
Citation: Ni, Y.; Dai, S.; Yuan, S.;

Wang, B.; Zhang, Z. Model and

Algorithm for a Two-Machine Group

Scheduling Problem with Setup and

Transportation Time. Mathematics

2024, 12, 888. https://doi.org/

10.3390/math12060888

Academic Editors: Zsolt Tibor

Kosztyán and Zoltán Kovács

Received: 19 February 2024

Revised: 11 March 2024

Accepted: 13 March 2024

Published: 18 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Model and Algorithm for a Two-Machine Group Scheduling
Problem with Setup and Transportation Time
Yu Ni, Shufen Dai, Shuaipeng Yuan *, Bailin Wang and Zhuolun Zhang

School of Economics and Management, University of Science and Technology Beijing, No. 30, Xueyuan Road,
Haidian District, Beijing 100083, China; daisf@ustb.edu.cn (S.D.); wangbl@ustb.edu.cn (B.W.);
b2114136@ustb.edu.cn (Z.Z.)
* Correspondence: yuansp@ustb.edu.cn

Abstract: This paper investigates a two-machine group scheduling problem with sequence-independent
setup times and round-trip transportation times, which is derived from the production management
requirements of modern steel manufacturing enterprises. The objective is to minimize the makespan.
Addressing limitations in prior studies, we consider a critical but largely ignored transportation
method, namely round-trip transportation, and restricted transporter capacity between machines.
To solve this problem, a mixed-integer programming model is first developed. Then, the problem
complexity is analyzed for situations with both single and unlimited transporters. For the NP-
hard case of a single transporter, we design an efficient two-stage heuristic algorithm with proven
acceptable solution quality bounds. Extensive computational experiments based on steel plant data
demonstrate the effectiveness of our approach in providing near-optimal solutions, and the maximum
deviation between our algorithm and the optimal solution is 1.38%. This research can provide an
operable optimization method that is valuable for group scheduling and transportation scheduling.

Keywords: group scheduling; transportation time; mathematical model; heuristic algorithm

MSC: 90B35; 90C59; 90-10

1. Introduction

Recent years have witnessed a surge of interest in tackling combinatorial optimiza-
tion problems in various real-world industrial contexts, such as the steel manufacturing
companies referenced in [1–3] and the manufacturing industry mentioned in [4,5]. This
work investigates a two-machine group scheduling problem, where both the sequence
independence setup times between groups and the transportation times between machines
are considered. This problem is derived from the production management requirement of
the tube processing workshop in iron and steel enterprises. Tube processing occurs after
the hot rolling stage and includes two production stages: tube cutting and tube processing.
In the cutting machine, each long tube is cut into several short tubes, and a certain setup
time is required while switching tubes. Because the number of tubes in the cutting machine
changes and the processing time is relatively long, the cutting process (CP) is the core link of
the entire process flow. After cutting, the short tubes are trans-ported to the tube-processing
stage by a transporter. Limited by the processing environment and tubes’ properties, the
number and capacity of transporters between machines are finite, and the transportation
process is limited by the availability of the transporters. Specifically, for any tube, it can be
transported only if the transporter has transported the previous tube to next machine and
returned. If we take the long tubes at the cutting stage as the group of the short tubes after
the CP, then the whole process can be abstracted into a two-machine group scheduling
problem with setup times and round-trip transportation times. To achieve the goals of
streamlined production and management, this scheduling problem needs to fully consider
the constraints of transportation capacity between machines.

Mathematics 2024, 12, 888. https://doi.org/10.3390/math12060888 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12060888
https://doi.org/10.3390/math12060888
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-3579-298X
https://doi.org/10.3390/math12060888
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12060888?type=check_update&version=1

Mathematics 2024, 12, 888 2 of 12

The round-trip transportation method and limited transportation capacity between
machines make this problem significantly different to classical scheduling group problems.
To the best of our knowledge, no relevant research on this problem has been published,
resulting in significant limitations of existing achievements in practical applications. There-
fore, we are motivated to investigate this type of problem in this work. We first develop a
mixed-integer linear programming model with the objective of minimizing the makespan,
and then prove that there is a polynomial optimal algorithm for the case that the number
of transporters is unlimited. When there is only one transporter, it is proved that the
problem is a strong NP-hard problem, and a heuristic algorithm with an upper bound of 3
is proposed. Finally, a simulation experiment based on actual production data is performed
and it is verified that the algorithm has a good solution effect. We believe that our research
in this work can further narrow the gap between theoretical results of group scheduling
and practical applications.

The rest of this paper is organized as follows. Section 2 reviews the literature relevant
to this study. Section 3 describes the studied problem and the developed model. Section 4
presents the characteristics of the problem. The designed algorithms are shown in Section 5.
Computational results are presented in Section 6. Section 7 concludes our work and
suggests areas for future study.

2. Literature Review

Classical scheduling problems have been studied by many scholars from different
perspectives. For example, Tian et al. studied a single-machine parallel-batch scheduling
problem with non-identical job sizes under time-of-use electricity prices [6]. The objective
was to minimize the total energy consumption. To solve the problem, they proposed
three mathematical programming models and designed a column-generation algorithm.
Chen et al. [7] investigated an energy-oriented scheduling problem arising from hot rolling
production in the steel enterprises. The problem was first modeled as a vehicle routing
problem with special constraints, and then solved via a knowledge-based NSGA-II algo-
rithm. Zhao et al. [8] addressed an energy-efficient flowshop scheduling problem with the
objective of minimizing total energy consumption and total tardiness. A hyper-heuristic
Q-learning technique was developed. Tian et al. [9] studied a remanufacturing system
scheduling problem with lot-streaming production mode. They formulated the problem
as a multi-objective mathematical model aimed at simultaneously minimizing the total
energy consumption and makespan. A hybrid optimization algorithm combing the fruit fly
optimization algorithm and simulated annealing mechanism was developed. For compre-
hensive research on scheduling problems, the reader can refer to Dauzère-Pérès et al. [10]
and Strusevich [11].

