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Abstract: In this paper, we present an effective method for analyzing patterns in the Russia–Ukraine
war based on the Lanchester model. Due to the limited availability of information on combat powers
of engaging forces, we utilize the loss of armored equipment as the primary data source. To capture
the intricate dynamics of modern warfare, we partition the combat loss data into disjoint subsets by
examining their geometric properties. Separate systems of ordinary differential equations for these
subsets are then identified using the Sparse Identification of Nonlinear Dynamics (SINDy) algorithm
under a generalized formulation of the historical Lanchester model. We provide simulations of our
method to demonstrate its effectiveness and performance in analyzing contemporary warfare dynamics.
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1. Introduction

Throughout history, warfare has evolved from small-scale tribal conflicts to complex
battles involving numerous stakeholders utilizing advanced technology and intricate
strategies. Although warfare has undergone various complex evolutions, the fundamental
need to predict outcomes, interpret the dynamics of military confrontations, and understand
the nature of essence of war remains unchanged. This persistent need has led to the creation
of numerous mathematical models to capture the dynamics of combat, most notably the
Lanchester model [1]. The Lanchester Attrition Model employs differential equations to
predict the outcomes of military engagements by taking into account the numerical strength
and combat efficiency of the forces involved. This model has played a pivotal role in the
analysis of military confrontations for several decades, and many mathematical methods
have been developed for its application in diverse scenarios.

Morse and Kimball proposed a linear Lanchester model focusing on aimed fire and
small skirmishes [2]. Weiss explored the model in the context of the American Civil
War [3], while Peterson suggested a tensorial generalization of the early Lanchester-type
equations and examined the feasibility of the exponential Lanchester model for armored
combat [4]. Dietchman [5] and Schaffer [6] introduced variants for irregular warfare. In
addition, Hartley and Helmbold used data from the Inchon Landing during the Korean
War—a confrontation between the U.S. 1st Marine Division and the North Korean Army—
to develop an exponential Lanchester model [7]. In [8], recent advances in Lanchester
modeling, focusing on modern conflicts and capturing the role of targeting information
in irregular warfare such as insurgencies, were reviewed, and models that captured the
multi-party situation of conflicts were presented in [8,9]. In addition to the traditional
Lanchester model, which uses ordinary differential equations, partial differential equation-
type models that incorporate spatial information have been introduced in [10–12]. They
have also recently been used in a variety of fields such as combat in nonhuman animals [13],
human evolution [14], market share competition [15], and video games [16].
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The Russia–Ukraine war, which began on 24 February 2022, epitomizes contemporary
warfare. Characterized by geopolitical tensions, this war manifests a mix of traditional
military tactics, guerrilla warfare, cyberattacks, and cutting-edge technology. Recent
developments in artificial intelligence and networking made it possible to aggregate and
process data from various battlefronts in real-time. In this paper, our objective is to apply
the Lanchester model to this contemporary conflict using extensive combat force loss data
from both nations to find ways to improve or adapt the model. In particular, to prevent
the fidelity deterioration of a developed model to the data, we partition the time-series
data based on their geometric properties into disjoint subsets and model a system for each
subset rather than identifying a single system for the extensive dataset.

Throughout history, various forms of conflict have continuously emerged, directly
and indirectly affecting not only the parties involved but also a wide range of people. This
research was motivated by the desire to gain deeper insights into the dynamics of modern
warfare and to bridge the gap between historical combat models and the complexity
of modern warfare. To achieve this goal, this paper applies the Sparse Identification
of Nonlinear Dynamics (SINDy) [17] algorithm to armor-centric combat loss data from
the ongoing war between Russia and Ukraine. SINDy is a data-driven algorithm for
discovering the governing equations of nonlinear dynamical systems. The algorithm
constructs a library of potential terms that may appear in the equations and then uses
sparse regressions to identify the subset of terms that are actually relevant, approximating
the data’s governing equations. SINDy is especially useful for dynamical systems that
are too complex for analytical modeling or where noisy data are available. One of the
primary benefits of SINDy is its ability to directly identify the system’s governing equations
from data, without any prior knowledge of the system’s dynamics. This enables the
discovery of governing equations for complex systems that are not amenable to traditional
modeling approaches. Moreover, SINDy can be used to reduce the complexity of a model by
identifying a subset of terms essential for capturing the dynamics of the system, allowing for
more efficient simulation and analysis. Numerous applications and variants of the SINDy
algorithm in modeling dynamical systems can be observed, encompassing recent works
such as [18–24]. The Lanchester model is a nonlinear dynamical system, and for some
models, the dynamical equations are difficult to solve analytically. In this paper, we utilize
SINDy to identify the governing equations of the Lanchester model from attrition data of
combat equipment. Subsequently, we simulate and analyze the dynamics of the system.

