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Abstract: In this paper, we examine a semi-infinite interval-valued optimization problem with
vanishing constraints (SIVOPVC) that lacks differentiability and involves constraints that tend to
vanish. We give definitions of generalized convex functions along with supportive examples. We
investigate duality theorems for the SIVOPVC problem. We establish these theorems by creating
duality models, which establish a relationship between SIVOPVC and its corresponding dual models,
assuming generalized convexity conditions. Some examples are also given to illustrate the results.
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1. Introduction

Consider the optimization problem

min f (x)

s.t. gi(x) ≤ 0 ∀ i = 1, 2, ..., m,

hj(x) = 0 ∀ j = 1, 2, ...p,

ψi(x) ≥ 0 ∀ i = 1, 2, ...l,

ϕi(x)ψi(x) ≤ 0 ∀ i = 1, 2, ...l,

with continuously differentiable functions f , g,hj, ϕi, ψi : Rn → R. This category of prob-
lem is referred to as a mathematical program with vanishing constraints, abbreviated as
MPVC. On the one hand, this terminology is due to the fact that the implicit sign con-
straint ϕi(x) ≤ 0 vanishes as soon as ψi(x) = 0. The field of mathematical programming
involving problems with vanishing constraints is a captivating subject, primarily due to
its wide-ranging applications in modern research domains such as economic dispatch
problems [1], topology design issues [2], optimal control and structural optimization [3],
and even problems related to robot motion planning [4]. Achtziger and Kanzow [5] pro-
posed an appropriate model for the Abadie constraint qualification and corresponding
optimality conditions, finding that this revised constraint qualification holds under certain
assumptions. Later, the work of Achtziger and Kanzow [5] was extended by Kazemi and
Kanzi [6] by introducing additional constraint qualifications tailored for systems with
vanishing constraints for nonsmooth functions.
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The feasible set in a mathematical program with equilibrium constraints (MPVC) [7]
problem can exhibit nonconvex characteristics, including the possibility of being discon-
nected. Additionally, many common constraint qualifications, such as the Mangasarian–
Fromovitz and linearly independent constraint qualifications, may not be applicable in
such cases. Consequently, the standard Karush–Kuhn–Tucker conditions cannot be relied
upon for solving these problems effectively. In [5], various constraint qualifications and
necessary optimality conditions were introduced specifically for mathematical programs
with vanishing constraints. The work in [8] delves into first-order sufficient optimality
conditions as well as second-order necessary and sufficient optimality conditions. In [9],
several stationary conditions were derived under less stringent assumptions regarding
constraint qualifications. Furthermore, Hoheisel and Kanzow’s research in [10] explored
necessary and sufficient optimality conditions using Abadie and Guignard-type constraint
qualifications for MPVC. For a more comprehensive understanding of MPVC, we refer the
reader to [7,11–13], and the associated references therein.

Several extensions and generalizations of convexity have been explored in the litera-
ture. One way to generalize the definition of a convex function is to relax the convexity
condition. Lin and Fukushima [14] introduced the concept of higher-order strongly convex
functions and applied them to the analysis of mathematical programs with equilibrium
constraints. Mishra and Sharma [15] derived inequalities akin to Hermite–Hadamard
type for higher-order strongly convex functions. It is worth noting that strongly convex
functions were initially introduced and investigated by Polyak [16], which have significant
implications in optimization theory and its related domains. For instance, Karmardian [17]
utilized strongly convex functions to address the unique existence of solutions in nonlinear
complementarity problems. These functions also played a crucial role in the convergence
analysis of iterative methods for solving variational inequalities and equilibrium problems,
as highlighted by Zu and Marcotte [18].

Hanson [19] introduced the notion of invex (invariant convex) functions for differen-
tiable functions, which played a significant role in mathematical programming. Ben-Israel
and Mond [20] introduced the concept of invex sets and preinvex functions. It is estab-
lished that differentiable preinvex functions are, indeed, invex functions. Moreover, the
converse holds under certain conditions, as discussed in [21]. Additionally, Noor and
Noor [22] examined the properties of strongly preinvex functions and their variations.
Noor et al. [23,24] explored the applications of generalized strongly preinvex functions
and their various forms. More recently, Joshi [25] investigated mathematical programs
with equilibrium constraints, employing assumptions of higher-order invexity within a
differentiable framework.

An increasing number of researchers are directing their focus towards problems
related to interval-valued optimization [26,27]. In this regard, Wu [28] developed duality
theorems applicable to interval-valued optimization problems that involve continuous
differentiability. Sun and Wang [29] introduced a concept of optimal solutions for interval-
valued programming problems and further derived necessary and sufficient optimality
conditions in the style of Kuhn–Tucker and Fritz–John for interval-valued programming
problems that lack differentiability. Ahmad et al. [30] delved into interval-valued variational
problems, offering sufficient optimality conditions and Mond–Weir-type duality results
based on their research. Following this, Kummari and Ahmad [31] examined nonsmooth
interval-valued optimization problems, providing both optimality and duality findings.
Jayswal et. al. [32,33] explored generalized convexity in the context of nonsmooth interval-
valued optimization problems, studying the associated optimality conditions and duality.
Later, Ahmad et al. [34] investigated optimality conditions and Mond–Weir-type duality
problems specific to differentiable interval-valued optimization problems that include
vanishing constraints (IOPVC). For nondifferentiable scenarios, Wang and Wang [35]
established results concerning optimality and duality. Later, in [13], authors discussed
and focused exclusively on invex functions, in which a single bifunction was involved,
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and established some results for invex functions. Note that the invex property denotes the
property of being invariantly convex.

Inspired by the prior research mentioned, we explore higher-order generalized convex
functions, which constitute a much smaller class. Thus, the functions under consideration
and their respective supports differ significantly between [13] and this paper. In this
article, we give the definitions of strongly higher order invex functions for nonsmooth
settings using Clarke subdifferentials. Under certain assumptions, we will also prove
duality theorems in the context of semi-infinite interval-valued optimization problems with
vanishing constraints.

Here is the article’s structure: In Section 2, we provide established definitions and
formulas. In Section 3, we delve into the examination of duality theorems linking the
IOPVC and the dual model of the Wolfe type. Moving on to Section 4, we investigate
duality theorems connecting the IOPVC with the Mond–Weir-type dual model. To illustrate
our findings, we include some examples.

2. Definitions and Preliminaries

Let E denote a Euclidean space which is finite-dimensional, and notation ⟨., .⟩ denotes
the inner product in E. For a point ũ ∈ E, we denote the open ball of radius δ around ũ by
B(ũ, δ) := {u ∈ E : |u − ũ| < δ}.

For a set Γ ⊂ E, span Γ, cone Γ denote the linear hull and convex cone of Γ, respectively.

Definition 1. Let Γ ̸= ϕ, then

T(Γ, u) := {v ∈ E|∃tn → 0, ∃vn → v, ∀n ∈ N, u + tnvn ∈ Γ}

is called the contingent cone of set Γ at the point u.

Let C denote the set of closed intervals in R. For any U = [a1, a2] ∈ C, V = [b1, b2] ∈ C,
one has

U + V = [a1 + b1, a2 + b2],−V = [−b2,−b1],

U − V = [a1 − b2, a2 − b1], U + k = [a1 + k, a2 + k]; k ∈ R,

where R denotes the set of real numbers. The partial ordering for intervals can be formu-
lated as follows:

U ≤LU V ⇐⇒ a1 ≤ b1, a2 ≤ b2,

U <LU V ⇐⇒ U ≤LU V, U ̸= V,

U ≮LU V is the negation of U <LU V,

U <s
LU V ⇐⇒ a1 < b1, a2 < b2,

U ≮s
LU V is the negation of U <s

LU V.

