
Citation: Meche, B.; Poruri, V.; Gupta,

S.; Khalil, S. Accounting for

Measurement Error and

Untruthfulness in Binary RRT Models.

Mathematics 2024, 12, 875. https://

doi.org/10.3390/math12060875

Academic Editor: Manuel

Alberto M. Ferreira

Received: 16 November 2023

Revised: 31 January 2024

Accepted: 14 March 2024

Published: 16 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Accounting for Measurement Error and Untruthfulness in Binary
RRT Models
Bailey Meche 1, Venu Poruri 2, Sat Gupta 3,* and Sadia Khalil 3,4

1 Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA 70504, USA;
bailey.meche1@louisiana.edu

2 Department of Mathematics, University of California, Berkeley, Berkeley, CA 94720, USA
3 Department of Mathematics and Statistics, UNC Greensboro, Greensboro, NC 27412, USA
4 Department of Statistics, Lahore College for Women University, Lahore 44444, Pakistan
* Correspondence: sngupta@uncg.edu

Abstract: This study examines the effect of measurement error on binary Randomized Response
Technique models. We discuss a method for estimating and accounting for measurement error and
untruthfulness in two basic models and one comprehensive model. Both theoretical and empirical
results show that not accounting for measurement error leads to inaccurate estimates. We introduce
estimators that account for the effect of measurement error. Furthermore, we introduce a new
measure of model privacy using an odds ratio statistic, which offers better interpretability than
traditional methods.
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1. Introduction

Examining controversial attitudes and behaviors via survey often necessitates a care-
ful approach. Rather than affirmatively responding to questions about sensitive or self-
incriminating behavior, survey respondents may instead withhold information or provide
inaccurate answers. To mitigate the bias that these actions introduce into survey data,
Ref. [1] developed the Randomized Response Technique (RRT) to restore the assurance of
confidentiality. Through the deliberate introduction of randomness into survey procedures,
randomized response models safeguard respondent privacy and yield more accurate data.

The first binary RRT model was proposed by [1]. The Warner model prompts par-
ticipants to answer sensitive questions in direct or indirect form. This method utilizes
binary sensitive variables that preserve respondent privacy. Since then, many other models
have been proposed, including the model by [2]. The Greenberg model asks respondents
to answer either a direct sensitive question or an unrelated question. In 2023, Ref. [3]
proposed a mixture model that combines the Warner and Greenberg models, treating the
two models as special cases of the larger model. This paper also investigated the impact of
untruthfulness on binary RRT models, but these models have not accounted for the effect
of measurement error. In this paper, we aim to investigate the impact of measurement error
and untruthfulness on binary RRT models.

The effect of measurement error has been studied in quantitative RRT models by
many authors including [4,5]. Ref. [6] explored the effect of measurement error on the [1]
binary model. This model and the mixture model proposed by [3] are discussed in detail in
Section 2. We apply the effect of measurement error explored by [6] onto the Lovig mixture
model in Section 3. In this paper, we aim to study the impact of measurement error in the
Lovig mixture model in comparison to the models of [1] and the [2].

Certain models may be better suited against the effects of measurement error. In
Section 4, we test our mixture model that accounts for measurement error by introducing
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measurement error in a numerical study. This study computes several levels of the error that
is introduced into the model by the measurement error, MSE[m̂], for different choices of p
and q. This design compares the mixture model to the Warner and Greenberg models since
these two are considered special cases of the Lovig mixture model (q = 0 and q = 1 − p,
respectively). This investigation relies on our estimation of measurement error m, which
uses a secondary question described in Section 3.3.2.

In the discussion of privacy in Section 5, we propose a new measure of privacy for
binary RRT models offered by the model. This method uses binary logistic regression to
compute the odds ratio (OR) between true participant responses and recorded responses
from the model as a measure of predictability. A higher OR value indicates higher indi-
vidual predictability of the presence of the sensitive trait as the recorded response changes
from “No” to “Yes”, thereby offering lower privacy. This privacy measure is estimated in
the presence of measurement error and participant untruthfulness.

2. Previous Models

Several RRT models form the building blocks for the proposed model in Section 3. The
Warner model was the first RRT model introduced in [1]. In this model, participants are
presented with either the sensitive question or an indirect version of the sensitive question
using a randomization device with known probabilities. The key aspect of RRT models is
that the interviewer remains unaware of whether the respondent is answering the direct
or the indirect question, ensuring confidentiality. Similarly, the Greenberg model involves
respondents responding to either a sensitive question or an entirely unrelated question.

Prior to [7], all binary RRT models assumed that respondents provide truthful re-
sponses. In this work, the authors accounted for a lack of trust and demonstrated that
not accounting for untruthfulness leads to poor estimates in the Greenberg model. Later,
Ref. [3] demonstrated the negative impact that untruthfulness has on the efficiency of
the Greenberg, Warner, and Lovig mixture binary models. The method of accounting for
untruthfulness proposed by [7] added a node to switch the respondent’s answer with
probability 1 − A only when the respondent is in the sensitive group with probability πx.
This design ensures that the respondent’s mistrust of the model will only occur at questions
that the respondent finds sensitive. This conceptual framework of accounting for lack of
trust was utilized to develop a more efficient and private model.

The Warner model has been shown to offer the highest privacy protection to respon-
dents, and the best efficiency is found in the Greenberg model [3]. The mixture model
proposed in [3] that combines these two models asks participants an indirect sensitive
question, a direct sensitive question, or an unrelated question, each with known likelihoods.
This model is discussed and depicted in Section 2. The approach in [3] offered an opportu-
nity to compare privacy and efficiency between the Warner model, the Greenberg model,
and a mixture of the two accounting for lack of trust. To fairly compare the three models,
this work uses a modified version of the unified measure proposed by [8], which proposed
unified measure M. This novel model that accounts for untruthfulness may be improved to
also account for measurement error.

