the adaptive
thresholding method, the POET1 method, and the Rothman method for sample sizes n = (100, 200)
and p = (100, 500, 900, 1400, 1900, 2300, 2500) (in seconds).

Method Adaptive Thresholding POET Rothman ELA

p n = 100 n = 200 n = 100 n = 200 n = 100 n = 200 n = 100 n = 200

100 0.005 0.006 0.222 0.815 0.012 0.013 0.034 0.037
500 0.370 0.409 0.806 2.042 0.828 0.830 0.863 0.930
900 2.176 2.207 2.657 5.163 4.680 4.910 2.849 3.131

1400 7.967 7.467 9.248 12.711 18.444 18.442 7.743 8.087
2300 44.901 43.974 34.241 42.228 81.292 81.834 20.525 23.054
2500 60.117 60.876 43.077 52.826 108.323 110.301 25.317 25.570

Our simulation studies have yielded the following conclusions: The ELA method
outperforms both POET and Rothman for Examples 2 and 3 in both the correlation coeffi-
cient matrix and the covariance matrix with n = (100, 200) and p = (100, . . . , 2500). For
Example 1, it performs comparably to them. These results emphasize the efficiency of the
ELA method for estimating covariance matrices. Our proposed ELA technique is not just
computationally efficient but also markedly lowers the relative estimation error, i.e., with
minimal loss of spectral norm for the correlation coefficient and the covariance matrix.

5. Real Data Analysis and Portfolio Allocation

The component stocks of the SP500 index were analyzed using historical daily prices
sourced from Yahoo Finance through the R package ‘tidyquant’. We selected 430 stocks from
SP500 with daily prices spanning over 3000 days, from 1 January 2008 to 31 December 2019,
to ensure a sufficiently large sample size. This allowed for a larger window, N = 500, to be
selected when we use the rolling window method later. Our emphasis is on the correlation
coefficient matrix and covariance matrix for daily returns. Although the covariance matrix,
in particular the individual stock variances, is known to fluctuate over time, the correlation
coefficient matrix remains relatively stable. This stability underscores the significance of
evaluating estimation methods based on the correlation coefficient matrix [26]. The constant
conditional correlation multivariate GARCH model [26] is defined as Ht = ΛtRΛt, where
Λt = diag(σ1t, ..., σpt), R = (ρij)1≤i,j≤p is the constant correlation coefficient matrix, and σit
is the conditional volatility modeled by GARH(1,1) for i-th stock based on its past daily
returns. See [27] for more discussion about the performance of GARCH(1,1). Let rk,t be
the return of the k-th stock on day t, where k = 1, ..., 430. We begin by standardizing the
returns using

uk,t = rk,t/σk,t.

In order to evaluate the estimation performance of the covariance matrix, we assume that
the covariance matrix of ut = (u1,t, ..., up,t)⊤ remains constant over time or changes very
slowly.

Rooted in modern portfolio theory (MPT), portfolio allocation advocates strategically
distributing investments across diverse asset classes to optimize the trade-off between risk
and return. The MPT theory highlights the significance of not only choosing individual
stocks but also the proportional weighting of these stocks in a portfolio [28,29]. Therefore,
we investigate the optimal allocation for minimum risk portfolios of stocks, utilizing the
estimated covariance matrix of various methods.

To evaluate various methods, we apply their estimators to construct minimum risk
portfolios. For any rolling window of time (t − N, ...., t − 1), we utilize data from one
window to estimate the covariance matrix via different methods, including (1) our ELA
method, (2) the POETk method [19] with k = 0, 1, 2 factors, (3) the shrinkage method [9],
denoted by ShrinkMarket, and (4) the simple sample covariance matrix, denoted by Sample.
The simple sample estimate of the covariance matrix Σ for a given time t is defined as
Σ̂S

t = N−1 ∑t−1
s=t−N(us − ū)(us − ū)⊤ with us = (u1,s, ..., up,s)⊤.
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For an estimated covariance matrix Σ̂t, the minimum risk portfolio wt = (w1,t, ..., wp,t)⊤

for time t is defined as
w∗

t = arg min
wt

w⊤
t Σ̂twt

subject to wi,t ≥ 0, i = 1, ..., p

w1,t + ... + wp,t = 1.