The paper is structured to first provide a theoretical review of the simple Lanchester
model, setting the foundation for our more complex investigations in Section 2. We
then describe the armor-centric loss data from the Russia–Ukraine war, detailing why
this particular set of data provides a unique opportunity for analysis in Section 3. After
introducing the SINDy algorithm in Section 4, we present our method for identifying
systems that fit the given data based on the Lanchester model in Section 5. The simulation
and analysis of the resulting models, along with a discussion of the implications of our
findings, will be presented in Section 6. Finally, in Section 7, we present the conclusions of
our study.

2. Lanchester Model

The Lanchester model describes the time-variant changes in the combat power of
two engaging forces. It employs two elements: the combat power and combat efficiency,
expressed in the form of differential equations. Generally, equations can be represented
assuming two scenarios. One is where the combat between forces is centered around aimed
fire, where the differential equations are as follows:{

x′ = −αy ,
y′ = −βx ,

(1)

where x = x(t) and y = y(t) represent the total combat power of the two factions, x and y,
at time t > 0 . The other scenario is characterized by primarily unaimed fire. In situations
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of combat where both parties engage in area fire, such as artillery barrages, the general
locations of the opposing forces are known. However, the precise positions and outcomes of
their fire are uncertain, making concentrated fire through aiming impossible. In situations
where the opposing side engages in area fire, the potential loss of combat power increases
with one’s own combat power. Therefore, the rate of loss of one’s own forces is not only
proportional to the combat power of the opponent but also to one’s own combat power.
The differential equations for this scenario are as follows.{

x′ = −αxy ,
y′ = −βxy .

(2)

The analysis of this system is well known under Lanchester’s square law and linear law.
Formulated as a theorem, these laws can be articulated as follows.

Theorem 1 (Lanchester’s Square and Linear Law). The solutions to Equations (1) and (2),
respectively, satisfy the following state equations.

α(y2
0 − y2) = β(x2

0 − x2) (Square Law)

α(y0 − y) = β(x0 − x) (Linear Law)

where x0 = x(0) and y0 = y(0).

The above theorem can be easily proven by separating the variables after dividing
each equation and then integrating both sides. The solutions to Equations (1) and (2) are
well known, and their asymptotic behaviors are easily understood. For explicit forms of
solutions and a detailed analysis of their behaviors, readers may refer to [9]. In scenario
Equation (2), where the change in combat power of both sides is proportional to the size of
their forces, an alternative expression can be used. Instead of assuming that the change in
force size is proportional to the product of the sizes of both forces, it can be assumed that
the change in force size is proportional to the size of each force individually. Additionally,
by incorporating additional factors beyond the force size, the following differential equation
model can be constructed. {

x′ = a1 + b1x + c1y ,
y′ = a2 + b2x + c2y .

(3)

In the classical model, the coefficients b1 and c2 are considered the non-combat attrition
rates for each side due to accidents, diseases, desertions, and other factors. Meanwhile, a1
and a2 are defined as the reinforcements of combat power for each force, respectively. In the
classical model, all coefficients are stipulated to be negative. However, modern warfare
is highly complex and influenced by various internal and external factors. Therefore,
the restriction on the sign of the coefficients is unnecessary.

Reducing systems of ODEs to simple forms of state equations, as presented in Theorem 1,
can be challenging. However, the coefficients’ magnitude and sign can help explain the
specific conflict’s complex nature. In the above equation, a1 and a2 represent the influence
of external factors on the change in combat power, while b1, b2, c1, and c2 can be considered
as the rate of change due to the size of each respective combat power. The solution to the
equation above can be expressed in closed form as follows.

Lemma 1. The solutions of (3) are as follows:
x(t) = k1(λ2 − b1)eλ1t + k2(λ1 − b1)e−λ2t +

a1c2 − b1c1

b1b2 + a1

y(t) = −k1a2e−λ1t + k2e−λ2t +
a2c1 − b1c2

b1b2 + a1
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where λ1,2 =
b1+b2±

√
(b1+b2)2−4(b1b2+a1)

2 and k1, k2 are some constants.