Consider a mapping F from the set E to the set C that is defined as follows:

F(u) = [FL(u), FU(u)] (∀u ∈ E)

where FL, FU are locally Lipschitz functions on E and FL(u) ≤ FU(u).
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We consider a semi-infinite interval-valued optimization problem with vanishing
constraints (SIVOPVC) as follows:

LU − min F(u)

s.t. gj(u) ≤ 0, j ∈ J,

hk(u) = 0, k = 1, 2, .., n,

ψe(u) ≥ 0, e = 1, 2, ..., l,

φe(u)ψe(u) ≤ 0, e = 1, 2, ..., l,

we consider gj : E → R ∪ {+∞}, hk : E → R, ψe : E → R, φe : E → R as locally Lipschitz
functions on E and J is an arbitrary index set. Let τn := {1, ..., n}, τl := {1, ..., l}. The feasible
set of problem SIVOPVC is

Q := {u ∈ E; gj(u) ≤ 0(j ∈ J), hk(u) = 0(k ∈ τn), ψe(u) ≥ 0, φe(u)ψe(u) ≤ 0(e ∈ τl)}.

Let R|J|
+ denote the collection of all function π : J → R taking values πj > 0 only at finitely

many points within the set J, while being zero at all other points.
For any ũ belonging to the set Q, we define two sets as follows:

(1) The index set of all active constraints at ũ is represented as τg(ũ), which consists of
those indices j in the set J for which gj(ũ) equals zero.

(2) The set k(ũ) is defined as the collection of non-negative multipliers πj from R|j|
+ such

that πjgj(ũ) = 0 holds for all j in the set J.

With these definitions in place, we can now proceed to define optimal solutions for
the problem SIVOPVC.

Definition 2 ([35]). Let ũ ∈ Q.
(i) ũ is considered a locally LU optimal solution for the problem SIVOPVC if there exists a neigh-
borhood B(ũ; δ) such that no other point u in the intersection of the set Q and the neighborhood
B(ũ, δ) satisfies the following condition:

F(u) <LU F(ũ).

(ii) ũ is considered a locally weakly LU optimal solution for the problem SIVOPVC if there exists a
neighborhood B(ũ; δ) such that no other point u in the intersection of the set Q and the neighborhood
B(ũ, δ) satisfies the following condition:

F(u) <s
LU F(ũ).

Definition 3 (see Clarke [36]). The Clarke directional derivative of f around ũ in the direction
v ∈ E is given by

f
′
c(ũ, v) := lim

u→ũ
sup
t↓0

f (u + tv)− f (u)
t

and the Clarke subdifferential of f at ũ is given by

∂c f (ũ) := {ς ∈ E : ⟨ς, v⟩ ≤ f
′
c(ũ; v), ∀v ∈ E}.

Based on the definition of invex function [37] and generalized invex functions [38],
Joshi [7] introduced the definition of higher-order strongly invex function for differentiable
framework. We are defining strongly pseudoinvex and strongly quasiinvex functions of
order α > 0 for a nondifferentiable framework.
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Definition 4. Let f : E → R. Then
(i) A function f which is locally Lipschitz around ũ is said to be strongly ∂c-pseudoinvex of order
α > 0 at ũ with respect to the kernel function ϖ : E × E → R if, for each u ∈ E and any ς ∈ ∂c(ũ),
there exist L > 0, such that

f (u)− f (ũ) < 0 ⇒ ⟨ς, ϖ(u, ũ)⟩+ L∥u − ũ∥α < 0.

(ii) A function f which is locally Lipschitz around ũ is said to be strongly ∂c-quasiinvex of order
α > 0 at ũ with respect to the kernel function ϖ : E × E → R if, for each u ∈ E and any ς ∈ ∂c(ũ),
there exist L > 0, such that

f (u)− f (ũ) ≤ 0 ⇒ ⟨ς, ϖ(u, ũ)⟩+ L∥u − ũ∥α ≤ 0.

Now, we provide some examples to illustrate the given definitions.

Example 1. Consider that the function f : R → R is given by f (u) = −|u|. We have that the
Clarke subdifferential of f at 0 is given by ∂c(0) = ς = {−1, 1}. Then, the function is strongly
∂c-pseudoinvex of order α > 0 at ũ = 0 with respect to the kernel function

ϖ(u, ũ) =

{
−1 − u

4 ; u ≥ 0,
1 + u2 ; u < 0.

Example 2. Consider that the function f : R → R is given by

f (u) =

{
−1 − u ; u ≥ 0,
u
3 − 1 ; u < 0.

We have that the Clarke subdifferential of f at 0 is given by ∂c(0) = ς = {−1, 1
3}. Then, the

function is strongly ∂c-quasiinvex of order α > 0 at ũ = 0 with respect to the kernel function

ϖ(u, ũ) =

{
sin |u| ; u ≥ 0,
−u2 ; u < 0.

Now, for u ∈ Q, we give the following sets of indicators.

τ+(u) := {e ∈ τl |ψe(u) > 0},

τ0(u) := {e ∈ τl |ψe(u) = 0},

τ+0(u) := {e ∈ τl |ψe(u) > 0, φe(u) = 0},

τ+−(u) := {e ∈ τl |ψe(u) > 0, φe(u) < 0},

τ0+(u) := {e ∈ τl |ψe(u) = 0, φe(u) > 0},

τ00(u) := {e ∈ τl |ψe(u) = 0, φe(u) = 0},

τ0−(u) := {e ∈ τl |ψe(u) = 0, φe(u) < 0}.

Definition 5 ([39]). Let ũ ∈ Q be a feasible point of SIVOPVC.
(i) The Abadie constraint qualification (ACQ) is said to hold at ũ iff T(Q, ũ) = L(ũ), where L(ũ)
is the linearized cone of SIVOPVC at ũ, and

L(ũ) :={v ∈ E|⟨ςg
j , v⟩ ≤ 0, ∀ς

g
j ∈ ∂cgj(ũ), j ∈ τg(ũ); ⟨ςh

k, v⟩ = 0, ∀ςh
k ∈ ∂chk(ũ),

k ∈ τn; ⟨ςψ
e , v⟩ = 0, ∀ς

ψ
e ∈ ∂cψe(ũ), e ∈ τ0+; ⟨ςψ

e , v⟩ ≥ 0, ∀ς
ψ
e ∈ ∂cψe(ũ), (1)

e ∈ τ00 ∪ τ0−; ⟨ςφ
e , v⟩ ≤ 0, ∀ς

φ
e ∈ ∂c φe(ũ), e ∈ τ+0}.
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(ii) The VC-ACQ is said to hold at ũ iff LVC(ũ) ⊆ T(Q, ũ), where LVC(ũ) is the corresponding
VC-linearized cone of SIVOPVC at ũ, and

LVC(ũ) :={v ∈ E|⟨ςg
j , v⟩ ≤ 0, ∀ς

g
j ∈ ∂cgj(ũ), j ∈ τg(ũ);

⟨ςh
k, v⟩ = 0, ∀ςh

k ∈ ∂chk(ũ), k ∈ τn,

⟨ςψ
e , v⟩ = 0, ∀ς

ψ
e ∈ ∂cψe(ũ), e ∈ τ0+, (2)

⟨ςψ
e , v⟩ ≥ 0, ∀ς

ψ
e ∈ ∂cψe(ũ), e ∈ τ00 ∪ τ0−,

⟨ςφ
e , v⟩ ≤ 0, ∀ς

φ
e ∈ ∂c φe(ũ), e ∈ τ+0 ∪ τ00}.

