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1. Introduction

Consider the functional differential equation of the form

y(n)(t) + p(t)y(τ(t)) + q(t)y(σ(t)) = 0, (1)

where n is odd or even number and the following conditions are assumed to hold:

(H1) p(t), q(t) ∈ C([t0, ∞)), p(t) > 0, q(t) > 0,
(H2) τ(t) ∈ C1([t0, ∞)), τ′(t) > 0, τ(t) ≤ t, lim

t→∞
τ(t) = ∞,

(H3) σ(t) ∈ C1([t0, ∞)), σ′(t) > 0, σ(t) ≥ t.

Usually, by a solution of Equation (1), we mean a function y : [Ty, ∞) → R which
satisfies (1) for all sufficiently large t and sup{|y(t)| : t ≥ T} > 0 for all T ≥ Ty.

The oscillatory character of the solutions is understood in the standard way, that is,
a proper solution is termed oscillatory or nonoscillatory according to whether it does or
does not have infinitely many zeros.

In recent years, there has been increasing interest in studying the oscillation of solutions
to different classes of differential equations, see e.g., [1–15]. This is due to the fact that
they have numerous applications in natural sciences and engineering—see, for instance,
the papers [13,14] for models from mathematical biology where oscillation and/or delay
actions may be formulated by means of cross-diffusion terms.

By the well-known result of Kiguradze [5] (Lemma 1), one can easily classify the
possible nonoscillatory solutions of (1). As a matter of fact, the set N of all nonoscillatory
solutions of (1) has the following decomposition

N = N0 ∪N2 ∪ · · · ∪ Nn−1, n odd,

N = N1 ∪N3 ∪ · · · ∪ Nn−1, n even.

where y(t) ∈ Nℓ means that there exists t0 ≥ Ty such that

y(t)y(i)(t) > 0 on [t0, ∞) for 0 ≤ i ≤ ℓ,

(−1)iy(t)y(i)(t) > 0 on [t0, ∞) for ℓ ≤ i ≤ n.
(2)
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Such a y(t) is said to be a solution of degree ℓ.
Following the classical results of Kiguradze [5], we say that Equation (1) enjoys

property (A) if

N = N0, n odd,

N = ∅, n even.

This definition formulates the fact that (1) with τ(t) = σ(t) ≡ t and n odd always
possesses a solution of degrees 0 that is N0 ̸= ∅ in this case.

The initial effort of mathematicians was oriented towards establishing criteria for
property (A) of (1), which means to empty all classes Nℓ for all ℓ ̸= 0.

We recall the excellent criteria of Koplatadze et al. [9] that have been formulated for
binomial differential equations.

Theorem 1. (Theorem 2.1 in [9]). If q(t) ≡ 0 and

lim sup
t→∞

{
τ(t)

∫ ∞

t
[τ(s)]n−2 p(s)ds +

∫ t

τ(t)
[τ(s)]n−1 p(s)ds

+
1

τ(t)

∫ τ(t)

0
s[τ(s))]n−1 p(s)ds

}
> (n − 1)!,

(3)

then (1) has property (A).

Theorem 2. (Theorem 2.2 in [9]). If p(t) ≡ 0, n is even and

lim sup
t→∞

{
σ(t)

∫ ∞

σ(t)
sn−2 p(s)ds +

∫ σ(t)

t
sn−1 p(s)ds

+
1

σ(t)

∫ t

0
sn−1σ(t)p(s)ds

}
> (n − 1)!,

(4)

then (1) has property (A).

Theorem 3. (Theorem 2.3 in [9]). If p(t) ≡ 0, n is odd and

lim sup
t→∞

{
σ(t)

∫ ∞

σ(t)
σ(s)sn−3 p(s)ds +

∫ σ(t)

t
sn−2σ(s)p(s)ds

+
1

σ(t)

∫ t

0
sn−2[σ(t)]2 p(s)ds

}
> 2(n − 2)!,

(5)

and

lim sup
t→∞

{
σ(t)

∫ ∞

σ(t)
[σ(s)]n−2 p(s)ds +

∫ σ(t)

t
s[σ(s)]n−2 p(s)ds

+
1

σ(t)

∫ t

0
s[σ(t)]n−1 p(s)ds

}
> (n − 1)!,

(6)

then (1) has property (A).

