
Citation: Heričko, T.; Šumak, B.;

Karakatič, S. Commit-Level Software

Change Intent Classification Using

a Pre-Trained Transformer-Based

Code Model. Mathematics 2024, 12,

1012. https://doi.org/10.3390/

math12071012

Academic Editor: Daniel-Ioan Curiac

Received: 19 February 2024

Revised: 14 March 2024

Accepted: 23 March 2024

Published: 28 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Commit-Level Software Change Intent Classification Using
a Pre-Trained Transformer-Based Code Model
Tjaša Heričko * , Boštjan Šumak and Sašo Karakatič

Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška cesta 46,
2000 Maribor, Slovenia; bostjan.sumak@um.si (B.Š.); saso.karakatic@um.si (S.K.)
* Correspondence: tjasa.hericko@um.si; Tel.: +386-2-220-7298

Abstract: Software evolution is driven by changes made during software development and main-
tenance. While source control systems effectively manage these changes at the commit level, the
intent behind them are often inadequately documented, making understanding their rationale chal-
lenging. Existing commit intent classification approaches, largely reliant on commit messages, only
partially capture the underlying intent, predominantly due to the messages’ inadequate content and
neglect of the semantic nuances in code changes. This paper presents a novel method for extracting
semantic features from commits based on modifications in the source code, where each commit is
represented by one or more fine-grained conjoint code changes, e.g., file-level or hunk-level changes.
To address the unstructured nature of code, the method leverages a pre-trained transformer-based
code model, further trained through task-adaptive pre-training and fine-tuning on the downstream
task of intent classification. This fine-tuned task-adapted pre-trained code model is then utilized to
embed fine-grained conjoint changes in a commit, which are aggregated into a unified commit-level
vector representation. The proposed method was evaluated using two BERT-based code models, i.e.,
CodeBERT and GraphCodeBERT, and various aggregation techniques on data from open-source Java
software projects. The results show that the proposed method can be used to effectively extract com-
mit embeddings as features for commit intent classification and outperform current state-of-the-art
methods of code commit representation for intent categorization in terms of software maintenance
activities undertaken by commits.

Keywords: software maintenance; code commit; mining software repositories; adaptive pre-training;
fine-tuning; semantic code embedding; CodeBERT; GraphCodeBERT; classification; code intelligence

MSC: 68T01; 68N01

1. Introduction

Software changes serve as core building blocks of software evolution [1] in both
the software development and maintenance phases of a software development life cycle.
Throughout the development of a software system, every change made to the software
aims to make a step forward towards producing and delivering a software product that
meets the users’ needs [2]. In contrast, changes performed after the delivery of software, i.e.,
during software maintenance, are necessary to ensure the product’s continuous usefulness
for the users and, ultimately, its survival [3–5]. For these reasons, software changes are
viewed as being at the core of software engineering practices. To efficiently manage the
changes made to source code during a software’s lifetime, source control systems, such as
Git and SVN, have become the de facto standard in modern software engineering [6]. In
such systems, the tracked changes are organized as commits. Commits are stored within
a code repository of a software project and represent a snapshot of source code at a certain
time in the software project’s version history.

Behind every commit in a software repository lies a reason that drove that particular
set of code changes. This underlying rationale can provide insightful information for both

Mathematics 2024, 12, 1012. https://doi.org/10.3390/math12071012 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12071012
https://doi.org/10.3390/math12071012
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-0410-7724
https://orcid.org/0000-0001-5535-3477
https://orcid.org/0000-0003-4441-9690
https://doi.org/10.3390/math12071012
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12071012?type=check_update&version=1

Mathematics 2024, 12, 1012 2 of 38

software researchers and practitioners; however, when changes are committed to the repos-
itory, the intent of the changes is rarely properly documented [7,8]. One way to identify the
intent of the undertaken changes in a commit is to manually inspect the commit by taking
a closer look at, for example, the modifications to the code, the committer’s notes that can
be found in the form of a commit message, software documentation, and external documen-
tation. However, prior studies have demonstrated how labor-intensive, time-consuming,
and expensive such an approach is, in addition to questionable scalability for large software
projects in real-world use cases [6,9]. Furthermore, when intent identification is performed
by humans for an extensive number of commits and projects, in particular retrospectively,
it tends to be error-prone [7]. To address the need for automated approaches for intent iden-
tification, many researchers have attempted to construct machine-learning-based commit
classification models as an alternative to resorting to manual efforts. Recent studies in the
field have demonstrated that such models are adequate for the task [6–8,10–17].

In this context, the majority of existing research focuses on identifying the intent of
the commit change in terms of the type of maintenance activity carried out in a commit.
The importance given to maintenance activities mainly lies in the substantial amount of
resources these activities consume; ranging from approximately 50% [18] to as much as
90% [19] of total expenses devoted to a software project. Therefore, there is significant inter-
est in deepening the understanding of software maintenance as a crucial part of software
evolution and improving software practices related to software maintenance; the previously
discussed commit classification models can be of assistance to this in many ways. Firstly,
by having a historical record of maintenance activities performed throughout maintenance,
managers can gain a better understanding of how effectively they are planning maintenance
tasks, managing maintenance expenses, and allocating available resources [11,14,15,20].
In addition to analyzing commit intents retrospectively, commit intent information can
assist managers in making decisions regarding planning future activities, allocating re-
sources, assessing the project’s health, managing technical debt, etc., all of which can
collectively make maintenance more efficient, minimize costs and efforts, and preempt
potential issues [11,14,15,20]. For example, by having an insight into resources needed for
a type of maintenance activity in the past, it is easier to plan for future maintenance
needs [6]. As another example, by obtaining current data on the number of commits associ-
ated with each type of maintenance activity, managers can reallocate resources accordingly
or investigate the underlying causes of unexpected increases in commits related to a specific
activity type [11]. The classifications produced by an accurate commit intent classification
model can also be used to identify anomalies in software evolution, such as verifying if
the unplanned type of activity is carried out. For instance, in projects presumed to be in
the feature freeze phase, the work on adding new features should not be undertaken [7,21].
Additionally, many research endeavors benefit from commit intent information to support
empirical research in investigating software changes, evolution, and maintenance [8] or to
improve the maintenance processes for software practice. As an example, some researchers
aim to focus only on a specific type of maintenance activity [6], for which the commit
classification models can be utilized as a starting point. Similarly, they can be helpful to
direct a developer to a specific type of software change [6]. Commit intent information can
also be used to build developer’s maintenance profiles [22], to prioritize code reviews [8],
and to aid in the early detection of software projects with degrading software quality [7]
or lacking in proper maintenance support [23]. Hence, there is a need to have robust and
reliable automated approaches for commit intent classification, as their ability to determine
the intent of a change accurately has a direct impact on these aforementioned use cases
and applications.

While existing approaches to commit intent classification have been shown to be
somewhat successful at the task, there are still many open challenges to address associated
with the complex and challenging nature of software changes and the subtle distinctions
between different intent types. Models with high accuracy, robustness, and reliability
are still lacking. Existing models that base their classification entirely on the content

Mathematics 2024, 12, 1012 3 of 38

of a commit message are likely to perform poorly in cases where the messages are not
present, incomplete, or of low quality [5,7,8]. Additionally, these models do not consider
the changes made to the source code at all, even though the actual changes are in the code
itself. The approaches that leverage the actual changes in the source code, characterized
by its unstructured nature, mainly rely on code change metrics derived from the code,
capturing size-related characteristics of the code or patterns identified by code change
distiller tools. However, the potential benefits of using the semantics of the code for commit
intent classification have yet to be fully explored [24].

To address this research gap, this work is the first to present an approach to commit-
level software change intent classification into software maintenance activities based on
embedding code changes using a pre-trained transformer-based code model. To tackle
the unstructured nature of source code, we build upon the recent advancements in code
representation learning models by simultaneously exploiting the representation capabilities
of these models to capture code semantics. Thus, our proposed method is based on a pre-
trained code model that is further trained using task-adaptive pre-training and fine-tuned
for the task of classifying code changes based on the maintenance activities performed in
those changes. The resulting model is then employed as a semantic embedding extractor,
i.e., to encode fine-grained conjoint code changes, e.g., file-level or hunk-level changes,
represented as additions and deletions of code lines, as code change embeddings. Finally,
using a chosen aggregation technique, code change embeddings, representing fine-grained
conjoint changes performed by a commit operation, are aggregated into a unified commit-
level embedding.

This research aims to investigate whether the proposed method is effective when
used for commit intent classification and how it compares to the current state of the
art (SOTA). To achieve this, we evaluated the proposed method using two BERT-based
code models, i.e., CodeBERT and GraphCodeBERT. These two code models were selected
based on existing studies indicating their success in capturing code syntax and semantics,
making them suitable for tasks requiring source code understanding [25–32]. To further
train the pre-trained models of CodeBERT and GraphCodeBERT in a self-supervised
manner, i.e., to perform task-adaptive pre-training, we constructed a dataset of more than
45,000 files affected by commit operations. To fine-tune the resulting models and build
supervised machine-learning-based models for commit intent classification, we used an
existing dataset of 935 commits from eleven open-source Java software projects labeled
with respective intent categories in terms of maintenance activities performed in commits.
For commit intent classification, commit-level embeddings obtained with the proposed
method were used as inputs. Additionally, code-based commit representation features
from prior studies were also considered as inputs. The output of the classification is the
type of maintenance activity that was performed in a commit. The experimental results
show that the build classification models based on the proposed method can accurately
classify commits, capable of outperforming the SOTA. Despite this, several potential future
research directions are highlighted.

In summary, this research paper makes several contributions to the field:

(1) We propose a novel method for extracting semantic features of code changes in order
to represent a commit as a vector embedding for commit intent classification into
software maintenance activities.

(2) We provide an ablation study and in-depth analyses demonstrating the effectiveness
of the proposed method and its steps when used for commit intent classification into
software maintenance activities.

(3) We provide empirical evaluations of commit intent classification performance when
using the proposed method compared to the existing methods of code-based commit
representations for intent categorization.

The rest of this paper is organized as follows. Section 2 gives an overview of related
work on commit classification and the usage of pre-trained models for code-related tasks.
Section 3 introduces background knowledge relevant to our work, including the notions of

Mathematics 2024, 12, 1012 4 of 38

commit-level software changes, commit intent classification, intent-based categorization
of software maintenance activities, and transformer-based models for programming lan-
guages. Section 4 details the semantic commit feature extraction method proposed in this
work. Section 5 presents the experimental setup, while Section 6 reports and discusses the
obtained experimental results. Section 7 discusses threats to construct, internal, external,
and conclusion validity. Section 8 concludes the paper by summarizing our findings and
highlighting future research directions.

2. Related Work
2.1. Commit Classification

With the widespread adoption of source control in software development, commits
emerged as a valuable unit of analysis for improving understanding of software changes,
collaborative development, and software evolution [33–36]. In addition, the classification
of commits was found to be beneficial for various software-engineering-related tasks,
including detecting security-relevant commits [37,38], predicting the defect-proneness
of commits [39,40], and demystifying the intent behind commits [6–8,10–17]. To tackle
such challenges, the research community has extensively leveraged data associated with
commits, namely, the committed code [6–8,11,14,37,38,41] and data from commit logs, such
as commit messages [10,12,13,16,17].

In early attempts to construct commit intent classification models, researchers mainly
relied on word frequency analysis with text normalization on commit messages to extract
keywords indicative of maintenance categories [10]. Also utilizing commit messages as
a basis for classification, several researchers employed models based on word embedding
methods, notably Word2Vec [16] and various variants of BERT [12,13,17]. Our work is
related to recent advances in commit intent classification, particularly those that base
classification on the commit’s source code.

Levin and Yehudai [11] proposed a set of 48 code change metrics as defined by the
taxonomy proposed by Fluri [42], each representing a meaningful action performed by
developers. The set of metrics encompasses changes made to both the body and decla-
ration parts of classes, methods, etc. Some examples of metrics include statement inser-
tion/deletion and object state addition/deletion for the former, and method overridability
addition/deletion and attribute modifiability addition/deletion for the latter. The au-
thors combined the change metrics obtained using the ChangeDistiller tool with a set
of 20 indicative keywords extracted from commit messages to build compound commit
classification models. The approach was evaluated on a dataset the authors created using
commits from GitHub repositories of eleven Java software projects. The authors manually
labeled 1151 commits as corrective, adaptive, or perfective following the classification
scheme suggested by Swanson [20] with the help of the committed code snippets, commit
messages provided by the developer performing the changes, and information from issues
tracked in the projects’ issue-tracking system.

Meqdadi et al. [6] proposed a binary commit classification model based on eight code
change metrics that count the number of changed code lines, comment lines, include
statements, new statements, enum statements, hunks, methods, and files. The study was per-
formed on a manually curated dataset of 70,226 adaptive and non-adaptive commits
from six C++ software projects, which the authors created themselves by inspecting
commit messages.

Hönel et al. [7] proposed 20 size-based code change metrics, e.g., the number of added
files, deleted, renamed, and modified files. Each of them was presented in two variations.
The first variation featured unique code that only affected functionalities (i.e., code without
considering whitespace, comments, and code clones). The second included all code. Two
other metrics representing ratios between the size-based code change variations on the level
of affected files and on the level of affected lines were proposed as well. The study was
conducted on the existing dataset of Levin and Yehudai [11] with proposed code change
metrics extracted from the source code using the Git Density tool. Furthermore, the authors

Mathematics 2024, 12, 1012 5 of 38

also investigated the metrics from the perspective of considering code change metric values
from preceding commits.

Ghadhab et al. [14] proposed 23 refactoring code change metrics, e.g., the presence
of the extract method, move method, and rename variable operation, gathered from the
code using the RefactoringMiner tool. In addition, they proposed one bug-fixing code
change metric, i.e., the presence of a bug-fixing pattern, gathered using the FixMiner
tool. Together with independent variables already proposed by Levin and Yehudai [11]
and a fine-tuned DistilBERT for encoding commit messages, the authors assessed the
performance of the proposed approach on a dataset of 1793 commits. The dataset was
created from three existing datasets; labeled instances of the data of Levin and Yehudai [11],
single-labeled instances from data of Mauczka et al. [43], and unlabeled instances from
data of AlOmar et al. [44], which the authors labeled manually based on the content of the
commit messages.

Mariano et al. [15] proposed three code change metrics, i.e., the number of added lines,
deleted lines, and changed files, extracted from the source code using the GitHub GraphQL
API. The authors evaluated the proposed approach using the existing dataset of Levin and
Yehudai [11].

Meng et al. [8] proposed a graph representation of commits in which changed entities
in a commit were represented as nodes in the graph and their relationships (i.e., depen-
dencies recognized using static program analysis) as edges, while other characteristics
were encoded as attributes of the graph’s nodes and edges. The proposed approach iden-
tified a set of relevant nodes in each graph and created the graph’s vector representation
that served as input to a convolutional neural network. The approach was evaluated on
a dataset of 7414 commits from five Java software projects that the authors built based on
category labels defined and assigned to commits in an issue-tracking system by developers
of the subject software projects. In contrast to the aforementioned related work, the authors
here used their own label classification scheme; however, they claim it can be mapped
directly to the one suggested by Swanson [20].

A concise overview of relevant related work that has proposed the use of features
obtained from the commits’ source code is presented in Table 1. It should be noted that
for each study, only proposed novel independent variables extracted from the source code
(i.e., not other data sources) that were not previously proposed by others are provided in
the table. This, however, means that in the studies, the authors might have combined their
proposed features with the ones already proposed by others with the aim of experimenting
and achieving better overall performances. Regarding classification performances, the
highest evaluation metric scores achieved in cross-project settings for models based only
on features extracted from code and hybrid models based on all available features (may
include features extracted from other data sources than code, e.g., commit message) are
reported. The classifiers used for the best-performing classification models are reported
as well. As many different classifiers were employed for the task, we only report the best-
fitting high-level category that the classifier belongs to, distinguishing six groups as follows:
decision-tree-based, rule-based, probabilistic, support vector machines, instance-based,
and neural network classifiers [45].

In addition to the reported related work, a more comprehensive overview may be
found in a recently conducted systematic literature review on supervised-learning-based
commit classification models into maintenance activities [5]. Our research builds on these
previous efforts to represent software commits based on source code changes carried out in
commits. One key difference distinguishing our work from the existing one is that no one
has attempted to employ code-representation-learning models to tackle the challenge.

Mathematics 2024, 12, 1012 6 of 38

Table 1. Overview of related work utilizing features extracted from the source code for commit-level
software change intent classification into software maintenance activities.

Authors Novel Independent
Variables Dependent Variables Dataset Best Model

Performance

Levin and
Yehudai [11]

48 code change metrics
following Fluri’s
taxonomy [42] extracted
from commits using the
ChangeDistiller tool

Corrective, adaptive, and
perfective labels
following Swanson’s
classification scheme [20]

1151 manually labeled
instances sampled from
commit histories of eleven
open-source Java
projects [11]

Accuracycode,DT = 0.54
Kappacode,DT = 0.27
Accuracyhybrid,DT = 0.77
Kappahybrid,DT = 0.64

Meqdadi et al.
[6]

Eight proposed code
change metrics extracted
from commits using a
custom tool

Adaptive and
non-adaptive labels
following Swanson’s
classification scheme [20]

70,226 manually labeled
instances sampled from
commit histories of six
open-source C++ software
projects [6,9]

Accuracycode,DT/P = 0.65
F-scorecode,DT/P = 0.24

Hönel et al.
[7]

22 proposed code change
metrics extracted from
commits using the Git
Density tool

Corrective, adaptive, and
perfective labels
following Swanson’s
classification scheme [20]

1150 manually labeled
instances sampled from
commit histories of eleven
open-source Java
projects [11]

Accuracycode,DT = 0.55
Kappacode,DT = 0.27
Accuracyhybrid,DT = 0.89
Kappahybrid,DT = 0.83

Ghadhab et al.
[14]

24 proposed code change
metrics extracted from
commits using the
RefactoringMiner tool
and FixMiner tool

Corrective, adaptive, and
perfective labels
following Swanson’s
classification scheme [20]

1793 instances sampled and
semi-manually labeled from
three existing datasets
[11,43,44], including
commits from
109 open-source Java
projects [14]

Accuracyhybrid,NN = 0.8
F-scorehybrid,NN = 0.8

Mariano et al.
[15]

Three proposed code
change metrics extracted
from commits using the
GitHub GraphQL API

Corrective, adaptive, and
perfective labels
following Swanson’s
classification scheme [20]

1151 manually labeled
instances sampled from
commit histories of eleven
open-source Java
projects [11]

Accuracycode,DT = 0.49
Kappacode,DT = 0.19
Accuracyhybrid,DT = 0.77
Kappahybrid,DT = 0.64

Meng et al. [8]

Node and edge
embeddings in the
change dependency
graph, constructed from
commits using tools
ChangeDistiller,
InterPart, WALA,
RefactoringMiner, and
a custom tool

Bug fixes, functionality
additions, and other
labels that can be
mapped to Swanson’s
classification scheme
(corrective, adaptive,
and perfective,
respectively) [20]

7414
issue-tracking-system-based
labeled instances sampled
from commit history of five
open-source Java software
projects [8]

F-scorecode,NN = 0.55

DT = decision-tree-based classifier, P = probabilistic classifier, NN = neural network classifier.