Accounting for the effect of measurement error in the model of [1] was first proposed
in [6]. This model represents the first work exploring measurement error in binary RRT
models. This work developed a unique method of defining measurement error in the
context of binary RRT models and examined the estimation of the prevalence of sensitive
characteristics under measurement error in some cases. The authors found that, in most
cases, the measurement error introduced a non-negligible bias into the efficiency offered by
the Warner model. This work includes estimators for measurement error and the sensitive
trait accounting for measurement error. The approach in this paper examines the same
effect of measurement error in the more comprehensive mixture model by [3].
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Mixture Model Accounting for Lack of Trust by [3]

The [3] mixture model offers a trichotomy that randomly chooses from the direct
question, the indirect question, or the unrelated question. This model is best shown by the
flow diagram given in Figure 1 below:

Figure 1. Mixture binary RRT model accounting for untruthfulness by [3].

This work found that respondent lack of trust decreases model efficiency and increases
privacy when truthfulness remains unaccounted for. Note that the Warner and Greenberg
models may be considered as special cases of the Lovig mixture model as pictured above.
Comparing the three models, the Greenberg model (q = 0) outperforms other models
in terms of efficiency, the Warner model (q = 1 − p) excels in privacy protection, and
the Lovig mixture model (q ̸= 1 − p) emerges as the best model in terms of the unified
measure M.

The Lovig mixture model outperforms both the Greenberg and the Warner models. It
exhibits a lower MSE than the Warner model, better privacy protection than the Greenberg
model, and significantly better unified measure M than both of the basic models in most
recommended cases. This model was groundbreaking in investigating and accounting for
the effect of untruthfulness in binary RRT models. The proposed model in this work is an
extension of the Lovig model in Figure 1 to account for measurement error.

3. Proposed Model

We hypothesize that measurement error imposes a significant bias on model efficiency.
This section proposes a model that accounts for such effects by estimating it using a sec-
ondary question. We acknowledge that this will not account for every type of measurement
error. The appropriate methodological guidelines should still be followed to reduce the
risk of measurement error confounding study results. These guidelines may include types
of survey modes, response formats, respondent training, and response biases.

This paper proposes a model that introduces the effect of measurement error as
in [6] onto the binary RRT mixture model that accounts for lack of trust proposed by [3].
Following the work of [7] and utilizing the model proposed by [3], a respondent in the
sensitive group (with probability πx) will switch his/her answer due to mistrust with
probability 1 − A. So far, this design constitutes the Lovig mixture model shown in
Figure 1. To account for measurement error, the model is designed such that each recorded
response is switched with probability m. Nodes that switch the recorded response with
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rate m are added on each terminal node because we assume that the measurement error
discussed has an equal chance of occurring at each branch.

After demonstrating that poor estimates occur when measurement error is not ac-
counted for in Section 3.2, we outline a method for estimating the prevalence of measure-
ment error m and trust rates A in Section 3.3 using secondary questions. To begin this
discussion, our proposed mixture model is best shown by Figure 2 below:

Figure 2. Accounting for measurement error in mixture model by [3].

For this model, we use the following notation:

n = size of random sample with replacement;
p = probability that the respondent was in the direct question group;
q = probability that the respondent was in the indirect question group;
1 − p − q = probability that the respondent was in the unrelated question group;
πx = proportion of the sensitive trait;
πy = proportion of the unrelated trait;
A = proportion of people who trust the underlying RRT model;
m = probability that the participant’s recorded response was switched due to
measurement error;
Py = probability of the respondent entering a “Yes” response.

3.1. Estimating Trust Parameter A with a Greenberg Model

Before estimating the proportion of the sensitive trait, we must estimate the trust
parameter A. This study uses an initial question to estimate A using a Greenberg model
similar to the approach in [3]. Since the Greenberg model is the most efficient model and
privacy is not prioritized in this initial question, the Greenberg model is the ideal choice to
estimate untruthfulness. For this question, let there be the following:

pg = proportion of the direct question used in a Greenberg model to estimate truthfulness;
Pyg = probability of a “Yes” response in this Greenberg model;
πyg = proportion of people who would answer “Yes” to the unrelated question in the
Greenberg model.

Following the approach from [3], we use the question, “Do you trust the model?”, for
Question 1 with probability pg and an unrelated question with probability 1 − pg. This
leads to the equations:
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Pyg = pg A + (1 − pg)πyg

Â =
P̂yg − (1 − pg)πyg

pg

where P̂yg is the proportion of “Yes” responses in the sample of Greenberg responses. Then,

E[P̂yg] = Pyg ; Var[P̂yg] =
Pyg(1 − Pyg)

n

E[Â] = A ; Var[Â] =
Pyg(1 − Pyg)

np2
g

. (1)

Since E[Â] = A, this question design provides an unbiased estimator for respondent trust
prevalence A.

Now, we discuss the efficiency of the proposed model using the estimator Â. In
Section 3.2, we compute the efficiency of the proposed model that does not account for
measurement error to test the behavior of the bias. After demonstrating its impact, this
initial question that estimates untruthfulness is used as Question 1 in the proposed model
in Section 3.3.

