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Abstract: The present paper considers a fractional-order smoke epidemic model. We apply fuzzy
systems and probability theory to make the best decision on the stability of the smoking epidemic
model by using a new class of controllers powered by special functions to effectively generalize
Ulam-type stability problems. Evaluation of optimal controllability and maximal stability is the new
issue. This different concept of stability not only covers the old concepts but also investigates the
optimization of the problem. Finally, we apply a new optimal method for the governing model with
the Atangana-Baleanu—Caputo fractional derivative to obtain stability results in Banach spaces.
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1. Introduction

The idea of stability for a functional equation (FE) arises when we substitute the FE by
an inequality which acts as a perturbation of the initial equation. Over the years, stability
results of FEs have been developed for obtaining an approximate solution of the perturbed
equation which is close to the exact solution (ES). This topic was introduced by Ulam
and Hyers in 1940-1941, and this kind of stability is called HU stability [1,2]. In 1978,
the improvement of HU stability provided by Rassias led to the development of what is
now known as HUR stability [3]. In 1998, Ger and Alsina [4] established the HU stability of
ODEs and many authors defined types of HUR-Mittag-Leffler stability of fractional PDEs
to prove that every mapping from this type can be somehow approximated by an ES of the
considered equation [5-7].

The recent interest in the Mittag-Leffler (ML) function and its various generaliza-
tions [8] is mainly due to their close relations to Fractional Calculus and especially to
fractional problems that come from applications. The special functions, along with the
ML function, including the functions of Wright type, the functions of hypergeometric type
and others [9] which often appear in solutions of various types of equations with fractional
operators, play a prominent role in the theory of the PDEs of fractional order that are
applied in modeling of diverse phenomena [10-12].

As it is known, the major problem of procuring ES of such equations is very crucial,
and the form of the ES (if it exists) is oftentimes so arduous that it is not suitable for
numerical calculation [13-15]. In view of this, it is imperative to talk about an approximate
solution and ask whether it lies close to the ES. Generally, we say that a fractional PDE
is stable in the sense of Ulam if, for every solution of the fractional PDE, there exists an
approximate solution of the perturbed equation that is near to it.
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To clarify the issue, let us introduce the notion of Ulam-type stability of an operator
equation [16,17]. We consider the Banach space (X, || . ||) and an operator T : Y — X’ for
every @ # )Y C X. We also consider the operator equation

T(x)=0, x€) (1)
and the inequality
IT(y)|| <e Ve>0,yel. @)

Equation (1) is called HU stable if for every solution u of Inequality (2), there is a
solution v of operator Equation (1) such that

Iy = ol < ce,

in which ¢ > 0 is a constant dependent on T.
Now, Equation (1) is called HUR stable if there is a continuous function ¢ : R — R,
such that, for every € > 0 and for every solution y of the inequality

ITW) < eply), Ve>0,y€),

there is solution v of operator Equation (1) with ¢ € R™ such that

1 — ol < cep(y).

Equation (1) has HUR-Mittag-Leffler stability or HUR-Wright stability if the above
statement is also true when we replace control function ¢ by the ML function or the Wright
function, respectively.

In this paper, we consider a diagonal matrix of special functions as a controller to
study a fresh concept of stability, namely multi-stability. The mentioned stability helps
us to obtain different approximations depending on the diverse special functions that are
initially selected and to evaluate maximal stability with minimal error which enables us to
obtain the best approximate solution.

We let the matrix-valued controller 25[X] be as follows:

WX] := diag |91 (X),- -~ @u(X)|
nxn
inwhich ¢;, i =1,---,n € N denotes a special function in the the main diagonal of square
matrix 20[X], and the natural number 7 represents the numbers of special functions that
we intend to consider.
We consider normed linear spaces V and U. Mapping ® : U — V has the multi-
stability property if we replace the controller of HUR stability with 20[X].
For the special case of multiple stability, i.e., Mittag-Leffler—Gauss-Hypergeometric—
Bessel-Maitland—Fox stability, Mittag-Leffler—Supertrigonometric stability, Mittag—Leffler—
Superhyperbolic stability and the others, we refer the reader to [18-20].

2. Preliminaries
2.1. Some Special Functions
2.1.1. Fox H-Function and Related Functions

The H function (sometimes called Fox’s H-function) is a very generally defined spe-
cial function due to Charles Fox (1928) (see [21]). We let 2" be a proper contour of the
Mellin—Barnes type in the complex S-plane. Therefore, the H-function is given by

&Hp, [x

ViWie | . g1 (Sli arg(x)+loglx]]) 21
(N,»Mj)l,p]' (27ti) /%@(S)e ds, i#+1=0, (3)
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in which x € C\{0}, and

@(S) :=
D C -1, A B
( [T ra-Nj+m8) TT T(V;— W]-S)) (Hr(Nj ~MS)[[TA-V;+ Wj5)>,
j=A+1 j=B+1 j=1 j=1
where C,B,D,A € NNO<B<C,1<ALD, W, >0, M; >0 V; € C, and
~— ~—~ ~—
j=1,...C j=1,...D j=1,...C
N] e C.
~—~
j=1,...D

We now present some special cases of the H-function including the exponential func-
tion, the Wright function, the one-parameter Mittag—Leffler function, the Fox-Wright
function, the Meijer G—function, the Gauss Hypergeometric function, and the G—function,
respectively, as follows:

H =
oHo[x] := exp(x ,;ofﬁl
(o] X]
Hy[Vi; Ny x| = s
1Hy [Va; N x] ];:)]!F(Vl]—i—Nl)
00 X]
Hy|[Ny; x| == _—=
o IS, T(Win + Vi) yn
cBp o - | - & SR @
n=0 [ 12 T(Mjn + Nj) n
(Ve 1 7
EHB x| 6 | = 5 |, exp(=Sliarg (o) + log 1)
H (N—i—S)H 1F(1—V S) is
H B+1F(V+5)H 24 T(1—Vj=5)
> (V1)i(Va); ¥/
Hq |V, Vo; Ny; x| := —_—
oHy [Va, Va; Ni; x| ];) (Nl)j jl
__I'(W) iT(Vﬁ]’)T(VQH)?ﬁ
F(Vl)r(VZ) j=0 F(Nl +]) j! '
CHD[Vl,...,VC;Nl,...,Nc,'X] (5)
oo C D 17Cn
= Z(H(Vz)n)(H(N]>n)7 W
n=0 i=1 i=1 :

Note that for Y € C and n € N, we consider
Y)o=1 Y#0, (Y)u=Y(Y+1)...(Y+n—1).

2.1.2. Mittag-Leffler Function and Related Functions
We let
(N,M)D = [N],Ml;. . .,'ND,MD],

and
(V/ W)C = [Vll Wl/ ey VCI WC]/
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D+ C =m—2,and m € N — {1}. The m-parameter Mittag-Leffler function is given by [21]

Vi, Wi;..5Ve W, o (V,W)
Mﬂél”[ Z\;l Mlc ]\?D MD(X) - M(X T,(NCM) (6)
_ i (VD)wyn - (Vo) wen "

T(an +7)(N1)myn - (ND)Mpn

in which N;, V;, M;, W;, x, T, « € C, with min{a, V;, T, W;, M;, Nj} >0, forallj=1,---,D
andi=1,---,C.
Notice that (Y)y, is given by

I'(Y + 9n)

W, TIEN

(Y)ﬁn =

Here, we present some examples of (6) as follows:

]Z(:)F ]oc+1
Moo = 3o
vt _].:0 [(ja+1)’
> (V)
M0 = 5
(x) = ]Z(;)]'I“(](x—f—'r)
(V)W]Xj

MV’W _ -
®,T (X) ]Z(]]'F(]UC+T)

e (Vw
My oy (x) = e
«TN Jgr(a]—ﬁ—T)(N)]
2.2. Generalized Triangular Norms (GTNs)
We suppose

Fp 0 0 --- 0

0 Fp 0 - 0

diagM,, (€) := 0 O F»?ﬁ O = diag[Fi1, -, Fu], Fj €€:=[0,1] ¢,

: : : : 1<i<n

0 0 0 - Fy s

with the partial order relation below:

F := diag[Fj1, -, Funl, G := diag[Gy1, - - - , Gun| € diagM,(€),

and Symbols 1 and 0 are given by
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1 0 0 0]
010 0
1:= 0 0 1 0 = dlag[l, /1];12/
o 00 --- 1] nxn
and
0 0 O 0]
0 0 O 0
0:— |0 0 0 0 := diag0,---,0],2
0o 0 0 --- 0]
nxn

Definition 1 ([18]). Operation O : (diagMy(€))? — diagM,(€), is called a GTN if for every
F,H,G, K € diagM,(€), we have

()FO1=F,

@ FOH=HQF,

B FOMHOG) = (FOH)OG,

@F<Hand G <K=—FOG<HOK.

For sequences {F,,}, {G,} converging to F,G € diagM,,(¢), if lim,,(F,, © Gy) =
F(© G, (O is continuous.

For example, we assume the continuous GTNs Op, Oy, Op @ (diagM,(€))? —
diagM,, (€) given as follows:

F(O)G = diag[F11.G11, - - , Fun-Gunl,
P
F @ G = diag[max{Fj; + G11 — 1,0}, -- ,max{Fu, + Gun — 1,0}],
L

and
F(O) G = diag[min{F1, G11},- - ,min{Fn, Gun }].
M

In this paper, we set © := Oy -

2.3. Matrix-Valued Fuzzy Normed Spaces

We consider vector space 2[. We assume & to be a set of all matrix-valued fuzzy
sets (MVF sets), including the increasing and continuous functions ® : 2 x (0, +o0) —
diagM,,(€), such that, for Y € 2, limg 00 P(Y, ) = 1.

In &, for every ¢ > 0and Y € 2, we assume ® < &' if (Y, p) < P'(Y, ).

A matrix-valued fuzzy normed space (MVEN space) [18] is a triple (A, ®, ©), such
that, forall ¢,¢’ > 0,0 #v € C,and Y, Y’ € 2; we obtain

(i) 0 < (Y, ¢),

(ii) B(Y, %) — (oY, ¢),

(iii) (Y, ) =1,iff Y =0,
iv) @(Y,9) O @Y, ¢') = q>(Y+Y’,q>‘+‘¢’).
v (-5

For example, H[Njy; —%] =Yoo WM defines a fuzzy norm (see [18]) for all

0<N;<lYeAand ¢ € (0, +00).