The first aim of this paper is to extend the above-mentioned criteria known for binomial
differential equations to more general trinomial equations. The second aim of this paper is
to establish criteria for the class N0 = ∅, which leads to the oscillation of (1) also for n odd,
which are new phenomena for (1).

2. Results

As an auxiliary statements, we recall the following result from [9].
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Lemma 1. Let y(t) ∈ Nℓ for some ℓ ∈ {1, · · · , n − 1} and∫ ∞
tn−ℓ|y(n)(t)|dt = ∞. (7)

Then there exists t∗ ≥ t0 such that for t ≥ t∗

y(t)
tℓ

↓,
y(t)
tℓ−1 ↑ (8)

and

y(t) ≥ tℓ

ℓ!(n − ℓ)!

∫ ∞

t

(
sn−ℓ−1(p(s)y(τ(s)) + q(s)y(σ(s)))

)
ds

+
tℓ−1

ℓ!(n − ℓ)!

∫ t

t∗

(
sn−ℓ(p(s)y(τ(s)) + q(s)y(σ(s)))

)
ds.

(9)

Moreover, if y(t) ∈ Nℓ, then y(t) ≥ ctℓ−1 for some c > 0. Since

tn−ℓ|y(n)(t)| = tn−ℓ(p(t)y(τ(t)) + q(t)y(σ(t)))

≥ ctn−ℓ
(

p(t)τℓ−1(t) + q(t)σℓ−1(t)
)
≥ c

(
p(t)τn−1(t) + q(t)tn−1

)
,

we can replace nonstandard condition (7) by the following easily verifiable one.∫ ∞(
τn−1(s)p(s) + sn−1q(s)

)
ds = ∞. (10)

which follows from the fact that if y(t) ∈ Nℓ, then y(t) ≥ ctℓ−1, c > 0.
Now, we are prepared to formulate the first criterion for property (A) of (1).

Theorem 4. Assume that for n even

lim sup
t→∞

{∫ t

τ(t)
τn−1(s)p(s)ds + τ(t)

∫ ∞

t
τn−2(s)p(s) + sn−2q(s)ds

+ τ(t)
∫ t

τ(t)
sn−2q(s)ds +

1
τ(t)

∫ τ(t)

t∗
sτn−1(s)p(s) + snq(s)ds

}
> (n − 1)!,

(11)

and for n odd

lim sup
t→∞

{∫ t

τ(t)
τn−1(s)p(s)ds + τ(t)

∫ ∞

t
τn−2(s)p(s) + sn−3σ(s)q(s)ds

+ τ(t)
∫ t

τ(t)
sn−3σ(s)q(s)ds +

1
τ(t)

∫ τ(t)

t∗
sτn−1(s)p(s) + sn−1σ(s)q(s)ds

}
> (n − 1)!,

(12)

then (1) has property (A).

Proof. Suppose, to contrary, that y(t) is an eventually positive solution of (1) such that
y(t) ∈ Nℓ for some ℓ ∈ {1, · · · , n − 1} such that n + ℓ is odd. To be able to use results of
Lemma 1, we shall show that (11) and (12) implies (10). Really, if we admit that∫ ∞(

τn−1(s)p(s) + sn−1q(s)
)

ds < ∞,
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then for given ε > 0, there exists a t1 such that∫ ∞

t1

(
τn−1(s)p(s) + sn−1q(s)

)
ds < ε,

If we consider τ(t) ≥ t1, then∫ t

τ(t)
τn−1(s)p(s)ds + τ(t)

∫ t

τ(t)
sn−3σ(s)q(s)ds

≤
∫ t

τ(t)

(
τn−1(s)p(s) + sn−1q(s)

)
ds < ε.