Theorem 1 ([35]). Let ũ ∈ Q be a locally weakly LU optimal solution of SIVOPVC such that
VC-ACQ holds at ũ and

∆ := cone

 ⋃
j∈τg(ũ)

∂cgj(ũ) ∪
⋃

e∈τ00∪τ0−

−∂cψe(ũ) ∪
⋃

e∈τ+0∪τ00

∂c φe(ũ)

+

span

( ⋃
k∈τn

∂chk(ũ) ∪
⋃

e∈τ0+

∂cψe(ũ)

)

is closed. Then, there exist Lagrange multipliers ωL, ωU ∈ R+, πg ∈ k(ũ), πh ∈ Rn, πψ, πφ ∈ Rl

0 ∈ ωL∂cFL(ũ) + ωU∂cFU(ũ) + ∑
j∈J

π
g
j ∂cgj(ũ) +

n

∑
k=1

πh
k ∂chk(ũ)−

l

∑
e=1

π
ψ
e ∂cψe(ũ) +

l

∑
e=1

π
φ
e ∂c φe(ũ) (3)

and

ωL + ωU = 1, hk(ũ) = 0 (k ∈ τn),

π
g
j ≥ 0, gj(ũ) ≤ 0, π

g
j gj(ũ) = 0 (j ∈ J),

π
ψ
e = 0 (e ∈ τ+(ũ)), π

ψ
e ≥ 0 (e ∈ τ00(ũ) ∪ τ0−(ũ)), (4)

π
ψ
e ∈ R (e ∈ τ0+(ũ)),

π
φ
e = 0 (e ∈ τ0+(ũ) ∪ τ0−(ũ) ∪ τ+−(ũ)), π

φ
e ≥ 0 (e ∈ τ00(ũ) ∪ τ+0(ũ)).

Definition 6 ([39]). A point u is known as a VC-stationary point for the problem SIVOPVC if
there exist Lagrange multipliers ωL, ωU ∈ R+, πg ∈ k(u), πh ∈ Rn, πψ, πφ ∈ Rl such that
Equations (3) and (4) hold.

Consider u as a VC-stationary point for the problem SIVOPVC, along with the as-
sociated multipliers πg ∈ R|j|

+ , πh ∈ Rn, πψ, πφ ∈ Rl . Then, we provide the following
index sets:

τ+
g (u) := {j ∈ τg(u)|πg

j > 0},

τ+
h (u) := {k ∈ τn(u)|πh

k > 0},

τ−
h (u) := {k ∈ τn(u)|πh

k < 0},

τ+
00(u) := {e ∈ τ00(u)|π

ψ
e > 0},

τ+
0−(u) := {e ∈ τ0−(u)|π

ψ
e > 0},

τ+
0+(u) := {e ∈ τ0+(u)|π

ψ
e > 0},

τ−
0+(u) := {e ∈ τ0+(u)|π

ψ
e < 0},
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τ+
+ (u) := {e ∈ τ+(u)|πψ

e > 0},

Ĩ++ (u) := {e ∈ τ+(u)|πφ
e > 0}.

In the next section, we will provide duality models.

3. Wolfe-Type Duality

In this section, we give the following Wolfe-type dual model [2]. Here, πg ∈ R|j|
+ ,

πh ∈ Rn, πψ, πφ ∈ Rl ,

ρ(., ωL, ωU , πg, πh, πψ, πφ) = F(.) + ∑
j∈J

π
g
j gj(.) +

n

∑
k=1

πh
k hk(.)−

l

∑
e=1

π
ψ
e ψe(.) +

l

∑
e=1

π
φ
e φe(.) (5)

is an interval-valued function, and

∆(.) := ωL∂cFL(.) + ωU∂cFU(.) + ∑
j∈J

π
g
j ∂cgj(.) +

n

∑
k=1

πh
k ∂chk(.)−

l

∑
e=1

π
ψ
e ∂cψe(.) +

l

∑
e=1

π
φ
e ∂c φe(.).

Now, we present the dual model in the style of Wolfe type of SIVOPVC, which is taken
from [35]. For u ∈ Q, we have

(DW(u)) LU − max ρ(v, ωL, ωU , πg, πh, πψ, πφ)

s.t. 0 ∈ ∆(v),

ωL, ωU ∈ R+, ωL + ωU = 1,

π
g
j ≥ 0, ∀j ∈ J, (6)

π
φ
e = µeψe(u), µe ≥ 0, ∀e ∈ τl ,

π
ψ
e = Be − µe φe(u),Be ≥ 0, ∀e ∈ τl .

QW(u) :=(v, ωL, ωU , πg, πh, πψ, πφ, µ,B) :

0 ∈ ∆(v), v ∈ E,

ωL, ωU ∈ R+, ωL + ωU = 1,

π
g
j ≥ 0, ∀j ∈ J,

π
φ
e = µeψe(u), µe ≥ 0, ∀e ∈ τl ,

π
ψ
e = Be − µe φe(u),Be ≥ 0, ∀e ∈ τl .

denotes the feasible set of DW(u) and prQw(u) := {v ∈ E := (v, ωL, ωU , πg, πh, πψ, πφ, µ,
B) ∈ QW(u)} represents the projection of the set QW(u) on E.

To remove dependence on SIVOPVC, we introduce an alternative dual model in the
Wolfe type:

(Dw) LU max ρ(v, ωL, ωU ,πg, πh, πψ, πφ)

s.t. (v, ωL, ωU , πg, πh, πψ, πφ, µ,B) ∈ Qw := ∩u∈QQw(u).

Here, QW represents the collection of all feasible points for the problem DW, and prQW
signifies the projection of the set QW onto the space E.

Definition 7 ([39]). Let u ∈ Q.
(i) A point (v̄, ωL, ωU , πg, πh, πψ, πφ, µ,B) ∈ Qw(u) is known as a locally LU optimal solution
of DW(u) if there exists B(v̄; δ) such that there is no v ∈ QW(u) ∩ B(v̄; δ) satisfying

ρ(v̄, ωL, ωU , πg, πh, πψ, πφ) <LU ρ(v, ωL, ωU , πg, πh, πψ, πφ).
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(ii) (v̄, ωL, ωU , πg, πh, πψ, πφ, µ,B) ∈ Qw(u) is known as a locally weakly LU optimal solution
of DW(u) if there exists B(v̄; δ) such that there is no v ∈ QW(u) ∩ B(v̄; δ) satisfying

ρ(v̄, ωL, ωU , πg, πh, πψ, πφ) <s
LU ρ(v, ωL, ωU , πg, πh, πψ, πφ).

Theorem 2. (Weak duality) Let u ∈ Q, (v, ωL, ωU , πg, πh, πψ, πφ, µ,B) be feasible points for
the SIVOPVC and DW. If ρL(., ωL, πg, πh, πψ, πφ), ρU(., ωU , πg, πh, πψ, πφ) are strongly ∂c-
pseudoinvex of order α > 0 with respect to the kernel function ϖ : E × E → R at
v ∈ Q ∪ prQW , then

F(u) ≮s
LU ρ(v, ωL, ωU , πg, πh, πψ, πφ).

Proof. Suppose F(u) <s
LU ρ(v, ωL, ωU , πg, πh, πψ, πφ), then

F(u) <s
LU F(v) + ∑

j∈J
π

g
j gj(v) +

n

∑
k=1

πh
k hk(v)−

l

∑
e=1

π
ψ
e ψe(v) +

l

∑
e=1

π
φ
e φe(v). (7)

Since u ∈ Q and (v, ωL, ωU , πg, πh, πψ, πφ, µ,B) ∈ Qw(u), we have

gj(u) < 0, π
g
j ≥ 0, j /∈ τg(u),

gj(u) = 0, π
g
j ≥ 0, j ∈ τg(u),

hk(u) = 0, πh
k ∈ R, k ∈ τn,

− ψe(u) < 0, π
ψ
e ≥ 0, e ∈ τ+(u), (8)

− ψe(u) = 0, π
ψ
e ∈ R, e ∈ τ0(u),

φe(u) > 0, π
φ
e = 0, e ∈ τ0+(u),

φe(u) = 0, π
φ
e ≥ 0, e ∈ τ00(u) ∪ τ+0(u),

φe(u) < 0, π
φ
e ≥ 0, e ∈ τ0−(u) ∪ τ+−(u).

The above formulas imply that

∑
j∈J

π
g
j gj(u) +

n

∑
k=1

πh
k hk(u)−

l

∑
e=1

π
ψ
e ψe(u) +

l

∑
e=1

π
φ
e φe(u) ≤ 0. (9)

Equation (9) together with (7) shows that

ρ(u, ωL, ωU , πg, πh, πψ, πφ) <s
LU ρ(v, ωL, ωU , πg, πh, πψ, πφ).

