
Citation: Szidarovszky, F.; Matsumoto,

A. Dynamic Cooperative Oligopolies.

Mathematics 2024, 12, 891. https://

doi.org/10.3390/math12060891

Academic Editors: Mihaela Neamt,u,

Eva Kaslik and Anca Rădulescu
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Abstract: An n-person cooperative oligopoly is considered without product differentiation. It is
assumed that the firms know the unit price function but have no access to the cost functions of
the competitors. From market data, they have information about the industry output. The firms
want to find the output levels that guarantee maximum industry profit. First, the existence of a
unique maximizer is proven, which the firms cannot determine directly because of the lack of the
knowledge of the cost functions. Instead, a dynamic model is constructed, which is asymptotically
stable under realistic conditions, and the state trajectories converge to the optimum output levels of
the firms. Three models are constructed: first, no time delay is assumed; second, information delay
is considered for the firms on the industry output; and third, in addition, information delay is also
assumed about the firms’ own output levels. The stability of the resulting no-delay, one-delay, and
two-delay dynamics is examined.

Keywords: cooperative game; oligopolies; asymptotic stability; time delays; Hopf bifurcation;
stability switching curve
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1. Introduction

Based on the pioneering work of Cournot A. [1], an intensive study on his oligopoly
model started, which continues until today. Most studies consider this model as a multi-
player non-cooperative game. First, the existence and uniqueness of the Nash equilibrium
were the main research subjects [2,3]. Several versions of oligopolies were introduced and
studied, including models with product differentiation, multi-product, labor-managed
oligopolies, oligopsonies, and group equilibrium problems, among others [4]. In dynamic
extensions, first linear models were studied since local and global asymptotic stability
are equivalent [5,6]. Based on the mathematical development of nonlinear dynamics,
oligopolies with nonlinear payoff functions have become the main focus [7–9]. In recent
years, oligopolies with time delays have been receiving increasing attention, since data col-
lection in order to determine the best decisions and their implementations need time. If the
delay is due to contractual or institutional circumstances, then fixed delays are considered.
If the delays are uncertain due to the large number of firms, or the firms want to react to
an average of past information rather than to sudden market changes, then continuously
distributed delays are assumed. In the first case, differential–difference equations model
the situation [10], whereas in the second case, integro-differential equations model the situa-
tion [11]. In the past, oligopoly studies of mainly non-cooperative models were considered,
and the Nash equilibrium in static games or the steady states of the dynamic models were
the focus. In the case of cooperative games, the players want to obtain maximum overall
profit, which is then distributed among them based on certain fairness principles [12].
Several concepts and methods were developed [13], among which the Shapley values are
the most popular [14].
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Many applications of non-cooperative games are known from the literature, which can
be found in many text books, like [15]. The applications of cooperative games also cover a
huge and diverse field in applied sciences, including natural resource management [16,17],
power systems [18], waste management [19], transportation [20,21], insurance industry [22],
social network analysis [23], communication network [24], manufacturing systems [25],
pattern clustering [26], and business and economics [27], among others. In this paper,
n-person oligopolies without product differentiation will be considered and examined
under the assumption that the firms know the unit price function and are able to obtain
information about the industry output; however, they do not know the cost functions of the
others since no technology information is shared among the players. Therefore, they cannot
determine their total industry profit maximizing output levels. Hence, an asymptotically
stable dynamic process is assumed in which the steady state gives the optimal output levels.

The paper is developed as follows. In Section 2, the basic model is outlined, and in
Section 3, its dynamic extension is examined without time delays. Two-delay models are
introduced and analyzed in Section 4. In the first case, data on the industry output are
assumed to be delayed, and in the second case, in addition, data on the firms’ own output
levels are also considered delayed. The model without delay is asymptotically stable under
realistic conditions. In the single delay case, it is asymptotically stable if the length of the
delay is smaller than a threshold value, where stability is lost by Hopf bifurcation. In the
two-delay case, the stability switching curve is determined in the delays’ space. Section 5
offers concluding remarks and outlines further research directions.