(13)

On the other hand, for t ≥ t1

τ(t)
∫ ∞

t
τn−2(s)p(s) + sn−2σ(s)q(s)ds ≤

∫ ∞

t

(
τn−1(s)p(s) + sn−1q(s)

)
ds < ε, (14)

and finally for t∗ ≥ t1

1
τ(t)

∫ τ(t)

t∗
sτn−1(s)p(s) + snq(s)ds ≤

∫ τ(t)

t∗

(
τn−1(s)p(s) + sn−1q(s)

)
ds < ε. (15)

Combining (13)–(15) one gets

lim
t→∞

{∫ t

τ(t)
τn−1(s)p(s)ds + τ(t)

∫ ∞

t
τn−2(s)p(s) + sn−2q(s)ds

+ τ(t)
∫ t

τ(t)
sn−2q(s)ds +

1
τ(t)

∫ τ(t)

t∗
sτn−1(s)p(s) + snq(s)ds

}
= 0.

This contradicts (11) and we conclude that (10) holds true. Therefore, taking into
account (9), we get

y(τ(t)) ≥ τℓ(t)
(n − ℓ)!ℓ!

∫ t

τ(t)
sn−ℓ−1 p(s)

y(τ(s))
τℓ(s)

τℓ(s) + sn−ℓ−1q(s)
y(σ(s))
σℓ−1(s)

σℓ−1(s)ds

+
τℓ(t)

(n − ℓ)!ℓ!

∫ ∞

t
sn−ℓ−1 p(s)

y(τ(s))
τℓ−1(s)

τℓ−1(s) + sn−ℓ−1q(s)
y(σ(s))
σℓ−1(s)

σℓ−1(s)ds

+
τℓ−1(t)
(n − ℓ)!ℓ!

∫ τ(t)

t∗
sn−ℓp(s)

y(τ(s))
τℓ(s)

τℓ(s) + sn−ℓq(s)
y(σ(s))
σℓ−1(s)

σℓ−1(s)ds.

Employing (8), that is

y(τ(t))
τℓ(t)

↓,
y(τ(t))
τℓ−1(t)

↑,
y(σ(t))
σℓ−1(t)

≥ y(t)
tℓ−1 ≥ y(τ(t))

τℓ−1(t)
,

we are led to

(n − ℓ)!ℓ!y(τ(t)) ≥ y(τ(t))
∫ t

τ(t)
sn−ℓ−1τℓ(s)p(s)ds + τℓ(t)

∫ t

τ(t)
sn−ℓ−1σℓ−1(s)

y(s)
sℓ−1 q(s)ds

+ τ(t)y(τ(t))
∫ ∞

t
sn−ℓ−1τℓ−1(s)p(s)ds + τℓ(t)

∫ ∞

t
sn−ℓ−1σℓ−1(s)

y(τ(s))
τℓ−1(s)

q(s)ds

+
y(τ(t))

τ(t)

∫ τ(t)

t∗
sn−ℓτℓ(s)p(s)ds + τℓ−1(t)

∫ τ(t)

t∗
sn−ℓ+1σℓ−1(s)

y(s)
sℓ

q(s)ds.



Mathematics 2024, 12, 910 5 of 11

Therefore, we get

(n − ℓ)!ℓ! ≥
∫ t

τ(t)
sn−ℓ−1τℓ(s)p(s)ds + τ(t)

∫ t

τ(t)
sn−ℓ−1σℓ−1(s)q(s)ds

+ τ(t)
∫ ∞

t
sn−ℓ−1τℓ−1(s)p(s)ds + τ(t)

∫ ∞

t
sn−ℓ−1σℓ−1(s)q(s)ds

+
1

τ(t)

∫ τ(t)

t∗
sn−ℓτℓ(s)p(s)ds +

1
τ(t)

∫ τ(t)

t∗
sn−ℓ+1σℓ−1(s)q(s)ds.

(16)

The following considerations are intended to eliminate parameter ℓ. We use the
fact that τ(t) ≤ t ≤ σ(t). We shall distinguish the parity of n. For n even, we have
ℓ ∈ {1, 3, . . . , n − 1}, and it follows from (16) that

(n − 1)! ≥
∫ t

τ(t)
τn−1(s)p(s)ds + τ(t)

∫ t

τ(t)
sn−2q(s)ds

+ τ(t)
∫ ∞

t
τn−2(s)p(s) + sn−2q(s)ds +

1
τ(t)

∫ τ(t)

t∗
sτn−1(s)p(s) + snq(s)ds.