2.2. Pre-Trained Models in Code-Related Tasks

Due to pre-trained code-representation-learning models demonstrating good perfor-
mance in code-related tasks without requiring enormous data quantities, such models have
been employed across a wide variety of tasks within the domain of software engineering.
Pan et al. [25] encoded Java source code files using a pre-trained CodeBERT model to aid
software defect prediction. Kovačević et al. [46] conducted experiments with the Code2Vec,
Code2Seq, and CuBERT models to represent Java methods or classes as code embeddings,
facilitating machine-learning-based detection of two code smells, i.e., long method and god
class, while Ma et al. [26] leveraged the CodeT5, CodeGPT, and CodeBERT models to detect
the feature envy code smell. To compare software systems, Karakatič et al. [47] utilized
a pre-trained Code2Vec model to embed Java methods. The work of Fatima et al. [27] em-
ployed the CodeBERT model to represent Java test cases, assisting in the prediction of flaky
(i.e., non-deterministic) test cases. The CodeBERT model was also used by Zeng et al. [28]
in order to represent C functions, aiding in detecting vulnerabilities at the function level.

Mathematics 2024, 12, 1012 7 of 38

Mashhadi and Hemmati [29] used the CodeBERT model to represent single-line Java
statements, enabling automated bug repair, while Huang et al. [48] experimented with
CodeBERT and GraphCodeBERT to encode single- and multi-line segments of C code
for automated repair of security vulnerabilities. The pre-trained CodeBERT model was
also utilized to embed code changes to help predict the commit’s defectiveness [30] and
identify silent vulnerability fixes [31]. Our research closely relates to these recent attempts
to employ pre-trained code models to tackle software engineering challenges. In an effort
to add to the body of knowledge, our research examines the suitability and effectiveness of
code models within the specific problem domain of commit intent classification.

3. Background
3.1. Commit-Level Software Changes

A commit refers to a set of code changes a developer makes to the codebase that are
tracked together as a single unit of change within a software project’s repository. Given
a project’s version history containing a number of commits, which can be defined formally as

H =
{
(c1, t1), (c2, t2), (c3, t3), ...

}
(1)

a specific commit randomly selected from the history ci ∈ H represents a snapshot of the
codebase at a given time ti in the project’s history. Each commit starts from the existing
state of the codebase and makes modifications based on the required changes’ intent;
hence, the changes introduced in a commit can be defined as the differences between the
preceding and current states of the codebase Diff (ci-1, ci), where each change to the code
can be thought of as either an addition of a code line or a deletion of a code line. Note
that a modification of a code line effectively combines both an addition and a deletion.
Accordingly, given a commit ci, we may formalize it as a set of changed lines of code
distributed across one or more affected files by a commit in the codebase as

ci =
{
(add f , del f) : add f ∈ Difff (ci−1, ci), del f ∈ Difff (ci−1, ci), ∀ f ∈ [1, N]

}
(2)

where add f and del f represent added and deleted lines of code in a file f , respectively, with
f ∈ [1, N] and N representing the total number of affected files by a commit operation. In
the context of Git source control, changes spread across files are organized into hunks, i.e.,
contiguous blocks of code changes within a file. Thus, a commit can be formalized as a set
of changed lines of code distributed across one or more hunks as

ci =
{
(addh, delh) : addh ∈ Difff ,h(ci−1, ci), delh ∈ Difff ,h(ci−1, ci), ∀ f ∈ [1, N], ∀h ∈ [1, M]

}
(3)

where addh and delh represent the lines of code added to and deleted from a hunk h,
respectively, with f ∈ [1, N] and N representing the total number of affected files by a
commit operation, and h ∈ [1, M] and M representing the total number of hunks within a
file f .

3.2. Commit Intent Classification

Commit intent classification models are supervised-learning-based models that use
labeled data to learn how to predict the intent of a commit, i.e., dependent variable, based
on the data associated with the commit, i.e., independent variables [24]. Formally, the
problem of commit intent classification can be formulated as follows. A set of labeled
commits C can be defined as

C = {(xj, yj) : xj = ⟨xj,1, ..., xj,d⟩, yj ∈ {y1, ..., yk}, ∀j ∈ [1, m]} (4)

where every commit instance cj from the set C is presented as a pair of (xj, yj), with j ∈ [1, m]
and m representing the total number of labeled instances. The first part of the pair is
a feature vector ⟨xj,1, ..., xj,d⟩ that describes the commit. The feature vector has d dimensions,

Mathematics 2024, 12, 1012 8 of 38

with each dimension of xj representing a certain feature. Considering the context of commit
intent classification, features can be extracted from a variety of commit artifacts, including
commit messages, source code, commit metadata, and data from external systems, such
as issue tracking tools (e.g., Jira) and software quality tools (e.g., SonarQube) [5]. The
second part of the pair is a label that represents the intent of the commit. The commit’s
label yj is one of a predefined set of class labels {y1, ..., yk}, with k representing the total
number of classes. Class labels are categories of maintenance activities, which can be either
binary (two categories) or multi-class (multiple categories), following a specific intent-based
categorization scheme of software maintenance activities, such as the one introduced by
Swanson [20], which is most commonly used [5]. Finally, given such a labeled set C, we
aim to train a model M, defined formally as

M : xj → yj (5)

where model M can predict the intent class yj of a commit cj given its feature vector xj in a
way that M(xj) is a good enough prediction of the class yj. The trained model M can then
be used to classify new, unseen commits into their respective classes.

3.3. Intent-Based Categorization of Software Maintenance Activities

Considering what was intended to be achieved when performing maintenance activi-
ties, Swanson [20] discussed the three types of maintenance activities carried out during
software maintenance: corrective maintenance, which is performed to correct functional and
non-functional faults; adaptive maintenance, which is performed in response to changes in the
environment and requirements; and perfective maintenance, which is performed to improve
software performance and quality attributes [20,49]. According to Lientz et al. [50], 60.3%
of maintenance tasks are perfective, 18.2% adaptive, and only 17.4% corrective. A follow-up
study by Schach et al. [51] observed that corrective tasks are more prevalent (56.7%), while
fewer tasks are perfective (39%) and adaptive (2.2%) in their nature. Figure 1 illustrates the
three maintenance activities performed with a commit operation on real-world software.

3.4. Transformer-Based Models for Programming Languages

The advent of transformers, a neural network architecture initially proposed by
Vaswani et al. [52], has revolutionized the field of natural language processing. Transform-
ers represent a subset of deep learning models that introduced self-attention mechanisms
and positional encodings to natural language modeling. By enabling parallel processing,
thereby enhancing scalability for working with large data, transformer models addressed
some key challenges associated with previously utilized recurrent neural networks. From
a high-level overview of the architecture of transformers, they traditionally consist of two
main parts, i.e., the encoder and the decoder. The former processes the input sequence
with the aim of understanding it, while the latter aims to generate the target output based
on that understanding [52]. Transformer-based models have significantly improved the
performance of the SOTA in a wide range of natural language processing tasks, e.g., text
classification, machine translation, text generation, sentiment analysis, question answering,
and text summarization, across various domains. In the domain of software engineering,
transformer models have demonstrated efficiency in understanding and generating not
only human language but also programming code. Several models specifically designed for
programming languages that leverage the power of transformers to encapsulate syntactic
structures and the semantics of code by training on vast amounts of source code examples
have been proposed. Notable representatives of such code models are CodeBERT [53],
GraphCodeBERT [54], CuBERT [55], CodeT5 [56], and Codex [57].

Mathematics 2024, 12, 1012 9 of 38

Figure 1. Three examples of commit-level software changes, extracted from a dataset made available
by Levin and Yehudai [11], each illustrating a different type of software maintenance activity per-
formed on the RxJava software project: (a) corrective commit (bug fixing); (b) adaptive commit (new
feature implementation); (c) perfective commit (refactoring operation). In each commit, additions are
highlighted in green with a “+” symbol, signifying added code lines, while deletions are marked in
red with a “-” symbol, signifying deleted code lines.

Mathematics 2024, 12, 1012 10 of 38

CodeBERT and GraphCodeBERT

CodeBERT is an encoder-only transformer-based model proposed by Feng et al. [53].
It is a language model specifically designed to support understanding and generation
tasks related to programming languages. The model is able to produce general-purpose
contextual representations that encapsulate the syntactic and semantic patterns inherent
in programming code by pre-training the model on a large and diverse corpus of both
uni-modal and bi-modal data. The former refers to inputs in terms of source code snippets
from various software projects and programming languages, while the latter refers to paired
inputs of code snippets and their natural language documentation [53]. GraphCodeBERT
is an enhancement of CodeBERT proposed by Guo et al. [54] that additionally encapsulates
the inherent structure of programming code by including the data flow of code in the
pre-training of code representations, which encodes the dependency relations between
variables and can additionally benefit the code-understanding process.

Both CodeBERT and GraphCodeBERT use a multi-layer transformer-based neural
architecture, following the BERT (Bidirectional Encoder Representations from Transform-
ers) architecture; more specifically, they are based on the architecture of RoBERTa [53,54].
In CodeBERT, each input to the model is represented as a sequence of two distinct sub-
sequences of tokens as [CLS], tnl1 , ..., tnlk , [SEP], tpl1 , ..., tpll , [SEP], where tnlk and tpll rep-
resent tokens of two different subsequences, corresponding to natural language inputs,
i.e., words, and programming language inputs, i.e., code, respectively, [CLS] represents
a special classification token at the beginning, and [SEP] represents a special separation
token that separates the two subsequences or signifies the end of the sequence [53]. In
GraphCodeBERT, the input to the model is extended with an additional variable subse-
quence as [CLS], tnl1 , ..., tnlk , [SEP], tpl1 , ..., tpll , [SEP], tv1 , ..., tvj , where tvj represents a token
corresponding to the variable. The subsequence of variables follows the subsequence of
tokens of paired natural language-programming language inputs [54]. The output of both
CodeBERT and GraphCodeBERT includes the contextual vector representation of each
token from the sequence and the representation of the special classification token [CLS],
which is considered as the aggregated representation of the entire sequence [53,54].

During pre-training of CodeBERT, the model is trained in an unsupervised manner on
large-scale unlabeled data using a hybrid self-supervised learning objective loss combining
two pre-training objectives as minθ LMLM(θ) + LRTD(θ), where LMLM(θ) is the loss of
the masked language modeling (MLM) pre-training objective and LRTD of the replaced
token detection (RTD) pre-training objective [53]. The MLM objective uses bi-modal data
and masks out a percentage of the tokens from both subsequences at randomly selected
positions, and the pre-training task is to predict the original tokens that are masked out
given surrounding contexts. The loss function of MLM is defined as

LMLM(θ) = ∑
i∈mtnl∪m

tpl

− log pD1(xi|tnl
masked, tpl

masked) (6)

where pD1 acts as the discriminator predicting the probability of a token based on the
context of masked tokens, mtnl and mtpl are the random set of positions of tokens for
the natural language and programming language to mask, and tnl

masked and tpl
masked

are the masked tokens at these positions [53,58]. The second pre-training objective of
CodeBERT, RTD, uses both bi-modal and uni-modal data, and the pre-training task is
to detect plausible alternatives of the generated masked-out tokens [53,59]. During pre-
training of GraphCodeBERT, three self-supervised training objectives are used. In addition
to the MLM pre-training objective, GraphCodeBERT introduces two additional structure-
aware objectives, i.e., data-flow edge prediction and node alignment pre-training. The
former is designed to learn representation from data flow, while the latter is designed to
align variable representations between source code and data flow [54]. To keep this paper
concise, we present the loss function of the MLM pre-training objective only, as it is directly
relevant to this study. For additional information on other objectives, please refer to the
original papers by Feng et al. [53] and Guo et al. [54].

Mathematics 2024, 12, 1012 11 of 38

The publicly available pre-trained CodeBERT model and pre-trained GraphCodeBERT
model were pre-trained using a large-scale dataset CodeSearchNet [60], which consists of
data from publicly available open-source non-fork GitHub code repositories, including
6.4 million uni-modal and 2.1 million bi-modal data points, where each data point considers
source code snippets or natural language documentation, i.e., code comments, at a function-
level. Pre-trained models are designed to process input sequences of a maximum of
512 tokens, including special tokens, and output 768-dimensional embeddings [53,54].

4. Proposed Semantic Commit Feature Extraction Method

From a high-level overview, the proposed method of semantic feature extraction from
code changes in a commit consists of four steps: 1 task-adaptive pre-training, 2 fine-tuning,
3 semantic embedding extraction of fine-grained conjoint code changes, and 4 aggregation into

commit-level embedding, as illustrated in Figure 2. In the following subsection, we outline
each step of the proposed method and provide details on the implementations using
CodeBERT and GraphCodeBERT, which are the models employed in this study.

4.1. Task-Adaptive Pre-Training

In the first step, a selected pre-trained code model, trained on a large and general
dataset, undergoes further training as a second training phase, using a smaller, unlabeled
dataset with data relevant to the given task under study. This adaptation strategy aims to re-
fine the code model’s capabilities in performing a particular task [61]. In our case, adaptive
training aims to adjust the model to reflect code changes and capture the semantics of paired
inputs of added and deleted lines of code at a level of fine-grained conjoint code changes,
e.g., file-level or hunk-level code changes, affected by a commit operation, which differs
from the CodeBERT and GraphCodeBERT initial training on paired inputs of function-level
natural language code comments and code snippets. To perform task-adaptive pre-training,
a corpus closely related to the task is necessary and should ideally be drawn from the task
distribution [61]. In our context, the dataset should consist of representative code additions
and deletions within a single commit at the level of fine-grained conjoint changes. Such
datasets can be gathered from unlabeled code repository data of software projects, based on
which commit intent classification models are built, or data available in open-source code
repositories. For the dataset to be usable in the training process, it needs to be prepared
and preprocessed according to the selected model’s requirements, including tokenization,
truncation, and padding. Specifically, for BERT-based code models, the input sequence
should be constructed as detailed in Algorithm 1. This first involves converting added and
deleted lines of code into tokens using the provided tokenizer of a selected code model. If
these tokenized lines, along with necessary special tokens, i.e., [CLS] at the beginning of the
sequence and [SEP] between the two subsequences and at the end, exceed the maximum
input size that the model is designed to process, truncation of added and deleted tokens
is required. The truncation is performed proportionally for both added and deleted code
lines to ensure their balanced representation in the sequence. Alternatively, tail or head
truncation can be performed. If the sequence does not meet the length requirement, it is
padded with the [PAD] special token to ensure that all input sequences are of the same
length. Using such a task-specific dataset, task-adaptive pre-training starts from parameters
learned through general pre-training and adjusts them through a selected self-supervised
learning objective; thus building upon the existing knowledge and adapting it for the
given task.

Mathematics 2024, 12, 1012 12 of 38

Labeled dataset of fine-grained
conjoint code changes

Task-Adaptive Pre-Training1

General-purpose pre-
trained code model

Fine-Tuning

Input preparation and
preprocessing

Fine-tuned task-adapted
pre-trained code model

Fine-tuning of
code model

2

Semantic Embedding Extraction of Fine-Grained Conjoint Code Changes3

Aggregation Into Commit-Level Embedding

Commit-level embedding

Aggregating embeddings
of fine-grained conjoint

code changes into
commit-level embeddings

4

Unlabeled task-specific dataset of
fine-grained conjoint code changes

Input preparation and
preprocessing

Task-adapted pre-trained
code model

Task-adaptive
pre-training of

code model

Fine-grained conjoint code
changes in a commit

Input preparation and
preprocessing

Embeddings of fine-grained
conjoint code changes

Extracting semantic
embeddings of fine-

grained conjoint
code changes

Figure 2. An overview of the proposed semantic commit feature extraction method.

Mathematics 2024, 12, 1012 13 of 38

Algorithm 1 Input preparation and processing for a BERT-based code model with dy-
namic token length allocation, truncation, and padding

Data: added lines: add; deleted lines: del; tokenizer of the code model: tokenizer, required
input length: input_len

Result: input for the code model: input
1 add_tokens, del_tokens← tokenize add using tokenizer, tokenize del using tokenizer;
2 add_len, del_len← get length of add_tokens, get length of del_tokens;
3 sequence_len← add_len + del_len + 3;
4 if sequence_len > input_len then
5 if add_len equals 0 then
6 add_truncated_len← 0;
7 del_truncated_len← input_len− 3;
8 else if del_len equals 0 then
9 add_truncated_len← input_len− 3;

10 del_truncated_len← 0;
11 else
12 truncation_factor← (input_len− 3)/(add_len + del_len);
13 add_truncated_len← round up value of add_len× truncation_factor;
14 del_truncated_len← input_len− 3− add_truncated_len;
15 end
16 add_tokens← get first add_truncated_len of add_tokens;
17 del_tokens← get first del_truncated_len of del_tokens;
18 end
19 input← concatenate [CLS], add_tokens, [SEP], del_tokens, [SEP];
20 while length of input < input_len do
21 input← concatenate input, [PAD];
22 end

4.2. Fine-Tuning

In the second step, the task-adapted pre-trained code model from the first step un-
dergoes further training through a process of fine-tuning for a classification task. In our
case, this involves training the model on a labeled dataset specific to the task, i.e., code
changes at the level of fine-grained conjoint changes, which are represented as additions
and deletions of code lines, each with a known label corresponding to the intent of the
change. The goal of fine-tuning is to enhance the model’s ability to accurately reflect the
various intents behind code changes, represented by pairs of added and deleted code lines.
To achieve this, a classification head should be added on top of the task-adapted pre-trained
code model, which aids in slightly adjusting the model’s parameters to better suit the given
task, based on the provided labeled dataset. Note that the same process as outlined in the
previous subsection should be employed to prepare and preprocess the dataset, ensuring
that the inputs are suitably formatted to meet the requirements of the selected code model.