Note 1. A matrix-valued fuzzy Banach space (MVFB space) is a complete MVEN space.
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2.4. Matrix-Valued Random Normed Spaces

We suppose € is a set of matrix-valued distribution functions (MVDFs) including the
non-decreasing and left-continuous functions

Y :RU{—oo,+oo} — diagMy(e),

such that we have
Y(+o0) =1, ¥(0)=0.
We let ¢+ C € contain ¥ € ¢ such that we obtain lim¢ vt Yy =1.In ¢t for all

P € R,weassume ¥ < ¥ if ¥(y) < ¥'(¢).
Note that the maximal element for &7 is given by

N

1, ¢ € (0,4).

For instance, the function

{ 0252, P € (—0,0],

Y(y) = , Lt}
diag[1 — 5], e W2, e (0,40),
denotes an MVDF since ¥ € € and limy_;, 100 ¥(¢) = 1.

We assume vector space 2, DF Y : 20 — ¢T and continuous GTN (. A triple (2, ¥, ©)
is a matrix-valued random normed space (MVRN space) [19] if for every ¢ > 0,0 # v € C,
and Y, Y’ € 2, we obtain

0 ¥y =Y (y),
(i) ¥y(y) = Co(¢),iff Y =0,
(iil) Yy () OYy (¥) = ¥yiv (P +9'),

in which Yy is the value of ¥ at a point Y € 2.
MRS

For instance, ;Hj [Vy, Vo; Ny; — ”—;H} =Y % (_ki‘/,’ is a random norm [19] for

all Vi, Vp, Ny € [0,+00), Y € 2, and ¢ € (0, +00).
2.5. Multi-Aggregations
Weletn €N,

u= diag diag[ﬂn, s rﬂln]nxn/ ce ,diag[ﬂmf ce /ﬂnn}nxn ’

and p;; € €. Ann-ary aggregation map [19] is a mapping,
~—

1<i<n
1<j<n

ac(m . diagM, (diagle, - - - , €]nxn) — diagle, - -, €|uxn,

such that we obtain

inf  AG" (u) = infdiagle, - ,€]uxn, and sup AG"(u) = supdiagle, - - -, €|nxn.

Hij €e Hij €e
v Al
1<iji<n 1< ji<n

In addition, for all y, y’ € diagM,,(diagle, - - - , €|nxn), if pij < ygj ; then,

e ad N~
1<ij<n  1<ij<n

A6t () < A6 ().
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Here, we introduce some examples of aggregation maps,
i - diagM,, (diagle, - - - ,€]uxn) — diagle,- -, €]nuxn

defined as follows:

==

J

e Geometric mean functions, AGy (1) = diag[([ T\, ],tl,-)%, e (T i)
1 1
*  Arithmetric mean functions, AGy (i) = diag[; Y, " "1 il

e Maximum functions, AGs(y) = diag[max{p11, -+, p1n}, - -+, max{pu1, - -+, fhnn }}-
e Minimum functions, AGy (1) = diag[min{p11,- -+, pan}, - -, min{pn, -+, punt]-
e  Median of odd numbers,

AGs(p) = diag| min max py;,..., min_ max py,|.

NC[Zn 1] ien NC[2n—-1] ien
[N|=n [N|=n
. Median of even numbers,
AG diag| min max -+, min max
6(1/[) g[NC[Zn] i€n Hll, NC[Zn] i€En ‘um]
IN|=n [N|=n

*  Sum functions, AGy(u) = diag[Y/" 1 H1i, - -+ » iq Hail-
e Product functions, AGg(u) = diag[I T p1i, - -, T1q tnil-

2.6. Generalized Alternative Fixed Point Theory

We first present vector-valued generalized metric spaces.

Note 2. We suppose d = (dy,...,dpn) and § = (61,...,0m),m € N. Thus, for every j =
1,---,m, wehaved < 5,z'ﬁdj < 5j,andalsod — O,iﬁdj — 0.

Definition 2 ([21]). Consider m € N, the set B # @ and d : B> — [0, +-00]™. A generalized

metric d on B is a map such that
m

M
(1) for every (a,B) € B, d(a, ) = (0, ,0), iff a« =
(2) for every (a, B) € B?, d(B, ) :d(“ 13) 1]5‘“ =B
(3) for every (a, B,v) € B3, d(a,v) +d(v,B) = d(B,a).

Theorem 1 ([21]). Consider a complete generalized metric space (B,d), with d : B> — [0, +c0]™,
m € N, and a contractive mapping I' : B — B with Lipschitz constant ©® < 1. Hence, forall x € B,
either d(T"a, T o) = (400, -+, +00) for any n € NU {0} or there is an ng € N such that
m
(1) d(T"a, T" o) < (400, -+, 400), Vn > np;
| —
m

(2) The fixed point B* of T is a convergence point of the sequence {I"a} and is unique in the

set B' = {B € B |d(I"a,p) < (400, ,+00)};
%,_

(3)d(B,B*) = =gd(B,TB) for everyﬁ €B.

3. Application of Multi-Stability for Smoke Transmission Model

In [22-24], the authors presented the following basic mathematical model which
analyzes the spread of smoking in a population:
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X _ 4 Bzxy _cx,

dt

d—y:BZX—Ey—CX,

at
%IEJH—GJ)Z—(C—FD)Z,
%:D(l—F)Z—GyZ—CW,
d—V:DFZ—CV,

dt

@)

where Z,V, X, W, and ), represent smokers, smokers who permanently quit smoking,

potential smokers, smokers who temporarily quit smoking, and occasional smokers.