The last inequality contradicts (11).
Now, we consider n even. Then, ℓ ∈ {2, 4, . . . , n − 1} and (16) yields

(n − 1)! ≥
∫ t

τ(t)
τn−1(s)p(s)ds + τ(t)

∫ t

τ(t)
sn−3σ(s)q(s)ds

+ τ(t)
∫ ∞

t
τn−2(s)p(s) + sn−3σ(s)q(s)ds +

1
τ(t)

∫ τ(t)

t∗
sτn−1(s)p(s) + sn−1σ(s)q(s)ds.

The last inequality contradicts (12) and the proof is complete.

The main idea of the proof of Theorem 4 is to nominate delay argument τ(t) into
(9). Now, we are about to substitute advanced argument σ(t) into (9) to obtain another
(independent) criterion for property (A).

Theorem 5. Assume that for n even

lim sup
t→∞

{
1

σ(t)

∫ σ(t)

t
sτn−1(s)p(s)ds + σ(t)

∫ ∞

σ(t)

τn−1(s)
s

p(s) + sn−2q(s)ds

+
∫ σ(t)

t
sn−1q(s)ds +

1
σ(t)

∫ t

t∗
sτn−1(s)p(s) + σ(s)sn−1q(s)ds

}
> (n − 1)!,

(17)

and for n odd

lim sup
t→∞

{
1

σ(t)

∫ σ(t)

t
sτn−1(s)p(s)ds + σ(t)

∫ ∞

σ(t)

τn−1(s)
s

p(s) + σ(s)sn−3q(s)ds

+
∫ σ(t)

t
σ(s)sn−2q(s)ds +

1
σ(t)

∫ t

t∗
sτn−1(s)p(s) + σ2(s)sn−2q(s)ds

}
> (n − 1)!,

(18)

then (1) has property (A).
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Proof. Suppose, to contrary, that (1) does not enjoy property (A). This means that (1)
possesses an eventually positive solution y(t) ∈ Nℓ for some ℓ ∈ {1, · · · , n − 1} with n + ℓ
odd. It follows from (9) that

y(σ(t)) ≥ σℓ(t)
(n − ℓ)!ℓ!

∫ ∞

σ(t)
sn−ℓ−1 p(s)

y(τ(s))
τℓ(s)

τℓ(s) + sn−ℓ−1q(s)
y(σ(s))
σℓ−1(s)

σℓ−1(s)ds

+
σℓ−1(t)
(n − ℓ)!ℓ!

∫ σ(t)

t
sn−ℓp(s)

y(τ(s))
τℓ(s)

τℓ(s) + sn−ℓq(s)
y(σ(s))
σℓ−1(s)

σℓ−1(s)ds

+
σℓ−1(t)
(n − ℓ)!ℓ!

∫ t

t∗
sn−ℓp(s)

y(τ(s))
τℓ(s)

τℓ(s) + sn−ℓq(s)
y(σ(s))
σℓ(s)

σℓ(s)ds.

Condition (8) implies that

y(σ(t))
σℓ(t)

↓,
y(σ(t))
σℓ−1(t)

↑,
y(τ(t))
τℓ(t)

≥ y(t)
tℓ

≥ y(σ(t))
σℓ(t)

,

Therefore,

(n − 1)!y(σ(t)) ≥ σℓ(t)
∫ ∞

σ(t)
sn−ℓ−1 p(s)

y(s)
sℓ(s)

τℓ(s)ds + σ(t)y(σ(t))
∫ ∞

σ(t)
sn−ℓ−1q(s)σℓ−1(s)ds

+ σℓ−1(t)
∫ σ(t)

t
sn−ℓp(s)

y(s)
sℓ(s)

τℓ(s)ds + y(σ(t))
∫ σ(t)

t
sn−ℓq(s)σℓ−1(s)ds

+ σℓ−1(t)
∫ t

t∗
sn−ℓp(s)

y(s)
sℓ(s)

τℓ(s)ds +
y(σ(s))

σ(s)

∫ t

t∗
sn−ℓq(s)σℓ(s)ds.