Due to their practical relevance, group scheduling problems have also received much
attention in this academic field over the past decade. Lin and Ying [12] investigated a
no-wait flowshop group scheduling problem with sequence-dependent setup times. They
first established the problem’s strong NP-hardness and subsequently formulated a linear
programming model with the objective of reducing the makespan. To address this complex
problem, they proposed a two-stage metaheuristic algorithm. Costa et al. [13] investigated
a flowshop group scheduling with blocking constraints, and developed a parallel genetic
algorithm based on adaptive and parallel computing techniques. Recently, Zhao et al. [14]
extracted a flowshop group scheduling problem with batch processing characteristics from
the steel industry. A mixed-integer linear programming model and a memetic algorithm
were formulated to minimize the total number of delayed jobs and the total setup times.
Pan et al. [15] explored a distributed flowshop group scheduling problem with the objective
of minimizing the makespan. They constructed a mixed-integer linear programming model
and proposed a cooperative co-evolutionary algorithm. Building upon Pan’s work, Wang
et al. [16] further refined the problem by focusing on tardiness. Their improved iterative
greedy algorithm demonstrated promising results in minimizing total tardiness. Neufeld

Mathematics 2024, 12, 888 3 of 12

et al. [17] provided a comprehensive overview of the current research status about the
flow-shop group scheduling problem.

There are few related studies on the group scheduling problem considering transporta-
tion times between machines. Liou and Hsieh [18] proposed a hybrid particle swarm and
genetic algorithm based on the classic flowshop environment and presented two lower
bounds of the optimal solution through theoretical analysis. For the same problem, Ah-
madizar and Shahmaleki [19] formulated a mixed-integer linear programming model with
the goal of minimizing the total completion time. A genetic algorithm embedding problem
specific rules was proposed. Yuan et al. [20] investigated a flowshop group scheduling
problem with round-trip transportation times. A mixed-integer linear programming model
and an improved differential evolution algorithm were developed with the objective of
minimizing makespan.

Although there is a large body of work in the field of group scheduling, most of the
studies have focused on the setup time constraint, and only a few studies have considered
the transportation process between machines simultaneously. Even for those that have,
a fundamental assumption has been that no constraint exists on the availability of trans-
porters between machines, and only one-way transportation time was investigated. That is,
once a job is processed on the current machine, it can be transported to the next machine in
real time. However, this ideal scenario does not fully align with the realities of industrial
settings. As a result, the existing results fall short of addressing the practical requirements
of industrial applications, such as the abovementioned tube-processing method in modern
iron and steel enterprises. To our knowledge, we are the first to study the group scheduling
problem, where the number and capacity of the transporters between machines is limited.

3. Problem Description and Mathematical Model
3.1. Problem Description

The two-machine group scheduling problem with sequence independence setup and
transportation times can be summarized as follows: There are g groups to be processed
on two machines, and each group has ni(1 ≤ i ≤ g) jobs. Each job may be processed on at
most one machine at a time, and each machine can process at most one job at a time. The
jobs in the same group must be processed continuously without any interruption by the
jobs of other groups. Especially, each group requires a sequence-independent setup time on
both machines. A round-trip transportation time is required for moving the jobs from the
first machine to the second machine. Each transporter must complete a round-trip before
the next job can be transported. Different jobs might have different transportation times. In
addition, it is assumed that the capacity of the transporter is 1. The objective is to minimize
the makespan.

This scheduling problem needs to determine the sequence of groups, and the sequence
of jobs within each group so that the makespan is the minimum. If we use GT to denote
a group scheduling with intermediate transportation, where x is the number of available
transporters and y is the single transport capacity per transporter, then the scheduling
problem in this paper can be described as F2|GT|V(x, 1)|Cmax .

3.2. Notations and Model

Notations used in this work are defined below.
g: The number of groups.
Gi: Group index, i = 1, 2, . . . , g.
ni: The number of jobs in group Gi.
Jil : Job index in group Gi, l = 1, 2, . . . , ni.
Mk: Machine index, k = 1, 2.
silk: Start time of the job Jil on machine Mk.
pilk: Processing time of the job Jil on machine Mk.
cilk: Completion time of the job Jil on machine Mk.
stik: Setup time of group Gi on machine Mk.

Mathematics 2024, 12, 888 4 of 12

t1, t2: Round-trip transportation time between M1 and M2, where t1 is the time moving
from M1 to M2, and t2 is the returning time.