The portfolio for time t is then w⊤
t ut. To determine the portfolio with the lowest risk, we

calculate the standard deviation of the portfolio returns {w⊤
t ut, t = N + 1, ..., T}. Estimators

yielding a smaller standard deviation are deemed superior in portfolio allocation.
To understand how risk varies with the number of stocks, we alphabetically order the

stocks by their symbols on the New York Stock Exchange and analyze growing subsets of
stocks with p = 50, 70, 90, ..., 430. The risks associated with portfolios based on different
methods are illustrated in Figure 5, with the ELA method highlighted by a red solid line.
As the sample size N in the rolling window increases from 100 to 500 across the panels,
the performance gap between the different estimation methods narrows, illustrating the
homogeneity of the correlation matrix.

Figure 5. Portfolios of minimum risk based on different estimators of the covariance matrix.

Figure 5 shows that portfolios crafted using the ELA method consistently have the
lowest risk compared to the POETk methods, the shrinkage method, and the sample
covariance matrix method, especially with smaller sample sizes of N = 100 and N = 200.
Therefore, the ELA method is superior in constructing portfolios that minimize risk, is an
effective tool for reducing portfolio risk, and is suitable for a wide range of sample sizes.

6. Conclusions

In this paper, we introduce a novel method called element-aggregation (ELA) esti-
mation for the estimation of covariance matrices. The ELA method stands out due to its
simplicity, low computational complexity, and applicability to both sparse and non-sparse
matrices. Our theoretical analysis shows that the ELA method offers strong consistency
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while maintaining computational efficiency and dimensional independence, especially
concerning block-wise covariance matrices.

In our numerical simulation study, we highlight the exceptional effectiveness of the
ELA method in estimating correlation coefficient matrices and covariance matrices using
diverse random samples. In comparison to established methods like POET and Rothman,
the ELA method consistently either outperforms or equals them. The computational
efficiency of our ELA method is complemented by a significant reduction in the relative
estimation error for both correlation coefficients and covariance matrices.

In the real data analysis of the SP500 index stocks, the ELA method consistently
generates portfolios with the lowest risk in comparison to other listed methods. This
outcome is particularly pronounced in scenarios with smaller sample sizes, underscoring
the potent ability of the ELA method to construct risk-minimized portfolios.

7. Future Work

This paper delves into the estimation of covariance matrices employing an elemen-
tal clustering approach, substantiating and evaluating the consistency and efficiency of
the proposed methodology within the realm of high-dimensional data. The exponential
growth in data volume and dimensionality due to advancements in computational and stor-
age technologies has led to the emergence of ultra-high-dimensional and high-frequency
datasets. Thus, the extensibility of the proposed method to these novel datasets, coupled
with the demonstration of its consistency and efficacy, presents a significant avenue for
future research. In addition, the exploration of computational strategies to increase effi-
ciency under the constraints of ultra-high-dimensionality and to optimize the trade-off
between computational resources and analytical accuracy is imperative. Furthermore,
the proposed method has the potential to be integrated into diverse domains, such as
psychology, social sciences, and genetic research. This also represents a promising direction
for future research.
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Appendix A. Proof of Lemma 1

Proof. First, recall that ς̌k =
1

#ℵk
∑(i,j)∈ℵk

σ̂ij with σij = ςk for all (i, j) ∈ ℵk. We regard σ̂ij as
independent zero-mean random variables with E(σ̂ij) = ςk, for all (i, j) ∈ ℵk. By Bernstein
inequalities we have

|ς̌k − ςk| =
Vk√
#ℵk

OP

(√ log(p ∨ n)
n

)
, k = 1, ..., K.

where Vk = Var(ς̌k). For symmetric matrices, by [30], we have

∥Σ̌ − Σ∥ ≤ max
j

p

∑
i=1

|σ̌ij − σij|. (A1)
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For the right hand side above,

p

∑
i=1

|σ̌ij − σij| =
K

∑
k=1

∑
i:σij=ςk

|σ̌ij − ςk|

=
K

∑
k=1

nj,k|ς̌k − ςk|

≤ OP

(√ log(p ∨ n)
n

) K

∑
k=1

nj,k√
#ℵk

Vk.