By the strong ∂c-pseudoinvexity of ρL(., ωL, πg, πh, πψ, πφ), ρU(., ωU , πg, πh, πψ, πφ) of
order α > 0 at v ∈ Q ∪ prQW . For some LL > 0,LU > 0,Lg

j > 0,Lh
k > 0,Lψ

e > 0, and

Lφ
e > 0, we have

〈
ςL + ∑

j∈J
π

g
j ς

g
j +

n

∑
k=1

πh
k ςh

k −
l

∑
e=1

π
ψ
e ς

ψ
e +

l

∑
e=1

π
φ
e ς

φ
e , ϖ(u, v)

〉
+ LL∥u − v∥α+

Lg
j ∥u − v∥α + Lh

k∥u − v∥α + Lψ
e ∥u − v∥α + Lφ

e ∥u − v∥α < 0, (10)

〈
ςU + ∑

j∈J
π

g
j ς

g
j +

n

∑
k=1

πh
k ςh

k −
l

∑
e=1

π
ψ
e ς

ψ
e +

l

∑
e=1

π
φ
e ς

φ
e , ϖ(u, v)

〉
+ LU∥u − v∥α+

Lg
j ∥u − v∥α + Lh

k∥u − v∥α + Lψ
e ∥u − v∥α + Lφ

e ∥u − v∥α < 0,
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where ςL ∈ ∂cFL(v), ςU ∈ ∂cFU(v), ς
g
j ∈ ∂cgj(v), j ∈ J, ςh

k ∈ ∂chk(v), k ∈ τn, ς
ψ
e ∈ ∂cψe(v),

e ∈ τl , ς
φ
e ∈ ∂c φe(v), e ∈ τl . Adding ωL and ωU to both sides of inequalities (10), we obtain

⟨ς, ϖ(u, v)⟩ < 0 ∀ς ∈ ∆(v),

contradicting 0 ∈ ∆(v), hence the result.

Theorem 3 (Weak duality). Let u ∈ Q, (v, ωL, ωU , πg, πh, πψ, πφ, µ,B) ∈ QW be feasible
points for the SIVOPVC and DW. If ρL(., ωL, πg, πh, πψ, πφ), ρU(., ωU , πg, πh, πψ, πφ) are
strongly ∂c-pseudoinvex of order α > 0 at v ∈ Q ∪ prQW , then

F(u) ≮LU ρ(v, ωL, ωU , πg, πh, πψ, πφ).

Proof. The demonstration of this theorem closely resembles the proof of Theorem 2.

Theorem 4 (Strong duality). Suppose we have ū in set Q, which serves as a locally weakly LU
optimal solution for SIVOPVC. In this case, if the VC-ACQ condition is satisfied at ū, and the set ∆ is
closed, then there are Lagrange multipliers ω̄L, ω̄U ∈ R+, π̄g ∈ R|j|

+ , π̄h ∈ Rn, π̄ψ, π̄φ, B̄, µ̄ ∈ Rl

such that (ū, ω̄L, ω̄U, π̄g, π̄h, π̄ψ, π̄φ, µ̄, B̄) is a feasible point of DW(ū), and

F(ū) = ρ(ū, ω̄L, ω̄U , π̄g, π̄h, π̄ψ, π̄φ).

Moreover, if ρL(., ωL, πg, πh, πψ, πφ), ρU(., ωU , πg, πh, πψ, πφ) are strongly ∂c-pseudoinvex of
order α > 0 at v ∈ Q ∪ prQW(ū), then (ū, ω̄L, ω̄U , π̄g, π̄h, π̄ψ, π̄φ, µ̄, B̄) is a locally weakly LU
optimal solution of DW(ū).

Proof. Using, Theorem 1, we have Lagrange multipliers ω̄L, ω̄U ∈ R+, π̄g ∈ k(ū),
π̄h ∈ Rn, π̄ψ, π̄φ, B̄, µ̄ ∈ Rl , such that Euqations (3) and (4) are satisfied. Using the definition
of DW(ū), one has that (ū, ω̄L, ω̄U , π̄g, π̄h, π̄ψ, π̄φ, µ̄, B̄) is a feasible point of DW(ū),

∑
j∈J

π̄j
ggj(ū) +

n

∑
k=1

π̄h
k hk(ū)−

l

∑
e=1

π̄
ψ
e ψe(ū) +

l

∑
e=1

π̄
φ
e φe(ū) = 0

and
F(ū) = ρ(ū, ω̄L, ω̄U , π̄g, π̄h, π̄ψ, π̄φ).

Then, from Theorem 2 we have, for any (v, ωL, ωU , πg, πh, πψ, πφ, µ,B) ∈ QW(ū),

ρ(ū, ω̄L, ω̄U , π̄g, π̄h, π̄ψ, π̄φ) = F(ū) ≮s
LU ρ(v, ωL, ωU , πg, πh, πψ, πφ).

Therefore, (ū, ω̄L, ω̄U , π̄g, π̄h, π̄ψ, π̄φ, µ̄, B̄) is a locally weakly LU optimal solution of
DW(ū).

Theorem 5 (Converse duality). Consider u as an arbitrary point within the scope of SIVOPVC,
and let (v̄, ωL, ωU , πg, πh, πψ, πφ,B, µ) in QW be a feasible point of DW , such that

π
g
j gj(v̄) ≥ 0, ∀j ∈ J,

πh
k hk(v̄) = 0, ∀k ∈ τn, (11)

−π
ψ
e ψe(v̄) ≥ 0, ∀e ∈ τl ,

π
φ
e φe(v̄) ≥ 0, ∀e ∈ τm.

If one of the following conditions holds:
(i) ρL(., ωL, ωU , πg, πh, πψ, πφ), ρU(., ωL, ωU , πg, πh, πψ, πφ) are strongly ∂c-pseudoinvex of
order α > 0 at v̄ ∈ Q ∪ prQW ;
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(ii) FL(.), FU(.) are ∂c-pseudoinvex at v̄ ∈ Q ∪ prQW(u), gj(j ∈ τ+
g (u)), hk(k ∈ τ+

h (u)),
− hk(k ∈ τ−

h (u)),−ψe(e ∈ τ+
+ (u) ∪ τ+

00(u) ∪ τ+
0−(u) ∪ τ+

0+(u)),
ψe(e ∈ τ−

0+(u)), φe(e ∈ Ĩ++ (u)) are strongly ∂c-quasiinvex of order α > 0 at v̄ ∈ Q ∪ prQW ;
Then v̄ is the locally weakly LU optimal solution of SIVOPVC.

Proof. Assume, contrary to what was stated, that v̄ does not serve as a locally weakly LU
optimal solution for SIVOPVC. In that case, there must be a ū within the intersection of set
Q and the ball centered at v̄ with radius δ such that

F(ū) <s
LU F(v̄). (12)

(i) Since ū ∈ Q and (v̄, ωL, ωU , πg, πh, πψ, πφ,B, µ) are feasible points for the SIVOPVC
and the DW , respectively. Combining (8) and (11), we have

∑
j∈J

π
g
j gj(ū) +

n

∑
k=1

πh
k hk(ū)−

l

∑
e=1

π
ψ
e ψe(ū) +

l

∑
e=1

π
φ
e φe(ū) ≤ 0 ≤

∑
j∈J

π
g
j gj(v̄) +

n

∑
k=1

πh
k hk(v̄)−

l

∑
e=1

π
ψ
e ψe(v̄) +

l

∑
e=1

π
φ
e φe(v̄). (13)

By (12) and (13), one has

ρ(ū, ωL, ωU , πg, πh, πψ, πφ) <s
LU ρ(v̄, ωL, ωU , πg, πh, πψ, πφ).