U: A very large number.
Xij: Decision variables, equal to 1 if and only if the group Gj is processed immediately

after the group Gi.
xi,l′ l : Decision variables, equal to 1 if and only if job Jil is processed immediately after

the job Jil′ .
bil : Start transportation time of job Jil on machine M1.
Cik: Completion time of group Gi on machine Mk.
Objective functions and constraints of the model are formulated as follows.

minCmax = max{Ci2|1 ≤ i ≤ g} (1)
g

∑
i=0

Xij = 1, 1 ≤ j ≤ g (2)

g

∑
i=1

Xji = 1, 1 ≤ j ≤ g (3)

Xij + Xji ≤ 1, 1 ≤ i, j ≤ g (4)
ni

∑
l′=0

xi,l′ l = 1, 1 ≤ i ≤ g, 1 ≤ l ≤ ni (5)

ni

∑
l′=1

xi,ll′ ≤ 1, 1 ≤ i ≤ g, 1 ≤ l ≤ ni (6)

xi,ll′ + xi,l′ l ≤ 1, 1 ≤ i ≤ g, 1 ≤ l, l′ ≤ ni (7)

sjlk − cil′k − stik + U(1− Xij) ≥ 0, 1 ≤ i, j ≤ g, l ≤ nj, l′ ≤ ni (8)

silk − cil′k + U(1− xi,l′ l) ≥ 0, 1 ≤ i ≤ g, 1 ≤ l′, l ≤ ni (9)

sil2 − bil − t1 ≥ 0, 1 ≤ i ≤ g, 1 ≤ l ≤ ni (10)

bil ≥ cil1, 1 ≤ i ≤ g, l = 1, . . . , ni (11)

Ci2 ≥ cil2, 1 ≤ i ≤ g, 1 ≤ l ≤ ni (12)

Xij, xi,l′ l ∈ {0, 1}, 1 ≤ i, j ≤ g, 1 ≤ l′, l ≤ ni (13)

Objective (1) indicates the minimum completion time of all jobs. Constraints (2)–(4)
indicate that each group should have exactly one predecessor (containing dummy group
G0) and at most one successor, and these groups cannot be the same. Similarly, Constraints
(5)–(7) indicate that, within the same group, each job has exactly one immediate predecessor
and at most one immediate successor, with the condition that these two cannot be the same.
Constraints (8) and (9) ensure that each machine can process at most one job at a time;
Constraint (10) indicates that the start processing time of Jil on M2 cannot be earlier than
its arrival time. Constraint (11) shows that the start transportation time of a job should be
no less than its completion time on M1. Constraint (12) defines the makespan. Constraint
(13) defines the binary decision variables.

It should be noted that the correctness of this model has been verified by a well-known
off-the-shelf solver called CPLEX. Detailed experimental results are provided in Section 6.2.

4. Problem Analysis

This section discusses the complexity of a problem where the number of transporters
is unlimited and when there is one. For the convenience of the following description, the
problem studied is defined as P.

Mathematics 2024, 12, 888 5 of 12

(1) Unlimited number of transporters:
When the number of transporters is unlimited, or at least greater than the number

of all jobs to be scheduled, there is always a transporter available in real time for any
jobs that are completed on machine M1. In this case, the transportation time between
machines can be viewed as a component of the processing time. This problem is equivalent
to F2|GT|Cmax . Logendran et al. [21] has proved that there is a polynomial optimization
algorithm for such problem.

(2) One transporter:
When the number of transporters is only one, the start time of different jobs in ma-

chine M2 will be subject to the arrival time of the transporter. The nature of the problem
undergoes significant changes, and the algorithm for an infinite number of transporters
will no longer be applicable. The following theorem proves that the problem is strongly
NP-hard in this case.

Theorem 1. The scheduling problem P has strong NP-hard characteristics when x = 1.

Proof. We prove the NP-hardness of this problem by a reduction from the 3-partition
problem, which is described as follows: Given 3t items T = {a1, a2, . . . , a3t} and a positive
integer b, each item aj ∈ T satisfies b/4 < aj < b/2, and ∑3t

j=1 aj = tb. The question asks
whether there are t disjoint subsets T1, T2, . . ., Tt of T such that each subset contains exactly
three items and their total size is equal to b?

Given a 3-partition problem, we construct an instance for our problem as follows:

g = t, ni = 5, 1 ≤ i ≤ g;
pi11 = b/4, pi21 = pi31 = pi41 = b/3, pi51 = 3b;
pi12 = 3b, pi22 = a3i−2, pi32 = a3i−1, pi42 = a3i, pi52 = b;
t1 = t2 = b/2;
sti1 = sti2 = 3b/4;

Threshold value z = 5tb + 3b/4.
Sufficiency: If there is a solution to the 3-partition problem, then we can construct a

scheduling instance as shown in Figure 1, whose makespan is equal to z.

Mathematics 2024, 12, x FOR PEER REVIEW 6 of 13

 5 1= = ≤ ≤, ,ig t n i g ;
11 21 31 41 514 3 3= = = = =, / ,i i i i ip b p p p b p b ;
12 22 3 2 32 3 1 42 3 523 − −= = = = =, , , ,i i i i i i i ip b p a p a p a p b ;

1 2 2= = /t t b ;
1 2 3 4= =i ist st b ;

Threshold value 5 3 4= + /z tb b .

Sufficiency: If there is a solution to the 3-partition problem, then we can construct a
scheduling instance as shown in Figure 1, whose makespan is equal to z.

1J tJ
1T tT

3b

3b
3
b

3
b

3
b

4
b

4
b

3b

3b
3
b

3
b

3
b

4
b

4
b

3
4
b3

4
b

3
4
b 3

4
b

Figure 1. Schedule instance.

Necessity: The completion time of each group is not less than
1 1 1 2 25 4+ + + +min() min()i il ilst p t t p , and the maxC is not less than
1 1 1 2 2 25+ + + − +min() () min()i il ilst p t t t t p , that is 5 3 4≥ +maxC tb b . The equality of

5 3 4= +maxC tb b is satisfied if and only the following two conditions hold true.

(1) In any group iG , the job 1iJ must be processed at the first position, and the job
5iJ must be processed at the last position.

(2) The transporter must operate continuously without any idle time until the last job

reaches machine 2M .