3.2. Proposed Model: Not Accounting for Measurement Error
3.2.1. Efficiency

In this section, we build an estimator for estimator π̂xu for the sensitive trait that
does not account for measurement error using the probability of a “Yes” response. The
probability of a “Yes” response is given by

Py =q{(1 − πx)(1 − m) + πx[(1 − A)(1 − m) + Am]}+ p[πx[A(1 − m) + (1 − A)m]]

+ (1 − πx)m] + (1 − p − q)
[
πy(1 − m) + (1 − πy)m

]
=

(
Aπx(p − q) + πy(1 − p − q)

)
(1 − 2m) + m(1 − 2q) + q. (2)

If the researcher ignores measurement error and erroneously assumes m = 0, our model
becomes naive to measurement error. Let Pyu be the probability of a “Yes” response in this
naive case. Then, we may find Pyu using (2) as follows:

Pyu = Aπx(p − q) + πy(1 − p − q) + q.

From this, we have the estimator for the sensitive trait under the naive case:

π̂xu =
P̂y − q − (1 − p − q)πy

Â(p − q)
; p ̸= q

where P̂y is the proportion of “Yes” responses in the sample assuming random sampling
with replacement is given by

E[P̂y] = Py ; Var[P̂y] =
Py(1 − Py)

n
. (3)

Since π̂xu is a function of random variables P̂y and Â, we use a first-order Taylor’s
expansion for π̂xu given by

f (x, y) = f (x0, y0) + (x − x0) fx(x0, y0) + (y − y0) fy(x0, y0)

where x = P̂y, x0 = Py, y = Â, and y0 = A. Then, we have the expansion:

π̂xu ≈
Py − q − (1 − p − q)πy

A(p − q)
+

P̂y − Py

A(p − q)
− (Â − A)

[
Py − q − (1 − p − q)πy

A2(p − q)

]
; p ̸= q. (4)
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From (4), we can easily verify

E[π̂xu] ≈
Py − q − (1 − p − q)πy

A(p − q)

≈
Aπx(p − q)(1 − 2m)− 2mπy(1 − p − q) + m(1 − 2q)

A(p − q)
; p ̸= q (5)

Var[π̂xu] ≈
Var[P̂y]

A2(p − q)2 + Var[Â]

[
Py − q − (1 − p − q)πy

A2(p − q)

]2

; p ̸= q

where Var[Â] is given by (1) and Var[P̂y] is given by (3). From (5), we may observe the
bias that is introduced when measurement error is not accounted for. Bias for this naive
approach is given by:

Bias[π̂xu] = E[π̂xu]− πx

=
m
(
1 − 2Aπx(p − q)− 2πy(1 − p − q)− 2q

)
A(p − q)

; p − q ̸= 0

MSE[π̂xu] = Var[π̂xu] + Bias[π̂xu]
2. (6)

3.2.2. Simulation Results

To simulate randomized response trials, we used the NumPy module in Python to
randomly generate survey results based on specified parameters for π̂x, π̂y, p, q, A, and
m. Estimators were then calculated using these generated data. We tabulated the data
across trials via the Pandas software library in Python and created visualizations with the
Matplotlib plotting library.

The simulations in Table 1 demonstrate the simulated effect of the bias from measure-
ment error using the Lovig model in Section 3.2.1. We used MSEs to compare different
models. The MSE has been used for this purpose in all major RRT papers including the
seminal papers [1,2]. Observing the MSE[π̂xu], which encompasses the variance and bias
of π̂xu as in (6), the error rates increase in this estimator of πx as significant levels of A and
m are introduced. This positive bias causing poor estimates is especially prevalent when
measurement error is introduced. Low levels (m = 0.01) do not cause noticeable changes,
but a 10% rate of measurement error causes approximately a 5% error rate in the sensitive
trait. A similar positive bias may be observed when untruthfulness is introduced, but this
is not as severe.

Table 1. Estimates π̂xu and ̂MSE[π̂xu] when measurement error is not accounted for. Results
aggregated over 10, 000 trials with n = 500, p = 0.7, q = 0.15, πx = 0.4, and πy = 1

12 .

p q m A Â πx π̂xu MSE[π̂xu] ̂MSE[π̂xu]

0.7 0.15 0.00 1.00 1.0001 0.4 0.3998 0.0017 0.0016
0.7 0.15 0.00 0.95 0.9504 0.4 0.3991 0.0019 0.0017
0.7 0.15 0.00 0.90 0.8999 0.4 0.4002 0.0021 0.0019

0.7 0.15 0.01 1.00 1.0001 0.4 0.4041 0.0017 0.0016
0.7 0.15 0.01 0.95 0.9503 0.4 0.4048 0.0019 0.0017
0.7 0.15 0.01 0.90 0.8999 0.4 0.4061 0.0021 0.0019

0.7 0.15 0.05 1.00 1.0005 0.4 0.4208 0.0021 0.0020
0.7 0.15 0.05 0.95 0.9502 0.4 0.4240 0.0025 0.0023
0.7 0.15 0.05 0.9 0.8996 0.4 0.4284 0.0029 0.0027

0.7 0.15 0.10 1.00 0.9999 0.4 0.4432 0.0035 0.0035
0.7 0.15 0.10 0.95 0.9502 0.4 0.4489 0.0043 0.0042
0.7 0.15 0.10 0.90 0.9002 0.4 0.4563 0.0052 0.0051
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3.3. Proposed Model: Accounting for Measurement Error

Following [3], we first estimate A, then the probability of measurement error (m), and
finally, the sensitive trait πx.

3.3.1. Approach

Let Question 1 in this approach be the question, “Do you trust the model?”, using the
Greenberg model outlined in Section 3.1. This provides an estimator for A. This is followed
by Questions 2 and 3 to estimate measurement error m in the model and the prevalence of
the sensitive trait πx, respectively, using the proposed mixture model.

3.3.2. Estimating Measurement Error Using a Secondary Question

Section 3.2 demonstrates that not accounting for measurement error leads to inaccurate
estimates. Following [6],, we estimate the parameter for measurement error m̂ using our
model with an additional modified question that ensures a known sensitivity probability.

