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Abstract: Self-oscillatory systems have great utility in energy harvesting, engines, and actuators
due to their ability to convert ambient energy directly into mechanical work. This characteristic
makes their design and implementation highly valuable. Due to the complexity of the motion
process and the simultaneous influence of multiple parameters, computing self-oscillatory systems
proves to be challenging, especially when conducting inverse parameter design. To simplify the
computational process, a combined approach o0f Random Forest (RF) and Backpropagation Neural
Network (BPNN) algorithms is employed. The example used is a self-rotating skipping rope made
of liquid crystal elastomer (LCE) fiber and a mass block under illumination. Numerically solving
the governing equations yields precise solutions for the rotation frequency of the LCE skipping
rope under various system parameters. A database containing 138,240 sets of parameter conditions
and their corresponding rotation frequencies is constructed to train the RF and BPNN models. The
training outcomes indicate that RF and BPNN can accurately predict the self-rotating skipping rope
frequency under various parameters, demonstrating high stability and computational efficiency. This
approach allows us to discover the influences of distinct parameters on the rotation frequency as well.
Moreover, it is capable of inverse design, meaning it can derive the corresponding desired parameter
combination from a given rotation frequency. Through this study, a deeper understanding of the
dynamic behavior of self-oscillatory systems is achieved, offering a new approach and theoretical
foundation for their implementation and construction.

Keywords: self-rotation; liquid crystal elastomer; light powered; Random Forest; Backpropagation
Neural Network

MSC: 34; 65; 74

1. Introduction

Self-excited motion plays a pivotal role in applications by allowing systems to offset
damping losses by drawing energy from the ambient energy [1–3], negating the requirement
for intricate control mechanisms or external power supplies [4–9]. This motion’s stability is
notable, as its frequency and amplitude are determined by the system’s intrinsic properties
rather than state parameters [10]. This unique aspect opens up possibilities in engineering
across diverse domains such as soft robotics [11], actuators [12], dampers [13], biomimetic
devices [14], energy harvesting [15], nanotechnology [16], and mechanized logistics [17].

Recently, there has been an increase in the development of self-oscillating systems
crafted from materials that react to stimuli, including but not limited to hydrogels [14,18,19],
ionic gels [20], dielectric elastomers [21], and liquid crystal elastomers (LCEs) [22–27].
By using these materials, a variety of self-excited motion patterns have been demon-
strated, including rolling [28–31], bending [32–35], vibration [36,37], telescoping [38,39],
torsion [40,41], self-floating [42], swinging [43], swimming [44], buckling [45–47], jump-
ing [48–50], rotation [51–53], chaos [54], and reverse [55,56]. Even several coupled self-
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excited oscillators that can move synchronously are proposed [57]. Typically, the non-
linear feedback mechanisms are responsible for these self-excited motion patterns. For
instance, self-masking [58], coupling of large deformation to chemical reactions [59–61], and
photothermal surface tension gradients [62,63] are included. Among stimuli-responsive
materials, optically responsive materials have garnered significant attention due to their
exceptional properties such as environmental friendliness, remote control capabilities, and
immediacy [20,27,64,65]. LCE is stands out as one of the leading examples in this category.

The reality is that the analysis and design of self-oscillatory systems come with certain
difficulties and complexities. Conventional analytical methods typically involve construct-
ing a nonlinear dynamic model and deriving the governing equations through numerical
computations. Nevertheless, the nonlinear, chaotic, and unstable dynamic behaviors of
self-oscillatory systems make rapid behavior prediction unfeasible. Determining the ap-
propriate parameter values is also challenging because self-oscillatory systems are difficult
to understand based on the desired system behavior. When looking for the appropriate
parameter values, it is essential to consider the dynamic characteristics of the system and
the application requirements. Self-oscillatory systems are complex, making it challenging
to assess the significance of the internal parameters. Finding a simple and quick approach
to handle the analysis and design of self-oscillatory systems is crucial.