It can be easily demonstrated that the maxC will be greater than z if any of the afore-
mentioned conditions are not met. Suppose that the 3-partition problem has no solution,

which implies that there exists a iT such that ∈
≠

j i
ja T

a b
, or, equivalently, a wT such

that ∈
>

j w
ja T

a b
. Consequently, 1 17 4> /wC b , indicating that there is some idle time for

transporter while transporting jobs in group wG , which violates the above condition 2.
As previously discussed, this situation is untenable. □

5. Solving Algorithm
5.1. Optimality Analysis

Because the problem 2 1 1 max| | (,)|F GT V C has strong NP-hard characteristics, we
can only construct heuristic algorithm by analyzing the characteristics of the problem. In
this section, the properties of the optimal solution are analyzed first, and then a heuristic
algorithm with upper bound of 3 is proposed.

Figure 1. Schedule instance.

Necessity: The completion time of each group is not less than sti1 + min(pil1) + 5t1 +
4t2 + min(pil2), and the Cmax is not less than sti1 + min(pil1) + 5t(t1 + t2)− t2 + min(pil2),
that is Cmax ≥ 5tb+3b/4. The equality of Cmax = 5tb+3b/4 is satisfied if and only the
following two conditions hold true.

(1) In any group Gi, the job Ji1 must be processed at the first position, and the job Ji5
must be processed at the last position.

(2) The transporter must operate continuously without any idle time until the last job
reaches machine M2.

Mathematics 2024, 12, 888 6 of 12

It can be easily demonstrated that the Cmax will be greater than z if any of the afore-
mentioned conditions are not met. Suppose that the 3-partition problem has no solution,
which implies that there exists a Ti such that ∑aj∈Ti

aj ̸= b, or, equivalently, a Tw such
that ∑aj∈Tw aj > b. Consequently, Cw1 > 17b/4, indicating that there is some idle time for
transporter while transporting jobs in group Gw, which violates the above condition 2. As
previously discussed, this situation is untenable. □

5. Solving Algorithm
5.1. Optimality Analysis

Because the problem F2|GT|V(1, 1)|Cmax has strong NP-hard characteristics, we can
only construct heuristic algorithm by analyzing the characteristics of the problem. In
this section, the properties of the optimal solution are analyzed first, and then a heuristic
algorithm with upper bound of 3 is proposed.

Lemma 1. In any optimal scheduling, the sequence of jobs on the two machines is identical, and
the order of transportation is also the same.

Proof. The above lemma can be proved by standard theory of interchange of jobs; there is
no further detail to provide. □

From the above lemma, it can be observed that the two sub-problems of the groups
sequence and the jobs sequence within each group satisfy the characteristics of the permu-
tation flowshop. For the first sub-problem, it is equivalent to TF2|prmu|V(1, 1)|Cmax , and
for the other one, due to the overlapping of the processing times between the groups, it is
necessary to introduce the following two definitions.

Definition 1 (Extension). The difference between the completion time of the group Gi on the two
machines is called extension, denoted as Bi. The calculation formula is Bi = Ci2 − Ci1.

Definition 2 (Indentation). The maximum extension of a group can be provided for its
tight front group without changing its own completion time. and the calculation formula is
Ai = max(Ci1 + t1, ci(ni−1)2)−∑ni−1

l=1 pil2 − sti2. It is shown as the shadow part of Figure 2.

Mathematics 2024, 12, x FOR PEER REVIEW 7 of 13

Lemma 1. In any optimal scheduling, the sequence of jobs on the two machines is identical, and
the order of transportation is also the same.

Proof. The above lemma can be proved by standard theory of interchange of jobs; there is
no further detail to provide. □

From the above lemma, it can be observed that the two sub-problems of the groups
sequence and the jobs sequence within each group satisfy the characteristics of the per-
mutation flowshop. For the first sub-problem, it is equivalent to 2 1 1 max| | (,)|TF prmu V C ,
and for the other one, due to the overlapping of the processing times between the groups,
it is necessary to introduce the following two definitions.

Definition 1 (Extension). The difference between the completion time of the group iG on the

two machines is called extension, denoted as iB . The calculation formula is 2 1= −i i iB C C .

Definition 2 (Indentation). The maximum extension of a group can be provided for its tight
front group without changing its own completion time. and the calculation formula is

1
1 1 1 2 2 21

−
− =

= + − −()max(,) i

i

n
i i i n il il

A C t c p st . It is shown as the shadow part of Figure 2.

1iC

(1)2ii nc −

…1iJ 2iJ
iinJ

…

(-1)ii nJ

…

iST

iST

1iC

(1)2ii nc −

…1iJ 2iJ
iinJ

…

(-1)ii nJ

…

iST

iST

1t 2t

(a) (b)

Figure 2. Classification of the indentation for (a) 1 1 1 2−+ > ()ii i nC t c and (b) 1 1 1 2−+ ≤ ()ii i nC t c .

5.2. Heuristic Algorithm
Figure 2 indicates that the overlap time changes with the location change in the

scheduling sequence. Therefore, we can propose the following two-stage heuristic algo-
rithm (Algorithm 1) based on the value of extension and indentation.

Algorithm 1: Two-stage heuristic algorithm
for i = 1 to g
 for l = 1 to in
 1 1 1 2+← <={ | }il ilN J p t t .
 2 1 1 2+← >{ | }il ilN J p t t .
 end
 1S ← Sort the sequence according to the SPT rule of 2ilp for jobs in 1N .
 2S ← Sort the sequence according to the SPT rule of 1 2,il ilp p for jobs in 2N .
 1 2 π ← [,]i S S /* π i is the job sequence in group iG */
 /* Calculate iA and iB according to the π i */

 1
1 1 1 2 2 21

−
− =

← + − −()max(,) i

i

n
i i i n il il

A C t c p st .