2. The Basic Model

In a cooperative oligopoly, the firms want to maximize their overall profit:

φ(x1, x2, . . . , xn) = sp(s)−
n

∑
k=1

Ck(xk). (1)

Here, xk is the output of firm k with 0 ≤ xk ≤ Lk, where Lk is the capacity limit of this firm.
Furthermore, s = ∑n

k=1 xk, p(s) is the price function and Ck(xk) is the cost function of firm
k. Assume that functions p and all Ck values are twice continuously differentiable; then

(A) p′(s) < 0 for 0 ≤ s ≤ ∑n
k=1 Lk,

(B) p′(s) + sp′′(s) ≤ 0 for 0 ≤ s ≤ ∑n
k=1 Lk,

(C) C′
k(xk) > 0, C′′

k (xk) > 0 for 0 ≤ xk ≤ Lk and all k.

Notice that
∂φ

∂xk
= sp′(s) + p(s)− C′

k(xk), (2)

∂2 φ

∂x2
k
= sp′′(s) + 2p′(s)− C′′

k (xk)

and for k ̸= ℓ,
∂2 φ

∂xk∂xℓ
= sp′′(s) + 2p′(s).

Introduce matrices

A =


1 1 · · · 1
1 1 · · · 1
· · · · · ·
1 1 · · · 1

 and B =


−C′′

1 (x1) 0 · · · 0
0 −C′′

2 (x2) · · · 0
· · · · · ·
0 0 · · · −C′′

n (xn)

,

then, the Hessian matrix of φ can be written as

H =
(
sp′′(s) + 2p′(s)

)
A + B. (3)
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Here, B is a negative definite, and eigenvalues of A are 0 and n; furthermore,

sp′′(s) + 2p′(s) = p′(s) + sp′′(s) + p′(s) < 0.

Therefore, H is negative definite, implying that φ is strictly concave as an n-variable function.
Since sp′′(s) + 2p′(s) is the derivative of sp′(s) + p(s), this function is strictly decreas-

ing in s. With given s ≥ 0, the best choice of firm k is given as continuous function:

Rk(s) =


0 if sp′(s) + p(s)− C′

k(0) ≤ 0,

Lk if sp′(s) + p(s)− C′
k(Lk) ≥ 0,

x∗k otherwise,

(4)

where x∗k solves the equation

h(xk) = sp′(s) + p(s)− C′
k(xk) = 0. (5)

In the third case of (4), h(xk) strictly decreases in xk, h(0) > 0 and h(Lk) < 0. Therefore,
there is a unique solution of Equation (5). It is easy to show that Rk(s) is a non-increasing
continuous function of s.

Consider finally the following equation:

g(s) =
n

∑
k=1

Rk(s)− s = 0. (6)

The left hand-side strictly decreases:

g(0) ≥ 0 and g

(
n

∑
k=1

Lk

)
≤ 0.

Therefore, there is a unique solution s∗ > 0 of (6) and then the optimal choices of the firms
are given by (4) as

x∗k = Rk(s∗).

3. Dynamic Extension

Using gradient adjustments, the output adjustments are generally driven by the
differential equations:

ẋk(t) = Kk
[
s(t)p′(s(t)) + p(s(t))− C′

k(xk(t))
]

= Kk
[
(∑n

ℓ=1 xℓ(t))p′(∑n
ℓ=1 xℓ(t)) + p(∑n

ℓ=1 xℓ(t))− C′
k(xk(t))

]
.

(7)

The right hand-side is a constant multiple of the marginal profit with Kk > 0. Notice that

∂ẋk(t)
∂xk

= Kk
{

2p′(∑n
ℓ=1 xℓ(t)) + (∑n

ℓ=1 xℓ(t))p′′(∑n
ℓ=1 xℓ(t))− C′′

k (xk(t))
}

= Kk
[
2p′(s(t)) + s(t)p′′(s(t))− C′′

k (xk(t))
] (8)

and for ℓ ̸= k,
∂ẋk(t)

∂xℓ
= Kk

(
2p′(s(t)) + s(t)p′′(s(t))

)
. (9)

The Jacobian of this system is clearly

J = KH
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with
K = diag(K1, K2, . . . , Kn).