In [16], teh authors presented an extension of (7) to a two-age group model: 1-Group
including people below 70 years old and 2-Group including people aged above 70 years.
Every population consists of X; + V) + Z1 + W + V) for the 1-Group and &, + V) + 2, +
Ws + Vs for the 2-Group. For each group, we have the following age-specific parameters:

: rate of supply,

= >

O

: natural death rate,

RS

=0

: fraction of smokers

Therefore, the i -age group transmission model (i = 1,2) is given as follows:

dX: ()
dt
dYV1(7)
dt
dZ,(7)
dat
dWi (T)
dt
dV1 (1)
dt
dXs (1)
dt
ds(7)
dt
dZ,(7)
dt
AW, (7)
dt
dVa (1)
dt

: effective contact rate between X; and Z;,

: rate of quitting smoking,
: rate at which occasional smokers become regular smokers,
: the contact rate between smokers and temprorary quitters,

who temporary quit smoking.

= A1 — (B1 21 + By Zp) &) — 1 &y — Ax Xy,

= (B121+ By 22) X1 — 1)1 — C1)y — Aoy,
=EV1+GiV121 — (C1+ D)2 — A2y,
=Di(1-F)Z - G121 — W — Aoy,
=D1F 2 - C V1 - Ay,

= AXy — (B121 + ByZ) Xy — Qo A,

= A1 + (B1 21 + B2 22) Ao — E2)h — G,
= A Z1 +E2h + G2y — (G +Cr) 2,

= AW + Da(1 - R) 23 — G2y — C&:rWWs,

= AV + Db Zy — GV,

Now, (8) under the ABC fractional derivative is given by [16]
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DS Xy (1) = AS — (BS 2, 4 BS* Z,) 0, — C& 0y — AT A, )
DY, (1) = (BS 2y + BS 23) &) — EC )y — &)y — AS ),
DS 21(1) = Ef' V1 + Gy 21 — (Cf" + Df*) 21 — AT 24,
DEW (1) = DS (1 — Flc*)Z1 — Gy V121 — C Wy — A5 Wy,
DV (1) = DS FF 21 — C5 V) — AS )y,
DS Xy (1) = AS 2 — (BS 21 + BS* 2,) 4, — C$* 5,
DE V(1) = AS* V1 + (BS* 21 + BS* 25) Xy — ES* YV — C5* ),
DS 2Z5(1) = AS 2 + ES* Vs + G$* Vo 25 — (C5* + C5) 25,
DE W, (7) = A5 Wy + DS (1 - F5*) 2, — G5* Vo2, — C5* Wy,
DS Vy(T) = A5* Vi + DS Fy* 2, — C5* Vo,
with initial condition
X1(0) = X, D1(0) =y, 21(0) = 21, Wi(0) = Wy, Vi(0) = Vy
X2(0) = X, 2(0) = Vo, 22(0) = 25, Wa(0) = Wa, V2(0) = Vs,

[1]

o X+ Vi+Zi+ Wi+ Vi
2T, X +Vi+ Zi+ Wi+
(T X+ Vit Zi+ Wit V),
AT X+ Y+ Zi Wi+,

1 [ [ [

[1]

(T, Xi+Vi+Zi+ Wi+ V;
X+ Y+ Zi+ WitV
(T, X+ Vi+ Zi+ Wi+ V),
o(T, X+ Vi+ Zi+ Wi+ V;
Eo(T, X+ Vi + Zi + W, + Vi) = AS V) + DS S 2, — 5V,

[1 [

[1]

where D is the ABC fractional derivative given by

D¢ E(T) = 7{)(_ C)* /0 = (s)Ec, (1(_ C*) )ds,

forany & € H'(a, B), C« € [0,1). p(C) satisfies property p(0) = p(1) = 1, and Ec, is the

one-parameter Mittag—Leffler function given by

[=9) ’Z.'k

Ec, =Y ———.
C :Zor(c*kﬂ)

Notice that for any & € H'(a, ) and C, € [0,1), the integral of ABC is given by

1=Cogiys G
p(C.) ™ o(C.)T

Reformulating the right side of (9), we obtain

165(7) = e /Ola(s)(r—s)c**lds.

A" — (BS* 21 + BS 22) X — CS Ay — AS Ay,
(Blc*zl + BZC*Zz)Xl - Elc*y1 - Clc*yl - Af*yl,
ESV +GEV 2 — (CE +DS) 2y — AS 24,
DS (1— FS) 21 — GE V1 21 — CO Wy — AS W,
D" Fy 21 — CT*Vy — AF* Wy,

A5 Xy — (BT 21+ By 25) X — C* X,

AS V1 + (B 21 + BS* 25) X — E5* Vo — C5* Vs,
AS 2+ ES* Vs + G5 Va 25 — (C57 + C57) 25,
AWy + DS (1= FS*) 2y — GS* )1 2y — CS* W,

( ) =
( )
( )
( )
(T, X+ Vi+ Zi+ Wi+ V)
( )
( )
( )

) =

in whichi =1,2.

(10)
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According to (10), (9) can be expressed as follows [16]:

=A(1,E(1)), T€[0,D], 0<C, <1, (11)

where

i(0),
(0),
1(0), (12)
Wi(T), Wi(0),
(0),

NS
CNCHC)
< =

~
[
[}
I
AN

~
=
AW

and

1(T,X1' +YVi+ Zi+W; +Vi),

2(’[’, Xi + yi + Zz' + Wi + Vi),

(T, X+ Vi + Zi + Wi+ V), (13)
(T, X+ Vi+ Zi+ Wi+ V),

5(T,X1' +YVi+ Zi+W; +Vi),

Il
4
[1]
-’
Il
M [ [ E [

foreveryi=1,2.