 2 1← −i i iB C C .
end

Figure 2. Classification of the indentation for (a) Ci1 + t1 > ci(ni−1)2 and (b) Ci1 + t1 ≤ ci(ni−1)2.

5.2. Heuristic Algorithm

Figure 2 indicates that the overlap time changes with the location change in the
scheduling sequence. Therefore, we can propose the following two-stage heuristic algo-
rithm (Algorithm 1) based on the value of extension and indentation.

Mathematics 2024, 12, 888 7 of 12

Algorithm 1: Two-stage heuristic algorithm

for i = 1 to g
for l = 1 to ni

N1 ← {Jil |pil1 <= t1 + t2} .
N2 ← {Jil |pil1 > t1 + t2} .

end
S1← Sort the sequence according to the SPT rule of pil2 for jobs in N1.
S2← Sort the sequence according to the SPT rule of pil1, pil2 for jobs in N2.
πi ← [S1, S2] /* πi is the job sequence in group Gi */
/* Calculate Ai and Bi according to the πi */
Ai ← max(Ci1 + t1, ci(ni−1)2)−∑ni−1

l=1 pil2 − sti2 .
Bi ← Ci2 − Ci1 .

end
N3 ← {Gi|Ai ≤ Bi} .
N4 ← {Gi|Ai > Bi} .
S3← Sort the groups in N3 according to the SPT rule of Ai.
S4← Sort the groups in N4 according to the LPT rule of Bi.
Π← [S3, S4] /* Π is the group sequence */

The following Lemma 2 gives the upper bound of the algorithm.

Lemma 2. The above algorithm provides a bound of no more than 3 for the problem.

Proof. Assume that the target value obtained by the above algorithm is C, and the
optimal solution to this problem is C∗. Hence, the upper bound of C must be less than
∑

g
i=1 pi1 + ∑

g
i=1 sti1 + ∑

g
i=1 ∑ni

j=1 (t)− t2 + ∑
g
i=1 pi2. In addition, we can see that C∗ has the

following three lower bounds:

LB1 = ∑g
i=1 pi1 + ∑g

i=1 sti1 + t1 + min(pil2), (14)

LB2 = min(stik) + min(pil1) + t1 + ∑g
i=1 pi2, (15)

LB3 = min(sti1) + min(pil1) + (∑n
i=1 ∑ni

l=1 (t1 + t2))− t2 + min(pil2). (16)

Therefore, the upper bound of the algorithm can be derived from the following equation.

C
C∗

=
3C
3C∗
≤ 3C

LB1 + LB2 + LB3
≤

3
n
∑

i=1
pi1 + 3((

n
∑

i=1

ni
∑

l=1
(t1 + t2))− t2) + 3

n
∑

i=1
pi2 + 3

n
∑

i=1
STi

n
∑

i=1
pi1 +

n
∑

i=1
pi2 +

n
∑

i=1
STi+(

n
∑

i=1

ni
∑

l=1
(t1 + t2))− t2

= 3 (17)

□

6. Experimental Results and Discuss

In this section, computational experiments are presented to evaluate the performance
of the proposed model and the heuristic algorithm. First, we use small-scale instances
to verify the correctness of the model and the deviation between the algorithm and the
optimal solution solved by model. Then, the algorithm was compared with the three lower
bounds of the optimal solution using large-scale instances. The algorithm is implemented
using Matlab language (Matlab R2015a), and the model is solved by CPLEX 12.10. The code-
running environment is i5-12500H Intel CPU with 16.00 GB RAM hardware environment.

Mathematics 2024, 12, 888 8 of 12

6.1. Experiment Design

As mentioned before, a difference exists between our studied problem and those in
the literature, and no existing benchmark data can be used directly. Therefore, a number of
test instances are generated based on the real situations from a large steel plant in China.
The following combinations of g and ni (1 ≤ i ≤ g) are set: g ∈ {3, 5, 10, 20, 50, 100, 150}
and ni ∈ {3, 5, 10, 15}. Those data are divided into 6 small-scale classes (g ∈ {3, 5, 10}
and ni ∈ {3, 5}) and 12 large-scale classes (g ∈ {20, 50, 100, 150} and ni ∈ {5, 10, 15}).
One instance is generated for each combination, which results in 18 instances in total.
Other production data for the instances are generated as follows: pilk ∈ DU(5, 30),
t1, t2 = DU[5, 15]; stik = DU[5, 10]. Here, DU(a, b) means a discrete uniform distribu-
tion between a and b.

6.2. Optimality Test

This section conducts experiments on the aforementioned six small-scale instances
to verify the correctness of the model, and to observe the deviation of Cmax obtained by
our designed algorithm from the optimal one. For each instance, the time limit of CPLEX
solver is set to 3600 s. The relative percentage increase (RPI) is used as the evaluation index;
RPI is calculated by

RPI(A) = (Cmax(A)− C∗max) / C∗max × 100, (18)

where Cmax(A) is the objective value obtained by our algorithm, and C∗max is the optimal
target value obtained by CPLEX. The experimental results are shown in Table 1, where
LBmax represents the maximum value of three lower bounds.