And by the strong ∂c-pseudoinvexity of ρL(., ωL, ωU , πg, πh, πψ, πφ), ρU(., ωL, ωU , πg, πh,
πψ, πφ) at v̄ ∈ Q∪ prQW , of order α > 0. For some LL > 0,LU > 0,Lg

j > 0,Lh
k > 0,Lψ

e > 0,

and Lφ
e > 0, one has

〈
ςL + ∑

j∈J
π

g
j ς

g
j +

n

∑
k=1

πh
k ςh

k −
l

∑
e=1

π
ψ
e ς

ψ
e +

l

∑
e=1

π
φ
e ς

φ
e , ϖ(ū, v̄)

〉
+ LL∥ū − v̄∥α+

Lg
j ∥ū − v̄∥α + Lh

k∥ū − v̄∥α + Lψ
e ∥ū − v̄∥α + Lφ

e ∥ū − v̄∥α < 0, (14)

〈
ςU + ∑

j∈J
π

g
j ς

g
j +

n

∑
k=1

πh
k ςh

k −
l

∑
e=1

π
ψ
e ς

ψ
e +

l

∑
e=1

π
φ
e ς

φ
e , ϖ(ū, v̄)

〉
+ LU∥ū − v̄∥α+

Lg
j ∥ū − v̄∥α + Lh

k∥ū − v̄∥α + Lψ
e ∥ū − v̄∥α + Lφ

e ∥ū − v̄∥α < 0,

where ςL ∈ ∂cFL(v̄), ςU ∈ ∂cFL(v̄), ς
g
j ∈ ∂cgj(v̄), j ∈ J, ςh

k ∈ ∂chk(v̄), k ∈ τn, ς
ψ
e ∈

∂cψe(v̄), e ∈ τl , ς
φ
e ∈ ∂c φe(v̄), e ∈ τl . Combining (14) with ωL and ωU , we obtain

⟨ς, ϖ(ū, v̄)⟩ < 0, ∀ς ∈ ∆(v̄)

This contradicts the fact that 0 is an element of ∆(v̄), thereby confirming the validity
of the conclusion.
(ii) Since ū ∈ Q and (v̄, ωL, ωU , πg, πh, πψ, πφ,B, µ) ∈ QW , by (8) and (11), one has

π
g
j gj(ū) ≤ π

g
j gj(v̄), ∀j ∈ J,

πh
k hk(ū) = πh

k hk(v̄), ∀k ∈ τn,

π
ψ
e ψe(ū) ≤ π

ψ
e ψe(v̄), ∀e ∈ τl ,

π
φ
e φe(ū) ≤ π

φ
e φe(v̄), ∀e ∈ τl ,
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and using the definition of the index sets, we have

gj(ū) ≤ gj(v̄), ∀j ∈ τ+
g (ū),

hk(ū) = hk(v̄), ∀k ∈ τ+
h (ū) ∪ τ−

h (ū),

− ψe(ū) ≤ −ψe(v̄), ∀e ∈ τ+
+ (ū) ∪ τ+

00(ū) ∪ τ+
0−(ū) ∪ τ+

0+(ū), (15)

− ψe(ū) ≥ −ψe(v̄), ∀e ∈ τ−
0+(ū),

φe(ū) ≤ φe(v̄), ∀e ∈ Ĩ++ (ū),

By the strong ∂c-quasiinvexity of order α > 0 of the functions in assumption (ii) and (15), it
shows that

⟨ςg
j , ϖ(ū, v̄)⟩+ Lg

j ∥ū − v̄∥α ≤ 0, π
g
j > 0, ∃ Lg

j > 0, ∀ς
g
j ∈ ∂cgj(v̄), j ∈ τ+

g (ū),

⟨ςh
k, ϖ(ū, v̄)⟩+ Lh

k∥ū − v̄∥α ≤ 0, πh
k > 0, ∃ Lh

k > 0, ∀ςh
k ∈ ∂chk(v̄), k ∈ τ+

h (ū),

⟨ςh
k, ϖ(ū, v̄)⟩+ Lh

k∥ū − v̄∥α ≥ 0, πh
k < 0, ∃ Lh

k > 0, ∀ςh
k ∈ ∂chk(v̄), k ∈ τ−

h (ū),

⟨−ς
ψ
e , ϖ(ū, v̄)⟩+ Lψ

e ∥ū − v̄∥α ≤ 0, π
ψ
e ≥ 0, ∃ Lψ

e > 0, ∀ς
ψ
e ∈ ∂cψe(v̄), e ∈ τ+

+ (ū)

∪ τ+
00(ū) ∪ τ+

0−(ū) ∪ τ+
0+(ū),

⟨−ς
ψ
e , ϖ(ū, v̄)⟩+ Lψ

e ∥ū − v̄∥α ≥ 0, π
ψ
e ≤ 0, ∃ Lψ

e > 0, ∀ς
ψ
e ∈ ∂cψe(v̄), e ∈ τ−

0+(ū),

⟨ςφ
e , ϖ(ū, v̄)⟩+ Lφ

e ∥ū − v̄∥α ≤ 0, π
φ
e ≥ 0, ∃ Lφ

e > 0, ∀ς
φ
e ∈ ∂c φe(v̄), e ∈ Ĩ++ (ū)

that is,

〈
∑
j∈J

π
g
j ς

g
j +

n

∑
k=1

πh
k ςh

k −
l

∑
e=1

π
ψ
e ς

ψ
e +

l

∑
e=1

π
φ
e ς

φ
e , ϖ(ū, v̄)

〉
+ Lg

j ∥ū − v̄∥α+

Lh
k∥ū − v̄∥α + Lψ

e ∥ū − v̄∥α + Lφ
e ∥ū − v̄∥α ≤ 0.

By the above inequality and 0 ∈ ∆(v̄), there exist ςL ∈ ∂cFL(v̄) and ςU ∈ ∂cFU(v̄) such that

⟨ωLςL + ωUςU , ϖ(ū, v̄)⟩ ≥ 0. (16)

By (12) and the strong ∂c-pseudoinvexity of order α > 0 of FL(.) and FU(.), it follows that

⟨ςL, ϖ(ū, v̄)⟩+ LL∥ū − v̄∥α < 0, ∀ςL ∈ ∂cFL(v̄),

⟨ςU , ϖ(ū, v̄)⟩+ LU∥ū − v̄∥α < 0, ∀ςU ∈ ∂cFU(v̄),

then ⟨ωLςL + ωUςU , ϖ(ū, v̄)⟩ < 0, ωL, ωU ∈ R+, ωL + ωU = 1, contradicting (16); hence,
the result holds.

Theorem 6. (Restricted converse duality). Let ū ∈ Q be a feasible point of SIVOPVC, and let
(v, ωL, ωU , πg, πh, πψ, πφ,B, µ) be feasible points of DW such that F(ū) = Φ(v, ωL, ωU ,
πg, πh, πψ, πφ). If ΦL(., ωL, ωU , πg, πh, πψ, πφ), ΦU(., ωL, ωU , πg, πh, πψ, πφ) are strongly
∂c-pseudoinvex of order α > 0 at v ∈ Q ∪ prQW , then ū is the locally weakly LU optimal solution
of SIVOPVC.

Proof. If ū does not qualify as a locally weakly LU optimal solution for SIVOPVC, then there
exists an element ũ in the set Q and within a neighborhood B(ū; δ) such that F(ũ) <s

LU F(ū).
By F(ū) = Φ(v, ωL, ωU, πg, πh, πψ, πφ), we obtain F(ũ) <s

LU Φ(v, ωL, ωU, πg, πh, πψ, πφ)
contradicting Theorem 2. Thus, ū is the locally weakly LU optimal solution of SIVOPVC.

Now we provide an example in order to show the conclusion of Theorem 6.
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Example 3. Let E = R2, n = 0, l = J = 1, and consider:

SIVOPVC1 min F(u) =[FL(u), FU(u)] = [|u1| − |u2|, u2
1]

s.t. g1(u) = −u1 ≤ 0,

ψ1(u) = u1 − u2 ≥ 0,

φ1(u)ψ1(u) = u1(u1 − u2) ≤ 0.

The feasible set of problem SIVOPVC1 is given by

Q1 := {u ∈ R|u1 > 0, u1 − u2 = 0} ∪ {u ∈ R|u1 = 0, u2 ≤ 0}.