It is well known that all eigenvalues of J have negative real parts (see Theorem 4.9 of
Szidarovszky and Bahill [28], implying the local asymptotical stability of the optimal
solution without delays).

Theorem 1. The steady state of system (7) is always locally asymptotically stable.

4. Dynamic Extension with Time Delay

Assume next that the firms have delayed information about the industry output. If τk
is the delay for firm k, then Equation (7) is modified as follows:

ẋk(t) = Kk
[
sk p′(sk) + p(sk)− C′

k(xk(t))
]

(10)

with

sk =
n

∑
ℓ=1

xℓ(t − τk)

Notice that
∂ẋk(t)

∂sk
= Kk

[
sk p′′(sk) + 2p′(sk)

]
and

∂ẋk(t)
∂xk

= −KkC′′
k (xk(t)).

Let s∗ and x∗k denote the values of s and xk at the optimal solution. Clearly

s∗ =
n

∑
k=1

x∗k .

Introduce the notation
A = s∗p′′(s∗) + 2p′(s∗)

and
Bk = −C′′

k (x∗k ),

then, the linearized homogenous equation is as follows:

ẋk(t) = Kk A
n

∑
ℓ=1

xℓ(t − τk) + KkBkxk(t). (11)

Upon examining the stability of the equilibrium of this system, we will use the methodology
offered by Bellman and Cooke [10].

Notice that A and all Bk values are negative. Assume exponential solutions results in
xk(t) = eλtuk to have

λuk = Kk A
n

∑
ℓ=1

e−λτk uℓ + KkBkuk for k = 1, 2, . . . , n

showing that the characteristic equation becomes

det


λ − K1 Ae−λτ1 − K1B1 −K1 Ae−λτ1 · · · −K1 Ae−λτ1

−K2 Ae−λτ2 λ − K2 Ae−λτ2 − K2B2 · · · −K2 Ae−λτ2

· · · · · ·
−Kn Ae−λτn −Kn Ae−λτn · · · λ − Kn Ae−λτn − KnBn

 = 0. (12)
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It can be represented in closed form based on the result given in Appendix E of Bischi
et al.’s work [29]. Introduce

a =


−K1 Ae−λτ1

−K2 Ae−λτ2

·
−Kn Ae−λτn

, 1T = (1, 1, . . . , 1)

and
D = diag(λ − K1B1, λ − K2B2, . . . , λ − KnBn)

to have (12) in the following form:

det
(

D + a1T) = det(D)det
(

I + D−1a1T
)

= det(D)det
[
1 + 1T D−1a

]
= Πn

k=1(λ − KkBk)

[
1 − ∑n

k=1
Kk Ae−λτk

λ − KkBk

]
= 0.

From the first factor,

λ = KkBk < 0,

which does not disturb stability. The expression inside the brackets is very difficult to deal
with in general, so we make the following simplifying assumption:

(D) K1 = K2 = . . . = Kn = K, B1 = B2 = . . . = Bn = B and τ1 = τ2 = . . . = τn = τ.

In this special case, we have to examine the following equation

1 −
n

∑
k=1

KAe−λτ

λ − KB
= 0

or
λ − KB − nKAe−λτ = 0. (13)

Without delay, τ = 0 and λ = KB + nKA < 0. Stability switch might occur if λ =
iω (ω > 0), which is now substituted into Equation (13) to have

iω − KB − nKA(cos ωτ − i sin ωτ) = 0.

Separating the real and imaginary parts gives

nKA cos ωτ = −KB (14)

and
nKA sin ωτ = −ω. (15)

Adding the squares of these equations, we have

ω2 = K2
(

n2 A2 − B2
)

.