Employing (8), one gets

(n − 1)! ≥ σ(t)
∫ ∞

σ(t)
sn−ℓ−2τℓ(s)p(s) + sn−ℓ−1σℓ−1(s)q(s)ds

+
1

σ(t)

∫ σ(t)

t
sn−ℓτℓ(s)p(s)ds +

∫ σ(t)

t
sn−ℓσℓ−1(s)q(s)ds

+
1

σ(t)

∫ t

t∗
sn−ℓτℓ(s)p(s)ds + sn−ℓσℓ(s)q(s)ds.

(19)

For n even we have ℓ ∈ {1, 3, . . . , n − 1} and (19) in view of τ(t) ≤ t ≤ σ(t) implies

(n − 1)! ≥ σ(t)
∫ ∞

σ(t)

τn−1(s)
s

p(s) + sn−2q(s)ds +
1

σ(t)

∫ σ(t)

t
sτn−1(s)p(s)ds

+
∫ σ(t)

t
sn−1q(s)ds +

1
σ(t)

∫ t

t∗
sτn−1(s)p(s)ds + sn−1σ(s)q(s)ds

which contradicts (17).
On the other hand, for n even, we have ℓ ∈ {2, 4, . . . , n − 1}, and now (19) yields

(n − 1)! ≥ σ(t)
∫ ∞

σ(t)

τn−1(s)
s

p(s) + σ(s)sn−3q(s)ds +
1

σ(t)

∫ σ(t)

t
sτn−1(s)p(s)ds

+
∫ σ(t)

t
σ(s)sn−2q(s)ds +

1
σ(t)

∫ t

t∗
sτn−1(s)p(s)ds + sn−2σ2(s)q(s)ds.

This contradicts (18), and the proof is finished.

The following example is intended to show that the criteria for property (A) presented
in Theorems 4 and 5 are independent.
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Example 1. Consider the equation

y(n)(t) +
p0

tn y(λt) +
q0

tn y
(

1
λ

t
)
= 0, (20)

where p0 > 0, q0 > 0, λ ∈ (0, 1).
Easy computations show that conditions (11) and (17) applied to (20) reduce to

p0λn−1(2 − ln λ) + 2q0 > (n − 1)! (21)

and
2p0λn−1 + q0(2 − ln λ) > (n − 1)!, (22)

respectively. It is easy that (21) and (22) are independent, since

p0λn−1(2 − ln λ) > 2p0λn−1 and 2q0 < q0(2 − ln λ).

On the other hand, conditions (12) and (18) applied to (20) take the form

p0λn−1(2 − ln λ) +
2q0

λ
> (n − 1)! (23)

and
2p0λn−1 +

2q0

λ
(2 − ln λ) > (n − 1)!, (24)

respectively, and again, (23) and (24) are independent. Therefore, by Theorems 4 and 5 if

(i) for n even (21) or (22) holds,
(ii) for n odd (23) or (24) is satisfied,

then, (20) has property (A). For the particular case when n = 3, λ = 0.5 criterion (24) is satisfied,
e.g., for

p0 = q0 > 0.1774.

Now, we turn our attention to the class N0, where of course n is odd. It is easy to
see that (H2) guaranties the existence of the inverse function τ−1(t), and therefore, the
auxiliary function ξ(t) ∈ C1([t0, ∞))

ξ(ξ(t)) = τ−1(t). (25)

is well defined. The following lemma is elementary but very useful in our next considerations.

Lemma 2. Assume that ξ(t) satisfies (25). Then

ξ−1(ξ−1(t)) = τ(t), ξ(t) = τ−1(ξ−1(t)), ξ−1(t) = τ(ξ(t)). (26)

Now, our aim is to establish a criterion for N0 = ∅ for (1) for n odd. To simplify our
notation, we employ the following functions:

P1(t) =
∫ ξ(t)

t

(s − t)n−1

(n − 1)!
p(s)ds,

P2(t) =
∫ τ−1(t)

ξ(t)

(s − t)n−1

(n − 1)!
p(s)ds,

P3(t) =
∫ τ−1(ξ(t))

τ−1(t)

(s − t)n−1

(n − 1)!
p(s)ds.