For example, this test question could be, “Are you a robot?” Such a question ensures
a known sensitive probability of πx = 0 for human respondents. Note that truthfulness
A does not have to be accounted for in this question since sensitivity is always zero. Re-
searchers must design a question for this estimator m̂ that satisfies these two requirements.
For this secondary design, we may derive the probability of a “Yes” response in this rigged
question Py0 using (2), where πx = 0.

Question 2: (with secondary question) “Are you a robot?”

Py0 = m
(
1 − 2q − 2πy(1 − p − q)

)
+ q + (1 − p − q)πy. (7)

Using (7), we can set

m̂ =
P̂y0 − q − πy(1 − p − q)
1 − 2q − 2πy(1 − p − q)

; p + q ̸= 1 (8)

E[P̂y0] = Py0 ; Var[P̂y0] =
Py0(1 − Py0)

n

E[m̂] =
E[P̂y0]− q − πy(1 − p − q)

1 − 2q − 2πy(1 − p − q)
= m ; p + q ̸= 1.

Since E[m̂] = m, (8) provides an unbiased estimator of m. We may then find the MSE
given by

Var[m̂] =
Var[P̂y0](

1 − 2q − 2πy(1 − p − q)
)2 =

Py0(1 − Py0)

n
(
1 − 2q − 2πy(1 − p − q)

)2 = MSE[m̂] ; p + q ̸= 1. (9)

3.3.3. Estimating Proportion of Sensitive Trait πx

Now that we have estimates for m and A, Question 3 uses the proposed mixture model
from Figure 2 to ask a direct sensitive, indirect sensitive, or unrelated question. We use the
full probability of a “Yes” response Py to this question to derive the estimator π̂x.

Question 3: (with mixture model) “Do you have the sensitive trait?”

Py =
(

Aπx(p − q) + πy(1 − p − q)
)
(1 − 2m) + m(1 − 2q) + q

π̂x =
P̂y − m̂(1 − 2q)− q − πy(1 − p − q)(1 − 2m̂)

A(1 − 2m̂)(p − q)
; p ̸= 0, m̂ ̸= 1

2
(10)

We use the following Taylor’s approximation to make use of the estimator π̂x:

f (x, y, z) ≈ f (x0, y0, z0) + (x − x0) fx(x0, y0, z0) + (y − y0) fy(x0, y0, z0) + (z − z0) fz(x0, y0, z0)
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where x = P̂y, y = m̂, z = Â, x0 = Py, y0 = m, and z0 = A. Then, π̂x is approximated by:

π̂x ≈
Py − m(1 − 2q)− q − πy(1 − p − q)(1 − 2m)

A(1 − 2m)(p − q)
+

P̂y − Py

A(1 − 2m)(p − q)

+ (m̂ − m)

[
2Py − 1

A(p − q)(1 − 2m)2

]
(11)

− (Â − A)

[
Py − m(1 − 2q)− q − πy(1 − p − q)(1 − 2m)

A2(1 − 2m)(p − q)

]
; p ̸= 0, m̂ ̸= 1

2
.

From (11), we may note that

E[π̂x] ≈ πx

Var[π̂x] ≈
Var[P̂y]

[A(1 − 2m)(p − q)]2
+ Var[m̂]

[
2Py − 1

A(p − q)(1 − 2m)2

]2

+ Var[Â]

[
Py − m(1 − 2q)− q − πy(1 − p − q)(1 − 2m)

A2(1 − 2m)(p − q)

]2

; p ̸= 0, m̂ ̸= 1
2

where Var[P̂y] is given by (3), Var[m̂] is given by (9), and Var[Â] is given by (1).

3.3.4. Simulation Results

We observed that the estimates for πx were more accurate when we accounted for
measurement error. The estimates in Table 2 contrast the poor results shown in Table 1,
where measurement error was ignored. It is now clear that neglecting to account for
measurement error in binary RRT models results in inaccurate estimators. Table 2 simulates
the estimators discussed.

Table 2. Estimates π̂x and M̂SE[π̂x] when we account for measurement error. Results aggregated
over 10, 000 trials, with n = 500, p = 0.7, πx = 0.4, and πy = 1

12 .

q m m̂ A Â πx π̂xu MSE[π̂xu] ̂MSE[π̂xu]

Greenberg model

0.00 0.01 0.0099 1.00 0.9997 0.4 0.4001 0.0010 0.0009
0.00 0.01 0.0101 0.95 0.9503 0.4 0.3997 0.0011 0.0010
0.00 0.01 0.0101 0.90 0.9002 0.4 0.3996 0.0012 0.0011
0.00 0.05 0.0499 1.00 1.0002 0.4 0.3997 0.0012 0.0011
0.00 0.05 0.0501 0.95 0.9497 0.4 0.4000 0.0014 0.0012
0.00 0.05 0.0502 0.90 0.9001 0.4 0.4005 0.0015 0.0013
0.00 0.10 0.1003 1.00 0.9995 0.4 0.3994 0.0016 0.0014
0.00 0.10 0.0999 0.95 0.9499 0.4 0.4001 0.0017 0.0016
0.00 0.10 0.0999 0.90 0.9002 0.4 0.3992 0.0019 0.0017

Lovig model

0.15 0.01 0.0100 1.00 1.0000 0.4 0.3996 0.0018 0.0016
0.15 0.01 0.0103 0.95 0.9500 0.4 0.3995 0.0019 0.0018
0.15 0.01 0.0102 0.90 0.8995 0.4 0.3993 0.0021 0.0020
0.15 0.05 0.0501 1.00 0.9993 0.4 0.4003 0.0021 0.0019
0.15 0.05 0.0499 0.95 0.9501 0.4 0.3995 0.0023 0.0021
0.15 0.05 0.0502 0.90 0.9002 0.4 0.3996 0.0025 0.0023
0.15 0.10 0.0996 1.00 0.9998 0.4 0.4014 0.0026 0.0025
0.15 0.10 0.1001 0.95 0.9499 0.4 0.3997 0.0029 0.0028
0.15 0.10 0.0996 0.90 0.8999 0.4 0.4004 0.0032 0.0030
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Table 2. Cont.