4.3. Semantic Embedding Extraction of Fine-Grained Conjoint Code Changes

In the third step, the fine-tuned task-adapted pre-trained code model serves as a se-
mantic embedding extractor through model inference. This entails using added and deleted
lines of code of fine-grained conjoint code changes, that have been prepared and prepro-
cessed as outlined in the previous subsections, as inputs to the model. Upon inputting this
data, the embedding of the model’s [CLS] special token is extracted. This embedding acts as
a contextual aggregated vector representation of the entire input sequence, encapsulating
the nuanced semantic information pertinent to the code changes.

4.4. Aggregation into Commit-Level Embedding

In the last, or fourth, step, since a commit may involve changes across several fine-
grained conjoint change units, e.g., files or hunks, the embeddings of code changes affected
by a specific commit operation are aggregated into a single, unified vector representa-

Mathematics 2024, 12, 1012 14 of 38

tion. This is achieved using a selected aggregation technique, which can involve simple
dimension-wise statistical aggregations, graph-based aggregations, clustering-based aggre-
gations, etc. The result of this step, i.e., the output of the proposed method, is a commit-level
embedding representation. Such commit embeddings, derived from source code changes,
can subsequently be used for a downstream task. For instance, a classifier utilizing these
commit embeddings can be trained using a labeled dataset to categorize commits according
to their intents. This could be, for example, based on the type of maintenance activity
performed within a commit, in order to perform commit intent classification.

5. Experiments
5.1. Research Questions

With this research, our objective is to investigate and provide answers to two research
questions (RQs), formulated as follows, alongside the rationales behind them:

RQ1 How effective is the proposed method when used for commit intent classification?
This question aims to empirically assess the effectiveness of the proposed semantic
commit feature extraction method for commit intent classification. By focusing on
classification performance, this evaluation aims to determine the resulting model’s
ability to accurately distinguish between various types of intents behind commit-level
software changes. Such an assessment is crucial as it directly relates to the practical
applicability and relevance of the method in the field of software engineering.

RQ2 How does the proposed method compare to the SOTA when used for commit intent classification?
This question aims to benchmark the proposed method against the current SOTA in com-
mit intent classification. By conducting this comparative analysis, the research aims to
position the proposed method within the broader context of commit intent classification.

5.2. Datasets

To address the research questions, several experiments were conducted on the
dataset made available by Ghadhab et al. [14], which was originally prepared by
Levin and Yehudai [11]. The dataset used in the experiments consists of 935 commits from
eleven open-source software projects based on Java, with manually annotated labels of
commit intents in terms of the three software maintenance activities. Out of all commits,
49.4%, 26.1%, and 24.5%, are corrective, adaptive, and perfective, respectively. More de-
tailed commit-level characteristics of the dataset used in our experiments are presented in
Table 2.

Table 2. Commit-level characteristics of the dataset used in the experiments.

No. Commits

Software Project Repository Total Corrective Adaptive Perfective

P1 Apache Camel github.com/apache/camel † 90 38 (42.2%) 21 (23.3%) 31 (34.5%)
P2 Apache HBase github.com/apache/hbase † 97 59 (60.8%) 22 (22.7%) 16 (16.5%)
P3 Drools github.com/kiegroup/drools † 103 60 (58.2%) 28 (27.2%) 15 (14.6%)
P4 Elasticsearch github.com/elastic/elasticsearch † 67 28 (41.8%) 24 (35.8%) 15 (22.4%)
P5 Hadoop github.com/apache/hadoop † 99 53 (53.5%) 26 (26.3%) 20 (20.2%)

P6
IntelliJ IDEA
Community github.com/JetBrains/intellij-community † 92 49 (53.3%) 21 (22.8%) 22 (23.9%)

P7 Kotlin github.com/JetBrains/kotlin † 82 34 (41.5%) 15 (18.3%) 33 (40.2%)
P8 OrientDB github.com/orientechnologies/orientdb † 96 57 (59.3%) 21 (21.9%) 18 (18.8%)
P9 Restlet Framework github.com/restlet/restlet-framework-java † 86 41 (47.7%) 23 (26.7%) 22 (25.6%)
P10 RxJava github.com/ReactiveX/RxJava † 61 19 (31.2%) 21 (34.4%) 21 (34.4%)
P11 Spring Framework github.com/spring-projects/spring-framework † 62 24 (38.7%) 22 (35.5%) 16 (25.8%)

Overall 935 462 (49.4%) 244 (26.1%) 229 (24.5%)
† Accessed on 1 December 2023.

github.com/apache/camel
github.com/apache/hbase
github.com/kiegroup/drools
github.com/elastic/elasticsearch
github.com/apache/hadoop
github.com/JetBrains/intellij-community
github.com/JetBrains/kotlin
github.com/orientechnologies/orientdb
github.com/restlet/restlet-framework-java
github.com/ReactiveX/RxJava
github.com/spring-projects/spring-framework

Mathematics 2024, 12, 1012 15 of 38

As the original dataset only contains a commit message and label for each commit,
we had to extend the dataset with additional data related to fine-grained conjoint code
changes to be able to use the proposed method on the dataset. In the experiments, we
considered one fine-grained conjoint code change unit, i.e., file-level code changes. The
steps taken to prepare and preprocess the data to obtain the extended dataset used in
the experiments are presented in Algorithm 2. First, we cloned each software project’s
repository to a local directory. For each labeled commit for that project, we retrieved the
source code of that commit and extracted the differences in the source code between the
current working directory of a commit and the preceding commit. For each file affected by
the commit operation that corresponded to the Java programming language, we obtained
the differences in code lines. It should be noted that different algorithms in the Git diff
utility produce unequal results [62]. We used the Myers algorithm, which is used as
the default in Git. We parsed the obtained difference in each file to obtain hunks with
modified lines of code of a commit compared to the preceding commit by simultaneously
determining whether a line was an addition or a deletion. Each modified code line was
preprocessed in order to remove code comments and whitespaces, i.e., indentations and
empty lines. Thus, the resulting code lines only represent the actual meaningful changes
to the code itself without considering the natural language documentation in the code
and code layout or formatting. Each file was assigned the same label as the commit they
were part of. The resulting extended dataset contains file-level detailed information on
the changes in the source code of each commit from the original dataset. Altogether, the
extended dataset consists of 4513 files that were affected by a commit operation across
935 commits in eleven software projects. Across all projects, the median was two files
(IQR = 3.00) were affected by a single commit, and, the median in a single file was eight
lines of code (IQR = 20.00) were modified, i.e., either added or deleted. More detailed
file-level characteristics of the dataset used in the experiments are available in Appendix A
in Table A1.

For task-adaptive pre-training, we prepared our own representative datasets of file-
level code changes. From the code repositories of the eleven software projects included
in the study, we randomly selected 1000 non-initial and non-merge commits. For each
commit, files affected by a commit operation were extracted. The same steps presented
in Algorithm 2, used to extend the labeled dataset, were undertaken herein to obtain the
additions and deletions in each file, with the exception of assigning a label, as the dataset in
this context is unlabeled. Altogether, the dataset for task-adaptive pre-training comprises
45,352 files.

Mathematics 2024, 12, 1012 16 of 38

Algorithm 2 Data preparation and preprocessing steps to obtain the extended dataset
used in the experiments

Data: list of projects: projects = [P1, . . . , P11]; original dataset of labeled commits with
features project P, commit hash hash, label label: dataset

Result: file-level extended dataset with features project P, commit hash hash, commit label
L, added lines add, deleted lines del: extended_datasetf

1 extended_datasetf ← [];
2 foreach project P in projects do
3 git clone repository P to local directory;
4 commits← get labeled commits of P from dataset;
5 foreach commit ci in commits do
6 hash, label← get hash and label of ci from commits;
7 git checkout commit with hash;
8 ci-1 ← get preceding commit of ci;
9 Diff (ci-1, ci)← get differences between ci-1 and ci;

10 N← get number of affected files from Diff (ci-1, ci);
11 n← 0;
12 while n < N do
13 file← get file name for n;
14 if file has “.java” extension then
15 Difff (ci-1, ci)← get differences between ci-1 and ci for f ile;
16 addf , delf ← [];
17 foreach hunk h in Difff (ci-1, ci) do
18 foreach line l in Difff ,h(ci-1, ci) do
19 if l starts with “+” symbol then
20 addl ← remove comments and whitespaces from l;
21 append addl to addf ;
22 else if l starts with “-” symbol then
23 dell ← remove comments and whitespaces from l;
24 append dell to delf ;
25 end
26 end
27 end
28 append [P, hash, label, addf , delf] to extended_datasetf

29 end
30 n← n + 1;
31 end
32 end
33 remove repository P from local directory;
34 end

5.3. Experimental Settings of the Proposed Method
5.3.1. Task-Adaptive Pre-Training

For task-adaptive pre-training, we used the prepared task-specific datasets of file-
level code changes. Two code models were considered for task-adaptive pre-training,
i.e., a pre-trained CodeBERT and a pre-trained GraphCodeBERT model. A tokenizer
specific to each code model was utilized for tokenizing inputs, i.e., sequences of added and
deleted code lines, for these models, with the maximum input sequence length set to 512.
From the available data, 80% were used for training and 20% for validation, with a random
seed value set to 42 when splitting the data to ensure reproducibility. We used the MLM
pre-training objective and selected 15% of tokens to randomly mask out. We employed
a training strategy that included four epochs with a batch size of 32 and implemented
gradient accumulation by aggregating over four mini-batches. The training utilized the
AdamW optimizer with a learning rate of 2e-5, complemented by a weight decay of 1e-2,
and 100 warmup steps. Two training strategies were employed, i.e., full-model and partial-

Mathematics 2024, 12, 1012 17 of 38

model task-adaptive pre-training. For the former, which was primarily used, all parameters
were trainable, while for the latter, the encoder layer was frozen, thus, only parameters in
the embedding and dense layers were trainable, as suggested by Ladkat et al. [63].

5.3.2. Fine-Tuning

For fine-tuning the code models we utilized the expanded dataset with file-level code
changes and respective labels. Four code models were used for fine-tuning, i.e., a pre-trained
CodeBERT, a task-adapted pre-trained CodeBERT, a pre-trained GraphCodeBERT, and
a task-adapted pre-trained GraphCodeBERT. The inputs to the code model, consisting
of sequences of added and deleted code lines, were tokenized using a respective model-
specific tokenizer with a maximum input sequence length of 512. From the available data,
stratified splitting based on labels with a random seed value of 42 was used, with 80% used
for training and 20% for validation. Random undersampling was performed to tackle the
unbalanced nature of the dataset. We employed a training strategy that included 15 epochs
with a batch size of 16, a gradient accumulation strategy over two mini-batches, and
a learning rate of the AdamW optimizer of 1e-5, complemented by a weight decay of 1e-2
to regulate model complexity. To ensure a gradual adaptation of the learning rate, we
incorporated 500 warmup steps. To prevent overfitting, early stopping was implemented
with the patience of three epochs. Out of twelve encoder layers, we opted to freeze the
initial layers of our model in addition to the embedding layer, under the assumption
that these layers encapsulated more general knowledge [64,65], and trained the top three
encoder layers of the model only. A classification head with a dense layer and dropout of
0.1 was added to the model for the classification task used in fine-tuning.

5.3.3. Semantic Embedding Extraction of Fine-Grained Conjoint Code Changes

For extracting file-level embeddings of code changes of the extended dataset, six code
models were included in the experiment, i.e., a pre-trained CodeBERT (CodeBERTPT),
a fine-tuned pre-trained CodeBERT (CodeBERTPT+FT), a fine-tuned task-adapted
pre-trained CodeBERT (CodeBERTPT+TAPT+FT), a pre-trained GraphCodeBERT
(GraphCodeBERTPT), a fine-tuned pre-trained GraphCodeBERT (GraphCodeBERTPT+FT),
and a fine-tuned task-adapted pre-trained GraphCodeBERT (GraphCodeBERTPT+TAPT+FT).
Additionally, we included CodeBERT with randomly initialized weights (CodeBERTrand)
and GraphCodeBERT with randomly initialized weights (GraphCodeBERTrand) as
baselines, using a random state of 1 for reproducibility. We again used the tokenizer with
regard to the code model used in order to prepare inputs for the code models. The special
classification token [CLS] with a 768-dimensional vector representation, obtained from
a code model, was considered as an aggregated semantic embedding of code changes in
each file.

5.3.4. Aggregation into Commit-Level Embedding

Based on the output file-level embeddings of each commit, for aggregations into
commit-level embeddings, three simple dimension-wise aggregation techniques, i.e.,
AggMin, AggMax, and, AggMean, and their four concatenation variants, i.e., AggMin⊕Max,
AggMin⊕Mean, AggMax⊕Mean, and AggMin⊕Max⊕Mean, were used, following the work of
Compton et al. [66]. The formulas for each aggregation technique used in commit aggre-
gation are presented in Table 3. It is important to note that the symbol ⊕ denotes the
concatenation of vectors, i.e., combining the outputs of two or more aggregation techniques
into a single vector representation. The resulting commit embeddings are of the follow-
ing dimensions: 768 dimensions when using AggMin, AggMax, or AggMean aggregation
techniques; 1536 dimensions when using AggMin⊕Max, AggMin⊕Mean, or AggMax⊕Mean ag-
gregation techniques; and 2304 dimensions when using the AggMin⊕Max⊕Mean aggregation
technique. To ensure uniformity in dimension scales in the resulting commit embedding
representations, we normalized each dimension to a range between −1 and 1.

Mathematics 2024, 12, 1012 18 of 38

Table 3. Overview of aggregation techniques used in the experiments.

Aggregation Technique Formula for Commit Aggregation

AggMin C =
[
minN

n=1 en,d

]768

d=1
AggMax C =

[
maxN

n=1 en,d
]768

d=1

AggMean C =
[

1
N ∑N

n=1 en,d

]768

d=1

AggMin⊕Max C =
[
minN

n=1 en,d

]768

d=1
⊕

[
maxN

n=1 en,d
]768

d=1

AggMin⊕Mean C =
[
minN

n=1 en,d

]768

d=1
⊕

[
1
N ∑N

n=1 en,d

]768

d=1

AggMax⊕Mean C =
[
maxN

n=1 en,d
]768

d=1 ⊕
[

1
N ∑N

n=1 en,d

]768

d=1

AggMin⊕Max⊕Mean C =
[
minN

n=1 en,d

]768

d=1
⊕

[
maxN

n=1 en,d
]768

d=1 ⊕
[

1
N ∑N

n=1 en,d

]768

d=1

5.4. Commit Intent Classification

Following existing research [5], we formulated the commit intent classification problem
as a single-label multi-class problem. This means that each commit within our dataset
is exclusively categorized into one of three distinct and non-overlapping classes Y =
{corrective, adaptive, perfective}. Several classifiers were employed for the tasks, selected
based on the findings from related work. From each category of classifiers that have been
shown to provide good results for the task under study, i.e., neural network, probabilistic,
and decision-tree-based, we opted for one representative, namely, Neural, Gaussian Naive
Bayes, and Random Forest Classifiers, respectively.

For RQ1, the Neural Classifier was configured with three hidden layers, employing
the ReLU activation function. For input embeddings of 768 dimensions, the hidden layers
were configured to sizes 512, 256, and 128; for embeddings of 1536 dimensions, to 1024,
512, and 256; and for embeddings of 2304 dimensions, to 2048, 1024, and 512. The models
utilized the Adam optimizer with a learning rate of 1e-3 and a batch size of 32. The
maximum number of iterations was set to 500, and L2 regularization was set to 1e-4 to
prevent overfitting. To aid reproducibility, the random state was set at 42. The loss function
employed was categorical cross-entropy, appropriate for our multi-class classification task.
The Gaussian Naive Bayes models were employed with a variance smoothing parameter
of 1e-9. The Random Forest models were configured with 100 trees, using the entropy
criterion for splitting. The minimum number of samples required to split a node was set
to 2, whereas each leaf node was required to have at least five samples. The random state
was set at 42 to ensure the reproducibility of results. To compare the built commit intent
classification models with a simple baseline, we additionally employed a majority class
classifier that always predicts the most frequent class in the dataset, which in our case is
corrective maintenance.

For RQ2, hyperparameter tuning across three classifiers for classification models
using the proposed and SOTA methods was employed, with the aim of improving the
classification performance and ensuring that any observed differences in performance
were attributable to certain methods’ effectiveness rather than to biased hyperparameter
configurations. To find the optimal hyperparameters for each classification model, we used
grid search with nested 10-fold cross-validation and weighted F-score as a performance
measure. The search space that was systematically explored for each classifier is reported
in Appendix B in Tables A2–A4 for the Neural, Gaussian Naive Bayes, and Random Forest
Classifiers, respectively.

5.5. Evaluation

To evaluate commit intent classification models in a cross-project setting, we employed
a group 11-fold cross-validation, where the number of folds directly corresponds to the
number of software projects included in the dataset. This ensures that all data from one

Mathematics 2024, 12, 1012 19 of 38

project are either in the train set or the test set, but not both. We opted for such an evaluation
strategy to resemble a real-world scenario where the classification models are applied to
projects they have not been trained on, thereby providing a more realistic measure of their
generalizability and effectiveness in cross-project contexts. More detailed information on
each fold is available in Appendix C in Table A5. In each fold, the train set was used to
train the model, i.e., perform fine-tuning and commit classification, while the evaluations
were performed on the test set. As evaluations were performed for each fold, the values
of performance metrics reported in the results include descriptive statistics, e.g., average
and standard deviation, considering the performance results from all folds. Due to the
imbalanced nature of the dataset, we primarily employed the F-score (weighted and per-
class) and Cohen’s Kappa Coefficient as measures of classification performance. Another
reason why we decided to use these two measures is that they have been commonly
employed in related work; presented in Section 2.

5.6. Experiment Setup and Implementation Details

The experiments were conducted with Python3. To work with the data, the pandas
library [67] was used. To implement the data preparation and preprocessing of the extended
labeled dataset and task-adaptive pre-training dataset, we used the GitPython [68] and
codeprep [69] libraries. In addition, to obtain a set of commits for datasets for task-adaptive
pre-training, GitHub REST API [70] was used. The two code models, i.e., CodeBERT and
GraphCodeBERT, were obtained from the Hugging Face Transformers library [71], which
was also used to work with code models (e.g., tokenization, training, fine-tuning, inference).
For performing embedding aggregations we used the NumPy library [72]. Commit intent
classification using the three classifiers, i.e., Neural, Gaussian Naive Bayes, and Random
Forest, and evaluations were implemented using the scikit-learn library [73]. The library
was also used for data preprocessing, e.g., normalizing embeddings and encoding labels,
and to build the majority class classifier as a baseline. For sampling, due to the imbalanced
nature of the data we employed imbalanced-learn [74]. Our experiments were conducted
using Google Colab with an Intel Xeon CPU @ 2.00 GHz. Additionally, NVIDIA A100-
SXM4-40 GB GPU resources were employed for task-adaptive pre-training, while NVIDIA
V100-SXM2-16 GB GPU resources were used for fine-tuning processes.