Table 1. Results for the model and designed algorithm.

g × ni LBmax Cmax(CPLEX) Cmax(A) RPI

3 × 3 217 222 222 0.000
3 × 5 298 298 298 0.000
5 × 3 434 451 455 0.887
5 × 5 528 539 542 0.557

10 × 3 610 612 619 0.814
10 × 5 915 917 931 1.086

Average 500 506 511 0.557

As shown in Table 1, when the problem scale is very small (g = 3 & ni = 3), both
CPLEX and our algorithm yield the same Cmax value, confirming the correctness of the
model. The LBmax values of the six instances are all smaller than the optimal Cmax obtained
by CPLEX, and the differences between them are extremely small, with an average deviation
ratio of 1.2%. This indicates that the lower bound values are tight. Overall, the designed
algorithm achieves a maximum RPI of 1.086% and an average RPI of 0.557%, which shows
that the deviations in the solutions obtained by the algorithm from the optimal ones are
very small. Therefore, we can conclude that our designed algorithm has a good ability to
construct high-quality solutions for small-scale instances.

6.3. Results for Large-Scale Instances

To further validate the performance of our algorithm, we conducted experiments
using the above 12 large-scale problem instances. Since these instances are beyond the
solvability range of CPLEX, the LBmax is used as the benchmark for each instance. The
results are shown in Table 2, where T represents the computing time of algorithms.

Mathematics 2024, 12, 888 9 of 12

Table 2. Experimental results.

g × ni LBmax C RPI T

20× 5 2307 2309 0.22 0.09
20× 10 4673 4684 0.24 0.12
20× 15 7254 7254 0.00 0.12
50× 5 5263 5298 0.66 0.18

50× 10 10,511 10,569 0.55 0.12
50× 15 11,000 11,053 0.48 0.17
100× 5 11,000 11,024 0.21 0.21
100× 10 22,000 22,028 0.12 0.19
100× 15 33,000 33,051 0.15 0.28
150× 5 15,134 15,245 0.73 0.33
150× 10 30,023 30,347 1.07 0.50
150× 15 46,348 46,991 1.38 0.58
Average 16,543 16,654 0.48 0.24

It can be seen from Table 2 that, as the problem size increases, the RPI value also
increases, indicating that the difficulty of solving the problem is positively related to the
problem size. For the RPI indicator, there are 7 instances with RPI values less than 0.5%, and
10 instances with RPI values less than 1%. The maximum RPI value between the proposed
algorithm and the maximum lower bound (LBmax) is 1.38%, and the minimum RPI value is
zero. Overall, the average RPI value for all instances is just 0.48%, which indicates that the
solution obtained by our algorithm is very close to the lower bound of the optimal solution.

The average solution time of all instances for our algorithm is just 0.24 s. Even if the
problem scales up to 150× 15, it can be completed in 0.58 s, showing that the algorithm has
high efficiency.

To analyze the performance of the algorithms in solving instances with different
numbers of total jobs, a series of statistical analyses based on means and LSD intervals for
IGD values are performed. The results are shown in Figure 3.

Mathematics 2024, 12, x FOR PEER REVIEW 10 of 13

50 10× 10,511 10,569 0.55 0.12
50 15× 11,000 11,053 0.48 0.17
100 5× 11,000 11,024 0.21 0.21

100 10× 22,000 22,028 0.12 0.19
100 15× 33,000 33,051 0.15 0.28
150 5× 15,134 15,245 0.73 0.33

150 10× 30,023 30,347 1.07 0.50
150 15× 46,348 46,991 1.38 0.58
Average 16,543 16,654 0.48 0.24

It can be seen from Table 2 that, as the problem size increases, the RPI value also
increases, indicating that the difficulty of solving the problem is positively related to the
problem size. For the RPI indicator, there are 7 instances with RPI values less than 0.5%,
and 10 instances with RPI values less than 1%. The maximum RPI value between the pro-

posed algorithm and the maximum lower bound (maxLB) is 1.38%, and the minimum RPI
value is zero. Overall, the average RPI value for all instances is just 0.48%, which indicates
that the solution obtained by our algorithm is very close to the lower bound of the optimal
solution.

The average solution time of all instances for our algorithm is just 0.24 s. Even if the
problem scales up to 150 15× , it can be completed in 0.58 s, showing that the algorithm
has high efficiency.

To analyze the performance of the algorithms in solving instances with different
numbers of total jobs, a series of statistical analyses based on means and LSD intervals for
IGD values are performed. The results are shown in Figure 3.

Figure 3. Results of RPI for different number of job sizes.

From Figure 3, we can observe that as the number of jobs increases, the RPI value of
our algorithm shows a slight increase trend. Specifically, when the total number of jobs is
in the small-scale range (0, 500], the overall RPI value is 0.31. It increases to 0.41 while the
total number of jobs is in the medium-scale range (500, 1000], and further increased to 0.86
when the job size is in the large-scale range (1000, 2250]. The above results indicate that
the number of jobs has a certain impact on the performance of the algorithm. No matter
what the situation, the RPI value from our algorithm is always at a lower level, which
confirms the effectiveness of our algorithm in solving the performance problem.

6.4. Comparison with a Real-World Heuristic
In the actual industrial production process, heuristic algorithms based on profes-

sional knowledge and human experience are usually used to solve the corresponding
scheduling problems. For the problem studied in this work, the most commonly used
method by enterprises is the largest processing time (LPT) rule, in which the job (group)
with a longer processing time is given a higher priority. To be specific, the job scheduling

0.31

0.44

0.86

0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.10
1.20

Small (0, 500] Medium (500,1000] Large (1000, 2250]

R
PI

Figure 3. Results of RPI for different number of job sizes.

From Figure 3, we can observe that as the number of jobs increases, the RPI value of
our algorithm shows a slight increase trend. Specifically, when the total number of jobs is
in the small-scale range (0, 500], the overall RPI value is 0.31. It increases to 0.41 while the
total number of jobs is in the medium-scale range (500, 1000], and further increased to 0.86
when the job size is in the large-scale range (1000, 2250]. The above results indicate that the
number of jobs has a certain impact on the performance of the algorithm. No matter what
the situation, the RPI value from our algorithm is always at a lower level, which confirms
the effectiveness of our algorithm in solving the performance problem.