Taking the LCE self-rotating skipping rope as an example, this paper utilizes Ran-
dom Forest (RF) and Backpropagation Neural Network (BPNN) algorithms for behavior
prediction and inverse design. Machine learning techniques such as RF and BPNN are
effective in forecasting outcomes for regression [66,67] and classification [68,69] tasks. RF
and BPNN can capture complex nonlinear relationships [70] between input features and
target variables. This is accompanied by merits such as interpretability, the ability to handle
high-dimensional data and feature interactions, and resistance to overfitting. The tradi-
tional numerical solution method allows for obtaining the exact solution for the nonlinear
dynamics model of the system, and provides the dataset necessary for training and testing
the algorithm. Combining the advantages of the RF algorithm for processing classification
issues and the BPNN algorithm for regression prediction, after hyperparameter training
and tuning, we can predict the rotation frequency of the LCE skipping rope [71] and re-
verse engineer its parameter combinations based on known conditions. The outcomes of
behavior prediction and inverse design validate the accuracy of this approach. In summary,
several factors need to be taken into account when analyzing and designing self-oscillatory
systems, including the dynamic characteristics of the system, parameter estimation, and
control strategies. Different methods and techniques may be required to solve problems
based on varying application requirements. The behavior prediction and inverse design
based on RF and BPNN algorithms proposed in this paper provide a simple and effective
approach for the analysis and design of self-oscillatory systems.

This document is organized as follows. Section 2 introduces the derivation of gov-
erning equations from the nonlinear dynamics model of the LCE skipping rope under
steady illumination [71]. Section 3 presents the training results of RF and BPNN algorithms
along with the discussion on their generalization capabilities. Section 4 utilizes predicted
results to elucidate how the systematic parameters affect the rotation frequency of the
self-rotating skipping rope. The effectiveness of inverse design is further confirmed in
Section 5. Section 6 provides the conclusions in the end.

2. Model and Theoretical Framework

Firstly, we provide the theoretical framework for a skipping rope exposed to constant
illumination. Secondly, we utilize the moment of momentum theorem to formulate the
equations governing its motion. The evolution of the cis-isomer ratio in the LCE fiber,
dimensionless treatment, and the traditional numerical solution for differential governing
equation with variable coefficients are among them.
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2.1. Rotational Dynamics of a Self-Rotating Skipping Rope

The optically activated self-rotating LCE fiber system [71], which is depicted in
Figure 1, operates exposed to constant light. The ends of the LCE fiber are fixed, and
a mass block with mass m is adhered to its middle portion. The distance between the two
hinges is represented by 2D. In the reference state shown in Figure 1a, the original length
of the LCE fiber is 2L0. To simplify the analysis, we only consider the damping experienced
by the block. In this analysis, the LCE fiber’s mass is considered to be negligible. The
LCE fiber’s photosensitive azobenzene liquid crystal molecules align parallel to the fiber’s
longitudinal direction. It is widely recognized that under illumination, these molecules
transit from a linear trans state to a bent cis state, as illustrated in Figure 1b. This molecular
reconfiguration results in the contraction of the LCE fiber [72]. The yellow-colored areas
in the initial state (Figure 1b) and current state (Figure 1c) stand for the illumination zone,
and β is utilized to signify the illumination range. Constant parallel light is projected along
the x-axis direction. Because of light absorption, the light intensity in the LCE fiber varies
along its thickness. The relationship between the cis-to-trans and trans-to-cis absorption
coefficients determines the depth of light penetration, typically around 100 microns [73].
To simplify, the LCE fiber with a radius much smaller than the depth of light penetration
is selected, and any light attenuation in both air and the LCE fiber is ignored. Based on
this, light is instantly and uniformly distributed throughout the fiber. Figure 1d is a simple
diagram of machine learning.
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Figure 1. Schematic diagram of an LCE self-rotating skipping rope system consisting of an optical-
lyresponsive LCE fiber, a mass block, and a rod with two hinges: (a) Reference state, (b) Initial state,
(c) Current state, (d) Machine learning.

The mass block is initially positioned at an angle α0. Subsequently, the block starts
to descend from static due to the gravitational force. During the rotation, the position
of the block is denoted by α(t), the length of the LCE fiber is indicated by 2L(t), and the
position of the fiber is denoted by θ(t). The length between the block and the x-axis is
labeled r(t). When the LCE fiber is exposed to light, the contraction of the LCE fiber occurs
due to the trans-to-cis transition of azobenzene liquid crystal molecules. Conversely, when
the LCE fiber is in the dark, the contraction recovers due to the cis-to-trans transition of
the azobenzene liquid crystal molecules. The variation of length results in shifting of the
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block’s gravitational energy, and the light energy is harvested to counteract energy losses
and maintain the rotation.