To compare the proposed method with the current SOTA of code-based commit rep-
resentations for commit intent classification, we reproduced related work for our dataset
used in the experiments. To obtain the values of 48 code change metrics proposed by
Levin and Yehudai [11], we used their publicly available replication package [75]. For
the 22 proposed code change metrics by Hönel et al. [7], we utilized the provided repli-
cation package [76]. Additionally, the 24 metrics suggested by Ghadhab et al. [14] were
extracted using their replication package [77]. To obtain the three metrics proposed by
Mariano et al. [15], we followed the extraction procedure as presented by the authors using
GitHub GraphQL API [78].

Data analysis of the experimental results was performed using Python3 and IBM SPSS
Statistics [79]. The visualizations were made using R and ggplot2 package [80].

6. Results and Discussion
6.1. RQ1 How Effective Is the Proposed Method When Used for Commit Intent Classification?

First, an ablation study was conducted to evaluate the effectiveness of the pro-
posed semantic embedding extraction method and each of its steps for commit in-
tent classification. To explore the impact of the inclusion of the method’s steps
on the classification performance, commit intent classification was performed based
on the CodeBERT and GraphCodeBERT models with randomly initialized weights
(CodeBERTrand, GraphCodeBERTrand), general-purpose pre-trained CodeBERT and Graph-
CodeBERT models (CodeBERTPT, GraphCodeBERTPT), fine-tuned pre-trained CodeBERT
and GraphCodeBERT models (CodeBERTPT+FT, GraphCodeBERTPT+FT), and fine-tuned
task-adapted pre-trained CodeBERT and GraphCodeBERT models (CodeBERTPT+TAPT+FT,

Mathematics 2024, 12, 1012 20 of 38

GraphCodeBERTPT+TAPT+FT). In general, the results of the ablation study, reported in
Table 4, with the averaged F-score and standard deviation on test datasets across folds,
separated by the classifier used and the technique employed for aggregations into commit-
level embeddings, show that regardless of the chosen code model, aggregation technique,
and classifier, the classification performance gradually improves with each step of the
proposed method. When Neural Classifier is used, on average, CodeBERTPT+TAPT+FT
provides an 18.88%, 5.26%, and 2.49% improvement over CodeBERTrand, CodeBERTPT,
and CodeBERTPT+FT, respectively, while GraphCodeBERTPT+TAPT+FT shows a 12.33% im-
provement over GraphCodeBERTrand, a 2.24% decrease compared to GraphCodeBERTPT,
and a 0.66% improvement over GraphCodeBERTPT+FT. With the Gaussian Naive Bayes
Classifier, on average, the improvements with CodeBERTPT+TAPT+FT are 17.69%, 5.56%,
and 1.64% over CodeBERTrand, CodeBERTPT, and CodeBERTPT+FT, respectively, while
the improvements with GraphCodeBERTPT+TAPT+FT are 8.87% over GraphCodeBERTrand,
and 5.99% over GraphCodeBERTPT, while there is a 0.23% decrease compared to
GraphCodeBERTPT+FT. For the Random Forest Classifier with CodeBERTPT+TAPT+FT, on
average, there is a 14.01% improvement over CodeBERTrand, 2.59% over CodeBERTPT, yet
a 1.59% decrease compared to CodeBERTPT+FT, while with GraphCodeBERTPT+TAPT+FT,
on average there is a 8.35%, 7.37%, and 0.75% improvement over GraphCodeBERTrand,
GraphCodeBERTPT, and GraphCodeBERTPT+FT, respectively. These results demonstrate
the effectiveness of the defined steps of the proposed method, i.e., using a pre-trained model,
fine-tuning, and task-adaptive pre-training, in improving the commit intent classification
performance, alongside the impact that the pre-training on a general corpus and fine-tuning
and task-adaptive pre-training on a dataset directly relevant to the classification task have
on the overall classification performance. However, it can be observed that the models
based on CodeBERT appear to perform better than GraphCodeBERT. This suggests that the
semantic features captured by CodeBERT are more effective for commit intent classification
than those captured by GraphCodeBERT. Thus, the relationships and dependencies within
code that are additionally captured by GraphCodeBERT compared to CodeBERT might
not aid in identifying various types of change intent with the herein-proposed semantic
embedding extraction method. Given these findings, the subsequent analyses presented in
the paper will only focus on CodeBERT-based classification models.

A more comprehensive analysis examined the differences in commit intent classifica-
tion performances. Figure 3 presents classification performances reported by the F-score of
a simple baseline model, i.e., majority class classifier, serving as a reference, and classifi-
cation models using CodeBERTrand and CodeBERTPT+TAPT+FT with different aggregation
techniques and classifiers. Annotations in the figure indicate the statistically significant
differences among the three comparison groups. Detailed results of the statistical tests
are provided in Appendix D in Tables A6–A8 for the Neural, Gaussian Naive Bayes,
and Random Forest Classifiers, respectively. Depending on the data distribution, appro-
priate tests were applied. Where the Shapiro–Wilk test showed that the distribution of
the differences in F-score was not significantly different from a normal distribution (e.g.,
W(11) = 0.950, p = 0.648 in the case of baseline-CodeBERTPT+TAPT+FT using AggMin and
the Neural Classifier), the Student’s paired-samples t-test was used to assess the differ-
ences in classification performance. Alternatively, where the Shapiro–Wilk test showed
that the differences in F-score did not meet the assumption of normality (e.g., W(11) =
0.849, p = 0.042 for baseline-CodeBERTPT+TAPT+FT using AggMax and the Random Forest
Classifier), the Wilcoxon signed-rank test was used. The analysis confirms statistically sig-
nificant performance differences across all classifiers and aggregation techniques between
the three classification models, i.e., between the baseline and CodeBERTrand, baseline and
CodeBERTPT+TAPT+FT, as well as between CodeBERTrand and CodeBERTPT+TAPT+FT. In
each paired comparison, the classification performance of the latter model is statistically
significantly better. These findings reveal that even when utilizing a code model with
randomly initialized weights, the resulting classification models can distinguish between
various types of intents to a limited extent, outperforming the majority class baseline. Thus,

Mathematics 2024, 12, 1012 21 of 38

the increased complexity of the model, resulting from the incorporation of a code model, in
comparison to the baseline reference, indeed leads to enhanced performance. At the same
time, these findings indicate that the inherent architecture of the code model, even without
pre-training, is capable of capturing certain patterns in the data relevant to change intent;
a phenomenon of language models with random parameterizations that prior studies
have already discussed [65,81,82]. Nevertheless, a significant difference in performance can
be observed when a code model with a fine-tuned task-adaptive pre-training strategy is
employed, marking significant improvements over its randomly initialized counterpart.

Table 4. Performance of commit intent classification, measured by F-score, using the proposed
semantic embedding extraction method with different aggregation techniques and across various
classifiers, with an ablation study of the methods’ steps on classification performance.

Neural Classifier
AggMin AggMax AggMean AggMin⊕Max AggMin⊕Mean AggMax⊕Mean AggMin⊕Max⊕Mean

CodeBERTrand 0.435 ± 0.06 0.392 ± 0.05 0.417 ± 0.06 0.440 ± 0.06 0.403 ± 0.06 0.423 ± 0.07 0.412 ± 0.07
CodeBERTPT 0.475 ± 0.07 0.474 ± 0.07 0.474 ± 0.06 0.467 ± 0.04 0.459 ± 0.08 0.477 ± 0.07 0.474 ± 0.06
CodeBERTPT+FT 0.481 ± 0.09 0.491 ± 0.08 0.492 ± 0.09 0.479 ± 0.08 0.485 ± 0.07 0.481 ± 0.06 0.480 ± 0.08
CodeBERTPT+TAPT+FT 0.493 ± 0.07 0.508 ± 0.06 0.503 ± 0.05 0.498 ± 0.05 0.502 ± 0.07 0.497 ± 0.05 0.472 ± 0.07
GraphCodeBERTrand 0.435 ± 0.06 0.392 ± 0.05 0.417 ± 0.06 0.440 ± 0.06 0.403 ± 0.06 0.423 ± 0.07 0.412 ± 0.07
GraphCodeBERTPT 0.491 ± 0.04 0.468 ± 0.07 0.478 ± 0.05 0.482 ± 0.06 0.481 ± 0.06 0.481 ± 0.04 0.476 ± 0.06
GraphCodeBERTPT+FT 0.482 ± 0.09 0.450 ± 0.10 0.463 ± 0.07 0.452 ± 0.09 0.479 ± 0.07 0.452 ± 0.09 0.484 ± 0.06
GraphCodeBERTPT+TAPT+FT 0.478 ± 0.09 0.461 ± 0.09 0.483 ± 0.08 0.464 ± 0.08 0.466 ± 0.09 0.470 ± 0.08 0.460 ± 0.07
Gaussian Naive Bayes Classifier

AggMin AggMax AggMean AggMin⊕Max AggMin⊕Mean AggMax⊕Mean AggMin⊕Max⊕Mean

CodeBERTrand 0.437 ± 0.09 0.436 ± 0.09 0.415 ± 0.06 0.436 ± 0.09 0.416 ± 0.08 0.418 ± 0.08 0.422 ± 0.08
CodeBERTPT 0.481 ± 0.07 0.484 ± 0.07 0.439 ± 0.06 0.481 ± 0.07 0.478 ± 0.05 0.475 ± 0.05 0.482 ± 0.06
CodeBERTPT+FT 0.498 ± 0.08 0.491 ± 0.07 0.491 ± 0.08 0.499 ± 0.08 0.485 ± 0.08 0.488 ± 0.07 0.497 ± 0.07
CodeBERTPT+TAPT+FT 0.504 ± 0.07 0.495 ± 0.06 0.495 ± 0.03 0.497 ± 0.06 0.503 ± 0.05 0.500 ± 0.05 0.511 ± 0.05
GraphCodeBERTrand 0.437 ± 0.09 0.436 ± 0.09 0.415 ± 0.06 0.436 ± 0.09 0.416 ± 0.08 0.418 ± 0.08 0.422 ± 0.08
GraphCodeBERTPT 0.439 ± 0.10 0.445 ± 0.09 0.438 ± 0.05 0.442 ± 0.09 0.433 ± 0.08 0.430 ± 0.07 0.432 ± 0.08
GraphCodeBERTPT+FT 0.456 ± 0.08 0.461 ± 0.08 0.483 ± 0.07 0.461 ± 0.08 0.468 ± 0.07 0.464 ± 0.07 0.457 ± 0.07
GraphCodeBERTPT+TAPT+FT 0.456 ± 0.08 0.451 ± 0.08 0.487 ± 0.05 0.454 ± 0.08 0.470 ± 0.05 0.463 ± 0.06 0.461 ± 0.07
Random Forest Classifier

AggMin AggMax AggMean AggMin⊕Max AggMin⊕Mean AggMax⊕Mean AggMin⊕Max⊕Mean

CodeBERTrand 0.435 ± 0.10 0.436 ± 0.11 0.404 ± 0.12 0.447 ± 0.12 0.433 ± 0.11 0.439 ± 0.13 0.430 ± 0.11
CodeBERTPT 0.485 ± 0.09 0.474 ± 0.10 0.473 ± 0.09 0.482 ± 0.10 0.476 ± 0.09 0.481 ± 0.08 0.490 ± 0.08
CodeBERTPT+FT 0.503 ± 0.10 0.488 ± 0.09 0.495 ± 0.10 0.510 ± 0.10 0.500 ± 0.09 0.502 ± 0.10 0.504 ± 0.09
CodeBERTPT+TAPT+FT 0.481 ± 0.10 0.485 ± 0.09 0.489 ± 0.08 0.495 ± 0.08 0.495 ± 0.08 0.503 ± 0.09 0.499 ± 0.10
GraphCodeBERTrand 0.435 ± 0.10 0.436 ± 0.11 0.404 ± 0.12 0.447 ± 0.12 0.433 ± 0.11 0.439 ± 0.13 0.430 ± 0.11
GraphCodeBERTPT 0.419 ± 0.11 0.448 ± 0.12 0.430 ± 0.10 0.440 ± 0.11 0.444 ± 0.12 0.422 ± 0.11 0.448 ± 0.09
GraphCodeBERTPT+FT 0.465 ± 0.10 0.466 ± 0.12 0.449 ± 0.11 0.465 ± 0.11 0.478 ± 0.10 0.464 ± 0.12 0.464 ± 0.12
GraphCodeBERTPT+TAPT+FT 0.473 ± 0.12 0.453 ± 0.11 0.449 ± 0.11 0.472 ± 0.11 0.482 ± 0.11 0.478 ± 0.10 0.468 ± 0.09

Bold formatting is used to highlight the highest F-score value achieved per a certain aggregation technique for
each classifier.

To further analyze the ability of the three models to distinguish between the three
classes of commit intents, Figure 4 presents the normalized confusion matrices for the test
dataset across all folds. These matrices compare the performance of a majority class baseline
model with classification models based on CodeBERTrand and CodeBERTPT+TAPT+FT on the
example of using the AggMax aggregation technique and Neural Classifier. The baseline
model classifies all commits as corrective. As it does not correctly identify any commits
of the other two classes, this shows its inability to distinguish between change intents. In
comparison, the CodeBERTrand-based classification model achieves a more balanced classi-
fication across the three classes, though with a persistent bias towards the corrective class.
The model is able to classify 54.1% of corrective, 32.4% of adaptive, and 17.9% of perfective
commits correctly, yet incorrectly classifies 47.1% and 52% of adaptive and perfective com-
mits, respectively, as corrective. In contrast, the CodeBERTPT+TAPT+FT-based classification
model demonstrates a better per-class classification performance than the previously dis-
cussed models. The model can correctly classify 64.7% of corrective, 41% of adaptive, and

Mathematics 2024, 12, 1012 22 of 38

37.1% of perfective commits, indicating it performs better for all three classes. There is still
considerable confusion between classes, but it is reduced compared to the CodeBERTrand-
based model. Overall, although the improvement in classification performance from the
baseline through CodeBERTrand to CodeBERTPT+TAPT+FT can be observed, and the models
become progressively better at distinguishing between different types of intents, there
are still considerable misclassifications present, suggesting that the proposed method has
potential for further improvement to achieve even better classification performance.

*** **

* ***

** ***

*** *

** ***

** **

** **

*** ***

*** **

** **

*** **

** ***

** ***

*** ***

*** ***

*** *
**

*** ***

*** *

*** **

*** **

*** **

Random Forest Classifier

Gaussian Naive Bayes Classifier

Neural Classifier

AggMin AggMax AggMean AggMin⊕Max AggMin⊕Mean AggMax⊕Mean AggMin⊕Max⊕Mean

AggMin AggMax AggMean AggMin⊕Max AggMin⊕Mean AggMax⊕Mean AggMin⊕Max⊕Mean

AggMin AggMax AggMean AggMin⊕Max AggMin⊕Mean AggMax⊕Mean AggMin⊕Max⊕Mean

0.2

0.4

0.6

0.2

0.4

0.6

0.2

0.4

0.6

F−
sc
or
e

F−
sc
or
e

F−
sc
or
e

baseline CodeBERTrand CodeBERTPT�TAPT�FT

Figure 3. Boxplots representing the commit intent classification performance across folds, measured
by F-score, for three models (baseline model, and CodeBERTrand- and CodeBERTPT+TAPT+FT-based
models with various aggregation techniques) using Neural, Gaussian Naive Bayes, and Random
Forest Classifiers, annotated with statistically significant performance differences between the models
(* p < 0.05, ** p < 0.01, *** p < 0.001).

Mathematics 2024, 12, 1012 23 of 38

100%

100%

100%

0%

0%

0%

0%

0%

0%Perfective

Adaptive

Corrective

Cor
re

cti
ve

Ada
pt

ive

Per
fec

tiv
e

(a) baseline

54.1%

47.1%

52%

22.3%

32.4%

30.1%

23.6%

20.5%

17.9%Perfective

Adaptive

Corrective

Cor
re

cti
ve

Ada
pt

ive

Per
fec

tiv
e

(b) CodeBERTrand

64.7%

36.5%

42.8%

18%

41%

20.1%

17.3%

22.5%

37.1%Perfective

Adaptive

Corrective

Cor
re

cti
ve

Ada
pt

ive

Per
fec

tiv
e

(c) CodeBERTPT+TAPT+FT

Figure 4. Overall normalized confusion matrix for (a) baseline model, and classification models
using (b) CodeBERTrand and (c) CodeBERTPT+TAPT+FT with AggMax aggregation technique and
Neural Classifier.

As task-adaptive pre-training can be computationally heavy, studies have shown
that training only a part of the language model, where not all parameters are trainable
during task adaptation, can still provide comparative results compared to training the
entire model. To assess this in the context of commit intent classification, we analyzed the
influence of the two training strategies of task-adaptive pre-training, i.e., full-model and
partial-model training, on commit intent classification performance. This was achieved
by observing the differences in performance, measured by the overall F-score, per-class
F-score (for corrective, adaptive, and perfective classes), and Kappa Coefficient under the
same experimental settings aside from the training strategy. In our experimental design, the
partial-model training involved training only 31.8% of the model’s parameters during task
adaptation. Similar to before, depending on the data distribution, appropriate tests were
applied: either the Student’s paired-samples t-test, which was used when the assumptions
of normality, assessed by the Shapiro–Wilk test, were met or the non-parametric counterpart,
the Wilcoxon signed-rank test, when the assumptions of normality were not met. Detailed
results of the statistical tests are provided in Appendix D in Tables A9–A11 for the Neural,
Gaussian Naive Bayes, and Random Forest Classifiers, respectively. To illustrate the
differences in classification performance between the two training approaches, Figure 5
represents the distribution of performance on the commit intent classification models based
on CodeBERTPT+TAPT+FT with AggMin aggregation technique, using full-model and partial-
model task adaptation. In a large majority of observations, the results show that there are
no statistically significant differences in classification performance between the two training
strategies. More specifically, in 95.2%, 100%, 95.2%, 71.4%, and 90.5% of observations, no
statistically significant differences were observed in terms of F-score, per-class F-score
for the corrective class, per-class F-score for the adaptive class, per-class F-score for the
perfective class, and Kappa Coefficient, respectively. Only in one observation was the F-
score statistically significantly higher for full-model training than partial-model training (in
the case of AggMin⊕Max using the Gaussian Naive Bayes Classifier). In two cases, the Kappa
Coefficient was statistically significantly higher for full-model training than partial-model
training (in the cases of AggMin⊕Max and AggMin⊕Max⊕Mean using the Gaussian Naive
Bayes Classifier). In one case, the per-class F-score for the adaptive class was statistically
significantly higher for full-model training compared to partial-model training. In six
cases, the per-class F-score for the perfective class was statistically significantly higher
for full-model training compared to partial-model training. These findings suggest that
task-adaptive pre-training can be conducted effectively with only partial-model training to
reduce the computational resources needed without significantly sacrificing classification
performance. This is especially relevant for environments with limited computational
resources. This might be due to the similarity between the pre-training and target tasks,
where the representations learned during pre-training are already well-suited to the target

Mathematics 2024, 12, 1012 24 of 38

task. Consequently, adapting the model by partially adjusting the weights is almost as
effective as adapting all weights.