6.4. Comparison with a Real-World Heuristic

In the actual industrial production process, heuristic algorithms based on professional
knowledge and human experience are usually used to solve the corresponding scheduling

Mathematics 2024, 12, 888 10 of 12

problems. For the problem studied in this work, the most commonly used method by
enterprises is the largest processing time (LPT) rule, in which the job (group) with a longer
processing time is given a higher priority. To be specific, the job scheduling sub-problem is
solved first. For each group, sort the jobs within it in decreasing order of the total processing
times on both the two machines (pil1 + pil2), and generated a job sequence. Then, the
completion time of each group should be calculated according to the job sequence within it;
also, all of the groups should be arranged in decreasing order of their completion time.

The above heuristic (defined as A1) is compared with our heuristic on the generated
12 instances. The experimental results are presented in Table 3. From Table 3, it can be
seen that our algorithm achieves much better results than the real-world heuristic on all
considered instances. The minimum RPI value between those two algorithms is 0.09%,
the maximum value is 2.44%, and the average value is 0.74%, further confirming the
effectiveness of our algorithm. The 0.74% improvement in makespan may seem modest,
but it has a significant impact in industrial applications. It not only enhances production
efficiency, but also facilitates energy conservation and emission reduction for energy-
intensive manufacturing enterprises. In fact, our designed algorithm has been implemented
in a large steel company in China, with satisfactory outcomes.

Table 3. Comparison for our algorithm and a real-world heuristic.

g × ni A A1 Gap(A1 − A) RPI

20× 5 2309 2333 24 1.04
20× 10 4684 4739 55 1.17
20× 15 7254 7267 13 0.18
50× 5 5298 5320 22 0.42

50× 10 10,569 10,827 258 2.44
50× 15 11,053 11,064 11 0.10
100× 5 11,024 11,115 91 0.83
100× 10 22,028 22,053 25 0.11
100× 15 33,051 33,088 37 0.11
150× 5 15,245 15,404 159 1.04
150× 10 30,347 30,375 28 0.09
150× 15 46,991 47,613 622 1.32
Average 16,654 16,766 112 0.74

Therefore, it can be concluded that the designed heuristic algorithm is very effective
in solving the studied problem.

7. Conclusions

In this work, a two-machine group scheduling problem arising from the real-world
steel production is studied. This study makes both practical and theoretical contributions
to the field by incorporating round-trip transportation times and limited transportation
capacity constraints. To solve the problem, a mixed-integer programming formulation
is first established to minimize the makespan. The problem’s complexity is examined
from two angles. First, when the number of transporters between machines is infinite, we
demonstrate that the problem can be solved using a polynomial optimization algorithm.
Second, in scenarios with only one transporter, it is proved that the problem is a strongly
NP-hard problem. A two-stage heuristic algorithm with an upper bound of 3 is proposed.
The proposed heuristic maintains solution quality within 1.38% of lower bounds for large
problem instances. Overall, this study significantly advances our understanding of how to
combine coordinated scheduling decisions with restricted material flows, which is essential
to many multi-stage manufacturing settings. Practical implementations leveraging this
research have the potential to yield reduced steel production timelines and improved just-
in-time capabilities. From a theoretical perspective, the analysis and algorithms presented
open rich avenues for better incorporating logistic realities like finite transporter into
classical scheduling models.

Mathematics 2024, 12, 888 11 of 12

Although this paper has made some progress, the following limitations remain. First,
only a two-machine case is considered. However, there are often more than two machines in
actual industrial environments. Second, the case of multiple transporters is not considered.
Third, the two-stage heuristic algorithm designed in this work has certain limitations in the
solution quality when solving some large-scale instances. Therefore, an area for further
work is extending the problem to environments with more machines and transportation
networks. Moreover, using intelligent optimization and reinforcement learning techniques
to design more efficient algorithms is also an effective research direction.

Author Contributions: Conceptualization, Y.N. and S.D.; software, validation, investigation, and data
curation, S.Y., B.W. and Z.Z.; methodology, formal analysis, and writing—original draft preparation,
S.Y.; writing—review and editing and funding acquisition, Y.N. and S.D. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
number 72301026, Ministry of education of Humanities and Social Science project, grant number
23YJA630090.

Data Availability Statement: The datasets used in the study are available from the corresponding
author on reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Özgür, A.; Uygun, Y.; Hütt, M. A review of planning and scheduling methods for hot rolling mills in steel production. Comput.

Ind. Eng. 2021, 151, 106606. [CrossRef]
2. Soares, L.C.R.; Carvalho, M.A.M. Application of a hybrid evolutionary algorithm to resource-constrained parallel machine

scheduling with setup times. Comput. Oper. Res. 2022, 139, 105637. [CrossRef]
3. Cao, J.; Pan, R.; Xia, X.; Shao, X.; Wang, X. An efficient scheduling approach for an iron-steel plant equipped with self-generation

equipment under time-of-use electricity tariffs. Swarm Evol. Comput. 2021, 60, 100764. [CrossRef]
4. Chen, C.; Fathi, M.; Khakifirooz, M.; Wu, K. Hybrid tabu search algorithm for unrelated parallel machine scheduling in

semiconductor fabs with setup times, job release, and expired times. Comput. Ind. Eng. 2022, 165, 107915. [CrossRef]
5. Bitar, A.; Dauzère-Pérès, S.; Yugma, C.; Roussel, R. A memetic algorithm to solve an unrelated parallel machine scheduling