Now, we apply the concept of Z-numbers and we introduce a special matrix of the form
diag[®, ¥, Y] (named the generalized Z-number) where @ is a fuzzy set, time-stamped, ¥
is the probability distribution function and Y is a degree of reliability of ® that is described
as a value of ® O Y (see [25]).

We let the Banach space be B = C(0, D). For every ?, ? > 6>, we define

[P — —_|7P1
— . T T
(T, ¢) = d1ag[ OHO[ I ,olH [Nﬁ 4)2' , (14)
—\T 7)1 — —\|T 7)1
11 |:V1/ | ,2Hy [V1,V2;N1; Il ,

S —|7[”
CHD Vl/"'/VC/‘Nll"'/NC;T ;

(Vi,W1),..,(Vc,We)
(N1,My),....(Np,Mp) |’

——[ ="
H
iy | =1

g [ =17 [ oven | age [ =177 [
CUD| T, |(NL).o(Np D) |7CHD | e |(NyMpip | |7
and
_ _|+|P - _|+IP
Ry (7, 9) = diag{ M,x<|r|l>,Ma,T( 7 1>, (15)
%} ¥2

V1 _|T|P1 V1, W _|T|731
Mac,’r — |, MIX,T —
¥s Py
s (= " Vi — 7™
o, T;N; s 72, TNy, My Ve
MYV [ ki MV WLV2, V2 — 7™
a,T;Nl,Ml l/]7 4 a,T;Nl,Ml lps
Note that every ifecial function A given in the the main diagonal of square matrices
—- . . v .
FY(t, ¢ ) and *Y(7, ¢ ) is defined as A := diag[A4, - - - , A]; for example,

_|T|pl

o {4)1] — diag {OHO “41'] oo [;1'} } "
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Definition 3. Fractional-order Equation (11) is multi-stable with respect to
dzag{AGl( @AGl ®Y(1, ), -, acs(FY(T, §) ) (D acs(FY(t, zp))}
= = ~
if there exist 6—1>, 6_; > ? such that, for 61,6, > 6> and all solutions E € B to
. Cimm - —— ——
dmg[@(DT E(t) — AT, E(1)),61 ¢ ) QTDE*E(T)—A(T,E(T)) (Grp), -
Com - — —r—
@ (DEE(0) - ACET)ET ) OYptezior-anzie) & F) |
- diag{AGl( r@i? IO IR A 2$)) ,

2 (FY (1,8 7)) @AGS@Y(r,c?ﬁ))]

there exists solution & € B to (11) with

ding| @(E(7) ~ 2(), ) O Yooy ($)ro++

for every T € [0, D], and ?, ? > 7.
The diagrams of AG;[FY(, ?)], i=1,---,8, are shown separately in Figure 1. As can
be observed, AG3[FY (T, ?)] (brown) and AG4[FY(7, ?)] (yellow) include the highest and

the lowest values, and AG;[FY(T, ?)], i=1,2,5,6,7,8, are placed between them. Therefore,
we can infer that the AG4[FY(7, ?)] proposes a better approximation for (11) than the others.

1

X

Figure 1. The diagrams of AG;, 1 < i < 8, on controller (14). AG3 and AG4 are shown in brown and
yellow colors, and the rest are in between.
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As above, we can conclude that AG4[*Y (T, ?)] proposes a better approximation for (11)
than AG;RY(t, P)], 1 <i <8, i £ 4.

— — —
Theorem 2. FOI’EU@I’yE(T €B G = (611,_‘)" ,618), Gy = (621,- .- ,628), ¢ = ((P],' .- ,(Pg),

? = (41, ,yg), and &1, @2, ¢, ? > 0, we consider the Atangana—Baleanu—Caputo frac-
tional smoke epidemic model (11) and the inequalities below:

@ (Dg*a(r) ~ AT, E(7)), ?) = 26, (FY (1,8, 9)), (16)
— —>—
TDE*E(T)—A(T,E(T))( ¥ ) = AG4(RY(T/ Gy ), (17)
and
Cim - —— ——
CD<DT E(t) = A(T,E(7)), 61 ¢ @‘Ppg*g(T),A(T/E(T)) (S29) (18)
= 16:(°Y(1,81 9) Qa6 (*Y (1,8, 9)).
We let there exist £1, 0, > 0 such that, for every 5), ? > 6>, we have

CD(A(T, E1(7)) — A(T, Ea(1)), ?) = AGy (FY <81 — 5, Z))

and N

— - -
YA (12 (1)~ A5 (1) (¥) = AGy (RY (“ T Z) )

We let 24; max{;(f—cc*’s, #ﬁc*)} <1, i =1,2. Then, we can obtain a unique = € B such that

E(1) = 8o+ I A(1,E(1)), (19)
and
. ~ =
P(E(1) - E(1), ¢) 0 . 0
Yoo -5 (¥) 0
= =N -
I 0 PE(T) —E(1), ¢) O¥g) g (¥)
[aggs | =™t |(ViWiic
cHp |:D1618¢8 (N;,Mj)1,0 0 0
S VI WV, Vs [ —||P1
= 0 M“}T?I\}lzj\il ’ (Dzézslps) 0 !
AT — 7|1 (ViWi,c
I 0 0 cHp [maX{DlelstPs,DszslPs} (Nj,Mj)1,p
where .
1-C, DS
b . 2GS preoren ) 20)
Ay 1 C b
1= tizmax{ e, se ey )