Neural Classifier Gaussian Naive Bayes Classifier Random Forest Classifier

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

O
ve

ra
ll

F
−

sc
or

e

Neural Classifier Gaussian Naive Bayes Classifier Random Forest Classifier

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

P
er

−
cl

as
s

F
−

sc
or

e
(c

or
re

ct
iv

e)

Neural Classifier Gaussian Naive Bayes Classifier Random Forest Classifier

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

P
er

−
cl

as
s

F
−

sc
or

e
(a

da
pt

iv
e)

Neural Classifier Gaussian Naive Bayes Classifier Random Forest Classifier

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

P
er

−
cl

as
s

F
−

sc
or

e
(p

er
fe

ct
iv

e)

Neural Classifier Gaussian Naive Bayes Classifier Random Forest Classifier

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

K
ap

pa
 C

oe
ffi

ci
en

t

Partial−model TAPT Full−model TAPT

Figure 5. Density plots of classification performance, measured by the overall F-score, per-class
F-score (for corrective, adaptive, and perfective class), and Kappa Coefficient, of commit intent
classification models based on CodeBERTPT+TAPT+FT with AggMin aggregation technique using
full-model and partial-model task-adaptive pre-training strategy.

Mathematics 2024, 12, 1012 25 of 38

Lastly, as part of the proposed method, we evaluated the different aggregation tech-
niques used within the experiments. Separated by the classifier used, each aggregation
technique was assigned a rank from one to seven based on its classification performance
per fold on CodeBERTPT+TAPT+FT, with rank one representing the highest and seven the
lowest performance in terms of the F-score in a fold. To gain deeper insight into the ef-
fectiveness of the aggregation techniques, we averaged the per-fold ranks across all folds.
The resulting averaged ranks, presented in Figure 6, provide a rough estimate of each
aggregation technique’s overall performance, where a lower rank signifies better average
performance across folds for a specific classifier. Although previous analyses have already
shown varying performances across different aggregation techniques, the ranks presented
here demonstrate that no single technique consistently outperforms the others across all
three classifiers. For the Neural Classifier, the best-performing techniques are AggMax and
AggMean. The top technique for the Gaussian Naive Bayes Classifier is AggMin⊕Max⊕Mean.
For Random Forest Classifier, AggMax⊕Mean performs the best. It appears that the tech-
niques performing the best with the Neural Classifier are the least effective for the Gaussian
Naive Bayes Classifier, and vice versa. These observations suggest that while certain com-
binations of classifiers and aggregation techniques may yield optimal results for commit
intent classification, further exploring these combinations is beyond the scope of this pa-
per. Furthermore, our findings underscore the potential need for developing task-specific
aggregation techniques that could more effectively address the target task, for instance,
by considering relationships between changes, as opposed to the simple dimension-wise
aggregation approaches employed in this study.

5.27

4.27

3.64

3.73

3.36

3.36

4.18

2.27

3.45

3.55

3.91

3.73

4.09

2.82

3.64

3.18

3.91

3.82

4.27

4.64

4.55

Neural Classifier Gaussian Naive Bayes Classifier Random Forest Classifier

0 2 4 6 0 2 4 6 0 2 4 6

AggMin⊕Max⊕Mean

AggMax⊕Mean

AggMin⊕Mean

AggMin⊕Max

AggMean

AggMax

AggMin

Figure 6. Average ranks of aggregation techniques across folds using Neural, Gaussian Naive Bayes,
and Random Forest Classifiers.

6.2. RQ2 How Does the Proposed Method Compare to the SOTA When Used for Commit
Intent Classification?

To benchmark the classification performance of models using the proposed seman-
tic commit feature extraction method against the current SOTA, we employed the best-
performing aggregation technique for each classifier, identified by the analysis in the
context of RQ1, to build commit intent classification models based on the proposed method.
Specifically, for the Neural Classifier, we used CodeBERTPT+TAPT+FT with AggMax. For
Gaussian Naive Bayes, we combined CodeBERTPT+TAPT+FT with AggMin⊕Max⊕Mean, and for
Random Forest, we used CodeBERTPT+TAPT+FT with AggMax⊕Mean. In Table 5, we present
the average classification performance, measured by F-score and Kappa Coefficient, of
the commit intent classification models based on the proposed method with the afore-
mentioned settings and on SOTA, alongside comparative analysis of the differences in
classification performance for each paired comparison. Appropriate statistical tests were
applied based on the data distribution to evaluate performance differences. Again, based
upon the results of the Shapiro–Wilk test, either the Student’s paired-samples t-test or
the Wilcoxon signed-rank test was used. Across all comparisons, our proposed method’s

Mathematics 2024, 12, 1012 26 of 38

classification model demonstrated performance comparable to, and in several instances
superior to, the SOTA models. Specifically, in the majority of comparisons, the proposed
method’s classification performance outperformed that of the SOTA. Notably, in 50.0% of
these comparisons, the difference in performance in favor of the proposed method was
statistically significant. At the same time, there were no observed comparisons where the
SOTA-based classification models statistically outperformed those based on the proposed
method. For instance, with the Gaussian Naive Bayes Classifier, the models based on
the proposed method outperform all SOTA-based models, with a statistically significant
difference in performance compared to classification models based on features proposed
by Hönel et al. [7], Ghadhab et al. [14], and Mariano et al. [15]. In the case of the model
based on features proposed by Levin and Yehudai [22], although the model based on the
proposed method yielded a higher average F-score and Kappa Coefficient, the performance
differences were not statistically significant. These results demonstrate the effectiveness
of the proposed method despite it representing the first attempt to apply semantic source
code embeddings for commit intent classification. While further research is necessary to
build upon these initial findings, the work presented in this paper lays a strong foundation,
indicating performance that is not only comparable but, in many cases, superior to the
existing SOTA.

Table 5. Comparative analysis of the classification performance, measured by F-score and Kappa
Coefficient, of commit intent classification models based on the proposed method in comparison to
the SOTA.

Neural Classifier
Paired Comparison Performance Metric Avg1 Avg2 Shapiro–Wilk Test Student’s t-Test
proposed method–Levin and Yehudai [22] F-score 0.509 0.516 W(11) = 0.957, p = 0.735 t(10) = −0.287, p = 0.780

Kappa Coefficient 0.232 0.221 W(11) = 0.963, p = 0.804 t(10) = 0.317, p = 0.758
proposed method–Hönel et al. [7] F-score 0.509 0.525 W(11) = 0.938, p = 0.492 t(10) = −0.870, p = 0.405

Kappa Coefficient 0.232 0.248 W(11) = 0.920, p = 0.320 t(10) = −0.542, p = 0.599
proposed method–Ghadhab et al. [14] F-score 0.509 0.414 W(11) = 0.914, p = 0.274 t(10) = 3.728, p = 0.004 **

Kappa Coefficient 0.232 0.109 W(11) = 0.980, p = 0.964 t(10) = 3.738, p = 0.004 **
proposed method–Mariano et al. [15] F-score 0.509 0.529 W(11) = 0.882, p = 0.110 t(10) = −1.285, p = 0.228

Kappa Coefficient 0.232 0.250 W(11) = 0.911, p = 0.251 t(10) = −0.637, p = 0.539
Gaussian Naive Bayes Classifier
Paired Comparison Performance Metric Avg1 Avg2 Shapiro–Wilk Test Student’s t-Test/Wilcoxon

Signed-Rank Test
proposed method–Levin and Yehudai [22] F-score 0.511 0.450 W(11) = 0.911, p = 0.249 t(10) = 1.600, p = 0.141

Kappa Coefficient 0.248 0.166 W(11) = 0.955, p = 0.708 t(10) = 2.016, p = 0.072
proposed method–Hönel et al. [7] F-score 0.511 0.429 W(11) = 0.940, p = 0.521 t(10) = 3.524, p = 0.006 **

Kappa Coefficient 0.248 0.126 W(11) = 0.929, p = 0.400 t(10) = 6.305, p < 0.001 ***
proposed method–Ghadhab et al. [14] F-score 0.511 0.373 W(11) = 0.969, p = 0.872 t(10) = 6.034, p < 0.001 ***

Kappa Coefficient 0.248 0.058 W(11) = 0.958, p = 0.752 t(10) = 9.758, p < 0.001 ***
proposed method–Mariano et al. [15] F-score 0.511 0.406 W(11) = 0.917, p = 0.295 t(10) = 3.518, p = 0.006 **

Kappa Coefficient 0.248 0.100 W(11) = 0.701, p < 0.001 *** Z = −2.845, p = 0.004 **
Random Forest Classifier
Paired Comparison Performance Metric Avg1 Avg2 Shapiro–Wilk Test Student’s t-Test
proposed method–Levin and Yehudai [22] F-score 0.501 0.467 W(11) = 0.894, p = 0.157 t(10) = 2.768, p = 0.020 *

Kappa Coefficient 0.220 0.164 W(11) = 0.878, p = 0.097 t(10) = 2.425, p = 0.036 *
proposed method–Hönel et al. [7] F-score 0.501 0.503 W(11) = 0.976, p = 0.939 t(10) = −0.101, p = 0.922

Kappa Coefficient 0.220 0.217 W(11) = 0.969, p = 0.879 t(10) = 0.100, p = 0.922
proposed method–Ghadhab et al. [14] F-score 0.501 0.402 W(11) = 0.932, p = 0.429 t(10) = 3.945, p = 0.003 **

Kappa Coefficient 0.220 0.102 W(11) = 0.947, p = 0.603 t(10) = 3.289, p = 0.008 **
proposed method–Mariano et al. [15] F-score 0.501 0.533 W(11) = 0.951, p = 0.656 t(10) = −1.633, p = 0.133

Kappa Coefficient 0.220 0.256 W(11) = 0.968, p = 0.869 t(10) = −1.461, p = 0.175

Avg = average, * p < 0.05, ** p < 0.01, *** p < 0.001.

7. Threats to Validity
7.1. Threats to Construct Validity

To address the threat to construct validity related to inadequately defined concepts,
we provide precise definitions of software change intents by referring to an existing,

Mathematics 2024, 12, 1012 27 of 38

widely accepted, and the most frequently used intent-based categorization scheme of
software maintenance activities, introduced by Swanson [20]. It is important to note that
the selected categorization scheme and presented definitions are in alignment with the ones
used to prepare a labeled dataset on which our work is built. Our work has a construct
representation bias regarding how software changes are represented. When embedding
commits with a fine-tuned task-adapted pre-trained transformer-based code model, only
modified code lines are taken into account. This might neglect the surrounding context in
which the changes are made, e.g., the project’s domain, the part of the modified codebase
(i.e., production or test), and the code context in which the code lines are modified. To
address the threat of construct under-representation related to mono-operation bias, we
operationalize classification model performance by employing several measures, including
F-score, and Cohen’s Kappa Coefficient. By using multiple metrics, we mitigate a narrow
interpretation of models’ performances and obtain a more comprehensive evaluation as
different metrics capture different aspects of classification performance. However, we do
not consider any other metrics that could address the performance in terms of the training
and use of the model, e.g., model complexity, time complexity of training, and inference
time, which may present intriguing research directions for future studies.

7.2. Threats to Internal Validity

There is a threat to internal validity related to anomalies in instrumentation, i.e., tools
and procedures. To ensure reliability and consistency in the data preparation procedure,
data are gathered using GitHub REST API, GitPython, and codeprep along with our custom
implementations when needed. Existing tools are used preferably as we consider that
popular, actively maintained tools used by prior studies have a high level of confidence
in the correctness of the retrieved data. We automate the data preparation procedure to
mitigate inconsistencies due to human errors. Despite manual verification that the data
preparation procedure is performed correctly, just one tool is used for each task, and tool-
related errors in the procedure are still possible. There is a threat related to overfitting
and underfitting classification models; k-fold cross-validation is performed to help with
identifying the two issues. Another threat to internal validity is data leakage. In a cross-
project setting, we utilize project-based train–test data splits to mitigate the threat. This
helps to ensure that a model does not learn about the test data during training, as all data
from a specific project is either in the train or the test set, but not both.

7.3. Threats to External Validity

The main threat to external validity relates to selection bias, as the generalizability of
our work is hindered by the characteristics of the dataset of commits and pre-trained code
model used; they might not be representative of all commits and code models. Our study
includes only open-sourced software projects based on the Java programming language
that are tracked with the help of the Git source control system. Thus, there is a risk that
the results may not apply to software projects with different characteristics. While these
selection biases are relevant, we argue that the results are generalizable to a wide range
of software because these technologies and approaches are widely used, thus making
this research relevant. It is possible that the results are not reproducible for software
based on other programming languages; however, as CodeBERT and GraphCodeBERT
are multilingual models and suitable for at least Python, JavaScript, PHP, Ruby, and Go in
addition to Java, we hypothesize they can be employed for other software as well, especially
since these two code models do not use any explicit mark to denote the input programming
language [53]. However, without proper investigation, this threat remains a valid concern.
In addition, only two pre-trained code models were used, and additional research is needed
to study the generalizability concerning the selection of a code model. Another threat to
external validity is related to setting bias. It should be noted that our study presumes each
commit-level software change can have only one change intent, an assumption adopted
from Levin and Yehudai [11] that prepared the dataset. Nevertheless, this might not be the

Mathematics 2024, 12, 1012 28 of 38

case in real-world software engineering practices, as already discussed by some existing
studies [7,13,16,24]; hence, this is something that can be addressed in future work.

7.4. Threats to Conclusion Validity

To mitigate threats to conclusion validity regarding the reliability of measures, we
provide a detailed description of our proposed approach and experimental setup while
using the publicly available pre-trained code models CodeBERT and GraphCodeBERT and
their respective tokenizers, all of which facilitate the ability to replicate the investigations
undertaken by our work. Our conclusions depend on the commit dataset used, and thus, are
influenced by the dataset’s inherent quality. Regarding the reliability of the commit labels,
we rely on the labeling process performed by Levin and Yehudai [11]. The dataset’s authors
explain that after the first author labeled the commits, the second author independently
labeled a random subset, including 10% of those commits, to assess the agreement between
the two annotators. They report a high level of inter-rater agreement, implying that this
threat to validity posed by human error remains minimal. However, we acknowledge an
additional threat to conclusion validity due to the inherent variability in commit-level code
changes across different projects and developers in the real world. The extent to which such
variability is present in the dataset used in the experiments may affect the effectiveness
of the proposed method and the reliability of the drawn conclusions. Including a more
diverse range of commits from various projects in future research would help validate the
robustness of the proposed method against the diverse nature of commits. We employ
group k-fold cross-validation to help ensure that the conclusions based on classification
performance evaluations are reliable, as well as representative of a real-world scenario. This
reduces the risk that the achieved performance results are due to a particular data split. To
address the possible variance in the experimental settings when comparing the proposed
approach to SOTA, we reproduce the proposed approaches in previous work and apply all
approaches to the same settings rather than making a comparison based on the published
results from the original studies. We also reproduce research that uses the same dataset,
as the experimental setting might be different, for example, a different train–test split,
which could significantly influence the results. We primarily rely on replication packages
provided by the authors to reduce the bias related to reliability in implementations. When
this is not possible, we carefully implement the approaches based on the provided details
given in the studies. To address threats to statistical conclusion validity related to violation
of assumptions of statistical tests, we explain why we chose those tests and verify that the
data under study meet the required prerequisites of the employed tests.

8. Conclusions

Intent-based commit classification into software maintenance activities focuses on
categorizing a commit based on what the changes performed in this commit were intended
to achieve, e.g., to fix faults, to accommodate changes in the environment, or to enhance
software quality. In order to understand why a particular commit was made to the software
project’s codebase, such classifications can be carried out manually. Alternatively, automated
approaches, such as machine-learning-based ones, can be employed. This paper proposes
an approach to automated commit intent classification that considers a commit as a single
unit of one or more fine-grained conjoint code changes, e.g., file-level or hunk-level changes,
with each change performed within a commit being either an addition or deletion. We
investigate how code changes can be represented with the help of code models to reflect
the change intent in terms of maintenance activities performed. The proposed semantic
commit feature extraction method in this work combines software repository mining and
source code analysis with advanced natural language processing techniques. A pre-trained
code model, further trained using a task-adaptive pre-training strategy and fine-tuned
for the task under study, is utilized to embed modified code lines in a file. File-level
embeddings are then aggregated into single commit-level vector representations. Based on
such commit representations, we train commit classification models, attempting to categorize

Mathematics 2024, 12, 1012 29 of 38

commits into three types of software maintenance activities, i.e., corrective, adaptive, and
perfective. Our work differs from prior work in that it characterizes and represents commits
as code embeddings created using a pre-trained transformer-based code model, with the
aim to better represent commits by capturing the unstructured code changes and their
semantics. Several experiments were performed on a dataset of commits from eleven open-
source Java software projects to evaluate the classification performance of the proposed
method, and to compare it with the SOTA. The experimental results show that the proposed
method can distinguish between different change intents and is capable of outperforming
the classification performances produced by the SOTA. This demonstrates the potential
of pre-trained code models in understanding and categorizing code changes. Given the
usefulness of commit intent classification models in a variety of software-engineering-related
tasks, such as helping software maintenance management, detecting anomalies in software
evolution, and supporting empirical research, our findings have significant implications as
the demonstrated efficacy of the investigated models directly impacts such applications. In
the future, we aim to extend the study by including other code models. Future research will
expand the investigations to other datasets, with an emphasis on including software projects
based on other programming languages and considering multi-intent commits. Another
interesting research direction would be to evaluate the proposed method by considering fine-
grained conjoint code changes at the hunk level instead of the file level, prior to aggregating
into commit embeddings. Additionally, another potential future research direction is to
extend our work by considering the context of the commit-level software changes and the
relationships inherent in conjoint code changes, which could help in the development of
more accurate and reliable models.