The mass block is subjected to gravitational force mg with g being gravitational
acceleration, and the damping force c

.
αr with c being the damping coefficient. The governing

equation that describes the mass block’s motion can be easily formulated as

d
(
mr2 .

α
)

dt
= −mgr sin α − c · .

α · r2 (1)

in which
r(t) =

√
L2(t)− D2. (2)

The combination of Equations (1) and (2) produces the following equation:

d
[
m
(

L2(t)− D2) .
α
]

dt
= −mg

[√
L2(t)− D2

]
sin α − c · .

α
[

L2(t)− D2
]
. (3)

Equation (3) can be further converted to

..
α = −

[
2L(t)

.
L(t)

L2(t)− D2 +
c
m

]
.
α − g√

L2(t)− D2
sin α (4)

where
..
α and

.
L cos θ denote d2α

dt2 and d(L cos θ)
dt of the block, respectively.

The elastic strain is assumed to be infinitesimal and is ignored. As a result, the fiber
length can be related to the light-induced contraction:

L = L0[1 + ε(t)]. (5)

Combining Equations (3) and (5), we can obtain

r2 = r2
0 + L2

0

[
ε2(t) + 2ε(t)

]
. (6)

For the sake of simplifying the analysis, the fraction of cis-isomers within the LCE is
assumed to be considerably less than 1. Hence, ε(t) can be linked with ϕ(t) as

ε(t) = −C0ϕ(t) (7)

with C0 being the contraction coefficient. Inserting Equations (7) into (5) leads to

L = L0[1 − C0ϕ(t)]. (8)

2.2. Dynamic Model of the LCE Rope

To determine ϕ(t) in Equation (8), the dynamic LCE model put forward by Finkelmann
et al. is used [74–76]. The trans-to-cis isomerization of LCE could be generated by UV or
a laser with a wavelength less than 400 nm, according to the study by Yu et al. [77]. The
thermal excitation from trans to cis, the thermally driven relaxation from cis to trans, and
the light-driven relaxation from trans to cis together affect the number fraction ϕ(t) of
cis-isomers. Since the thermal excitation from trans to cis is frequently thought to be minor
as opposed to the light-driven excitation [76,78], the number fraction ϕ(t) can typically be
described by the following governing equation.

∂ϕ

∂t
= η0 I0(1 − ϕ)− T−1

0 ϕ (9)

where T0 is the thermal relaxation time from cis to trans, η0 is the light absorption constant,
and I0 is the light intensity.
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Solving Equation (9) by taking into account the initial conditions yields the follow-
ing result

ϕ(t) =
η0T0 I0

η0T0 I0 + 1
+

(
ϕ0 −

η0T0 I0

η0T0 I0 + 1

)
exp

[
− t

T0
(η0T0 I0 + 1)

]
(10)

where ϕ0 is the initial number fraction of cis-isomers at t = 0. Considering an initial number
fraction of 0, i.e., ϕ0 = 0, Equation (10) can be simplified to

ϕ(t) =
η0T0 I0

η0T0 I0 + 1

{
1 − exp

[
− t

T0
(η0T0 I0 + 1)

]}
. (11)

For the case of LCE fiber exposed to the illumination, Equation (11) can be used to
determine the number fraction of cis-isomers. Therefore, the contraction strain ε in LCE can
be described as

ε = −C0
η0T0 I0

η0T0 I0 + 1

{
1 − exp

[
− t

T0
(η0T0 I0 + 1)

]}
. (12)

For the case of the LCE fiber moving out of the illumination area, Equation (11) is
alternatively expressed as

ϕ(t) = ϕ0 exp
(
− t

T0

)
(13)

in which ϕ0 is its maximum within the light, and can be easily calculated as ϕ0 = η0T0 I0
η0T0 I0+1 .