q m m̂ A Â πx π̂xu MSE[π̂xu] ̂MSE[π̂xu]

Warner model

0.3 0.01 0.0104 1.00 1.0000 0.4 0.3993 0.0034 0.0032
0.3 0.01 0.0107 0.95 0.9500 0.4 0.4012 0.0037 0.0036
0.3 0.01 0.0099 0.90 0.9002 0.4 0.3987 0.0042 0.0040
0.3 0.05 0.0520 1.00 1.0003 0.4 0.4001 0.0040 0.0038
0.3 0.05 0.0510 0.95 0.9498 0.4 0.4006 0.0044 0.0042
0.3 0.05 0.0507 0.90 0.8998 0.4 0.4006 0.0049 0.0046
0.3 0.10 0.0995 1.00 1.0003 0.4 0.3998 0.0050 0.0048
0.3 0.10 0.1001 0.95 0.9503 0.4 0.3996 0.0055 0.0054
0.3 0.10 0.1000 0.90 0.8996 0.4 0.3992 0.0062 0.0060

The simulation in Table 2 offers several insights. Our estimators m̂, Â, π̂x, and MSE[π̂x]
are statistically close to their theoretical values, indicating that these are good estimators.
Most significantly, the π̂x column confirms that our estimator of πx using the proposed
model is accurate as untruthfulness and measurement error are introduced. The Greenberg
model offers the greatest efficiency indicated by the lowest MSE[π̂x] rates, and the Warner
model offers the worst efficiency. The Lovig mixture model is between these values for
each level of m, A. We will note in Section 5 that, when privacy protection is also factored
in, the mixture model will offer the best performance.

4. Comparison of Measurement Error between Models

Observing the effect of measurement error across models will aid in the researcher’s
choice of the model design. Since it is always desired to minimize the impact of measure-
ment error in the chosen model, we discuss the MSE of m for different choices of p and q.
To do this, we compare the effect of measurement error between the Lovig, Warner, and
Greenberg models.

Each model is differentially affected by measurement error since it is estimated using a
secondary question outlined in Section 3.3.2. Recall that the Warner and Greenberg models
are special cases of the Lovig mixture model, where q = 0 and q = 1 − p, respectively. The
estimator for m in (8) is unbiased for all models, so we will compare the measurement error
between the models using the respective MSEs.

Numerical Comparison

The simulation results so far have fixed the level of p and parameterized q, but the
choice of p has an effect on the model’s performance. The numerical discussion provided
in Figure 3 provides four levels of p to observe the behavior of MSE[m̂].

Asymptotic behavior is expected around q = 0.5 when p < 0.5 since we have p − q
terms in the denominators of these estimators for MSE[m̂]. This indicates that p, q should
never be chosen close to 0.5 to avoid poor estimators.

When p > 0.5, the Warner model introduces the highest error in terms of measurement
error, while the Greenberg model offers the least error due to measurement error for all
considered values of m. Since this error function is monotonically increasing, the Lovig
model offers moderate error as the bold values in Table 3 demonstrate. When p < 0.5, it
is imperative that the parameter q be carefully chosen for the Lovig model to avoid large
values of MSE[m̂]. In this case, the comparative rank of error due to measurement error
between models is similar to when p > 0.5. This is seen in Table 3 with the MSE[m̂] values

provided below. This table also shows that M̂SE[m̂] is a good estimator.
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Table 3. Theoretical and estimated values of MSE of measurement error estimators in Section 3.3.2.
Estimates aggregated over 10, 000 trials, with n = 500, πx = 0.4, p = 0.7, and πy = 1

12 .

p q m m̂ MSE[m̂] M̂SE[m̂]

Greenberg model

0.7 0.00 0.01 0.0099 0.0001 0.0001
0.7 0.00 0.05 0.0499 0.0001 0.0001
0.7 0.00 0.10 0.1003 0.0002 0.0002

Lovig model

0.7 0.15 0.01 0.0100 0.0006 0.0006
0.7 0.15 0.05 0.0501 0.0007 0.0007
0.7 0.15 0.10 0.0996 0.0008 0.0008

Warner model

0.7 0.3 0.01 0.0104 0.0026 0.0027
0.7 0.3 0.05 0.0520 0.0027 0.0028
0.7 0.3 0.10 0.0995 0.0028 0.0027

Both Figure 3 and Table 3 show that the choice of p and q has a more significant
impact than the level of m on the amount of error introduced into the model from MSE[m̂].
This fact underscores the importance of a proper choice of model parameters since certain
models are better suited for accounting for measurement error. To provide a complete
recommendation to a researcher designing an RRT study, a discussion on privacy and a
unified measure is required. The choice of p, q involves considering trade-offs between
efficiency, privacy protection, and measurement error. This is provided in Section 6.

Figure 3. Impact of varying q on MSE[m̂] with n = 500 and πy = 1
12 . The values of q = 0, 1 − p

represent the Greenberg and Warner models, respectively. The values of q ∈ (0, 1 − p) represent the
Lovig model. Top left: p = 0.7, top right: p = 0.6, bottom left: p = 0.4, bottom right: p = 0.3.

5. Privacy of Mixture Model

We provide a brief overview of how privacy is measured in previous binary RRT
models and then propose our new privacy measure.
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5.1. Previous Work

Model efficiency is not the only performance basis by which researchers should
design their studies; respondent privacy is just as important. Without response privacy,
respondents may refuse to respond or provide an untruthful response.