For any u ∈ Q1, the Wolfe-type dual model to SIVOPVC1 is given by

DW(u)max ρ(v, ωL, ωU , πg, πh, πψ, πφ)

s.t.ωL(e1, e2) + ωU(2v1, 0) + π
g
1 (−1, 0)− π

ψ
1 (1,−1) + π

φ
1 (1, 0) = (0, 0),

π
ψ
1 ≥ 0, if 1 ∈ τ+(u) ∪ τ0−(u) ∪ τ00(u);

π
ψ
1 ∈ R, if 1 ∈ τ0+(u)

π
φ
1 ∈ R, if 1 ∈ τ+(u); π

φ
1 = R, if 1 ∈ τ0(u),

e1 ∈ [−1, 1], e2 ∈ {−1, 1},

where ρ(v, ωL, ωU , πg, πh, πψ, πφ) = [|v1| − |v2| −π
g
1 v1 −π

ψ
1 (v1 − v2) +π

φ
1 v1, v2

1 −π
g
1 v1 −

π
ψ
1 (v1 − v2) + π

φ
1 v1]. Hence, we can obtain the feasible set for problem DW and this set is inde-

pendent of u.

Q2 := {(v1, v2, ωL, ωU , πg, πh, πψ, πφ) : e1ωL − π
g
1 − π

ψ
1 + π

φ
1 = 0, e2ωL + π

ψ
1 = 0,

v1, v2 ∈ E, ωL, ωU ∈ R+, ωL + ωU = 1, π
g
1 ≥ 0, π

φ
1 = 0, π

ψ
1 ≥ 0},

Let ωL = 0, ωU = 1, π
g
1 = πh

1 = ϱ(ϱ ≥ 0) one has v1 = ϱ, v2 = ϱ, and by F(u) =

ρ(v, ωL, ωU , π
g
1 , π

ψ
1 , π

φ
1 ), we obtain

FL(u) = ρL(v, ωL, ωU , π
g
1 , π

ψ
1 , π

φ
1 ) = −ϱ2

1 ≤ 0 =⇒ |u1| − |u2| ≤ 0,

FU(u) = ρU(v, ωL, ωU , π
g
1 , π

ψ
1 , π

φ
1 ) = 0 =⇒ u2

2 = 0.

that is, u = (0, 0). By π
g
1 g1(u) ≤ 0, π

φ
1 φ1(u) = 0,−π

ψ
1 ψ1(u) ≤ 0 and the strong ∂c-

pseudoinvexity of ρL(., ωL, ωU , π
g
1 , π

ψ
1 , π

φ
1 ) and ρU(., ωL, ωU , π

g
1 , π

ψ
1 , π

φ
1 ) v ∈ Q1 ∪ prQ2, we

obtain u = (0, 0) as the locally weakly LU optimal solution of SIVOPVC1.

In the upcoming section, we present the dual model of the Mond–Weir type for the
SIVOPVC problem with reference to [2].

4. Mond–Weir Duality

For u ∈ Q, we have
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(DMW(u)) LU − maxF(v)

s.t. 0 ∈ ∆(v),

ωL, ωU ∈ R+, ωL + ωU = 1,

π
g
j ≥ 0, π

g
j gj(v) ≥ 0, ∀j ∈ J, (17)

πh
k ∈ R, πh

k hj(v) = 0, ∀k ∈ τn,

π
φ
e φe(v) ≥ 0, π

φ
e = µeψe(u), µe ≥ 0, ∀e ∈ τl ,

− π
ψ
e ψe(v) ≥ 0, π

ψ
e = Be − µe φe(u),Be ≥ 0, ∀e ∈ τl .

Let QMW(u) denote the feasible set of DMW(u), prQMW(u) := {v ∈ E := (v, ωL, ωU, πg, πh,
πψ, πφ, µ,B) ∈ QMW(u)} represents the projection of the set QMW(u) on E.
To eliminate the dependence on SIVOPVC, we present an alternative Mond–Weir-type dual
model, sourced from [35]:

(DMW) LU − maxF(v)

s.t.(v, ωL, ωU , πg, πh, πψ, πφ, µ,B) ∈ QMW := ∩u∈QQMW(u).

Here, QMW represents the collection of all feasible points for DMW , and prQMW indicates
the projection of the set QMW onto the space E.

Definition 8 ([39]). Let u ∈ Q
(i) A point (v̄, ωL, ωU , πg, πh, πψ, πφ, µ,B) ∈ Qw(u) is known as locally LU optimal solution of
DMW(u) if there exists B(v̄; δ) such that there is no v ∈ QMW(u) ∩ B(v̄; δ) satisfying

F(v̄) <LU F(v).

(ii) (v̄, ωL, ωU , πg, πh, πψ, πφ, µ,B) ∈ Qw(u) is known as locally weakly LU optimal solution of
DMW(u) if there exists B(v̄; δ) such that there is no v ∈ QMW(u) ∩ B(v̄; δ) satisfying

F(v̄) <s
LU F(v).

Theorem 7 (Weak duality). Suppose we have an element u in the set Q, and we also have feasible
points (v, ωL, ωU , πg, πh, πψ, πφ, µ,B) for both the SIVOPVC and DMW problems. If any of the
following conditions are met:
(i) FL(.), FU(.) are strongly ∂c-pseudoinvex of order α > 0 at v ∈ Q ∪ prQMW , ∑j∈J π

g
j gj(.) +

n
∑

k=1
πh

k hk(.)−
l

∑
e=1

π
ψ
e ψe(.) +

l
∑

e=1
π

φ
e φe(.) is strongly ∂c-quasiinvex of order α > 0 at v ∈ Q ∪

prQMW ;
(ii) FL(.), FU(.) are strongly ∂c-pseudoinvex of order α > 0 at v ∈ Q ∪ prQMW , gj(j ∈ τ+

g (u)),
hk(k ∈ τ+

h (u)),−hk(k ∈ τ−
h (u)),−ψe(e ∈ τ+

+ (u)∪ τ+
00(u)∪ τ+

0−(u)∪ τ+
0+(u)), ψe(e ∈ τ−

0+(u)),
φe(e ∈ Ĩ++ (u)) are strongly ∂c-quasiinvex of order α > 0 with respect to the kernel function
ϖ : E × E → R at v ∈ Q ∪ prQMW . Then,
F(u) ≮s

LU F(v).

Proof. Suppose that F(u) <s
LU F(v); there exists

[FL(u), FU(u)] <s
LU [FL(v), FU(v)]. (18)
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(i) Since u ∈ Q and (v, ωL, ωU , πg, πh, πψ, πφ,B, µ) are feasible points for the SIVOPVC
and the QMW , one has (8). Utilizing Equations (17) and (8), we obtain

∑
j∈J

πj
ggj(u) +

n

∑
k=1

πh
k hk(u)−

l

∑
e=1

π
ψ
e ψe(u) +

l

∑
e=1

π
φ
e φe(u) ≤

∑
j∈J

πj
ggj(v) +

n

∑
k=1

πh
k hk(v)−

l

∑
e=1

π
ψ
e ψe(v) +

l

∑
e=1

π
φ
e φe(v)

and by the strong ∂c-quasiinvexity of order α > 0 of the above functions, we obtain

⟨∑
j∈J

π
g
j ς

g
j +

n

∑
k=1

πh
k ςh

k −
l

∑
e=1

π
ψ
e ς

ψ
e +

l

∑
e=1

π
φ
e ς

φ
e , ϖ(u, v)⟩+

Lg
j ∥u − v∥α + Lh

k∥u − v∥α + Lψ
e ∥u − v∥α + Lφ

e ∥u − v∥α ≤ 0, (19)

where ς
g
j ∈ ∂cgj(v), j ∈ J, ςh

k ∈ ∂chk(v), k ∈ τn, ς
ψ
e ∈ ∂cψe(v), e ∈ τl , ς

φ
e ∈ ∂c φe(v), e ∈ τl .