Thus, it is possible to rewrite the number fraction of cis-isomers as

ϕ(t) =
η0T0 I0

η0T0 I0 + 1
exp

(
− t

T0

)
. (14)

Then, the light-driven contraction strain ε in LCE can be expressed as

ε = −C0
η0T0 I0

η0T0 I0 + 1
exp

(
− t

T0

)
. (15)

2.3. Nondimensionalization

Dimensionless parameters like t = t/T0, c = cT0/m, g = gT2
0 /L0, I = η0T0 I0,

L = L/L0, and D = D/L0 are introduced to simplify the calculations. Accordingly,
the dimensionless expressions of Equations (11) and (14) yield the following:

in the light,

ϕ
(
t
)
= 1 − exp

[
−t

(
I0 + 1

)]
(16)

and out of the light,
ϕ
(
t
)
= exp

(
−t

)
. (17)

Equations (16) and (17) govern the number fraction of cis-isomers. As the mass block
moves across the boundary separating the illuminated and non-illuminated areas, the evo-
lution law of ϕ

(
t
)

alternates between the behaviors described by Equations (16) and (17).
It is worth mentioning that for Equation (16), ϕ

(
t
)

converges by keeping I0 > 0.
In the illumination zone,

..
α = −

 2L
.
L(

L2 − D2
) + c

 .
α − g√

L2 − D2
sin α (18)
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where

L = 1 − C0
I0

I0 + 1

{
1 − exp

[
−t

(
I0 + 1

)]}
(19)

.
L = −C0 I0 exp

[
−t

(
I0 + 1

)]
. (20)

In the non-illumination zone,

..
α = −

 2L
.
L(

L2 − D2
) + c

 .
α − g√

L2 − D2
sin α (21)

where

L = 1 − C0
I0

I0 + 1
exp

(
−t

)
(22)

.
L = C0

I0

I0 + 1
exp

(
−t

)
(23)

where
..
α and

.
α represent d2α

dt2 and dα
dt , respectively. In general, the governing equations are de-

scribed by Equations (16) and (18)–(20) for the illumination zone, and Equations (17) and (21)–(23)
for the dark zone.

2.4. Solution Method

Given that Equations (18) and (21) are differential equations with variable coeffi-
cients, we utilize the well-established fourth-order Runge–Kutta method for solving
Equations (18) and (21) through MATLAB software (latest v R2023b). To facilitate this,
Equations (18) and (21) are broken down into the following two-dimensional vector form:
in the light, ∣∣∣∣∣∣∣

.
α

−
[

2L
.
L(

L2−D2
) + c

]
.
α − g√

L2−D2 sin α

∣∣∣∣∣∣∣ (24)

in which,

L = 1 − C0
I0

I0 + 1

{
1 − exp

[
−t

(
I0 + 1

)]}
(25)

.
L = −C0 I0 exp

[
−t

(
I0 + 1

)]
(26)

and out of the light, ∣∣∣∣∣∣∣
.
α

−
[

2L
.
L(

L2−D2
) + c

]
.
α − g√

L2−D2 sin α

∣∣∣∣∣∣∣ (27)

in which,

L = 1 − C0
I0

I0 + 1
exp

(
−t

)
(28)

.
L = C0

I0

I0 + 1
exp

(
−t

)
. (29)

Finally, the iterative analysis is completed to identify the dynamic response of the
rotation angle θ

(
t
)
. The position αi+1 of the LCE fiber at time ti+1 is estimated through

Equations (24)–(29). As a result, the dynamics of the LCE self-rotating skipping rope can be
discovered for the given parameters C0, I0, c, g, α0,

.
α0, and β.

By building a model in MATLAB, we can describe the motion behavior of the LCE
self-rotating skipping rope. Figure 2 displays its two motion states, namely the self-rotation
state and static state. Among them, Figure 2a,b depict the time history and limit cycle of
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the self-rotation state, respectively. The parameters are set to be c = 0.02, I0 = 0.9, C0 = 0.2,
β = π

6 ,
.
α0 = 3, α0 = 0, θ = π

6 , and g = 2.5. As observed in the graph of the limit cycle, the
velocity of the skipping rope eventually settles on a closed curve. In addition, Figure 2c,d
depict the time history and limit cycle for the static state, respectively. The parameters are
set to be c = 0.06, I0 = 0.4, C0 = 0.2, β = π

6 ,
.
α0 = 3, α0 = 0, θ = π

6 , and g = 2.5. The graph
of the limit cycle demonstrates that the velocity of the skipping rope gradually diminishes
and eventually stays at zero.