Author Contributions: Conceptualization, T.H. and S.K.; methodology, T.H. and S.K.; software, T.H.;
validation, T.H. and S.K.; formal analysis, T.H.; investigation, T.H. and S.K.; resources, B.Š.; data
curation, T.H.; writing—original draft preparation, T.H.; writing—review and editing, T.H., B.Š. and
S.K.; visualization, T.H.; supervision, S.K. and B.Š.; project administration, S.K.; funding acquisition,
B.Š. All authors have read and agreed to the published version of the manuscript.

Funding: The authors acknowledge the financial support from the Slovenian Research and Innovation
Agency (Research Core Funding No. P2-0057).

Data Availability Statement: The data will be made available by the authors on request.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. Characteristics of the Extended Dataset

Table A1. File-level characteristics of the extended dataset used in the experiments.

No. Affected Files Per Commit No. Added and Deleted Lines Per File

Software Project Med IQR Avg Std Min Max Med IQR Avg Std Min Max

P1 Apache Camel 2.50 4.00 6.42 15.89 1.00 135.00 7.00 13.00 16.03 26.75 1.00 254.00
P2 Apache HBase 2.00 2.00 3.39 4.33 1.00 23.00 9.00 27.00 32.29 161.76 1.00 2885.00
P3 Drools 2.00 4.00 4.88 6.85 1.00 40.00 12.00 27.00 46.82 186.41 1.00 3176.00
P4 Elasticsearch 2.00 3.50 5.66 9.83 1.00 55.00 9.00 17.00 24.06 43.42 1.00 338.00
P5 Hadoop 3.00 4.00 6.41 9.65 1.00 74.00 10.00 28.00 31.62 64.37 1.00 761.00
P6 IntelliJ IDEA Community 1.00 1.25 2.13 2.14 1.00 15.00 8.00 19.00 21.96 58.09 1.00 631.00
P7 Kotlin 2.50 3.00 3.63 5.12 1.00 34.00 6.00 13.00 16.07 34.46 1.00 342.00
P8 OrientDB 2.00 4.00 4.67 6.94 1.00 41.00 8.00 21.00 50.49 236.59 1.00 3444.00
P9 Restlet Framework 2.00 3.00 6.73 23.86 1.00 215.00 4.00 5.00 14.62 45.25 1.00 563.00
P10 RxJava 2.00 1.00 2.70 4.40 1.00 30.00 15.50 35.50 30.14 47.07 1.00 392.00
P11 Spring Framework 2.00 2.00 2.87 3.10 1.00 15.00 10.00 24.75 22.58 29.22 1.00 155.00

Overall 2.00 3.00 4.59 10.56 1.00 215.00 8.00 20.00 28.41 116.42 1.00 3444.00

Med = median, IQR = interquartile range, Avg = average, Std = standard deviation, Min = minimum, Max = maximum.

Mathematics 2024, 12, 1012 30 of 38

Appendix B. Search Space for Hyperparameter Tuning of Classification Models Used in
Experiments for RQ2

Table A2. Search space for hyperparameter tuning of classification models using Neural Classifier.

Hyperparameter Possible Values

hidden_layer_sizes [(20), (20, 10), (512, 265), (512, 265, 128)]
learning_rate_init [0.0001, 0.001]
max_iter [200, 500, 1000]
alpha [0.0001, 0.001]

Table A3. Search space for hyperparameter tuning of classification models using Gaussian Naive
Bayes Classifier.

Hyperparameter Possible Values

var_smoothing [1e-10, 1e-9, 1e-8, 1e-7]

Table A4. Search space for hyperparameter tuning of classification models using Random
Forest Classifier.

Hyperparameter Possible Values

n_estimators [50, 100, 200]
min_samples_split [2, 5, 10]
min_samples_leaf [3, 5, 7]
max_depth [None, 10]
criterion [‘entropy’]

Appendix C. Characteristics of the Folds of Group 11-Fold Cross-Validation

Table A5. Characteristics of the train and test sets of the folds of group 11-fold cross-validation used
in the experiments.

Train Set Test Set

Fold No. Commits No. Files Software Projects No. Commits No. Files Software Project

Fold1 845 (90.4%) 3717 (86.5%) P2–P11 90 (9.6%) 578 (13.5%) P1
Fold2 838 (89.6%) 3966 (92.3%) P1, P3–P11 97 (10.4%) 329 (7.7%) P2
Fold3 832 (89.0%) 3792 (88.3%) P1, P2, P4–P11 103 (11.0%) 503 (11.7%) P3
Fold4 868 (92.8%) 3916 (91.2%) P1–P3, P5–P11 67 (7.2%) 379 (8.8%) P4
Fold5 836 (89.4%) 3654 (85.1%) P1–P4, P6–P11 99 (10.6%) 641 (14.9%) P5
Fold6 843 (90.2%) 4099 (95.4%) P1–P5, P7–P11 92 (9.8%) 196 (4.6%) P6
Fold7 853 (91.2%) 3997 (93.1%) P1–P6, P8–P11 82 (8.8%) 298 (6.9%) P7
Fold8 839 (89.7%) 3847 (89.6%) P1–P7, P9–P11 96 (10.3%) 448 (10.4%) P8
Fold9 849 (90.8%) 3716 (86.5%) P1–P8, P10, P11 86 (9.2%) 579 (13.5%) P9
Fold10 874 (93.5%) 4129 (96.1%) P1–P9, P11 61 (6.5%) 166 (3.9%) P10
Fold11 873 (93.4%) 4117 (95.9%) P1–P10 62 (6.6%) 178 (4.1%) P11

Mathematics 2024, 12, 1012 31 of 38

Appendix D. Detailed Results of Statistical Tests

Table A6. Analysis of the differences in the commit intent classification performances, mea-
sured by F-score, between the paired comparisons of the baseline model, and CodeBERTrand- and
CodeBERTPT+TAPT+FT-based models with various aggregation techniques using Neural Classifier.

Aggregation
Technique Paired Comparison Shapiro–Wilk Test Student’s t-Test

AggMin baseline-CodeBERTrand W (11) = 0.950, p = 0.648 t (10) = −5.575, p < 0.001 ***
baseline-CodeBERTPT+TAPT+FT W (11) = 0.984, p = 0.983 t (10) = −6.845, p < 0.001 ***
CodeBERTrand-CodeBERTPT+TAPT+FT W (11) = 0.937, p = 0.486 t (10) = −3.947, p = 0.003 **

AggMax baseline-CodeBERTrand W (11) = 0.956, p = 0.719 t (10) = −2.679, p = 0.023 *
baseline-CodeBERTPT+TAPT+FT W (11) = 0.901, p = 0.189 t (10) = −6.777, p < 0.001 ***
CodeBERTrand-CodeBERTPT+TAPT+FT W (11) = 0.977, p = 0.951 t (10) = −5.784, p < 0.001 ***

AggMean baseline-CodeBERTrand W (11) = 0.932, p = 0.429 t (10) = −4.334, p = 0.001 **
baseline-CodeBERTPT+TAPT+FT W (11) = 0.939, p = 0.504 t (10) = −8.194, p < 0.001***
CodeBERTrand-CodeBERTPT+TAPT+FT W (11) = 0.925, p = 0.366 t (10) = −6.456, p < 0.001 ***

AggMin⊕Max baseline-CodeBERTrand W (11) = 0.880, p = 0.104 t (10) = −5.331, p < 0.001 ***
baseline-CodeBERTPT+TAPT+FT W (11) = 0.858, p = 0.055 t (10) = −7.117, p < 0.001 ***
CodeBERTrand-CodeBERTPT+TAPT+FT W (11) = 0.904, p = 0.207 t (10) = −2.856, p = 0.017 *

AggMin⊕Mean baseline-CodeBERTrand W (11) = 0.903, p = 0.199 t (10) = −3.394, p = 0.007 **
baseline-CodeBERTPT+TAPT+FT W (11) = 0.953, p = 0.686 t (10) = −6.156, p < 0.001 ***
CodeBERTrand-CodeBERTPT+TAPT+FT W (11) = 0.961, p = 0.781 t (10) = −4.643, p < 0.001 ***

AggMax⊕Mean baseline-CodeBERTrand W (11) = 0.959, p = 0.762 t (10) = −3.739, p = 0.004 **
baseline-CodeBERTPT+TAPT+FT W (11) = 0.916, p = 0.287 t (10) = −5.403, p < 0.001***
CodeBERTrand-CodeBERTPT+TAPT+FT W (11) = 0.932, p = 0.428 t (10) = −4.300, p = 0.002 **

AggMin⊕Max⊕Mean baseline-CodeBERTrand W (11) = 0.943, p = 0.556 t (10) = −3.742, p = 0.004 **
baseline-CodeBERTPT+TAPT+FT W (11) = 0.942, p = 0.546 t (10) = −7.210, p < 0.001 ***
CodeBERTrand-CodeBERTPT+TAPT+FT W (11) = 0.984, p = 0.985 t (10) = −3.903, p = 0.003 **

* p < 0.05, ** p < 0.01, *** p < 0.001.

Table A7. Analysis of the differences in the commit intent classification performances, mea-
sured by F-score, between the paired comparisons of the baseline model, and CodeBERTrand- and
CodeBERTPT+TAPT+FT-based models with various aggregation techniques using Gaussian Naive
Bayes Classifier.

Aggregation
Technique Paired Comparison Shapiro–Wilk Test Student’s t-Test

AggMin baseline-CodeBERTrand W (11) = 0.963, p = 0.805 t (10) = −5.790, p < 0.001 ***
baseline-CodeBERTPT+TAPT+FT W (11) = 0.921, p = 0.327 t (10) = −6.424, p < 0.001 ***
CodeBERTrand-CodeBERTPT+TAPT+FT W (11) = 0.924, p = 0.353 t (10) = −4.853, p < 0.001 ***

AggMax baseline-CodeBERTrand W (11) = 0.962, p = 0.801 t (10) = −5.794, p < 0.001 ***
baseline-CodeBERTPT+TAPT+FT W (11) = 0.923, p = 0.343 t (10) = −6.316, p < 0.001 ***
CodeBERTrand-CodeBERTPT+TAPT+FT W (11) = 0.943, p = 0.555 t (10) = −4.126, p = 0.002 **

AggMean baseline-CodeBERTrand W (11) = 0.929, p = 0.400 t (10) = −3.297, p = 0.008 **
baseline-CodeBERTPT+TAPT+FT W (11) = 0.882, p = 0.111 t (10) = −5.451, p < 0.001 ***
CodeBERTrand-CodeBERTPT+TAPT+FT W (11) = 0.934, p = 0.456 t (10) = −4.456, p = 0.001 **

AggMin⊕Max baseline-CodeBERTrand W (11) = 0.966, p = 0.845 t (10) = −5.874, p < 0.001 ***
baseline-CodeBERTPT+TAPT+FT W (11) = 0.926, p = 0.375 t (10) = −6.444, p < 0.001 ***
CodeBERTrand-CodeBERTPT+TAPT+FT W (11) = 0.949, p = 0.635 t (10) = −4.272, p = 0.002 **

AggMin⊕Mean baseline-CodeBERTrand W (11) = 0.955, p = 0.707 t (10) = −3.746, p = 0.004 **
baseline-CodeBERTPT+TAPT+FT W (11) = 0.907, p = 0.223 t (10) = −6.305, p < 0.001 ***
CodeBERTrand-CodeBERTPT+TAPT+FT W (11) = 0.877, p = 0.094 t (10) = −5.829, p < 0.001 ***

AggMax⊕Mean baseline-CodeBERTrand W (11) = 0.955, p = 0.707 t (10) = −3.928, p = 0.003 **
baseline-CodeBERTPT+TAPT+FT W (11) = 0.880, p = 0.104 t (10) = −6.152, p < 0.001 ***
CodeBERTrand-CodeBERTPT+TAPT+FT W (11) = 0.957, p = 0.736 t (10) = −5.628, p < 0.001 ***

AggMin⊕Max⊕Mean baseline-CodeBERTrand W (11) = 0.967, p = 0.855 t (10) = −4.871, p < 0.001 ***
baseline-CodeBERTPT+TAPT+FT W (11) = 0.886, p = 0.123 t (10) = −7.150, p < 0.001 ***
CodeBERTrand-CodeBERTPT+TAPT+FT W (11) = 0.953, p = 0.683 t (10) = −7.096, p < 0.001 ***

** p < 0.01, *** p < 0.001.

Mathematics 2024, 12, 1012 32 of 38

Table A8. Analysis of the differences in the commit intent classification performances, mea-
sured by F-score, between the paired comparisons of the baseline model, and CodeBERTrand-
and CodeBERTPT+TAPT+FT-based models with various aggregation techniques using Random
Forest Classifier.

Aggregation
Technique Paired Comparison Shapiro–Wilk Test Student’s t-Test/Wilcoxon

Signed-Rank Test

AggMin baseline-CodeBERTrand W (11) = 0.945, p = 0.579 t (10) = −7.296, p < 0.001 ***
baseline-CodeBERTPT+TAPT+FT W (11) = 0.885, p = 0.121 t (10) = −9.483, p < 0.001 ***
CodeBERTrand-CodeBERTPT+TAPT+FT W (11) = 0.951, p = 0.663 t (10) = −5.389, p < 0.001 ***

AggMax baseline-CodeBERTrand W (11) = 0.953, p = 0.678 t (10) = −5.203, p < 0.001 ***
baseline-CodeBERTPT+TAPT+FT W (11) = 0.849, p = 0.042 * Z = 2.934, p = 0.003 **
CodeBERTrand-CodeBERTPT+TAPT+FT W (11) = 0.957, p = 0.728 t (10) = −2.517, p = 0.031 *

AggMean baseline-CodeBERTrand W (11) = 0.947, p = 0.610 t (10) = −7.342, p < 0.001 ***
baseline-CodeBERTPT+TAPT+FT W (11) = 0.890, p = 0.138 t (10) = −8.770, p < 0.001 ***
CodeBERTrand-CodeBERTPT+TAPT+FT W (11) = 0.920, p = 0.315 t (10) = −4.733, p < 0.001 ***

AggMin⊕Max baseline-CodeBERTrand W (11) = 0.961, p = 0.783 t (10) = −6.407, p < 0.001 ***
baseline-CodeBERTPT+TAPT+FT W (11) = 0.948, p = 0.614 t (10) = −10.243, p < 0.001 ***
CodeBERTrand-CodeBERTPT+TAPT+FT W (11) = 0.930, p = 0.407 t (10) = −2.451, p = 0.034 *

AggMin⊕Mean baseline-CodeBERTrand W (11) = 0.981, p = 0.973 t (10) = −6.896, p < 0.001 ***
baseline-CodeBERTPT+TAPT+FT W (11) = 0.934, p = 0.453 t (10) = −8.912, p < 0.001 ***
CodeBERTrand-CodeBERTPT+TAPT+FT W (11) = 0.894, p = 0.157 t (10) = −3.993, p = 0.003 **

AggMax⊕Mean baseline-CodeBERTrand W (11) = 0.963, p = 0.813 t (10) = −5.107, p < 0.001 ***
baseline-CodeBERTPT+TAPT+FT W (11) = 0.934, p = 0.457 t (10) = −10.523, p < 0.001 ***
CodeBERTrand-CodeBERTPT+TAPT+FT W (11) = 0.955, p = 0.709 t (10) = −3.371, p = 0.007 **

AggMin⊕Max⊕Mean baseline-CodeBERTrand W (11) = 0.889, p = 0.135 t (10) = −6.231, p < 0.001 ***
baseline-CodeBERTPT+TAPT+FT W (11) = 0.920, p = 0.321 t (10) = −7.609, p < 0.001 ***
CodeBERTrand-CodeBERTPT+TAPT+FT W (11) = 0.783, p = 0.006 ** Z = 2.934, p = 0.003 **

* p < 0.05, ** p < 0.01, *** p < 0.001.

Table A9. Analysis of the differences in the commit intent classification performances, measured
by F-score, per-class F-scores, and Kappa Coefficient, between the paired comparisons of the
CodeBERTPT+TAPT+FT-based models using partial-model and full-model task-adaptive pre-training
with various aggregation techniques using Neural Classifier.

Aggregation
Technique Performance Metric Shapiro–Wilk Test Student’s t-Test

AggMin F-score W (11) = 0.959, p = 0.762 t (10) = −1.455, p = 0.176
Per-class F-score (corrective) W (11) = 0.963, p = 0.807 t (10) = −1.728, p = 0.115
Per-class F-score (adaptive) W (11) = 0.970, p = 0.888 t (10) = −0.393, p = 0.702
Per-class F-score (perfective) W (11) = 0.895, p = 0.162 t (10) = −1.062, p = 0.313
Kappa Coefficient W (11) = 0.948, p = 0.621 t (10) = −1.883, p = 0.089

AggMean F-score W (11) = 0.956, p = 0.717 t (10) = −1.664, p = 0.127
Per-class F-score (corrective) W (11) = 0.877, p = 0.096 t (10) = −1.585, p = 0.144
Per-class F-score (adaptive) W (11) = 0.920, p = 0.316 t (10) = −0.212, p = 0.836
Per-class F-score (perfective) W (11) = 0.921, p = 0.328 t (10) = −1.164, p = 0.272
Kappa Coefficient W (11) = 0.947, p = 0.606 t (10) = −1.551, p = 0.152

AggMax F-score W (11) = 0.867, p = 0.070 t (10) = −1.463, p = 0.174
Per-class F-score (corrective) W (11) = 0.909, p = 0.239 t (10) = −0.452, p = 0.661
Per-class F-score (adaptive) W (11) = 0.960, p = 0.775 t (10) = −0.712, p = 0.493
Per-class F-score (perfective) W (11) = 0.943, p = 0.560 t (10) = −1.698, p = 0.120
Kappa Coefficient W (11) = 0.920, p = 0.318 t (10) = −1.543, p = 0.154

AggMin⊕Max F-score W (11) = 0.938, p = 0.494 t (10) = −0.759, p = 0.465
Per-class F-score (corrective) W (11) = 0.988, p = 0.994 t (10) = −0.317, p = 0.758
Per-class F-score (adaptive) W (11) = 0.890, p = 0.139 t (10) = −0.379, p = 0.713
Per-class F-score (perfective) W (11) = 0.944, p = 0.566 t (10) = −1.406, p = 0.190
Kappa Coefficient W (11) = 0.904, p = 0.206 t (10) = −0.927, p = 0.376

Mathematics 2024, 12, 1012 33 of 38

Table A9. Cont.