We complete the proof.

Appendix B. Proof of Lemma 2

Proof. Let Dn = (M log(p ∨ n))1/2
√

ϱab/n. For any (i, j) such that σij = ℵk, recall that
ℵ̃ij = {(a, b) : |σ̂ij − σ̂ab| < Dn}. Let W1 = {(a, b) ∈ ℵk : (a, b) /∈ ℵ̃ij}, and W2 = {(a, b) ∈
ℵ̃ij : (a, b) /∈ ℵk}. Obviously,

{ℵ̃ij ̸= ℵk} ⊂ W1 ∪ W2.

Thus, it is sufficient to prove

Pr(W1) → 0 and Pr(W2) → 0.

For any (a, b) ∈ W1, we have (a, b) ∈ ℵk, i.e., σab = ςk, and

{(a, b) /∈ ℵ̃ij} =
{
|σ̂ij − σ̂ab| ≥ Dn

}
⊂ {|σ̂ij − ςk| ≥

1
2

Dn} ∪ {|σ̂ab − ςk| ≥
1
2

Dn}.

For any σab = ςk, if X follows normal distribution, by Bernstein inequality, we have

Pr
{
|σ̂ab − ςk| ≥

1
2

Dn

}
≤ exp(− 1

16
M log(p ∨ n)) = (p ∨ n)−M/16 (A2)

and

Pr
{
|σ̂ij − σ̂ab| ≥ Dn

}
≤ Pr

{
|ςk − σ̂st| ≥

1
2

Dn

}
+ Pr

{
|ςk − σ̂ij| ≥

1
2

Dn

}
≤ 2(p ∨ n)−M/16.

Thus, as n → ∞,

Pr(W1) ≤ ∑
(a,b)∈ℵk

Pr{(a, b) /∈ ℵ̃ij} ≤ 3(p ∨ n)−M/16 p2 → 0, if M > 32. (A3)

Now, for any (a, b) ∈ W2, we have (a, b) /∈ ℵk, but instead (a, b) ∈ ℵs for some s ̸= k.
By the assumption, we have |ςk − ςs| > 2Dn when k ̸= s and log(p ∨ n)/n → 0. Thus,{

|σ̂ij − σ̂ab| ≤ Dn
}
⊂

{
|(σ̂ij − ςk) + (ςs − σ̂ab) + (ςk − ςs)| ≤ Dn

}
⊂

{
(|ςk − ςs| − |σ̂ij − ςk| − |ςs − σ̂ab|) ≤ Dn

}
=

{
(|σ̂ij − ςk|+ |ςs − σ̂ab|) ≥ (|ςk − ςs| − Dn)

}
⊂

{
(|σ̂ij − ςk|+ |ςs − σ̂ab|) ≥ Dn

}
⊂

{
|σ̂ij − ςk| ≥

1
2

Dn
}
∪
{
|ςs − σ̂ab| ≥

1
2

Dn
}

.

Similar to (A2) and (A3), we have

Pr(W2) ≤ ∑
(a,b)∈ℵk

Pr{(a, b) ∈ ℵ̃ij} ≤ 3(p ∨ n)−M/16 p2 → 0, if M > 32. (A4)
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Thus, Lemma 2 follows from (A3) and (A4).

Appendix C. Proof of Theorem 1

Proof. It follows immediately by applying Lemma 1 to
⋃

1≤i,j≤p{ℵ̃ij ̸= ℵk} in Lemma 2.

Appendix D. Proof of Corollary 1

Proof. For simplicity, we only consider the case with EX = 0 and σ̂ij = n−1 ∑n
k=1 xkixkj.