Figure 2. Two motion regimes of the skipping rope exposed to the constant light. (a) Time history for
self-rotation state (I0 = 0.9, c = 0.02); (b) Limit cycle for self-rotation state; (c) Time history for static
state (I0 = 0.4, c = 0.06); (d) Limit cycle for static state.

Accurate results can be obtained through MATLAB modeling calculations, but the
numerical computations typically involve a complex process and lengthy calculation times,
which are not conducive to inverse design. Therefore, it is necessary to find a more
convenient and efficient calculation method.

3. RF and BPNN Modeling

For the theoretical model of the LCE self-rotating skipping rope, six system param-
eters have been identified as significant factors that affect its rotation frequency. These
parameters are damping coefficient c, light intensity I0, illumination range β, initial ve-
locity α0, contraction coefficient C0, and gravitational acceleration g. Given the analysis
of the aforementioned theoretical model, the rotation frequency of the LCE self-rotating
skipping rope can be determined when these six parameters are known. However, the
presence of numerous parameter combinations in actual engineering complicates frequency
calculations, making it impossible to determine parameter values inversely for a specific
frequency. Machine learning can help solve this issue. In this section, the rotation frequency
of the model will be predicted using machine learning.

3.1. RF and BPNN for Frequency Prediction and Parameter Inverse Design

Machine learning belongs to the field of Artificial Intelligence, which is a technical ap-
proach that enables machines to make decisions and predictions automatically by learning
patterns and rules from data, without explicit programming. RF and BPNN algorithms
are used in machine learning to address regression problems, and they have been selected
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for frequency prediction and inverse design in the current study. BPNN can learn from
complex nonlinear relationships in the data, while RF can process a large number of fea-
tures and outliers to provide stable predictions. Therefore, we will employ RF and BPNN
algorithms for prediction and comparison, respectively, to achieve higher accuracy and ro-
bustness. This combined approach will assist us to fully comprehend the data and provide
reliable predictions, leading to superior outcomes in tasks such as frequency prediction
and parameter inverse design.

As illustrated in Figure 3a, we input the combined parameters (refer to Table 1 for
details) into MATLAB to perform frequency calculations and obtain 138,240 sets of data.
These data will be fed to BPNN and RF algorithms for prediction and analysis.

RF is a machine learning algorithm based on an ensemble of decision trees. Referring to
Figure 3b, the process involves constructing multiple decision trees by randomly sampling
with replacement from the training dataset to create multiple subsets. Subsequently, feature
subsampling is performed to select the feature subsets. During the construction of each
decision tree, a feature selection algorithm is utilized to determine the splitting criterion at
each node and iteratively generate child nodes. Finally, the outputs of these decision trees
are combined to provide accurate predictions and classifications.
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Table 1. Computational parameters of the training set and testing set.

Parameter Training Set Testing Set

c From 0.005 to 0.04 with a gradient
of 0.005

From 0.012 to 0.034 with a gradient
of 0.011

I0 From 0.1 to 0.8 with a gradient of 0.1 From 0.62 to 0.75 with a gradient of 0.5
β From 10 to 170 with a gradient of 20 From 35 to 65 with a gradient of 10
C From 0.1 to 0.6 with a gradient of 0.1 From 0.32 to 0.42 with a gradient of 0.5
g From 0.5 to 4 with a gradient of 0.5 From 1.8 to 2.8 with a gradient of 0.5
.
α0 From 1 to 5 with a gradient of 1 From 2.5 to 3.5 with a gradient of 1

BPNN is a popular artificial neural network model. As exemplified in Figure 3c, the
process involves initializing the network structure, performing forward propagation to
generate predictions, calculating the error by comparing the predictions with the true labels,
applying the backpropagation algorithm to update the network weights based on the error,
and repeating these steps until the stopping condition is met. By iteratively adjusting the
weights, BPNN learns patterns and correlations in the training data to make predictions
and classifications for new input data. It is a supervised learning algorithm that finds
applications in various machine learning and deep learning tasks.