Aggregation
Technique Performance Metric Shapiro–Wilk Test Student’s t-Test

AggMin⊕Mean F-score W (11) = 0.936, p = 0.473 t (10) = −1.574, p = 0.147
Per-class F-score (corrective) W (11) = 0.913, p = 0.264 t (10) = −0.385, p = 0.708
Per-class F-score (adaptive) W (11) = 0.941, p = 0.527 t (10) = −2.401, p = 0.037 *
Per-class F-score (perfective) W (11) = 0.984, p = 0.983 t (10) = −1.663, p = 0.127
Kappa Coefficient W (11) = 0.872, p = 0.082 t (10) = −1.670, p = 0.126

AggMax⊕Mean F-score W (11) = 0.918, p = 0.300 t (10) = −0.561, p = 0.587
Per-class F-score (corrective) W (11) = 0.931, p = 0.422 t (10) = 0.322, p = 0.754
Per-class F-score (adaptive) W (11) = 0.954, p = 0.690 t (10) = −0.056, p = 0.956
Per-class F-score (perfective) W (11) = 0.931, p = 0.423 t (10) = −1.327, p = 0.214
Kappa Coefficient W (11) = 0.892, p = 0.146 t (10) = −0.587, p = 0.570

AggMin⊕Max⊕Mean F-score W (11) = 0.947, p = 0.608 t (10) = 0.813, p = 0.435
Per-class F-score (corrective) W (11) = 0.875, p = 0.091 t (10) = 0.203, p = 0.843
Per-class F-score (adaptive) W (11) = 0.913, p = 0.263 t (10) = 0.512, p = 0.620
Per-class F-score (perfective) W (11) = 0.937, p = 0.488 t (10) = −0.311, p = 0.762
Kappa Coefficient W (11) = 0.973, p = 0.913 t (10) = −0.209, p = 0.839

* p < 0.05.

Table A10. Analysis of the differences in the commit intent classification performances, mea-
sured by F-score, per-class F-scores, and Kappa Coefficient, between the paired comparisons of the
CodeBERTPT+TAPT+FT-based models using partial-model and full-model task-adaptive pre-training
with various aggregation techniques using Gaussian Naive Bayes Classifier.

Aggregation
Technique Performance Metric Shapiro–Wilk Test Student’s t-Test/Wilcoxon

Signed-Rank Test

AggMin F-score W (11) = 0.811, p = 0.013 * Z = 1.334, p = 0.182
Per-class F-score (corrective) W (11) = 0.900, p = 0.187 t (10) = 0.848, p = 0.416
Per-class F-score (adaptive) W (11) = 0.945, p = 0.578 t (10) = −0.011, p = 0.992
Per-class F-score (perfective) W (11) = 0.968 p = 0.865 t (10) = −3.321, p = 0.008 **
Kappa Coefficient W (11) = 0.877, p = 0.095 t (10) = −1.920, p = 0.084

AggMean F-score W (11) = 0.869, p = 0.076 t (10) = −0.154, p = 0.881
Per-class F-score (corrective) W (11) = 0.937, p = 0.491 t (10) = −0.174, p = 0.865
Per-class F-score (adaptive) W (11) = 0.910, p = 0.241 t (10) = 0.804, p = 0.440
Per-class F-score (perfective) W (11) = 0.969, p = 0.874 t (10) = −1.231, p = 0.246
Kappa Coefficient W (11) = 0.940, p = 0.519 t (10) = −0.223, p = 0.828

AggMax F-score W (11) = 0.951, p = 0.658 t (10) = −1.585, p = 0.144
Per-class F-score (corrective) W (11) = 0.850, p = 0.043 * Z = 0.356, p = 0.722
Per-class F-score (adaptive) W (11) = 0.979, p = 0.960 t (10) = 0.744, p = 0.474
Per-class F-score (perfective) W (11) = 0.951, p = 0.657 t (10) = −2.829, p = 0.018 *
Kappa Coefficient W (11) = 0.982, p = 0.978 t (10) = −2.127, p = 0.059

AggMin⊕Max F-score W (11) = 0.980, p = 0.966 t (10) = −2.394, p = 0.038 *
Per-class F-score (corrective) W (11) = 0.918, p = 0.302 t (10) = 0.166, p = 0.872
Per-class F-score (adaptive) W (11) = 0.980, p = 0.964 t (10) = 0.489, p = 0.635
Per-class F-score (perfective) W (11) = 0.951, p = 0.653 t (10) = −3.638, p = 0.005 **
Kappa Coefficient W (11) = 0.926, p = 0.371 t (10) = −3.285, p = 0.008 **

AggMin⊕Mean F-score W (11) = 0.883, p = 0.115 t (10) = −1.209, p = 0.255
Per-class F-score (corrective) W (11) = 0.935, p = 0.467 t (10) = −0.596, p = 0.565
Per-class F-score (adaptive) W (11) = 0.971, p = 0.895 t (10) = 1.168, p = 0.270
Per-class F-score (perfective) W (11) = 0.970, p = 0.890 t (10) = −3.314, p = 0.008 **
Kappa Coefficient W (11) = 0.946, p = 0.592 t (10) = −1.480, p = 0.170

AggMax⊕Mean F-score W (11) = 0.883, p = 0.113 t (10) = −0.859, p = 0.411
Per-class F-score (corrective) W (11) = 0.980, p = 0.968 t (10) = −0.419, p = 0.684
Per-class F-score (adaptive) W (11) = 0.914, p = 0.269 t (10) = 0.762, p = 0.463
Per-class F-score (perfective) W (11) = 0.902, p = 0.194 t (10) = −2.654, p = 0.024 *
Kappa Coefficient W (11) = 0.960, p = 0.771 t (10) = −1.041, p = 0.323

Mathematics 2024, 12, 1012 34 of 38

Table A10. Cont.

Aggregation
Technique Performance Metric Shapiro–Wilk Test Student’s t-Test/Wilcoxon

Signed-Rank Test

AggMin⊕Max⊕Mean F-score W (11) = 0.921, p = 0.330 t (10) = −2.132, p = 0.059
Per-class F-score (corrective) W (11) = 0.893, p = 0.151 t (10) = −1.007, p = 0.338
Per-class F-score (adaptive) W (11) = 0.766, p = 0.003 ** Z = −0.178, p = 0.859
Per-class F-score (perfective) W (11) = 0.956, p = 0.721 t (10) = −3.349, p = 0.007 **
Kappa Coefficient W (11) = 0.960, p = 0.773 t (10) = −2.447, p = 0.034 *

* p < 0.05, ** p < 0.01.

Table A11. Analysis of the differences in the commit intent classification performances, mea-
sured by F-score, per-class F-scores, and Kappa Coefficient, between the paired comparisons of the
CodeBERTPT+TAPT+FT-based models using partial-model and full-model task-adaptive pre-training
with various aggregation techniques using Random Forest Classifier.

Aggregation
Technique Performance Metric Shapiro–Wilk Test Student’s t-Test/Wilcoxon

Signed-Rank Test

AggMin F-score W (11) = 0.859, p = 0.056 t (10) = 0.276, p = 0.788
Per-class F-score (corrective) W (11) = 0.960, p = 0.777 t (10) = 0.107, p = 0.917
Per-class F-score (adaptive) W (11) = 0.893, p = 0.149 t (10) = 0.422, p = 0.682
Per-class F-score (perfective) W (11) = 0.888, p = 0.131 t (10) = −0.305, p = 0.767
Kappa Coefficient W (11) = 0.911, p = 0.252 t (10) = 0.423, p = 0.682

AggMean F-score W (11) = 0.953, p = 0.686 t (10) = −225, p = 0.826
Per-class F-score (corrective) W (11) = 0.919, p = 0.308 t (10) = 0.123, p = 0.904
Per-class F-score (adaptive) W (11) = 0.942, p = 0.547 t (10) = 0.479, p = 0.642
Per-class F-score (perfective) W (11) = 0.952, p = 0.670 t (10) = −0.906, p = 0.386
Kappa Coefficient W (11) = 0.912, p = 0.260 t (10) = −0.334, p = 0.745

AggMax F-score W (11) = 0.949, p = 0.628 t (10) = 0.699, p = 0.500
Per-class F-score (corrective) W (11) = 0.956, p = 0.727 t (10) = 0.258, p = 0.801
Per-class F-score (adaptive) W (11) = 0.961, p = 0.786 t (10) = 0.146, p = 0.887
Per-class F-score (perfective) W (11) = 0.967, p = 0.850 t (10) = 0.396, p = 0.700
Kappa Coefficient W (11) = 0.954, p = 0.701 t (10) = 0.546, p = 0.597

AggMin⊕Max F-score W (11) = 0.948, p = 0.614 t (10) = 0.559, p = 0.589
Per-class F-score (corrective) W (11) = 0.811, p = 0.013 * Z = −0.764, p = 0.445
Per-class F-score (adaptive) W (11) = 0.899, p = 0.182 t (10) = 1.115, p = 0.291
Per-class F-score (perfective) W (11) = 0.958, p = 0.745 t (10) = 0.073, p = 0.943
Kappa Coefficient W (11) = 0.914, p = 0.274 t (10) = 0.548, p = 0.596

AggMin⊕Mean F-score W (11) = 0.851, p = 0.044 * Z = 0.000, I = 1.000
Per-class F-score (corrective) W (11) = 0.888, p = 0.133 t (10) = −0.115, p = 0.910
Per-class F-score (adaptive) W (11) = 0.777, p = 0.005 ** Z = 0.764, p = 0.445
Per-class F-score (perfective) W (11) = 0.971, p = 0.896 t (10) = −0.085, p = 0.934
Kappa Coefficient W (11) = 0.928, p = 0.388 t (10) = −0.551, p = 0.593

AggMax⊕Mean F-score W (11) = 0.961, p = 0.785 t (10) = −0.965, p = 0.357
Per-class F-score (corrective) W (11) = 0.892, p = 0.146 t (10) = −0.277, p = 0.787
Per-class F-score (adaptive) W (11) = 0.945, p = 0.584 t (10) = −0.343, p = 0.739
Per-class F-score (perfective) W (11) = 0.960, p = 0.778 t (10) = −1.370, p = 0.201
Kappa Coefficient W (11) = 0.935, p = 0.469 t (10) = −0.835, p = 0.423

AggMin⊕Max⊕Mean F-score W (11) = 0.983, p = 0.980 t (10) = −0.090, p = 0.930
Per-class F-score (corrective) W (11) = 0.812, p = 0.013 * Z = −0.968, p = 0.333
Per-class F-score (adaptive) W (11) = 0.940, p = 0.517 t (10) = −0.205, p = 0.841
Per-class F-score (perfective) W (11) = 0.800, p = 0.010 * Z = 1.260, p = 0.208
Kappa Coefficient W (11) = 0.939, p = 0.505 t (10) = 0.048, p = 0.962

* p < 0.05, ** p < 0.01.

Mathematics 2024, 12, 1012 35 of 38

References
1. Rajlich, V. Software Evolution and Maintenance. In Proceedings of the Future of Software Engineering Proceedings (FOSE),

Hyderabad, India, 31 May–7 June 2014; Association for Computing Machinery: New York, NY, USA, 2014; pp. 133–144. [CrossRef]
2. International Organization for Standardization. ISO/IEC/IEEE 12207:2017; Systems and Software Engineering—Software

Life Cycle Processes; International Organization for Standardization: Geneva, Switzerland, 2022. Available online: https:
//www.iso.org/standard/63712.html (accessed on 10 January 2024).

3. Lehman, M.M. On understanding laws, evolution, and conservation in the large-program life cycle. J. Syst. Softw. 1979, 1, 213–221.
[CrossRef]

4. International Organization for Standardization. ISO/IEC/IEEE 14764:2022; Software Engineering—Software Life Cycle Processes
—Maintenance; International Organization for Standardization: Geneva, Switzerland, 2022. Available online: https://www.iso.
org/standard/80710.html (accessed on 10 January 2024).

5. Heričko, T.; Šumak, B. Commit Classification Into Software Maintenance Activities: A Systematic Literature Review. In
Proceedings of the IEEE 47th Annual Computers, Software, and Applications Conference (COMPSAC), Torino, Italy, 26–30 June
2023, IEEE: New York, NY, USA, 2023; pp. 1646–1651. [CrossRef]

6. Meqdadi, O.; Alhindawi, N.; Alsakran, J.; Saifan, A.; Migdadi, H. Mining software repositories for adaptive change commits
using machine learning techniques. Inf. Softw. Technol. 2019, 109, 80–91. [CrossRef]

7. Hönel, S.; Ericsson, M.; Löwe, W.; Wingkvist, A. Using source code density to improve the accuracy of automatic commit
classification into maintenance activities. J. Syst. Softw. 2020, 168, 110673. [CrossRef]

8. Meng, N.; Jiang, Z.; Zhong, H. Classifying Code Commits with Convolutional Neural Networks. In Proceedings of the 2021
International Joint Conference on Neural Networks (IJCNN), Shenzhen, China, 18–22 July 2021; IEEE: New York, NY, USA, 2021;
pp. 1–8. [CrossRef]

9. Meqdadi, O.; Alhindawi, N.; Collard, M.L.; Maletic, J.I. Towards Understanding Large-Scale Adaptive Changes from Version
Histories. In Proceedings of the 2013 IEEE International Conference on Software Maintenance (ICSM), Eindhoven, The
Netherlands, 22–28 September 2013; IEEE: New York, NY, USA, 2013; pp. 416–419. [CrossRef]

10. Hindle, A.; German, D.M.; Godfrey, M.W.; Holt, R.C. Automatic Classification of Large Changes into Maintenance Categories. In
Proceedings of the IEEE 17th International Conference on Program Comprehension (ICPC), Vancouver, BC, Canada, 17–19 May
2009; IEEE: New York, NY, USA, 2009; pp. 30–39. [CrossRef]

11. Levin, S.; Yehudai, A. Boosting Automatic Commit Classification Into Maintenance Activities By Utilizing Source Code Changes.
In Proceedings of the 13th International Conference on Predictive Models and Data Analytics in Software Engineering (PROMISE),
Toronto, ON, Canada, 8 November 2017; Association for Computing Machinery: New York, NY, USA, 2017; pp. 97–106. [CrossRef]

12. Zafar, S.; Malik, M.Z.; Walia, G.S. Towards Standardizing and Improving Classification of Bug-Fix Commits. In Proceedings
of the ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM), Porto de Galinhas,
Brazil, 19–20 September 2019; IEEE: New York, NY, USA, 2019; pp. 1–6. [CrossRef]

13. Sarwar, M.U.; Zafar, S.; Mkaouer, M.W.; Walia, G.S.; Malik, M.Z. Multi-label Classification of Commit Messages using Transfer
Learning. In Proceedings of the IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW),
Coimbra, Portugal, 12–15 October 2020; IEEE: New York, NY, USA, 2020; pp. 37–42. [CrossRef]

14. Ghadhab, L.; Jenhani, I.; Mkaouer, M.W.; Ben Messaoud, M. Augmenting commit classification by using fine-grained source code
changes and a pre-trained deep neural language model. Inf. Softw. Technol. 2021, 135, 106566. [CrossRef]

15. Mariano, R.V.; dos Santos, G.E.; Brandão, W.C. Improve Classification of Commits Maintenance Activities with Quantitative
Changes in Source Code. In Proceedings of the 23rd International Conference on Enterprise Information Systems (ICEIS), Virtual
Event, 26–28 April 2021; SciTePress: Setúbal, Portugal, 2021; Volume 2, pp. 19–29. [CrossRef]

16. Heričko, T.; Brdnik, S.; Šumak, B. Commit Classification Into Maintenance Activities Using Aggregated Semantic Word
Embeddings of Software Change Messages. In Proceedings of the Ninth Workshop on Software Quality Analysis, Monitoring,
Improvement, and Applications, CEUR-WS (SQAMIA), Novi Sad, Serbia, 11–14 September 2022; Volume 1613.

17. Trautsch, A.; Erbel, J.; Herbold, S.; Grabowski, J. What really changes when developers intend to improve their source code: A
commit-level study of static metric value and static analysis warning changes. Empir. Softw. Eng. 2023, 28, 30. [CrossRef]

18. Lientz, B.P.; Swanson, E.B. Problems in Application Software Maintenance. Commun. ACM 1981, 24, 763–769. [CrossRef]
19. Erlikh, L. Leveraging legacy system dollars for e-business. IT Prof. 2000, 2, 17–23. [CrossRef]
20. Swanson, E.B. The dimensions of maintenance. In Proceedings of the 2nd International Conference on Software Engineering

(ICSE), San Francisco, CA, USA, 13–15 October 1976; pp. 492–497.
21. Abou Khalil, Z.; Constantinou, E.; Mens, T.; Duchien, L. On the impact of release policies on bug handling activity: A case study

of Eclipse. J. Syst. Softw. 2021, 173, 110882. [CrossRef]
22. Levin, S.; Yehudai, A. Using Temporal and Semantic Developer-Level Information to Predict Maintenance Activity Profiles. In

Proceedings of the IEEE International Conference on Software Maintenance and Evolution (ICSME), Raleigh, NC, USA, 2–7
October 2016; IEEE: New York, NY, USA, 2016; pp. 463–467. [CrossRef]

23. Tsakpinis, A. Analyzing Maintenance Activities of Software Libraries. In Proceedings of the 27th International Conference
on Evaluation and Assessment in Software Engineering (EASE), Oulu, Finland, 14–16 June 2023; Association for Computing
Machinery: New York, NY, USA, 2023; pp. 313–318. [CrossRef]

http://doi.org/10.1145/2593882.2593893
https://www.iso.org/standard/63712.html
https://www.iso.org/standard/63712.html
http://dx.doi.org/10.1016/0164-1212(79)90022-0
https://www.iso.org/standard/80710.html
https://www.iso.org/standard/80710.html
http://dx.doi.org/10.1109/COMPSAC57700.2023.00254
http://dx.doi.org/10.1016/j.infsof.2019.01.008
http://dx.doi.org/10.1016/j.jss.2020.110673
http://dx.doi.org/10.1109/IJCNN52387.2021.9533534
http://dx.doi.org/10.1109/ICSM.2013.61
http://dx.doi.org/10.1109/ICPC.2009.5090025
http://dx.doi.org/10.1145/3127005.3127016
http://dx.doi.org/10.1109/ESEM.2019.8870174
http://dx.doi.org/10.1109/ISSREW51248.2020.00034
http://dx.doi.org/10.1016/j.infsof.2021.106566
http://dx.doi.org/10.5220/0010401700190029
http://dx.doi.org/10.1007/s10664-022-10257-9
http://dx.doi.org/10.1145/358790.358796
http://dx.doi.org/10.1109/6294.846201
http://dx.doi.org/10.1016/j.jss.2020.110882
http://dx.doi.org/10.1109/ICSME.2016.21
http://dx.doi.org/10.1145/3593434.3593474

Mathematics 2024, 12, 1012 36 of 38

24. Heričko, T. Automatic Data-Driven Software Change Identification via Code Representation Learning. In Proceedings of the
27th International Conference on Evaluation and Assessment in Software Engineering (EASE), Oulu, Finland, 14–16 June 2023;
Association for Computing Machinery: New York, NY, USA, 2023; pp. 319–323. [CrossRef]