For any ℓ = 1, ..., n, define πℓ,ij = xℓixℓj and πij = xixj. Let ℵ1 = {(i, j) : σij = 0}. By the
assumption, we have #ℵ1 = p(p − 1)(1 − o(1)) and #ℵk = O(c(p)) for k = 2, ..., K. Note
that

V2
k = Var( ∑

(i,j)∈ℵk

πℓ,ij/
√

#ℵk) ≤ #ℵk max
(i,j)∈ℵk

Var(σ̂ij) = O(1)#ℵk. (A5)

Obviously, if we can prove that for those σij = 0, the covariance

V2
1 = Var( ∑

(i,j)∈ℵ1

πij/
√

#ℵ1) = O(c(p)2), (A6)

then

K

∑
k=1

nj,k√
#ℵk

Vk ≤
p√
#ℵ1

V1 +
K

∑
k=2

Vk ≤
p√
#ℵ1

O(c(p)) +
K

∑
k=2

#ℵkO(1) = O(c(p)),

thus the Corollary 1 follows.
By the properties of normal distribution, we have

Cov(πij, πab) = E(xixjxaxb)− σijσab

= E(xixj)E(xaxb) + E(xixa)E(xjxb) + E(xixb)E(xjxa)− σijσab

= E(xixa)E(xjxb) + E(xixb)E(xjxa)

= σiaσjb + σibσja.

(A7)

Thus, by assumption that #{σij ̸= 0, 1 ≤ i < j ≤ p} = O(pc(p)), it follows that

#{Cov(x1ix1j, x1sx1t) ̸= 0, i < j, s < t} = O(p2c(p)2).

Thus,
Var( ∑

(i,j)∈ℵ1

πij/
√

#ℵ1) = O(p2c(p)2/p2) = O(c(p)2).

This completes the proof of (A6).

Appendix E. Proof of Corollary 2

Proof. By (A7) and the assumption that σij = ς|i−j|, we have

|Cov(πij, πab)| = O(ς|i−a|ς|j−b| + ς|i−b|ς|j−a|). (A8)

For (i, j) and any k > 0, define

Ak = {(a, b) : |i − a| = k and |j − b| ≤ k} ∪ {(a, b) : |i − a| ≤ k and |j − b| = k}.

It is easy to see that min(|i − a| + |j − b|, |i − b| + |j − a|} ≥ k for any (a, b) ∈ Ak and
#Ak = 8k. Thus,

ς|i−a|ς|j−b| + ς|i−b|ς|j−a| = O(ck), for any (a, b) ∈ Ak,
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and

∑
(a,b)

|Cov(πij, πab)| =
p

∑
k=1

∑
(a,b)∈Ak

|Cov(πij, πab)| =
p

∑
k=1

8kO(ck) ≤ C0

where C0 is a constant. Moreover, for any set S ,

Var( ∑
(a,b)∈S

πab) ≤ C0#S . (A9)

Let Πℓ = x1x1+ℓ + ... + xp−ℓxp. In a similar calculation, we can show that

Var(Πℓ) = O(p − ℓ).

Thus, we have

|ς̃ℓ − ςℓ| = O
(√ log(p ∨ n)

(p − ℓ)n

)
.

Let I = {k : |ςk − ςℓ| > Dn for all ℓ ̸= k}, i.e., I is the set of elements in the matrix that
can be identified by Dn. It can also easily be seen that #I = O(log(p)), and thus

∑
k∈I

|ς̃k − ςk| = O(#I

√
log(p ∨ n)
(p − #I)n

) = O(

√
log(p ∨ n)

n
). (A10)

Let I I = {k : |ςk| ≤ Dn/p2}, i.e., I I are all the elements in the matrix that are very
small by themselves. When p ∨ n is big enough, I ∩ I I = ∅ and #I I = p − O(log(p ∨ n)).
For any |σij| ≤ Dn/p2, let

σ̃ij =
1

#ℵ̃ij
∑

(s,t)∈ℵ̃ij

σ̂st, and σ̄ij =
1

#ℵ̃ij
∑

(a,b)∈ℵ̃ij

σab,

where ℵ̃ij = {(a, b) : |σ̂ij − σ̂ab| < Dn}. It is easy to see that #ℵ̃ij = p(p − O(log(p ∨ n)),
and by (A9),

Var(σ̂ij) = O(1/(np2)).