Theorem 2. If n2 A2 ≤ B2, then no stability switch occurs, and optimal solution is locally
asymptotically stable for all τ ≥ 0.
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Assume next that n2 A2 > B2, then

ω∗ = K
√

n2 A2 − B2.

From (14) and (15), we see that cos ωτ < 0 and sin ωτ > 0, implying that

τm =
1

ω∗

(
π − sin−1

(
−ω∗

nKA

)
+ 2mπ

)
m = 0, 1, 2, . . . (16)

The directions of the stability switches are obtained by Hopf bifurcation. Select τ as the
bifurcation parameter and assume λ = λ(τ). Implicitly differentiating Equation (13) with
respect to τ, we have

λ′ − nKAe−λτ
(
−λ′τ − λ

)
= 0

so

λ′ =
−nKAe−λτλ

1 + nKAe−λττ
=

−(λ − KB)λ
1 + (λ − KB)τ

.

With λ = iω, the real part is

Re
[

λ′∣∣
λ=iω

]
= Re

[
ω2 + iKBω

1 − KBτ + iωτ

]
=

ω2

(1 − KBτ)2 + (ωτ)2 > 0.

Theorem 3. If n2 A2 > B2, then the optimal solution is locally asymptotically stable for τ <
τ0, stability is lost at τ = τ0 with Hopf bifurcation, and stability cannot be regained with larger
values of τ.

In addition to Assumption (D), assume that the firms have an identical delay τ1 in the
industry output and an identical delay τ2 in their own output values. Then, Model (10) is
modified as follows:

ẋk(t) = K
[
sp′(s) + p(s)− C′

k(xk(t − τ2))
]

(17)

with

s =
n

∑
ℓ=1

xℓ(t − τ1).

This is a system of two-delay equations. The stability of its equilibrium will be examined
by the method offered by Matsumoto and Szidarovszky [30] based on Gu et al. [31].

The linearized equation is now the following:

ẋk(t) = KA
n

∑
ℓ=1

xℓ(t − τ1) + KBxk(t − τ2). (18)

Assuming exponential solutions xℓ(t) = eλtuℓ, we then obtain by substitution

(
λ − KBe−λτ2

)
uk − KA

n

∑
ℓ=1

e−λτ1 uℓ = 0,

implying that the characteristic equation has the form

det


λ − KAe−λτ1 − KBe−λτ2 −KAe−λτ1 · · · −KAe−λτ1

−KAe−λτ1 λ − KAe−λτ1 − KBe−λτ2 · · · −KAe−λτ1

· · · · · ·
−KAe−λτ1 −KAe−λτ1 · λ − KAe−λτ1 − KBe−λτ2

 = 0. (19)
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Let 1 be again the n-element vector with all unity elements, and I be the n × n identity
matrix. Then, (19) can be rewritten as

det
(

D + a1T) = det(D)det
(

I + D−1a1T
)

= det(D)det
[
1 + 1T D−1a

]
=
(
λ − KBe−λτ2

)n
[

1 − ∑n
k=1

KAe−λτ1

λ − KBe−λτ2

]
= 0,

(20)

where
a = −KAe−λτ11 and D =

(
λ − KBe−λτ2

)
I.

Thus, we have two-delay equations:

λ − KBe−λτ2 = 0 (21)

and
λ − K

(
nAe−λτ1 + Be−λτ2

)
= 0. (22)

Notice that (21) is a single-delay equation, and at τ2 = 0, the eigenvalue is λ = KB < 0.
The sign of the real part of the eigenvalue might change at λ = iω. Then

iω − KB(cos ωτ2 − i sin ωτ2) = 0.