Proof. According to Lemma 2.4 in [16], the solution of (11) is defined as follows:

1 - C*
p(Cs)

We consider mapping d : B — [0, ]2 defined by

p<C§F<C> . /OT%'E(S))(T —s)"lds. (1)

[1]

(1) = Eo(7) +

d(7,E(1)) +
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d(E(T),@(T)) = inf{(01,02) > (0,0) : (22)
- S —-
P(E(1) —E(1), ¢) 0 R 0
0 Yoz ( Y ) 0
E(7)-E(7) R s N
0 0 O(E(7) ~ (1), ) O ¥ar) 5 (¥)
——
AGy (FY(T, e )) 0 0
——
- 0 AGy (RYT( =) 0 ,
— > ——
0 0 AGy (F ORy <T min{ 4L, S2¥ }) )
for every E,E € B, and ?,? > ﬁ},
in which

3
|

—— —— —— —
AG, (FQRY (T,min{ 6;24) , le })) ‘= AGy (FY(T, ©1¢
1 2

) o S2)

Note that (B, d) is a complete generalized metric space (see [19]).
We consider operator . : B — B such that

R

ZLE(T) = @ E(T) + @28(7), (23)
O1E(T) = Fo+ ;(Cf;qms(ﬂ),

_ C. T -
(1) = Syt /O ®(s,5(s)) (7 — 5)C1ds.

According to (21) and (29), we have

E(t) = Ho(T -G = & s,E(s))(T—s)* ds
L8(x) = Bal1) + = VOED) + st [ (s 86) (19" s (4

—
For every T € [0, D], and ?, ? > 0, we show .Z is a contraction mapping on B,
as follows:

— —

= <a713 — @5, g) O <c’023 — @5, %
1-C i P

= oL SAmEm) - A L) O
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%
(g
206y max{ =5, seqreT )

and in a similar way,

%
Y yaq)y 220 (V)

——
G
>~ AGy (RY (T, Y, 1_5*4] DG ) ) .
2max{ 5 preren |

. . 1-Cs DC*
' 1Tzhus, we deduce the contractive property of £ since 2¢; max{ (AL m} <1,
i=1,2.

We remark that (see [18]) function E € B is a solution of (16)—-(17) if there_e)xii’gs furlc>tion
X € C([0, D];R) (which depends on E) such that, for every T € [0,D]and ¢, ¢ > 0,

1) (N (7), ?) = AGy (‘“((T,Q?i?)), and ‘I’>\(T) (?) = AGy (RY(T, G?;E))), and

(2) we have

DSE(T) = (1, E(7)) + X (1), (25)

Now, the solution of (35) is given by
(1) = 8o+ IS A(T,&(7)) + IS X (7). (26)

Making use of (26) and (30), we have

=o(Lr 0. 8) 00y [ oo e d)
= 4Gy (FY <T'f?c* >> e, <FY <T' gliz >)

p(C.) 2p(CIT(C)
> AGy (FY <r, 6—;?

and in a similar way,
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—
Yao)—za@zq)(¢)
——
> AGy (RY (T, G2 C ) )
2max { 1-c D }
p(C.) ' pCT(C.)
for every ?, ? S N
By means of fixed point theory, we can obtain & € B such that
(1) Eis a fixed point of .Z,
E(t) = 8o+ IF A(T,E(1)), 27)
which is unique in the set {v €B:d(ZLE,v) < (oo,oo)}.
() d(ZL™(E1),E) — (0,0), as m — 0.
(3) We have
453 < ( ! _ ! : >d(.$E, B)
DCx DCx
1 - ZE] maX{ C ) m}_ 1 - 262 maX{ C ) m}_
DCx DCx
- ( 2’f’“ax‘{p(c pETE)) Zmax‘{mc RO >
B — __D& — 1-C. __ D%
1= 2 max{;7, ey | 1 [2emax{Ges s |
which infers
> ¢
®(2(r) - 5(), ) = s ("(r, Z5E) )
-07
——
— (G}
Yo(r)-5r) (V) = 4G (RY(T/ 2t )>
-0,
—— —>—
- = — — S G)
S(E(T) ~ E(0), F) O ¥aer_zi0) (F) = 464 (FY(T, L9 )) ore <RY(T, 2y )),
1-04, 1-00,
where c
O := Zmax{1 Cs s 1. (28)

p(Cs) " p(C)T(Cy)

The plots of special functions given in the the main diagonal of square matrix FY(t, ?)
are displayed in Figure 2a, where the diagrams of the Wright function and the Fox H-
function are displayed in green and yellow colors, and the rest are in between. Slrmlarly,
the plots of special functions given in the the main diagonal of square matrix *Y(, 47 ) are
displayed in Figure 2b, where the diagrams of one-parameter Mittag—Leffler function and
eight-parameter Mittag—Leffler function are displayed in brown and yellow colors, and the
rest are in between.