5.1.1. Privacy Measure

Ref. [9] provided a measure of privacy loss as described below. Let:

δ = Max{η1, η2} (12)

where

η1 = P(S|Y) = probability of being in the sensitive group given
that the response is “Yes”;

η2 = P(S|N) = probability of being in the sensitive group given
that the response is “No”.

Privacy protection, PP introduced by [10] is defined as

PP =
1 − δ

1 − πx
. (13)

5.1.2. Unified Measure M
Ref. [3] proposed a unified measure of privacy and efficiency using the following

metric:
M =

PPa

MSEb , (14)

where a and b are weights based on the importance the researcher places on privacy and
efficiency, respectively. Ref. [3] assumed a = b = 1, arguing equal importance to efficiency
and privacy. We follow the same approach here.

5.1.3. Privacy of Proposed Model

The following estimators for privacy loss η1, η2 are derived for the proposed mixture
model accounting for measurement error from Section 3.

η1 = P(S|Y) = P(Y ∩ S)
P(Y)

=
πx

[
m + Ap(1 − 2m) + (1 − 2m)(1 − p)πy + (1 − 2m)(1 − A − πy)q

]
Py

η2 = P(S|N) =
P(N ∩ S)

P(N)

=
πx

[
1 − q − πy(1 − p − q)− A(p − q)− m(1 − 2A(p − q)− 2q + 2πy(p + q − 1))

]
1 − Py

5.1.4. Unified Measure M of Proposed Model

Table 4 performs a simulation study that compares the three models by efficiency,
privacy protection, and [3]’s unified measure. Privacy is calculated using the traditional
method as defined in (13). The unified measure M is defined in (14). Several key values are
noted in bold.

This is the classical view of model privacy, but now, we pursue a new method of
discussing privacy offered by binary RRT models. As expected, the PP and M match well
with their empirical estimates even in the presence of measurement error. We observed the
same conclusions as in [3] for efficiency, privacy protection, and M in the presence of m:
the Greenberg model is best in terms of efficiency; the Warner model is best in terms of
privacy; the Lovig model is best in terms of M.
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Table 4. A comparison of theoretical PP and M between the three binary RRT models. Calculated
with n = 500, p = 0.7, πx = 0.4, and πy = 1

12 .

q πx A m MSE[π̂x] ̂MSE[π̂x] PP P̂P M M̂

Greenberg model

0.00 0.4 1.00 0.01 0.0010 0.0009 0.1117 0.1119 107.6471 123.2866
0.00 0.4 0.95 0.01 0.0011 0.0010 0.1169 0.1168 103.0169 120.1149
0.00 0.4 0.90 0.01 0.0012 0.0011 0.1226 0.1227 98.5821 113.0005
0.00 0.4 1.00 0.05 0.0012 0.0011 0.2234 0.2234 180.9270 199.7414
0.00 0.4 0.95 0.05 0.0014 0.0012 0.2324 0.2320 171.7727 194.7648
0.00 0.4 0.90 0.05 0.0015 0.0013 0.2422 0.2436 162.8959 189.5389
0.00 0.4 1.00 0.10 0.0016 0.0014 0.3488 0.3494 222.2470 245.2008
0.00 0.4 0.95 0.10 0.0017 0.0016 0.3606 0.3604 209.1361 224.7503
0.00 0.4 0.90 0.10 0.0019 0.0017 0.3731 0.3729 196.3539 220.4197

Lovig model

0.15 0.4 1.00 0.01 0.0018 0.0016 0.4398 0.4395 249.8652 271.3308
0.15 0.4 0.95 0.01 0.0019 0.0018 0.4525 0.4516 233.1124 253.8097
0.15 0.4 0.90 0.01 0.0021 0.0020 0.4659 0.4645 216.8621 235.4783
0.15 0.4 1.00 0.05 0.0021 0.0019 0.4978 0.4975 239.3552 257.3392
0.15 0.4 0.95 0.05 0.0023 0.0021 0.5106 0.5111 222.4784 242.4145
0.15 0.4 0.90 0.05 0.0025 0.0023 0.5241 0.5225 206.1068 223.8847
0.15 0.4 1.00 0.10 0.0026 0.0025 0.5665 0.5670 216.0764 228.5641
0.15 0.4 0.95 0.10 0.0029 0.0028 0.5791 0.5792 199.9674 208.7430
0.15 0.4 0.90 0.10 0.0032 0.0030 0.5922 0.5923 184.3541 195.9438

Warner model

0.3 0.4 1.00 0.01 0.0034 0.0032 0.6597 0.6596 195.7034 204.8066
0.3 0.4 0.95 0.01 0.0037 0.0036 0.6711 0.6727 179.7029 186.7708
0.3 0.4 0.90 0.01 0.0042 0.0040 0.6830 0.6817 164.3027 171.1752
0.3 0.4 1.00 0.05 0.0040 0.0038 0.6897 0.6898 173.4890 179.6031
0.3 0.4 0.95 0.05 0.0044 0.0042 0.7005 0.7016 159.0592 167.1141
0.3 0.4 0.90 0.05 0.0049 0.0046 0.7117 0.7139 145.1756 153.5604
0.3 0.4 1.00 0.10 0.0050 0.0048 0.7265 0.7270 145.2988 150.4105
0.3 0.4 0.95 0.10 0.0055 0.0054 0.7366 0.7351 132.9618 135.4669
0.3 0.4 0.90 0.10 0.0062 0.0060 0.7469 0.7456 121.0998 125.1110

5.2. Proposed Measure of Privacy for Binary RRT Models
5.2.1. Description

The traditional method of privacy introduced by [9] can be difficult to interpret.
We propose using the odds ratio as a measure of the predictability of participants’ true
responses from recorded model responses. The odds ratio (OR) is a statistical measure
commonly used in binary logistic regression to quantify the association between two
binary variables.