(27)
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and

Q1(t) =
∫ ξ(t)

t

(s − t)n−1

(n − 1)!
q(s)ds,

Q2(t) =
∫ τ−1(t)

ξ(t)

(s − t)n−1

(n − 1)!
q(s)ds.

(28)

We assume that there exist positive constants Pi, i = 1, 2, 3 and Qi, i = 1, 2 such that

Pi(t) ≥ Pi, i = 1, 2, 3 and Qi(t) ≥ Qi, i = 1, 2.

Moreover, we set

P∗
i =

Pi
1 − P2

, i = 1, 3, Q∗
i =

Qi
1 − P2

, i = 1, 2,

and

M =

(
P∗

1
)2

1 − P∗
1 P∗

3
, N =

P∗
1

1 − P∗
1 P∗

3 − P∗
1 Q∗

1 M
.

Theorem 6. Assume that there exists a function ξ(t) satisfying (25) and τ−1(t) ≥ σ(t). If

P∗
3 N + MN(Q∗

1 + P∗
1 Q∗

2) + P∗
1
[
P∗

1 + P∗
3 + P∗

1 Q∗
1 N + Q∗

2 MN
]
> 1, (29)

then N0 = ∅ for (1) for n odd.

Proof. Suppose, to contrary, that y(t) is an eventually positive solution of (1) for n odd
such that y(t) ∈ N0. Integrating (1) twice from t to ∞ and changing the order of integration,
we are led to

−y(n−2)(t) ≥
∫ ∞

t
(s − t)p(s)y(τ(s)) + (s − t)q(s)y(σ(s))ds. (30)

By repeated integration above inequality from t to ∞ and changing the order of
integration, we get

y(t) ≥
∫ ∞

t

(s − t)n−1

(n − 1)!
p(s)y(τ(s)) +

(s − t)n−1

(n − 1)!
q(s)y(σ(s))ds

≥
∫ ∞

t

(s − t)n−1

(n − 1)!
p(s)y(τ(s)) +

(s − t)n−1

(n − 1)!
q(s)y(τ−1(s))ds.

(31)

Consequently,

y(t) ≥
∫ ξ(t)

t

(s − t)n−1

(n − 1)!
p(s)y(τ(s))ds +

∫ τ−1(t)

ξ(t)

(s − t)n−1

(n − 1)!
p(s)y(τ(s))ds

+
∫ τ−1(ξ(t))

τ−1(t)

(s − t)n−1

(n − 1)!
p(s)y(τ(s))ds +

∫ ξ(t)

t

(s − t)n−1

(n − 1)!
q(s)y

(
τ−1(s)

)
ds

+
∫ τ−1(t)

ξ(t)

(s − t)n−1

(n − 1)!
q(s)y

(
τ−1(s)

)
ds.

(32)

Using the fact that y(t) is a decreasing function, we are led to

y(t) ≥ P1y(ξ−1(t)) + P2y(t) + P3y(ξ(t)) + Q1y
(

τ−1(ξ(t))
)
+ Q2y

(
τ−1

(
τ−1(t)

))
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which is equivalent to

y(t) ≥ P∗
1 y(ξ−1(t)) + P∗

3 y(ξ(t)) + Q∗
1y

(
τ−1(ξ(t))

)
+ Q∗

2y
(

τ−1
(

τ−1(t)
))

. (33)

We are about to evaluate y(t) in terms of P∗
i and Q∗

i . For all that, we step by step set

t = ξ−1(t), t = ξ(t), t = τ−1(ξ(t)), t = τ−1
(

τ−1(t)
)

into (33). Before executing all that, to simplify our notation, we set

Y =y(t), A = y(ξ−1(t)), B = y(ξ(t)), C = y
(

τ−1(ξ(t))
)

,

D =y
(

τ−1
(

τ−1(t)
))

, E = y(τ−1(t)).

Finally, we are led to the following linear algebraic inequalities

Y ≥ P∗
1 A + P∗

3 B + Q∗
1C + Q∗

2 D,

A ≥ (P∗
1 + P∗

3 )Y + Q∗
1 E + Q∗

2C,

B ≥ P∗
1 Y + P∗

3 E + Q∗
1 D,

C ≥ P∗
1 E + P∗

3 D,

D ≥ P∗
1 C,

E ≥ P∗
1 B.