Thus,

max
(i,j)∈⋃

k∈I I ℵk

|σ̃ij − σ̄ij| = Op(

√
log(p ∨ n)

p2n
). (A11)

On the other hand, we can see

∑
k∈I I

|ςk| ≤ (Dn/p2)
∞

∑
i=1

ci = O(Dn/p2),

and thus,
max

(i,j)∈⋃
k∈I I ℵk

|σij − σ̄ij| = O(Dn/p2). (A12)

It follows from (A11) and (A12) that

max
(i,j)∈⋃

k∈I I ℵk

|σ̃ij − σij| = Op(

√
log(p ∨ n)

p2n
).

and

∑
k∈I I

|ς̃k − ςk| = pOp(

√
log(p ∨ n)

p2n
) = Op(

√
log(p ∨ n)

n
). (A13)
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Finally, let I I I = Ω − I − I I. Because ςk = O(ck), if (i, j) /∈ I we must have ck − ck+1 <
c1Dn for some c1 > 0, where σij = ςk. Thus, σij = O(Dn) for any (i, j) ∈ I I I. It is easy to see
that #I I I = O(log(p)). Let σ̄ij be defined similarly as above. Because |σ̂ij − σij| = O(Dn)
and by definition

sup
(a,b)∈ℵij

|σ̂ij − σ̂ab| ≤ Dn

thus
|σ̄ij − σij| < 4Dn.

On the other hand, we have

max
(i,j)∈⋃

k∈I I I ℵk

|σ̃ij − σ̄ij| = O(log(p))Op(

√
log(p ∨ n)
(log p)2n

) = Op(

√
log(p ∨ n)

n
).

Similar to (A13), it follows from the above two equations that

∑
k∈I I I

|ς̃k − ςk| ≤ O(log(p)Dn). (A14)

The lemma follows from (A1), (A10), (A13), and (A14).

Appendix F. Proof of Corollary 3

Proof. It is easy to see that in Σ there are at most M(M + 3)/2 different values, which
is fixed as p → ∞. By Lemma 2, these elements can be consistently identified and be
estimated with root-n consistency, i.e., for any δ > 0, we can find a subset of probability
space Sn : Pr(Sn) > 1 − δ on which

||Λ̃M − ΛM|| = OP(n−1/2), ||Φ̃M − ΦM|| = OP(n−1/2).

where Λ̃M = diag(λ̂1, ..., λ̂M) and that

Σ̃ = Λ̃M ⊗ Im + Φ̃M ⊗ Ξm.

Let τ̂1, ..., τ̂M be the M eigenvalues of Φ̃M, with corresponding eigenvectors µ̂1, ..., µ̂M,
respectively. Then, it is easy to check that the eigenvalues of Φ̃M ⊗ Ξm are mτ̂1, ..., mτ̂M and
0 of (m − 1) ∗ M replications. Because Im is the identity matrix with the same dimension as
Ξm, the eigenvalues for Λ̃M ⊗ Im + Φ̃M ⊗ Ξm are λ̂1 + mτ̂1, ..., τ̂m + mλ̂M and λ̂1 of (m − 1)
replications, ..., and λ̂m of (m − 1) replications.

Let the M eigenvectors of ΦM be µ1, ..., µM, respectively. Note that the first eigenvectors
of Ξm are ν1 = (1, ...., 1)⊤/

√
m. Thus, the first M eigenvectors of Λ̃M ⊗ Im + Φ̃M ⊗ Ξm are

ℓ̂M = µ̂k ⊗ ν1, k = 1, ..., M and that of ΛM ⊗ Im + ΦM ⊗ Ξm are ℓk = µk ⊗ ν1, k = 1, ..., M,
respectively. It is easy to verify that

||ℓ̂k − ℓk|| = ||µ̂k ⊗ ν1 − µk ⊗ ν1|| = ||µ̂k − µk|| × ||ν1|| = ||µ̂k − µk|| = OP(n−1/2)

for k = 1, ..., M.
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