The odds ratio quantifies the change in the odds of the sensitive trait as the reported
response changes from a 0 (“No”) to a 1 (“Yes”). Values greater than 1 indicate higher odds
of the true response being “Yes”, suggesting better predictability. The odds ratio serves
as a valuable metric to assess the predictability of the reported response data from the
RRT model.

In our study, we hypothesize that a higher odds ratio corresponds to a lower level of
privacy protection offered by the RRT model. Conversely, a lower odds ratio suggests a
lower level of predictability and efficiency, but provides greater respondent privacy. We
will investigate how different factors, such as the introduction of measurement error and
trust in the chosen RRT model, affect the odds ratio.



Mathematics 2024, 12, 875 13 of 15

5.2.2. Privacy Measure Simulation Results

In Table 5, we simulate the odds ratio in all three models accounting for measurement
error.

Table 5. Estimates averaged over 10,000 simulations for the Lovig mixture model for measurement
error in Section 3 with n = 500, πx = 0.4, πy = 1

12 , and p = 0.7.

q p + q A m OR

Greenberg model

0 0.7 1.00 0.00 124.93
0 0.7 1.00 0.05 124.62
0 0.7 1.00 0.10 124.62
0 0.7 0.95 0.00 105.53
0 0.7 0.95 0.05 105.74
0 0.7 0.95 0.10 105.74
0 0.7 0.90 0.00 89.93
0 0.7 0.90 0.05 90.05
0 0.7 0.90 0.10 90.05

Lovig model

0.15 0.85 1.00 0.00 13.26
0.15 0.85 1.00 0.05 13.27
0.15 0.85 1.00 0.10 13.27
0.15 0.85 0.95 0.00 11.61
0.15 0.85 0.95 0.05 11.63
0.15 0.85 0.95 0.10 11.63
0.15 0.85 0.90 0.00 10.24
0.15 0.85 0.90 0.05 10.25
0.15 0.85 0.90 0.10 10.25

Warner model

0.3 1.00 1.00 0.00 5.60
0.3 1.00 1.00 0.05 5.60
0.3 1.00 1.00 0.10 5.60
0.3 1.00 0.95 0.00 5.09
0.3 1.00 0.95 0.05 5.11
0.3 1.00 0.95 0.10 5.11
0.3 1.00 0.90 0.00 4.65
0.3 1.00 0.90 0.05 4.66
0.3 1.00 0.90 0.10 4.66

Table 5 provides several insights into the effect of privacy offered by the three models
accounting for measurement error. We observed the same conclusions as in [3] for privacy
with this new approach: the Warner model offers the best privacy; the Greenberg model
offers the least privacy; the Lovig model offers moderate to high privacy.

The odds ratio offers greater interpretability for a choice of p, q compared to PP
from (13). For example, a mixture model was conducted where p, q were chosen as p = 0.7
and q = 0.15 and A = 0.95 and m = 0.05. The estimated odds ratio for this model would
be interpreted by making the claim that the odds of the true answer being “Yes” given
that the reported answer was “Yes” is 11.63-times greater than the odds of the true answer
being “No”. This contrasts the traditional definition of privacy protection PP, where its
definition is a conditional probability that may only be interpreted using relative levels
between models. While the traditional definition of privacy protection is useful for defining
the unified measure M, the logistic regression coefficients hold interpretation value. This
new definition for privacy requires no adjustments to the unified measure’s definition.
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6. Discussion

The researcher’s choice of the ideal model must take into account measurement error
and the unified measure. It has been shown that the effect of measurement error on both
model efficiency and privacy is significant. To account for this, the unified measure M
accounts for measurement error since it uses the updated estimators in this paper. Since
MSE[m̂] is in the equation for MSE[π̂x], M discounts the performance for choices of p, q
where MSE[m̂] increases. Therefore, we recommend utilizing M for designing a binary RRT
study accounting for measurement error.

After fixing the sample size and preliminary question parameters, for all reasonable
possibilities of untruthfulness, measurement error, and the sensitive trait, the Lovig model
for measurement error (with parameters p, q sufficiently far from 0.5) optimizes the unified
measure M. This is preserved when the ratio between privacy protection and efficiency
is parameterized using a, b. There are two regions of p, q that locally optimize M: when
p ∈ (0.7, 0.8) and q ∈ (0.05, 0.15), as demonstrated in Table 4, and when p ∈ (0.1, 0.3)
and q ∈ (0.7, 0.8). The former was chosen in the tables because its unified measure is
always greater than the latter. Unified measure values for these cases become closer when
a > b (indicating prioritization of privacy protection above efficiency) or under higher
rates of untruthfulness and measurement error. All options reduce the overall M values.
Researchers should, therefore, choose their parameters in this region so that M is maximized
regardless of untruthfulness, measurement error, or sensitive trait levels.

The Lovig mixture model for measurement error outperforms both the Greenberg
and the Warner models in terms of the MSE and unified measure in most cases in the
presence of untruthfulness and measurement error. The researcher must choose model
parameters that optimize the unified measure while ensuring a high rate of participant
cooperation. To this point, [3] noted that the choice from three questions in the mixture
model helps improve the respondent cooperation as compared to when they have a choice
of two questions, as in the Warner and Greenberg models.