Separation of the real and imaginary parts shows that

KB cos ωτ2 = 0 (23)

and
KB sin ωτ2 = −ω, (24)

implying that
cos ωτ2 = 0 and sin ωτ2 = 1,

and the critical values of τ2 are

τ2n = − 1
KB

(π

2
+ 2nπ

)
for n = 0, 1, 2, . . .

since, from (24), ω = −KB. The directions of stability switches are determined by Hopf
bifurcation, when τ2 is selected as the bifurcation parameter and let λ = λ(τ2). Implicit
differentiation of Equation (21) with respect to τ2 shows that

λ′ − KBe−λτ2
(
−λ′τ2 − λ

)
= 0,

implying that

λ′ =
−λ2

1 + λτ2
,
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where we use KBe−λτ2 = λ. At λ = iω, the real part of λ′ is positive:

Re
[
λ′] = Re

[
ω2

1 + iωτ2

]
,

= Re

[
ω2(1 − iωτ2)

1 + (ωτ2)
2

]
,

=
ω2

1 + (ωτ2)
2 > 0.

Therefore, the eigenvalues of Equation (21) have negative real parts for τ < τ20, and at all
critical values τ2n (n = 0, 1, 2, . . .), at least one pair of eigenvalues changes the sign of its
real part from negative to positive.

We now turn to Equation (22), which can be written as

1 + a1(λ)e−λτ1 + a2(λ)e−λτ2 = 0

with
a1(λ) = −nKA

λ
and a2(λ) = −KB

λ
.

Notice first that without delays, λ = nKA + KB < 0, and with increasing values of the
delays, stability may be lost when λ = iω. Then, we have

1 + a1(iω)e−iωτ1 + a2(iω)e−iωτ2 = 0

where
a1(iω) = i

nKA
ω

, a2(iω) = i
KB
ω

,

|a1(iω)| = −nKA
ω

and |a2(iω)| = −KB
ω

,

and
arg[a1(iω)] = arg[a2(iω)] =

3π

2
.

If we place vectors, 1, a1(iω)e−iωτ1 and a2(iω)e−iωτ2 head to tail, then they form a
triangle. The sufficient and necessary conditions for the existence of a triangle are

|a1(iω)|+ |a2(iω)| ≥ 1,

−1 ≤ |a1(iω)| − |a2(iω)| ≤ 1.

In our case,
−nKA − KB ≥ ω,

−ω ≤ −nKA + KB ≤ ω

which can be summarized as

|−nKA + KB| ≤ ω ≤ −nKA − KB. (25)

The triangle is illustrated in Figure 1, when the interior angles are θ1, θ2, and π − (θ1 + θ2).
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θ1θ2

1

a1 iω e
-iωτ1

a2 iω e
-iωτ2

1
Re

Im

Figure 1. Triangle contitions.

The rule of cosine shows that

θ1 = cos−1

(
1 + |a1(iω)|2 − |a2(iω)|2

2|a1(iω)|

)
= cos−1

(
ω2 + (nKA)2 − (KB)2

−2nKAω

)
(26)

and

θ2 = cos−1

(
1 + |a2(iω)|2 − |a1(iω)|2

2|a2(iω)|

)
= cos−1

(
ω2 + (KB)2 − (nKA)2

−2KBω

)
. (27)

The arguments of the three sides of the triangle are

0, arg[a1(iω)]− ωτ1 and arg[a2(iω)]− ωτ2

and the angle balance equations at the end points of the horizontal side show that

τk±
1 (ω) =

1
ω
[arg(a1(iω)) + (2k − 1)π ± θ1] for k = 0, 1, 2, . . .

and
τℓ∓

2 (ω) =
1
ω
[arg(a2(iω)) + (2ℓ− 1)π ∓ θ2] for ℓ = 0, 1, 2, . . .

since the triangle can be located above and under the horizontal axis. Hence,

τk±
1 (ω) =

1
ω

[
3π

2
+ (2k − 1)π ± θ1

]
for k = 0, 1, 2, . . . (28)

and

τℓ∓
2 (ω) =

1
ω

[
3π

2
+ (2ℓ− 1)π ∓ θ2

]
for ℓ = 0, 1, 2, . . . , (29)

implying that the stability switching curves are formed as

T±
k,ℓ =

{(
τk±

1 (ω), τℓ∓
2 (ω)