In this study, the training and prediction of Random Forest and BPNN are realized
through MATLAB software programming (latest v R2023b). In the training process, the
training sample is first normalized and mapped to the range of [76,78]. A newff function
in the Neural Network Toolbox of MATLAB is applied to construct the BPNN model,
and the RF model is constructed by the TreeBagger function. For the training of BPNN,
the network parameters net.trainParam.epochs = 103, net.trainParam.goal = 10−6, and
net.trainParam.lr = 1−2 are used. For the training of RF, trees = 102 and leaf = 5 are config-
ured as parameters. In the prediction process, the test samples are normalized first, then the
sim function is used to simulate the trained BPNN model, and the predict function is used
to simulate the trained Random Forest model. Finally, the simulation results are normal-
ized and the final prediction results are obtained. This process combines the training and
prediction steps of normalization, BPNN and RF models, and provides a comprehensive
and systematic analysis framework for the research.

3.2. RF and BPNN Model Training and Evaluation

The RF and BPNN models are trained using the database and their training out-
comes are subsequently evaluated using the determination coefficient R2, as derived from
Equation (30). The R2 value ranges from 0 to 1, with a higher value indicating a better
fit between the model and the target variable. One hundred sets of data were randomly
selected for visualization in Figure 4a,b. Both the RF and BPNN models achieved a score
of 0.94, showcasing their excellent performance during training. Moreover, the RF model
illustrates the degree of contribution of various parameters to the training outcomes, as
shown in Figure 4e. In contrast, BPNNs are possibly the least interpretable methods and
are often described as a black box, which means they are flexible but provide no insight
into the structure of the function being approximated [79]. Therefore, from the perspective
of interpretability of the model, the performance of an RF model is better than that of a
BPNN model [80].

We also utilize the RF and BPNN models to predict the classification issue of whether
the model is in a static or self-rotation state, and the prediction outcomes are depicted in
Figure 4c,d. The prediction performance is evaluated in terms of accuracy calculated in
accordance with Equation (31), yielding 95.83 for BPNN and 98.89 for RF. When addressing
the classification issue, RF exhibits higher accuracy in predicting the motion states.
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Figure 4. Validation for the rationality of RF and BPNN models: (a) RF training results for regression
issues. (b) BPNN training results for regression issues. (c) Confusion matrix of RF. (d) Confusion
matrix of BPNN. (e) Parameter contribution degree. Both algorithms perform well in training.

From the above experiments, it is apparent that both RF and BPNN models perform
well during training, demonstrating high R2 and accuracy. Notably, the RF model also
provides insights into the significance of individual parameters in influencing the training
outcomes, which can be valuable for optimizing the models. In brief, this approach not
only reveals the extent to which features contribute to the prediction task but also assists
researchers in selecting the most relevant features for further analysis and interpretation.

R2 = 1 −

n
∑

i=1

(
fi − f̂i

)2

n
∑

i=1

(
fi − f i

)2 (30)

where fi is the true value, f i is the average of the true value, and f̂ is the predicted value.

Accuracy =
TP + TN

TP + TN + FP + FN
(31)
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where TP is True Positive, denoting the number of samples correctly predicted as positive
by the model, TN is True Negative, denoting the number of samples correctly predicted as
negative by the model, FP is False Positive, representing the number of samples incorrectly
predicted as positive by the model, and FN is False Negative, representing the number of
samples incorrectly predicted as negative by the model.

3.3. Generalization of RF and BPNN

After training, both the BPNN and RF models demonstrate impressive performance
on the training set. To evaluate their generalization ability, we utilize a testing set of
1296 parameter combinations as presented in Table 1, which are different from the training
data. The relative error (RE) between the predicted and true values is estimated using
Equation (32), which is used to assess the extent of error. The differences between the
predicted and true values for BPNN and RF are displayed in Figure 5a,c, respectively. We
divide these 1296 datasets into four groups and estimate their relative errors, as shown
in Figure 5b,d. The relative error for BPNN remains around 5%, while that for RF is
approximately 10%. Since all 1296 datasets induce the system into a self-rotation state,
no generalization testing is conducted to assess classification ability. It is evident from
the outcomes that BPNN outperforms RF in terms of generalization ability. To sum up,
our work demonstrates the potential and accuracy of both BPNN and RF in prediction,
providing strong evidence to support further applications and research.