7. Concluding Remarks

The proposed mixture model is the recommended RRT model for collecting sensitive
data with the best performance and flexibility for privacy and efficiency compared to
existing models. This model accounts for measurement error and untruthful responses
using secondary questions to estimate their prevalence. The choice of model parameters
significantly impacts both privacy and efficiency. A new logistic regression method is
proposed to compare the models comprehensively concerning privacy. The adaptability for
conditions of untruthfulness and measurement error allows researchers to choose the most
suitable model for their specific needs.

While this paper has outlined a promising design for addressing measurement error
within binary RRT models and introduced an innovative privacy measure, several consider-
ations warrant acknowledgment. The real-world implementation of the outlined methods
might encounter challenges, particularly with the proposed three-question design. The
complexity of this design necessitates a more extensive explanation to participants. This
may lead to increased abandonment when combined with sensitive questions, impacting
data collection and accuracy. Future research and practical application should address
these concerns to ensure the effectiveness and feasibility of these proposed procedures in
diverse settings.

This study leverages the comprehensive [3] mixture model to account for the effects
of measurement error. The measurement error’s impact on efficiency and privacy has not
been discussed in the published literature on binary RRT models. This development will
help to improve the efficacy of future studies that make use of binary RRT models.



Mathematics 2024, 12, 875 15 of 15

Author Contributions: Conceptualization, B.M., V.P., S.G. and S.K.; Methodology, B.M., V.P., S.G.
and S.K.; Software, B.M. and V.P.; Formal analysis, B.M., V.P. and S.G.; Resources, S.G.; Writing—
original draft, B.M.; Writing—review & editing, B.M., V.P., S.G. and S.K.; Visualization, B.M. and V.P.;
Supervision, S.G. and S.K.; Project administration, S.G.; Funding acquisition, S.G. All authors have
read and agreed to the published version of the manuscript.

Funding: We would like to thank the National Science Foundation, under grant No. DMS-2244160
for supporting this research.

Data Availability Statement: The numerical data analyzed in this study are generated from the soft-
ware available at https://github.com/BaileyMeche/MeasurementError_RRT. No external datasets
were used.

Acknowledgments: The authors would like to express their deep appreciation to the reviewers
for their careful reading of the initial submission and helpful comments, which helped to improve
the presentation.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Warner, S.L. Randomized response: A survey technique for eliminating evasive answer bias. J. Am. Stat. Assoc. 1965, 60, 63–69.

[CrossRef]
2. Greenberg, B.G.; Abul-Ela, A.L.A.; Simmons, W.R.; Horvitz, D.G. The unrelated question randomized response model: Theoretical

framework. J. Am. Stat. Assoc. 1969, 64, 520–539. [CrossRef]
3. Lovig, M.; Khalil, S.; Rahman, S.; Sapra, P.; Gupta, S. A mixture binary RRT model with a unified measure of privacy and

efficiency. Commun. Stat.-Simul. Comput. 2023, 52, 2727–2737. [CrossRef]
4. Kumar, S.; Kour, S.P. The joint influence of estimation of sensitive variable under measurement error and non-response using

ORRT models. J. Stat. Comput. Simul. 2022, 92, 3583–3604. [CrossRef]
5. Tiwari, K.K.; Bhougal, S.; Kumar, S.; Rather, K.U.I. Using Randomized Response to Estimate the Population Mean of a Sensitive

Variable under the Influence of Measurement Error. J. Stat. Theory Pract. 2022, 16, 28. [CrossRef]
6. McCance, W.; Gupta, S.; Khalil, S.; Shou, W. Binary Randomized Response Technique (RRT) Models Under Measurement Error.

Commun. Stat. Simul. Comput. 2024, 1–8. [CrossRef]
7. Young, A.; Gupta, S.; Parks, R. A binary unrelated-question rrt model accounting for untruthful responding. Involve J. Math. 2019,

12, 1163–1173. [CrossRef]
8. Gupta, S.; Mehta, S.; Shabbir, J.; Khalil, S. A unified measure of respondent privacy and model efficiency in quantitative RRT

models. J. Stat. Theory Pract. 2018, 12, 506–511. [CrossRef]
9. Lanke, J. On the degree of protection in randomized interviews. In International Statistical Review/Revue Internationale de Statistique;

International Statistical Institute: The Hague, The Netherlands, 1976; Volume 44, No. 2, pp. 197–203.
10. Fligner, M.A.; Policello, G.E.; Singh, J. A comparison of two randomized response survey methods with consideration for the

level of respondent protection. Commun. Stat. Theory Methods 1977, 6, 1511–1524. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://github.com/BaileyMeche/MeasurementError_RRT
http://doi.org/10.1080/01621459.1965.10480775
http://dx.doi.org/10.1080/01621459.1969.10500991
http://dx.doi.org/10.1080/03610918.2021.1914092
http://dx.doi.org/10.1080/00949655.2022.2075362
http://dx.doi.org/10.1007/s42519-022-00251-1
http://dx.doi.org/10.1080/03610918.2024.2314651
http://dx.doi.org/10.2140/involve.2019.12.1163
http://dx.doi.org/10.1080/15598608.2017.1415175
http://dx.doi.org/10.1080/03610927708827593

	Introduction
	Previous Models
	Proposed Model
	Estimating Trust Parameter A with a Greenberg Model
	Proposed Model: Not Accounting for Measurement Error
	Efficiency
	Simulation Results

	Proposed Model: Accounting for Measurement Error
	Approach
	Estimating Measurement Error Using a Secondary Question
	Estimating Proportion of Sensitive Trait x
	Simulation Results


	Comparison of Measurement Error between Models
	Privacy of Mixture Model
	Previous Work
	Privacy Measure
	Unified Measure  M
	Privacy of Proposed Model 
	Unified Measure M of Proposed Model

	Proposed Measure of Privacy for Binary RRT Models
	Description
	Privacy Measure Simulation Results


	Discussion
	Concluding Remarks
	References