Using the above inequality and 0 ∈ ∆(v), there exist ςL ∈ ∂cFL(v) and ςU ∈ ∂cFU(v)
such that

⟨ωLςL + ωUςU , ϖ(u, v)⟩ ≥ 0. (20)

By (18) and the strong ∂c-pseudoinvexity of FL(.) and FU(.), it follows that

⟨ςL, ϖ(u, v)⟩+ LL∥u − v∥α < 0, ∀ςL ∈ ∂cFL(v),

⟨ςU , ϖ(u, v)⟩+ LU∥u − v∥α < 0, ∀ςU ∈ ∂cFU(v),

then ⟨ωLςL + ωUςU , ϖ(u, v)⟩ < 0, ωL, ωU ∈ R+, ωL + ωU = 1, contradicting (20), so the
result also holds.
(ii) By (17) and (8), one has

gj(u) ≤ gj(v), ∀j ∈ τ+
g (u),

hk(u) = hk(v), ∀k ∈ τ+
h (u) ∪ τ−

h (u),

− ψe(u) ≤ −ψe(v), ∀e ∈ τ+
+ (u) ∪ τ+

00(u) ∪ τ+
0−(u) ∪ τ+

0+(u), (21)

− ψe(u) ≥ −ψe(v), ∀e ∈ τ−
0+(u),

φe(u) ≤ φe(v), ∀e ∈ Ĩ++ (u).

Combining (21) with the ∂c-quasiinvexity of the above functions, it follows that

⟨ςg
j , ϖ(u, v)⟩+ Lg

j ∥u − v∥α ≤ 0, π
g
j > 0, ∃ Lg

j > 0, ∀ς
g
j ∈ ∂cgj(v), j ∈ τ+

g (u),

⟨ςh
k, ϖ(u, v)⟩+ Lh

k∥u − v∥α ≤ 0, πh
k > 0, ∃ Lh

k > 0, ∀ςh
k ∈ ∂chk(v), k ∈ τ+

h (u),

⟨ςh
k, ϖ(u, v)⟩+ Lh

k∥u − v∥α ≥ 0, πh
k < 0, ∃ Lh

k > 0, ∀ςh
k ∈ ∂chk(v), k ∈ τ−

h (u),

⟨−ς
ψ
e , ϖ(u, v)⟩+ Lψ

e ∥u − v∥α ≤ 0, π
ψ
e ≥ 0, ∃ Lψ

e > 0 ∀ς
ψ
e ∈ ∂cψe(v), e ∈ τ+

+ (u)

∪ τ+
00(u) ∪ τ+

0−(u) ∪ τ+
0+(u),

⟨−ς
ψ
e , ϖ(u, v)⟩+ Lψ

e ∥u − v∥α ≥ 0, π
ψ
e ≤ 0, ∃ Lψ

e > 0, ∀ς
ψ
e ∈ ∂cψe(v), e ∈ τ−

0+(u),

⟨ςφ
e , ϖ(u, v)⟩+ Lφ

e ∥u − v∥α ≤ 0, π
φ
e ≥ 0, ∃ Lφ

e > 0, ∀ς
φ
e ∈ ∂c φe(v), e ∈ Ĩ++ (u)



Mathematics 2024, 12, 1008 15 of 19

that is,

⟨∑
j∈J

π
g
j ς

g
j +

n

∑
k=1

πh
k ςh

k −
l

∑
e=1

π
ψ
e ς

ψ
e +

l

∑
e=1

π
φ
e ς

φ
e , ϖ(u, v)⟩+

Lg
j ∥u − v∥α + Lh

k∥u − v∥α + Lψ
e ∥u − v∥α + Lφ

e ∥u − v∥α ≤ 0.

The remainder of the proof follows the same steps as outlined in part (i).

Theorem 8 (Strong duality). Suppose ū is a locally weakly LU optimal solution within the context
of SIVOPVC, with the condition VC-ACQ being satisfied at ū, and assuming that the set ∆ is
closed. Under these circumstances, there exist Lagrange multipliers ω̄L, ω̄U ∈ R+, π̄g ∈ R|j|

+ , π̄h ∈
Rn, π̄ψ, π̄φ, B̄, µ̄ ∈ Rl such that (ū, ω̄L, ω̄U , π̄g, π̄h, π̄ψ, π̄φ, µ̄, B̄) is a feasible point of DMW(ū),
Furthermore, if the conditions stated in Theorem 7 are met, then (ū, ω̄L, ω̄U , π̄g, π̄h, π̄ψ, π̄φ, µ̄, B̄)
is a locally weakly LU optimal solution of DMW(ū).

Proof. Because ū is the locally weakly LU optimal solution for SIVOPVC and the VC-
ACQ condition is satisfied at ū, based on Theorem 1, we can conclude that there ex-
ist Lagrange multipliers ω̄L, ω̄L ∈ R+, π̄g ∈ R|j|

+ , π̄h ∈ Rn, π̄ψ, π̄φ, B̄, µ̄ ∈ Rl , such that
(3) and (4) are satisfied. Combined with the definition of DMW(ū), one has that
(ū, ω̄L, ω̄U , π̄g, π̄h, π̄ψ, π̄φ, µ̄, B̄) is a feasible point of DMW(ū). By Theorem 7, we know

F(ū) ≮s
LU F(v) ∀(v, ωL, ωU , πg, πh, πψ, πφ,B, µ) ∈ QMW(ū)

so (ū, ω̄L, ω̄U , π̄g, π̄h, π̄ψ, π̄φ, µ̄, B̄) is a locally weakly LU optimal solution of DMW(ū).

Theorem 9 (Converse duality). Let u ∈ Q be any feasible point of SIVOPVC and
(v̄, ωL, ωU , πg, πh, πψ, πφ,B, µ) ∈ QMW be a feasible point of DMW . If any of the following
conditions are met:
(i) FL(.), FU(.) are strongly ∂c-pseudoinvex of order α > 0 with respect to the kernel function

ϖ : E × E → R at v̄ ∈ Q ∪ prQMW , ∑j∈J π
g
j gj(.) +

n
∑

k=1
πh

k hk(.)−
l

∑
e=1

π
ψ
e ψe(.) +

l
∑

e=1
π

φ
e φe(.)

is ∂c-quasiinvex with respect to the kernel function ϖ : E × E → R at v̄ ∈ Q ∪ prQMW ;
(ii) FL(.), FU(.) are strongly ∂c-pseudoinvex of order α > 0 with respect to the kernel function
ϖ : E × E → R at v̄ ∈ Q ∪ prQMW , gj(j ∈ τ+

g (u)), hk(k ∈ τ+
h (u)),−hk(k ∈ τ−

h (u)),−ψe(e ∈
τ+
+ (u) ∪ τ+

00(u) ∪ τ+
0−(u) ∪ τ+

0+(u)), ψe(e ∈ τ−
0+(u)), φe(e ∈ Ĩ++ (u)) are strongly ∂c-quasiinvex

of order α > 0 with respect to the kernel function ϖ : E × E → R at v̄ ∈ Q ∪ prQMW . Then
Then v̄ is the locally weakly LU optimal solution of SIVOPVC.

Proof. (i) Assume that v̄ does not represent the locally weakly LU optimal solution for
SIVOPVC. In that case, we would have Equation (12).

As both ū belonging to Q and (v̄, ωL, ωU , πg, πh, πψ, πφ,B, µ) are feasible points for
SIVOPVC and DMW , utilizing Equations (17) and (8), we can conclude that (13) is satisfied.

By the strong ∂c-quasiinvexity of ∑j∈J πj
ggj(.) +

n
∑

k=1
πh

k hk(.)−
l

∑
e=1

π
ψ
e ψe(.) +

l
∑

e=1
π

φ
e φe(.) at

v̄ ∈ Q ∪ prQMW , we obtain

〈
∑
j∈J

π
g
j ς

g
j +

n

∑
k=1

πh
k ςh

k −
l

∑
e=1

π
ψ
e ς

ψ
e +

l

∑
e=1

π
φ
e ς

φ
e , ϖ(ū, v̄)

〉
+

Lg
j ∥ū − v̄∥α + Lh

k∥ū − v̄∥α + Lψ
e ∥ū − v̄∥α + Lφ

e ∥ū − v̄∥α ≤ 0,
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where ς
g
j ∈ ∂cgj(v̄), j ∈ J, ςh

k ∈ ∂chk(v̄), k ∈ τn, ς
ψ
e ∈ ∂cψe(v̄), e ∈ τl , ς

φ
e ∈ ∂c φe(v̄), e ∈ τl .