RE =

(
n
∑

i=1

| fi− f̂i|
fi

)
n

× 100% (32)

Figure 5. Analysis of the prediction outcomes: (a) Scatter plot of the difference between true and
predicted values of BPNN. (b) Histogram of relative error of BPNN. (c) Scatter plot of the difference
between true and predicted values of RF. (d) Histogram of relative error of RF. The generalization
ability of BPNN is superior to that of RF.
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4. Influences of System Parameters on Rotation Behavior

The above discussion allows us to summarize the motion states of the LCE skipping
rope system. The implementation of these rules is governed by six dimensionless system
parameters, including

.
α0, β, I0, C0, c, and g. According to Equations (24)–(29), changing

these parameters sequentially will bring about a range of results. This section applies RF to
anticipate the motion state and BPNN to predict the rotation frequency, in an attempt to
discover the intrinsic connection between the motion states.

Figure 6 reveals the influences of diverse parameters on the rotation frequency of
the LCE self-rotating skipping rope, comprising the true and predicted curves. In the
computation, the parameters are set to be α0 = 0, β = π

8 and the other parameters are
shown in Table 2. Examining the data distribution, the influence level of distinct parameters
on the rotation frequency is clear. Figure 6a plots the effect of the damping coefficient on
the rotation frequency. The effect of light intensity on the rotation frequency is illustrated
in Figure 6b. Figure 6c describes the influence of the illumination range on the rotation
frequency. Figure 6d shows how the contraction coefficient C0 affects the rotation frequency.
The relationship between rotation frequency and gravitational acceleration is depicted in
Figure 6e. The effect of initial angular velocity

.
α0 on the rotation frequency is given in

Figure 6f. The results indicate that the motion pattern of the self-rotation is influenced by
factors including I0, β, c, g, and C0. Higher I0, C0, and g, or a lower c, generally results in
an increased self-rotation frequency. As the β expands, the rotation frequency first increases
and then decreases. Additionally, the

.
α0 typically has no impact on the rotation frequency.

The forecasted outcomes of BPNN and RF closely align with the actual influence curve,
and the trends are generally consistent. This suggests that BPNN and RF can be utilized
for parametric discussion and analysis. These two algorithms can accurately predict the
influence of each parameter on the rotation frequency in the self-rotation state. Hence, we
can rely on BPNN and RF to examine the effects of different parameters on the system’s
behavior, and further optimize and enhance our experimental design. This will provide
insights into the properties of the self-rotation state and the physical mechanisms involved.

Table 2. System parameters.

Parameters ¯
c

¯
I 0

β C0
¯
g .̄

α0

Damping coefficient
(Figure 6a) / 0.87 π/8 0.21 2.1 4.3

Light intensity (Figure 6b) 0.018 / π/8 0.21 2.1 4.3
Illumination range

(Figure 6c) 0.018 0.87 / 0.21 2.1 4.3

Contraction coefficient
(Figure 6d) 0.018 0.87 π/8 / 2.1 4.3

Gravitational acceleration
(Figure 6e) 0.018 0.87 π/8 0.21 / 4.3

Initial angular velocity
(Figure 6f) 0.018 0.87 π/8 0.21 2.1 /
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Figure 6. Influences of diverse parameters on rotation frequency. (a) Effect of damping coefficient c
on rotation frequency. (b) Effect of light intensity I0 on rotation frequency. (c) Effect of illumination
range β on rotation frequency. (d) Effect of contraction coefficient C0 on rotation frequency. (e) Effect
of gravitational acceleration g on rotation frequency. (f) Effect of initial angular velocity

.
α0 on rotation

frequency. The predicted outcomes from BPNN and RF are highly correlated with the actual influence
curve, with their trends being largely consistent.

5. Inverse Design

Practical engineering applications frequently necessitate the parameter predictions
based on the obtained results. The focus of this section is to explore the inverse design
of RF and BPNN algorithms for upgrading the accuracy of the remaining parameters at
specific frequency and fixed parameters.