Thus, we have
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0.25

= =y 2o ams | TP v
@(E(1) —E(1), ¢) = EHY | 5—=—— [N M),
(E(7) (1), ¢) = EHp [D1618¢8 (N;,Mj)1,p
TSR v AT e i
Y20 (¥) = Myonm, (D26281P8

®(E(1) ~ E(1), §) O Yapr) 2 (¥)

o ag [T e | oy v (It
~ c*p D; G155 (N;,Mj)1,p o, T;N1, My DyGogips )
AgB | =l | (Vi Vi WiVa Vs (—[z|™1
The plots ochD{ B | (N Mo (the bottom chart) and M, 7. i ™ | —— ) (the

above chart) are displayed in Figure 3. Now, we obtain

= Ny pre
(E(T) —E(1), ¢) O Ya(r) 50)(¥)
g | Ll
C7D | max{D;G13¢3, D2G2s1Ps }

Y

(ViWj),c
(N,Mjip |

L

N

x

X

() (b)

Figure 2. (a) displays the plots of special functions given in the the main diagonal of square matrix (14)
where the diagrams of the Wright function and the Fox H-function are displayed in green and yellow
colors, and the rest are in between. Similarly, (b) displays the plots of special functions given in the
the main diagonal of square matrix (15) where the diagrams of 1-parameter Mittag—Leffler function
and 8-parameter Mittag-Leffler function are displayed in brown and yellow colors, and the rest are

in between.
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(Vi Wi
(NM)

[z|™

s

Figure 3. The plots of éHBD {7

] (the bottom chart) and MxlTvX}l ‘1/\2,11‘/2( [ ) (the

above chart).

4. A New Optimal Method for a Smoke Epidemic Model in Banach Spaces

In [16], the authors applied the Krasnoselskii-type fixed point theorem to study the
existence, uniqueness, and UHR stability of (11) in Banach spaces. We study the existence,
uniqueness, and UHR stability of the governing model using the Cadariu-Radu method
derived from an alternative fixed point theorem. By comparing methods, we conclude that
our method provides an optimal solution with the same error value obtained through the
Krasnoselskii-type fixed point theorem.

We let the Banach space be B = C[0, D], D > 0 and let

Z|l = max {|& , V& € B.
=)= max {1=(7)])

Now, we assume the following for T € [0, D]:

(1) TherelsUQ>0and0<]k<15uchthatA (1,2(1)) < QIE[*+ T
(11) Thereis ¢ > 0such that |A(T,E(7)) — A(T, E(7))| < £|&(T) — E(7)]
We consider operator .Z : B — B such that
ZLE(T) = @1E(7) + @28(7), (29)
1-Cs
01E(T) = 5 + AT, E(T)),
1E() = B0+ L AT ()
= Cs /T - Co—1
@ E(T) = ——r—— A(s,Z(s)) (T —s)~* "ds

According to (21) and (29), we have

2B(7) = Fo(1) + L;CS;A(T,E(T)) + C) /OTA(S,E(S))(T _ 9S4 (30)
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4.1. The Krassnoselskii Fixed Point Theorem

Lemma 1 ([16]). Consider Banach space T = C([o, D]) with norm ||Z|| = max,c[,p|{|E|}, for
any B € T. Assume @D # B C T is a closed convex subset of T and there are operators hy and rhy
with

(1) Myetmpe VeeT,

(2)  hy is compact and continuous and hy is a contraction operator.

Thus, there is solution e € T such that My e+ thy e = e.

Theorem 3. Consider assumptions (1) and (11) with 1-c

¢ < 1. Then, (11) has at least
p(Cs)

one solution.

Proof. First, we prove @; is a contraction. We assume & € D and o0 = {E € B: ||E|| < ¢,
@ > 0} which is a closed convex set. Now, we have

17C*

(@1 E(T) — @E(T)] = o(C,) e

[A(T,E(T)) = AT, E(T))]| (31)

1 - C* =
< ——1E(T) — E(7)].
S e ~ &)
Thus,
1-Cs .
[|@1E — @ E|| < )& - EJ.
| I < Sertle -2l
Therefore, 4 is a contraction since p(_C )* (< 1.
We now prove @;(E) is compact and continuous for any 2 € 0; then,
C T
@7 (& = max |—— A(s, 2(s)) (T —s) s
2@l = max |t [ AGEE) T -9)

om0 =95 Az as
DC*
= Pl

IN

[Q+ 2% + U]
Thus, @; is bounded. We assume 171, » € [0, D]; then, we have

(@028)(71) — @2E)(12)

- ‘P(let(c*) /oT] A(s,E(s)) (11 —5) s — /OTZ A(s,E(s))(1y — 5)“ Lds
QEF+0 ¢, ¢
ey )

AsTg — T,

(@:28)(11) — @E) (1) ‘ — 0. Thus, according to the Arzela—Ascoli theorem,

@, is compact and equicontinuous. Therefore, based on Lemma 1, System (11) has at least
one solution. [

Theorem 4. Consider constant A > 0, with A := { —Cep 4 5 D¢y < 1. Then, operator

1
Z has a unique fixed point.

Proof. We assume E, = € B. Then,
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|25 - ZE| (32)
< |@01E — @1 E]| + [[@28 — @ &|
1-C, _
< AT, B —A(T, B
S Cgf&]I (t,2(1)) — AT, &(7))|
ot max | [TAGs,EE) (- 5% s~ [T A () (- 5)Cds
p(C)T(Cx) c,efo,n] | Jo 0

1-—C, D¢+
< 0+ 4 = —
AR AN CAML

~
—AlE &
_— bd T e || e

~

—_
H

—

Therefore, based on the contraction principle, the operator has a unique fixed point. [J

Definition 4 ([26]). System (11) is UHR stable with respect to V € C([0, D], R) if there exists
k > 0 such that for all 5> 0 and any solution & € B to the following inequality,

DS E(1) — A(T,E(1)) < V(1) 5, VT €[0,D], (33)
there exists solution 2 to (11) with
12(1) —E(7)| <kV (1) 5 Vrelo,D)]. (34)

Remark 1. Sunction & € B is a solution of (33) if and only if there exists function \(T) €
C([0, D]; R) (which depends on E) such that

(DX (1) < V(1) 3 VT€][0,D],

(2) DS E(1) = A(T,&(1)) + X (1), VT € [0,D)].