problem with auxiliary resources in semiconductor manufacturing. J. Sched. 2016, 19, 367–376. [CrossRef]
6. Tian, Z.; Zheng, L. Single machine parallel-batch scheduling under time-of-use electricity prices: New formulations and

optimisation approaches. Eur. J. Oper. Res. 2024, 312, 512–524. [CrossRef]
7. Chen, L.; Cao, L.; Wen, Y.; Chen, H.; Jiang, S. A knowledge-based NSGA-II algorithm for multi-objective hot rolling production

scheduling under flexible time-of-use electricity pricing. J. Manuf. Syst. 2023, 69, 255–270. [CrossRef]
8. Zhao, F.; Di, S.; Wang, L. A hyperheuristic with Q-learning for the multiobjective energy-efficient distributed blocking flow shop

scheduling problem. IEEE Trans. Cybern. 2023, 53, 3337–3350. [CrossRef]
9. Tian, G.; Wang, W.; Zhang, H.; Zhou, X.; Zhang, C.; Li, Z. Multi-objective optimization of energy-efficient remanufacturing system

scheduling problem with lot-streaming production mode. Expert Syst. Appl. 2024, 237, 121309. [CrossRef]
10. Dauzère-Pérès, S.; Ding, J.; Shen, L.; Tamssaouet, K. The flexible job shop scheduling problem: A review. Eur. J. Oper. Res. 2024,

314, 409–432. [CrossRef]
11. Strusevich, V.A. Complexity and approximation of open shop scheduling to minimize the makespan: A review of models and

approaches. Comput. Oper. Res. 2022, 144, 105732. [CrossRef]
12. Lin, S.; Ying, K. Makespan optimization in a no-wait flowline manufacturing cell with sequence-dependent family setup times.

Comput. Ind. Eng. 2019, 128, 1–7. [CrossRef]
13. Costa, A.; Cappadonna, F.V.; Fichera, S. Minimizing makespan in a flow shop sequence dependent group scheduling problem

with blocking constraint. Eng. Appl. Artif. Intell. 2020, 89, 103413. [CrossRef]
14. Zhao, Z.; Liu, S.; Zhou, M.; Abusorrah, A. Dual-objective mixed integer linear program and memetic algorithm for an industrial

group scheduling problem. IEEE/CAA J. Autom. Sin. 2021, 8, 1199–1209. [CrossRef]
15. Pan, Q.; Gao, L.; Wang, L. An effective cooperative co-evolutionary algorithm for distributed flowshop group scheduling

problems. IEEE Trans. Cybern. 2022, 52, 5999–6012. [CrossRef]
16. Wang, Z.; Pan, Q.; Gao, L.; Wang, Y. An effective two-stage iterated greedy algorithm to minimize total tardiness for the distributed

flowshop group scheduling problem. Swarm Evol. Comput. 2022, 74, 101143. [CrossRef]
17. Neufeld, J.S.; Gupta, J.N.D.; Buscher, U. A comprehensive review of flowshop group scheduling literature. Comput. Oper. Res.

2016, 70, 56–74. [CrossRef]
18. Liou, C.; Hsieh, Y. A hybrid algorithm for the multi-stage flow shop group scheduling with sequence-dependent setup and

transportation times. Int. J. Prod. Econ. 2015, 170, 258–267. [CrossRef]

https://doi.org/10.1016/j.cie.2020.106606
https://doi.org/10.1016/j.cor.2021.105637
https://doi.org/10.1016/j.swevo.2020.100764
https://doi.org/10.1016/j.cie.2021.107915
https://doi.org/10.1007/s10951-014-0397-6
https://doi.org/10.1016/j.ejor.2023.07.012
https://doi.org/10.1016/j.jmsy.2023.06.009
https://doi.org/10.1109/TCYB.2022.3192112
https://doi.org/10.1016/j.eswa.2023.121309
https://doi.org/10.1016/j.ejor.2023.05.017
https://doi.org/10.1016/j.cor.2022.105732
https://doi.org/10.1016/j.cie.2018.12.025
https://doi.org/10.1016/j.engappai.2019.103413
https://doi.org/10.1109/JAS.2020.1003539
https://doi.org/10.1109/TCYB.2020.3041494
https://doi.org/10.1016/j.swevo.2022.101143
https://doi.org/10.1016/j.cor.2015.12.006
https://doi.org/10.1016/j.ijpe.2015.10.002

Mathematics 2024, 12, 888 12 of 12

19. Ahmadizar, F.; Shahmaleki, P. Group-shop scheduling with sequence-dependent set-up and transportation times. Appl. Math.
Model. 2014, 38, 5080–5091. [CrossRef]

20. Yuan, S.; Li, T.; Wang, B. A discrete differential evolution algorithm for flow shop group scheduling problem with sequence-
dependent setup and transportation times. J. Intell. Manuf. 2020, 32, 427–439. [CrossRef]

21. Logendran, R.; Salmasi, N.; Sriskandarajah, C. Two-machine group scheduling problems in discrete parts manufacturing with
sequence-dependent setups. Comput. Oper. Res. 2006, 33, 158–180. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.apm.2014.03.035
https://doi.org/10.1007/s10845-020-01580-3
https://doi.org/10.1016/j.cor.2004.07.004

	Introduction
	Literature Review
	Problem Description and Mathematical Model
	Problem Description
	Notations and Model

	Problem Analysis
	Solving Algorithm
	Optimality Analysis
	Heuristic Algorithm

	Experimental Results and Discuss
	Experiment Design
	Optimality Test
	Results for Large-Scale Instances
	Comparison with a Real-World Heuristic

	Conclusions
	References