Elimination of variables D and E leads to

Y ≥ P∗
1 A + P∗

3 B + (Q∗
1 + P∗

1 Q∗
2)C,

A ≥ (P∗
1 + P∗

3 )Y + P∗
1 Q∗

1 B + Q∗
2C,

B ≥ P∗
1 Y + P∗

1 P∗
3 B + P∗

1 Q∗
1C,

C ≥ (P∗
1 )

2B + P∗
1 P∗

3 C.

Thus,

C ≥
(

P∗
1
)2

1 − P∗
1 P∗

3
B = MB

which implies

B ≥
P∗

1
1 − P∗

1 P∗
3 − P∗

1 Q∗
1 M

Y = NY.

Consequently, our system reduces onto the couple of inequalities

Y ≥ P∗
1 A + P∗

3 NY + MN(Q∗
1 + P∗

1 Q∗
2)Y,

A ≥ (P∗
1 + P∗

3 )Y + P∗
1 Q∗

1 NY + Q∗
2 MNY

which means that

y(t)
{

1 − P∗
3 N − MN(Q∗

1 + P∗
1 Q∗

2)− P∗
1
[
P∗

1 + P∗
3 + P∗

1 Q∗
1 N + Q∗

2 MN
]}

> 0.

This contradicts (29), and we conclude that N0 = ∅.

The following criteria follows immediately from the proof of Theorem 6.

Corollary 1. Assume that there exists a function ξ(t) satisfying (26) and τ−1(t) ≥ σ(t). If

P2 > 1, or P1P3 + P1Q1M > 1,
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then N0 = ∅ for (1).

Example 2. Consider once more the equation

y(n)(t) +
p0

tn y(λt) +
q0

tn y
(

1
λ

t
)
= 0, (34)

where p0 > 0, q0 > 0, λ ∈ (0, 1).
We have already presented criteria for property (A) of (20). If for n odd, we join on condition

(29), we obtain oscillation of (20). It remains to evaluate constants Pi and Qj for (20). We set
ξ(t) = t/

√
λ. Now,

P1(t) =
p0

(n − 1)!

∫ t/
√

λ

t

(s − t)n−1

sn ds =
∣∣∣∣x = 1 − t

s

∣∣∣∣ = p0

(n − 1)!

∫ 1−
√

λ

0

xn−1

1 − x
dx

=
p0

(n − 1)!

− ln
√

λ −
n−1

∑
i=1

(
1 −

√
λ
)i

i

 = P1.

Similarly, we evaluate

P2 =
p0

(n − 1)!

− ln
√

λ −
n−1

∑
i=1

(1 − λ)i −
(

1 −
√

λ
)i

i

,

P3 =
p0

(n − 1)!

− ln
√

λ −
n−1

∑
i=1

(
1 − λ

√
λ
)i

− (1 − λ)i

i

,

Q1 =
q0

(n − 1)!

− ln
√

λ −
n−1

∑
i=1

(
1 −

√
λ
)i

i

,

Q2 =
q0

(n − 1)!

− ln
√

λ −
n−1

∑
i=1

(1 − λ)i −
(

1 −
√

λ
)i

i

.

Employing mathematical software (Matlab R2019), we see that for the particular case when
n = 3 and λ = 0.5, criterion (29) is satisfied, e.g., for

p0 = q0 > 17.3

which guarantees oscillation of (20) for this case. By the way, the well-known criterion of Koplatadze
and Chanturija [10] (see also [11]) requires p0 > 29.3482 to ensure oscillation of (20) for n = 3
and λ = 0.5. The progress is outstanding.

3. Discussion

In this paper, we have established a new technique for the investigation of trinomial
differential equations with retarded and advanced argument. First, we extended some
results from binomial to trinomial differential equation. For the second, we introduced a
new technique for classes N0 and Nn to be empty, which leads to the oscillation of (1). This
fact has not be considered in [9]. The open problem remains how to extend our criteria for
more general differential equations (nonlinear, neutral).
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