Lemma 2. We consider the fractional-order system below,

DS E(t) = A(T,E(1)) + (1), T€[0,D], (35)
2(0) = Eo
Then, for T € [0, D], we obtain
- - 1-C. D¢
IE(1) — ZA(T,E(7))]| < o) + S(CIT(C) V(1) 2.

Proof. According to Lemma 2.4 in [16], the solution of (35) is given by
E(1) = Bg 4+ IS A(T,E(1)) + IS X (7).

Now, based on (30), we have

1-G D™ i T—s)1=C T)|ds
< [p(c N e el AeC RPN >d}
1-C, D¢
< L( ) +p<c*>r<c*>] V(D>
O
Theorem 5. System (11) has UHR stability if A := [110(_(:(?)* + p(C[;IC"*(C )}Z <1
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Proof. We suppose Z € B is any solution and Z € B is the unique solution of (11) (see
Theorem 4); then, for T € [0, D], we obtain

|E(T) —E(T)L
= [&(7) — LE(7)] .
< |E(1) — ZE(7)] + | LE(T) — LE(7)]
1-G D& 1-C, D¢ - _=
= {P(C*) +p(C*)r(C*)] V(1) 9+[p(c*) + p(C*)F(C*) (E(T) = E(7)]
|:1 —C, N DC* :|
1 [1 — G + D& }E

Now, making use of Definition 4, we conclude that (11) is UHR stable. O

4.2. The Cidariu—Radu Method

Here, we study the existence, uniqueness, and UHR stability of System (11) using the
Cadariu—-Radu method derived from an alternative fixed point Theorem 1 (see [26]).

Theorem 6. Consider the following inequality:

D%auyﬁunaﬂﬂgvuy E(1) €B, (36)
where V € C([0, D], R) is a control function. Assume [1 —G + D™ }Z < 1, where
ol - | o(C) Taeore )t <
£ > 0. Then, there exists a unique & € B, with
E(1) = Eo + It A(T,E(7)), (37)
and
{1—C*+ D¢ ]
= Cx C)T(Cx
20) - &(r)| < ) _PEILEI_ () @)
1 [1 —Cs n D% ]g
p(Cs)  p(C)T(Cy)

Proof. We consider mapping d : B — [0, co| defined by

ﬂaﬂﬁﬁ»—m%ﬁzoﬂﬂﬂ—iﬁ)<QVHLTEMD@. (39)

Now, we define .¥ : B— B as
1 - C*
p(Cy)

According to the previous subsection, we see that & is contractive on B, i.e., for any
T € [0, D], we have

gE(T) = Eo(T) +

AT, E(1)) + ——=22 /(;TA(S,E(S))(TfS)C*_ldS. (40)

| ZE(1) ~ 2E(0)

_ Cy

< 1 C*+ D
o(C) T p(CIT(C

sz@o—éun

1—c*+ DS
p(Cs)  p(CoT(Cy)

Then, we deduce the contraction property of ., since [ <1
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Again using the previous subsection, we obtain
E(1) — ZE(1)| < {1 ~C. D } v (1), Telo,D] 41)
p(Cs)  p(CHT(Cs)
Thus, the assumptions of Theorem 1 are satisfied, and we obtain
{1 —C. D¢ }
(1) — B(r)| < —LPE) PECITECI] oy o cpo,p), (42)

References

1—C, D¢+
- [p<c*> * p<c*>r<c*>}£

where E(1) = Eg + IS A(1,E(7)), is the unique solution in {v € B:d(ZE,v) < oo}. O

4.3. Discussion

The concept of fractional derivative is more than three thousand years old. The role
of fractional calculus has been increasing due to its application zone in diverse domains
like laser propagation, energy quantization, semiconductor industry, wave propagation,
biology, optical communication, quantum chemistry, etc. The fractional derivative of ABC
uses the Mittag—Leffler function to consider random fuzzy models with uncertain constraint
conditions [27-31]. An analysis method is used to consider the best decision on the stability
of the smoking epidemic model by using a new class of controllers powered by special
functions. Under some special conditions, we compared the findings of our study with the
obtained results in [16] and we concluded that our method provides an optimal solution
with the same error value obtained through the Krasnoselskii-type fixed point theorem [16].
Our technique offers a constructive process to obtain our fixed points.

5. Conclusions

We applied fuzzy random systems, the probability theory, and the concept of Z-
numbers to make the best decision on the Ulam stability of the smoking epidemic model
by using a new class of controllers powered by special functions and aggregation maps.
Effective generalization of Ulam-type stability problems and evaluation of optimal con-
trollability and maximal stability are new issues. There exist different methods to the
Ulam-type stability using diverse tools, for instance, Laplace transforms, invariant means,
shadowing, sandwich ideas, and Fourier transforms [32-35]. In this paper, we used a fixed
point argument to consider stability. We compared our results with the obtained results
in [16] and we concluded that our method provides an optimal solution with the same
error value obtained through the methods used in [16].
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