5.1. Inverse Design with No Fixed Parameters

Figure 7a illustrates the distribution of variances between the predicted and actual
values. The true value is selected from the frequency obtained by running the parameter
combinations from Table 1 in MATLAB. From the figure, the error of BPNN is observed
to be in the range of 0.15 to 0.2, while that of RF ranges from 0.1 to 0.3. It appears that the
predicted values are generally close to the true values, with only a slight deviation. For
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in-depth analysis, we divide the data into four groups and estimate the relative error for
each group, which is presented in Figure 7b,d. It is noticed that without accounting for fixed
parameters, the relative error concentrates around 30% after using the rotation frequency
for inverse design. This margin of error is remarkably similar to the error obtained when
utilizing system parameters to predict the rotation frequency. Consequently, the feasibility
and effectiveness of RF and BPNN are validated. These discoveries provide additional
insights and confirm the reliability of the RF and BPNN algorithms in predicting and
analyzing the behavior of the self-oscillatory system. The outcomes highlight the potential
of this approach in optimizing the design and performance of such systems.

Figure 7. Error analysis of predicted versus true values for inverse design with no fixed parameters:
(a) Scatter plot of the difference between true and predicted values of BPNN. (b) Histogram of
relative error of BPNN. (c) Scatter plot of the difference between true and predicted values of RF.
(d) Histogram of relative error of RF. The relative error is concentrated at about 30% after using the
frequency for inverse design.

5.2. Inverse Design with Fixed Parameters

In practical engineering applications, certain parameters are usually fixed, such as
the damping coefficient, contraction coefficient, and gravitational acceleration. However,
others may be adjustable to some extent, like light intensity and the illumination range.
With fixed parameters, RF and BPNN can be applied to predict light intensity and the
illumination range.

We set the fixed parameters to c = 0.024, C0 = 0.2, g = 2, and α0 = 3. The choice of
frequency is the same as stated in Section 5.1. After conducting the inverse design with
fixed parameters, the error of the BPNN is significantly reduced, as depicted in Figure 8a,
and the relative error is decreased to approximately 16%, as illustrated in Figure 8b. The
error of RF, on the other hand, does not decline significantly, as shown in Figure 8c,d.
These results imply that BPNN is more suitable for the inverse design of frequency than RF
when fixed parameters are considered. BPNN is capable of constructing precise models by
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capturing nonlinear relationships between the input parameters and the output frequency,
whereas RF might be unable to effectively capture this nonlinear relationship, potentially
leading to lower prediction accuracy.

Figure 8. Error analysis of predicted and true values for inverse design with fixed parameters:
(a) Scatter plot of the difference between true and predicted values of BPNN. (b) Histogram of
relative error of BPNN. (c) Scatter plot of the difference between true and predicted values of RF.
(d) Histogram of relative error of RF. After the inverse design with fixed parameters, the relative
errors of RF and BPNN are around 30% and 16%, respectively.

By reducing errors and improving the accuracy of predictions, this approach enhances
the reliability and precision of the inverse design process. The findings provide valu-
able insights into optimizing the design and performance of such systems under specific
parameter configurations.

6. Concluding Remarks

The complexity of self-oscillatory systems, and their susceptibility to being influenced
by multiple parameters simultaneously, present significant challenges to calculations,
particularly in inverse parameter design. In the current study, a simple and effective
approach is proposed to predict the rotation frequency of the LCE self-rotating skipping
rope by combining theoretical modeling and machine learning. This method considers
various parameters and can also inversely determine the parameters for a given frequency.
Firstly, we establish a theoretical model of the LCE self-rotating skipping rope through
formula derivation. The numerical solutions derived from this model are utilized as the
training and testing data for RF and BPNN. By comparing the prediction outcomes of RF
and BPNN with the training results, we confirm the accuracy of RF and BPNN, and draw
the following conclusions:
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(1) Compared with the accurate results based on MATLAB, the prediction errors are
approximately 10% for RF and around 5% for BPNN. This approach provides higher
operating efficiency compared to MATLAB.

(2) In terms of inverse design, BPNN demonstrates higher accuracy, indicating that BPNN
can be effectively utilized for the inverse design of the rotation frequency of the LCE
self-rotating skipping rope.

With its extensive application potential, this machine learning-based inverse design
approach can be applied to address other similar issues, such as dynamical systems and
nonlinear systems. This will provide an efficient and trustworthy tool for research and
development in the domain of dynamical systems and nonlinear systems. Moreover, we can
explore the implementation of additional machine learning algorithms or hybrid models
to enhance the accuracy of predictions and designs. By incorporating various algorithms
and models, we can expand the applicability of our approach to a wide range of complex
scenarios and provide solutions for a broader array of engineering and scientific challenges.
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