Combining this with 0 ∈ ∆(v̄), one has (16). Utilizing (12) and the strong ∂c-pseudoinvexity
of FL(.) and FU(.), one has

⟨ςL, ϖ(ū, v̄)⟩+ LL∥ū − v̄∥α < 0, ∀ςL ∈ ∂cFL(v̄),

⟨ςU , ϖ(ū, v̄)⟩+ LU∥ū − v̄∥α < 0, ∀ςU ∈ ∂cFU(v̄),

and ⟨ωLςL + ωUςU , ϖ(ū, v̄)⟩ < 0, ωL, ωU ∈ R+, ωL + ωU = 1. This contradicts (16),thus
establishing the validity of the outcome.

(ii) The proof is not provided since it closely resembles the proof of Theorem 5(ii).

Theorem 10 (Restricted converse duality). Consider ū as a feasible point within the scope of
SIVOPVC, and let (v, ωL, ωU , πg, πh, πψ, πφ,B, µ) in QMW be valid points within the context
of DMW , satisfying the condition F(ū) = F(v). If the conditions stated in Theorem 7 are met, then
ū qualifies as the locally weakly LU optimal solution for SIVOPVC.

Proof. Assume that ū does not represent a locally weakly LU optimal solution for SIVOPVC.
Then there exist ũ ∈ Q ∩ B(ū, δ) such that F(ũ) <s

LU F(ū). By F(ū) = F(v), one has
F(ũ) <s

LU F(v), contradicting Theorem 7.

Next, we will examine the following example in order to demonstrate the findings of
Theorem 10.

Example 4. Let E = R2, n = 0, l = J = 1, consider the SIVOPVC1 problem as follows:

SIVOPVC1 min F(u) =[FL(u), FU(u)] = [|u1| − |u2|, u2
1]

s.t. g1(u) = −u1 ≤ 0,

ψ1(u) = u1 − u2 ≥ 0,

φ1(u)ψ1(u) = u1(u1 − u2) ≤ 0.

One can easily see that

Q3 := {u ∈ R|u1 > 0, u1 − u2 = 0} ∪ {u ∈ R|u1 = 0, u2 ≤ 0}

gives feasible set of SIVOPVC2. The Mond–Weir dual model to SIVOPVC2 for any x ∈ Q1 is
given by

DMW(u)max F(v) =[FL(v), FU(v)] = [|v1| − |v2|, v2
1]

s.t.ωL(e1, e2) + ωU(2v1, 0) + π
g
1 (−1, 0)− π

ψ
1 (1,−1) + π

φ
1 (1, 0) = (0, 0),

π
g
1 ≥ 0, π

g
1 g1(v) ≥ 0,

π
ψ
1 ≥ 0, if 1 ∈ τ+(u) ∪ τ0−(u) ∪ τ00(u);

π
ψ
1 ∈ R, if 1 ∈ τ0+(u), −π

ψ
1 ψ1(v) ≥ 0,

π
φ
1 ≥ 0, if 1 ∈ τ+(u); π

φ
1 = 0, if 1 ∈ τ0(u), π

φ
1 φ1(v) ≥ 0.

e1 ∈ [−1, 1], and e2 ∈ {−1, 1}.

Hence, we possess a feasible set for problem DMW , and this set is independent of u.

Q4 := {(v1, v2, ωL, ωU , π
g
1 , π

ψ
1 , π

φ
1 ) : e1ωL − π

g
1 − π

ψ
1 + π

φ
1 = 0, e2ωL + π

ψ
1 = 0,

v1, v2 ∈ E, ωL, ωU ∈ R+, ωL + ωU = 1,−π
g
1 v1 ≥ 0, π

φ
1 v1 ≥ 0

−π
ψ
1 (v1 − v2) ≥ 0, π

ψ
1 ≥ 0, π

φ
1 = 0}.
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Let ωL = 0, ωU = 1, π
g
1 = πh

1 = ϱ(ϱ ≥ 0) one has v1 = ϱ, v2 = ϱ, and by F(u) = F(v),
we obtain

FL(u) = FL(v) = 0 =⇒ |u1| − |u2| = 0,

FU(u) = FU(v) = ϱ2 ≥ 0 =⇒ u2
1 ≥ 0.

then we obtain π
g
1 g1(u) ≤ 0, π

φ
1 φ1(u) = 0,−π

ψ
1 ψ1(u) ≤ 0 and by the strong ∂c-pseudoinvexity

of FL(.) and FU(.) at v ∈ Q3 ∪ prQ4 and the strong quasiinvexity of π
g
1 g1(.) − π

ψ
1 ψ1(.) +

π
φ
1 φ1(.). We determine that u = (0, 0) represents the locally weakly LU optimal solution for

SIVOPVC2.

Theorem 11 (Strict converse duality). Consider an element ū belonging to the set Q, which
serves as a locally weakly LU optimal solution for the SIVOPVC problem. This solution satisfies
the VC-ACQ condition at the point ū, and the set ∆ is closed. Assuming that the criteria specified
in Theorem 9 are met, and (v, ωL, ωU , πg, πh, πψ, πφ,B, µ) ∈ QMW(ū) is the locally weakly LU
optimal solution of DMW(ū). If one of the following conditions holds:
(i) FL(.), FU(.) are strictly strongly ∂c-pseudoinvex of order α > 0 at v̄ ∈ Q ∪ prQMW , ∑j∈J

π
g
j gj(.) +

n
∑

k=1
πh

k hk()−
l

∑
e=1

π
ψ
e ψe(.) +

l
∑

e=1
π

φ
e φe(.) is ∂c-quasiinvex at v̄ ∈ Q ∪ prQMW ;

(ii) FL(.), FU(.) are strictly strongly ∂c-pseudoinvex v at v̄ ∈ Q ∪ prQMW , gj(j ∈ τ+
g (u)),

hk(k ∈ τ+
h (u)),−hk(k ∈ τ−

h (u)),−ψe(e ∈ τ+
+ (u)∪ τ+

00(u)∪ τ+
0−(u)∪ τ+

0+(u)), ψe(e ∈ τ−
0+(u)),

φe(e ∈ Ĩ++ (u)) are strongly ∂c-quasiinvex of order α > 0 at v̄ ∈ Q ∪ prQW . Then, ū = v̄.

Proof. Suppose that ū ̸= v̄. By Theorem 9, there exist Lagrange multipliers ω̄L, ω̄L ∈
R+, π̄g ∈ R|j|

+ , π̄h ∈ Rn, π̄ψ, π̄φ, B̄, µ̄ ∈ Rl . such that (ū, ω̄L, ω̄U , π̄g, π̄h, π̄ψ, π̄φ, µ̄, B̄) is the
locally weakly LU optimal solution of DW(ū); it shows that

F(ū) = F(v̄).

The remaining portions resemble (i) and (ii) from Theorem 10 and are, therefore, not
included here.

5. Conclusions

In this research paper, we gave duality theorems concerning a semi-infinite interval
valued optimization problem involving vanishing constraints. We provided a set of duality
theorems, including weak, strong, converse, restricted converse, and strict converse duality,
establishing relationships between SIVOPVC and its corresponding dual models of Wolfe
and Mond–Weir types. These theorems were derived under the conditions of higher-order
∂c-pseudoinvexity, strict ∂c-pseudoinvexity, and ∂c-quasiinvexity. Some examples were
also given to illustrate the obtained results. Additionally, alternative dual models such
as the mixed-type dual can be explored by using the univexity and generalized univexity
assumptions to obtain the duality results. However, some interesting topics for further
research remain. It would also be compelling to establish analogous optimality and duality
findings for multiobjective optimization problems. We shall investigate these questions in
forthcoming papers.
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