) ∣∣∣ |−nKA + KB| ≤ ω ≤ −nKA − KB
}

(30)

with k = 0, 1, 2, . . . and ℓ = 0, 1, 2, . . . From (28) and (29), we see that increasing the value
of k shifts the curves to the right and increasing the value of ℓ shifts the curves up in the
delays space.
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At each point (τ1, τ2) of the stability switching curves, the direction of stability switches
can be assessed by computing the stability index. First, we determine the real and imaginary
parts of expressions:

a1(iω)e−iωτ1 = i
nKA

ω
(cos ωτ1 − i sin ωτ1)

and
a2(iω)e−iωτ2 = i

KB
ω

(cos ωτ2 − i sin ωτ2)

to have
R1 =

nKA sin ωτ1

ω
, I1 =

nKA cos ωτ1

ω

and
R2 =

KB sin ωτ2

ω
, I2 =

KB cos ωτ2

ω
.

And then, the stability index is given as follows:

S = R2 I1 − R1 I2

=
nK2 AB

ω2 (sin ωτ2 cos ωτ1 − sin ωτ1 cos ωτ2)

which has the same sign as sin[ω(τ2 − τ1)].

Theorem 4. In the two-delay model, the stability switching curves are T+
k,ℓ and T−

k,ℓ (k = 0, 1, 2, . . . and
ℓ = 0, 1, 2, . . .) and {τ2 = τ20}.

Theorem 5. (A) Let (τ1, τ20) be any point on the line τ2 = τ20. When a point crosses the line from
below, then at least one pair of eigenvalues changes the sign of the real part from negative to positive.
(B) Let (τ1, τ2) be a point on curve T+

k,ℓ or T−
k,ℓ with a simple pure complex eigenvalue. Assume we

look on the curve in increasing value of ω. Then, as a point moves from the right to the left of the
corresponding curve, a pair of eigenvalues changes the sign of its real part from negative to positive
if S > 0. If S < 0, then the sign change is in the opposite direction.

Note: Equation (22) reduces to (13) as τ = τ1 and τ2 = 0. If τ2 = 0, then from (29),

θ2 = ±
[

3π

2
+ (2ℓ− 1)π

]
,

and with cos θ2 = 0 and from (27),

ω2 + (KB)2 − (nKA)2 = 0,

implying ω2 = (nKA)2 − (KB)2. The same result was obtained as in the single-delay
system.

5. Conclusions

In this paper, n-person single-product oligopolies were considered without product
differentiation and with incomplete information. It was assumed that the firms knew the
price function, and from market data, they also had access to the industry output. However,
each firm knew its own cost function but had no information about those of the others. In
a cooperative setting, the firms’ usual objective was to find the output levels maximizing
the industry profit. Since the cost functions were unknown, they used a dynamic process
where the components of the steady state presented the optimal output levels. A model
without time delay and two models with one and two delays were analyzed. In the stability
analysis, the findings of the paper can be summarized as follows:
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1. Under realistic conditions, the steady state in the no-delay case was always asymp-
totically stable, meaning that the components of the state trajectory converged to the
industry profit maximizing output levels.

2. In the one-delay symmetric case, the steady state was always asymptotically stable if
the number of firms was small; otherwise, asymptotic stability occurred if the length
of the delay was smaller than a given threshold value, at which stability was lost via
Hopf bifurcation.

3. In the two-delay case, the stability switching curves were determined in the two-
dimensional delay space. The stability region contained the origin and was under or
left of these curves.

The study presented in this paper can be extended in several directions. Non-
differentiable price and/or cost functions can be assumed, like hyperbolic price and/or
piecewise linear cost functions, making the analysis more complicated. The same difficulty
is encountered in the nonsymmetric case as well. It is also an interesting problem to work
out the details of the solutions based on different cooperative solution concepts.
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