25. Pan, C.; Lu, M.; Xu, B. An empirical study on software defect prediction using codebert model. Appl. Sci. 2021, 11, 4793.
[CrossRef]

26. Ma, W.; Yu, Y.; Ruan, X.; Cai, B. Pre-trained Model Based Feature Envy Detection. In Proceedings of the 2023 IEEE/ACM 20th
International Conference on Mining Software Repositories (MSR), Melbourne, Australia, 15–16 May 2023; IEEE: New York, NY,
USA, 2023; pp. 430–440. [CrossRef]

27. Fatima, S.; Ghaleb, T.A.; Briand, L. Flakify: A Black-Box, Language Model-Based Predictor for Flaky Tests. IEEE Trans. Softw. Eng.
2023, 49, 1912–1927. [CrossRef]

28. Zeng, P.; Lin, G.; Zhang, J.; Zhang, Y. Intelligent detection of vulnerable functions in software through neural embedding-based
code analysis. Int. J. Netw. Manag. 2023, 33, e2198. [CrossRef]

29. Mashhadi, E.; Hemmati, H. Applying CodeBERT for Automated Program Repair of Java Simple Bugs. In Proceedings of the 2021
IEEE/ACM 18th International Conference on Mining Software Repositories (MSR), Madrid, Spain, 17–19 May 2021; IEEE: New
York, NY, USA, 2021; pp. 505–509. [CrossRef]

30. Zhou, X.; Han, D.; Lo, D. Assessing Generalizability of CodeBERT. In Proceedings of the 2021 IEEE International Conference on
Software Maintenance and Evolution (ICSME), Luxembourg, 27 September–1 October 2021; IEEE: New York, NY, USA, 2021; pp.
425–436. [CrossRef]

31. Zhou, J.; Pacheco, M.; Wan, Z.; Xia, X.; Lo, D.; Wang, Y.; Hassan, A.E. Finding A Needle in a Haystack: Automated Mining
of Silent Vulnerability Fixes. In Proceedings of the 2021 36th IEEE/ACM International Conference on Automated Software
Engineering (ASE), Melbourne, Australia, 15–19 November 2021; IEEE: New York, NY, USA, 2021; pp. 705–716. [CrossRef]

32. Yang, G.; Zhou, Y.; Chen, X.; Zhang, X.; Han, T.; Chen, T. ExploitGen: Template-augmented exploit code generation based on
CodeBERT. J. Syst. Softw. 2023, 197, 111577. [CrossRef]

33. Barrak, A.; Eghan, E.E.; Adams, B. On the Co-evolution of ML Pipelines and Source Code—Empirical Study of DVC Projects. In
Proceedings of the IEEE International Conference on Software Analysis, Evolution and Reengineering, Honolulu, HI, USA, 9–12
March 2021 IEEE: New York, NY, USA, 2021; pp. 422–433. [CrossRef]

34. Heričko, T.; Šumak, B. Analyzing Linter Usage and Warnings Through Mining Software Repositories: A Longitudinal Case Study
of JavaScript Packages. In Proceedings of the 2022 45th Jubilee International Convention on Information, Communication and
Electronic Technology (MIPRO), Opatija, Croatia, 23–27 May 2022; IEEE: New York, NY, USA, 2022; pp. 1375–1380. [CrossRef]

35. Feng, Q.; Mo, R. Fine-grained analysis of dependency cycles among classes. J. Softw. Evol. Process. 2023, 35, e2496. [CrossRef]
36. Li, J.; Ahmed, I. Commit Message Matters: Investigating Impact and Evolution of Commit Message Quality. In Proceedings of

the IEEE/ACM 45th International Conference on Software Engineering (ICSE), Melbourne, Australia, 14–20 May 2023; IEEE:
New York, NY, USA, 2023; pp. 806–817. [CrossRef]

37. Sabetta, A.; Bezzi, M. A Practical Approach to the Automatic Classification of Security-Relevant Commits. In Proceedings of the
2018 IEEE International Conference on Software Maintenance and Evolution (ICSE), Madrid, Spain, 23–29 September 2018; IEEE:
New York, NY, USA, 2018; pp. 579–582. [CrossRef]

38. Nguyen, T.G.; Le-Cong, T.; Kang, H.J.; Le, X.B.D.; Lo, D. VulCurator: A Vulnerability-Fixing Commit Detector. In Proceedings of
the 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE), Singapore, 14–18 November 2022; Association for Computing Machinery: New York, NY, USA, 2022; pp. 1726–1730.
[CrossRef]

39. Barnett, J.G.; Gathuru, C.K.; Soldano, L.S.; McIntosh, S. The Relationship between Commit Message Detail and Defect Proneness
in Java Projects on GitHub. In Proceedings of the 13th International Conference on Mining Software Repositories (MSR), Austin,
TX, USA, 14–22 May 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 496–499. [CrossRef]

40. Khanan, C.; Luewichana, W.; Pruktharathikoon, K.; Jiarpakdee, J.; Tantithamthavorn, C.; Choetkiertikul, M.; Ragkhitwetsagul, C.;
Sunetnanta, T. JITBot: An Explainable Just-in-Time Defect Prediction Bot. In Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering (ACE), Virtual Event, 21–25 December 2020; Association for Computing
Machinery: New York, NY, USA, 2021; pp. 1336–1339. [CrossRef]

41. Nguyen-Truong, G.; Kang, H.J.; Lo, D.; Sharma, A.; Santosa, A.E.; Sharma, A.; Ang, M.Y. HERMES: Using Commit-Issue
Linking to Detect Vulnerability-Fixing Commits. In Proceedings of the 2022 IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER), Honolulu, HI, USA, 15–18 March 2022; IEEE: New York, NY, USA, 2022; pp. 51–62.
[CrossRef]

42. Fluri, B.; Gall, H. Classifying Change Types for Qualifying Change Couplings. In Proceedings of the 14th IEEE International
Conference on Program Comprehension (ICPC), Athens, Greece, 14–16 June 2006; IEEE: New York, NY, USA, 2006; pp. 35–45.
[CrossRef]

43. Mauczka, A.; Brosch, F.; Schanes, C.; Grechenig, T. Dataset of Developer-Labeled Commit Messages. In Proceedings of the
IEEE/ACM 12th Working Conference on Mining Software Repositories (MSR) Florence, Italy, 16–17 May 2015; IEEE: New York,
NY, USA, 2015; pp. 490–493. [CrossRef]

http://dx.doi.org/10.1145/3593434.3593505
http://dx.doi.org/10.3390/app11114793
http://dx.doi.org/10.1109/MSR59073.2023.00065
http://dx.doi.org/10.1109/TSE.2022.3201209
http://dx.doi.org/10.1002/nem.2198
http://dx.doi.org/10.1109/MSR52588.2021.00063
http://dx.doi.org/10.1109/ICSME52107.2021.00044
http://dx.doi.org/10.1109/ASE51524.2021.9678720
http://dx.doi.org/10.1016/j.jss.2022.111577
http://dx.doi.org/10.1109/SANER50967.2021.00046
http://dx.doi.org/10.23919/MIPRO55190.2022.9803554
http://dx.doi.org/10.1002/smr.2496
http://dx.doi.org/10.1109/ICSE48619.2023.00076
http://dx.doi.org/10.1109/ICSME.2018.00058
http://dx.doi.org/10.1145/3540250.3558936
http://dx.doi.org/10.1145/2901739.2903496
http://dx.doi.org/10.1145/3324884.3415295
http://dx.doi.org/10.1109/SANER53432.2022.00018
http://dx.doi.org/10.1109/ICPC.2006.16
http://dx.doi.org/10.1109/MSR.2015.71

Mathematics 2024, 12, 1012 37 of 38

44. AlOmar, E.A.; Mkaouer, M.W.; Ouni, A. Can Refactoring Be Self-Affirmed? An Exploratory Study on How Developers Document
Their Refactoring Activities in Commit Messages. In Proceedings of the IEEE/ACM 3rd International Workshop on Refactoring
(IWOR), Montreal, QC, Canada, 28 May 2019; IEEE: New York, NY, USA, 2019; pp. 51–58. [CrossRef]

45. Aggarwal, C.C. Data Classification: Algorithms and Applications, 1st ed.; Chapman & Hall/CRC: Boca Raton, FL, USA, 2014.
46. Kovačević, A.; Slivka, J.; Vidaković, D.; Grujić, K.G.; Luburić, N.; Prokić, S.; Sladić, G. Automatic detection of Long Method and

God Class code smells through neural source code embeddings. Expert Syst. Appl. 2022, 204, 117607. [CrossRef]
47. Karakatič, S.; Miloševič, A.; Heričko, T. Software system comparison with semantic source code embeddings. Empir. Softw. Eng.

2022, 27, 70. [CrossRef]
48. Huang, K.; Yang, S.; Sun, H.; Sun, C.; Li, X.; Zhang, Y. Repairing Security Vulnerabilities Using Pre-trained Programming

Language Models. In Proceedings of the 2022 52nd Annual IEEE/IFIP International Conference on Dependable Systems and
Networks Workshops (DSN-W), Baltimore, MD, USA, 27–30 June 2022; IEEE: New York, NY, USA, 2022; pp. 111–116. [CrossRef]

49. Tripathy, P.; Naik, K. Software Evolution and Maintenance: A Practitioner’s Approach; John Wiley & Sons: Hoboken, NJ, USA, 2014.
[CrossRef]

50. Lientz, B.P.; Swanson, E.B.; Tompkins, G.E. Characteristics of Application Software Maintenance. Commun. ACM 1978, 21, 466–471.
[CrossRef]

51. Schach, S.R.; Jin, B.; Yu, L.; Heller, G.Z.; Offutt, J. Determining the distribution of maintenance categories: Survey versus
measurement. Empir. Softw. Eng. 2003, 8, 351–365. [CrossRef]

52. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is All You Need.
arXiv 2017, arXiv:1706.03762.

53. Feng, Z.; Guo, D.; Tang, D.; Duan, N.; Feng, X.; Gong, M.; Shou, L.; Qin, B.; Liu, T.; Jiang, D.; et al. Codebert: A pre-trained model
for programming and natural languages. arXiv 2020, arXiv:2002.08155.

54. Guo, D.; Ren, S.; Lu, S.; Feng, Z.; Tang, D.; Liu, S.; Zhou, L.; Duan, N.; Svyatkovskiy, A.; Fu, S.; et al. GraphCodeBERT: Pre-training
code representations with data flow. arXiv 2021, arXiv:2009.08366.

55. Kanade, A.; Maniatis, P.; Balakrishnan, G.; Shi, K. Learning and evaluating contextual embedding of source code. In Proceedings
of the International Conference on Machine Learning, JMLR.org (ICML), Virtual Event, 13–18 July 2020; pp. 5110–5121. [CrossRef]

56. Wang, Y.; Wang, W.; Joty, S.; Hoi, S.C. Codet5: Identifier-aware unified pre-trained encoder-decoder models for code understand-
ing and generation. arXiv 2021, arXiv:2109.00859.

57. Chen, M.; Tworek, J.; Jun, H.; Yuan, Q.; Pinto, H.P.d.O.; Kaplan, J.; Edwards, H.; Burda, Y.; Joseph, N.; Brockman, G.; et al.
Evaluating large language models trained on code. arXiv 2021, arXiv:2107.03374.

58. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv 2018, arXiv:1810.04805.

59. Clark, K.; Luong, M.T.; Le, Q.V.; Manning, C.D. Electra: Pre-training text encoders as discriminators rather than generators. arXiv
2020, arXiv:2003.10555.

60. Husain, H.; Wu, H.H.; Gazit, T.; Allamanis, M.; Brockschmidt, M. Codesearchnet challenge: Evaluating the state of semantic code
search. arXiv 2019, arXiv:1909.09436.

61. Gururangan, S.; Marasović, A.; Swayamdipta, S.; Lo, K.; Beltagy, I.; Downey, D.; Smith, N.A. Don’t stop pretraining: Adapt
language models to domains and tasks. arXiv 2020, arXiv:2004.10964.

62. Nugroho, Y.S.; Hata, H.; Matsumoto, K. How different are different diff algorithms in Git? Use–histogram for code changes.
Empir. Softw. Eng. 2020, 25, 790–823. [CrossRef]

63. Ladkat, A.; Miyajiwala, A.; Jagadale, S.; Kulkarni, R.; Joshi, R. Towards Simple and Efficient Task-Adaptive Pre-training for Text
Classification. arXiv 2022, arXiv:2209.12943.

64. Sun, C.; Qiu, X.; Xu, Y.; Huang, X. How to fine-tune bert for text classification? In Proceedings of the Chinese Computational
Linguistics: 18th China National Conference, CCL 2019, Kunming, China, 18–20 October 2019; Proceedings 18; Springer:
Berlin/Heidelberg, Germany, 2019; pp. 194–206. [CrossRef]

65. Rogers, A.; Kovaleva, O.; Rumshisky, A. A primer in BERTology: What we know about how BERT works. Trans. Assoc. Comput.
Linguist. 2021, 8, 842–866. [CrossRef]

66. Compton, R.; Frank, E.; Patros, P.; Koay, A. Embedding java classes with code2vec: Improvements from variable obfuscation. In
Proceedings of the 17th International Conference on Mining Software Repositories. Association for Computing Machinery (MSR),
Seoul, Republic of Korea, 29–30 June 2020; pp. 243–253. [CrossRef]

67. Pandas. 2024. Available online: https://pandas.pydata.org (accessed on 15 January 2024).
68. Git Python. 2023. Available online: https://github.com/gitpython-developers/GitPython (accessed on 13 November 2023).
69. Karampatsis, R.M.; Babii, H.; Robbes, R.; Sutton, C.; Janes, A. Big Code != Big Vocabulary: Open-Vocabulary Models for Source

Code. In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering (ICSE), Seoul, Republic of Korea,
27 June–19 July 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 1073–1085. [CrossRef]

70. GitHub REST API. 2023. Available online: https://docs.github.com/en/rest?apiVersion=2022-11-28 (accessed on 13 November 2023).
71. Hugging Face Transformers. 2023. Available online: https://github.com/huggingface/transformers (accessed on 13 November 2023).
72. NumPy. 2024. Available online: https://numpy.org (accessed on 20 January 2024).
73. Scikit-Learn. 2023. Available online: https://scikit-learn.org (accessed on 13 November 2023).
74. Imbalanced-Learn, 2024. Available online: https://imbalanced-learn.org (accessed on 20 January 2024).

http://dx.doi.org/10.1109/IWoR.2019.00017
http://dx.doi.org/10.1016/j.eswa.2022.117607
http://dx.doi.org/10.1007/s10664-022-10122-9
http://dx.doi.org/10.1109/DSN-W54100.2022.00027
http://dx.doi.org/10.1002/9781118964637
http://dx.doi.org/10.1145/359511.359522
http://dx.doi.org/10.1023/A:1025368318006
http://dx.doi.org/10.48550/arXiv.2001.00059
http://dx.doi.org/10.1007/s10664-019-09772-z
http://dx.doi.org/10.1007/978-3-030-32381-3_16
http://dx.doi.org/10.1162/tacl_a_00349
http://dx.doi.org/10.1145/3379597.3387445
https://pandas.pydata.org
https://github.com/gitpython-developers/GitPython
http://dx.doi.org/10.1145/3377811.3380342
https://docs.github.com/en/rest?apiVersion=2022-11-28
https://github.com/huggingface/transformers
https://numpy.org
https://scikit-learn.org
https://imbalanced-learn.org

Mathematics 2024, 12, 1012 38 of 38

75. 1151 Commits with Software Maintenance Activity Labels (Corrective, Perfective, Adaptive). 2023. Available online: https:
//zenodo.org/records/835534 (accessed on 13 November 2023).

76. 359,569 Commits with Source Code Density; 1149 Commits of Which Have Software Maintenance Activity Labels (Adaptive,
Corrective, Perfective). 2023. Available online: https://zenodo.org/records/2590519 (accessed on 2 November 2023).

77. Replication Package of Augmenting Commit Classification by Using Fine-Grained Source Code Changes and a Pre-trained Deep
Neural Language Model. 2023. Available online: https://zenodo.org/records/4266643 (accessed on 2 November 2023).

78. GitHub GraphQL API. 2023. Available online: https://docs.github.com/en/graphql (accessed on 13 November 2023).
79. IBM SPSS Statistics. 2024. Available online: https://www.ibm.com/products/spss-statistics (accessed on 20 January 2024).
80. ggplot2. 2024. Available online: https://ggplot2.tidyverse.org (accessed on 20 January 2024).
81. Wieting, J.; Kiela, D. No training required: Exploring random encoders for sentence classification. arXiv 2019, arXiv:1901.10444.
82. Fu, M.; Nguyen, V.; Tantithamthavorn, C.K.; Le, T.; Phung, D. VulExplainer: A Transformer-Based Hierarchical Distillation for

Explaining Vulnerability Types. IEEE Trans. Softw. Eng. 2023, 49, 4550–4565. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://zenodo.org/records/835534
https://zenodo.org/records/835534
https://zenodo.org/records/2590519
https://zenodo.org/records/4266643
https://docs.github.com/en/graphql
https://www.ibm.com/products/spss-statistics
https://ggplot2.tidyverse.org
http://dx.doi.org/10.1109/TSE.2023.3305244

	Introduction
	Related Work
	Commit Classification
	Pre-Trained Models in Code-Related Tasks

	Background
	Commit-Level Software Changes
	Commit Intent Classification
	Intent-Based Categorization of Software Maintenance Activities
	Transformer-Based Models for Programming Languages

	Proposed Semantic Commit Feature Extraction Method
	Task-Adaptive Pre-Training
	Fine-Tuning
	Semantic Embedding Extraction of Fine-Grained Conjoint Code Changes
	Aggregation into Commit-Level Embedding

	Experiments
	Research Questions
	Datasets
	Experimental Settings of the Proposed Method
	Task-Adaptive Pre-Training
	Fine-Tuning
	Semantic Embedding Extraction of Fine-Grained Conjoint Code Changes
	Aggregation into Commit-Level Embedding

	Commit Intent Classification
	Evaluation
	Experiment Setup and Implementation Details

	Results and Discussion
	RQ1 How Effective Is the Proposed Method When Used for Commit Intent Classification?
	RQ2 How Does the Proposed Method Compare to the SOTA When Used for Commit Intent Classification?

	Threats to Validity
	Threats to Construct Validity
	Threats to Internal Validity
	Threats to External Validity
	Threats to Conclusion Validity

	Conclusions
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	References