Creating a scenario that accurately represents the complex nature of warfare is a challeng-
ing task. The changes in combat power of the forces are generally presumed to be proportional
to their size, but the exact nature of this proportionality is difficult to ascertain. To represent
the system in a more general form, the following system of equations may be used.{

x′ = a1 + b1x + c1y + d1x2 + e1xy + f1y2 + · · · ,
y′ = a2 + b2x + c2y + d2x2 + e2xy + f2y2 + · · · .

(4)

This paper aims to estimate equations that represent the nature of warfare, focusing on
recent armored warfare data from Russia and Ukraine, using the SINDy algorithm recalled
in the following section. However, information about the combat power of each nation
is classified. In particular, data on the combat power at the beginning of hostilities is a
national secret and not easily accessible. Therefore, we will consider the loss of armored
equipment reported through the media as a loss of combat power and adjust the equations
accordingly based on these data.

Remark 1. If x(t) and y(t) are defined as the cumulative losses of combat power up to time t for
each side, then the combat power of the two factions can be expressed as{

x(t) = x(0)− x(t) ,
y(t) = y(0)− y(t) .

(5)

Substituting the above expression into the equation concerning combat power yields an equation for
the combat power loss. For instance, substituting expression (5) into Equation (3) allows for the
derivation of a system concerning the cumulative combat power losses of both forces as follows:{

x′ = −(a1 + b1x0 + c1y0) + b1x + c1y ,
y′ = −(a2 + b2x0 + c2y0) + b2x + c2y ,

where x0 = x(0) and y0 = y(0) .

3. Russia–Ukraine Data

In warfare, the loss of equipment by the warring parties is a highly confidential matter,
making it challenging to acquire accurate data on the combat losses of both sides. However,
the recent advancements in artificial intelligence technology have made it possible to collect
specific data such as specific types of equipment, country of manufacture, and year of
production for the equipment lost in combat by both sides. This is achieved by gathering
photos and videos of the lost equipment. Particularly, ref. [25] is currently providing daily
updates on the combat losses of both countries in the ongoing Russia–Ukraine war. Ref. [25]
utilizes such photographic and video evidence to update a list of destroyed vehicles and
equipment daily. Through this site, we have acquired data on the combat equipment losses
of Russia and Ukraine during the period from 24 February 2022 to 25 September 2023. The
data obtained from [25] is based on photographic and video evidence, indicating that the
actual combat losses may be much greater than recorded. Additionally, while ref. [25]
categorizes the lost combat equipment into destroyed, abandoned, and captured, we
have not distinguished between these as they are all considered combat incapacitated. In
this paper, we have focused on armored equipment and used weights for each piece of
equipment similar to those used in a previous study [26] on fitting Lanchester model for
armored warfare. Ref. [26] applied the Lanchester model to fit data from the Battle of Kursk.
The Battle of Kursk was a battle that focused on armor and was fought in a region similar
to that of the Russia–Ukraine War, although at a different time. In modern ground warfare,
tanks and artillery are both crucial pieces of equipment, each with its own advantages and
disadvantages. The importance of tanks and artillery varies depending on the situation.
However, since this paper focuses on combat losses, considering the average price of both
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types of equipment, weights in [26] are used. Table 1 shows the types of combat loss
equipment used in this paper and the weight for each type.

Table 1. Equipment types and weights for measuring combat losses.

Equipment Types Weights Equipments

Tanks 40 Tanks
Self-Propelled Tank Missile Systems

Artillery 20

Artillery
Self-Propelled Artillery

Towed Artillery
Multiple Rocket Launchers

Artillery Support Vehicles Furthermore,
Equipment

Armored Vehicles 5

Armoured Fighting Vehicles
Armoured Personnel Carriers

Infantry Fighting Vehicles
Infantry Mobility Vehicles

Mine-Resistant Ambush Protected

Support Equipments 5

Command Posts
Communications Stations
Communications Vehicles

Engineering Vehicles Furthermore,
Equipment

Anti-tank Personal Firearms and Mortars 3 Anti-Tank Guided Missiles
Mortars

Other Combat Vehicles 3 Trucks
Vehicles and Jeeps

4. SINDy Algorithm

In this section, we will provide a brief review of the SINDy algorithm [17], which is em-
ployed for model discovery and system identification. In the context of a dynamical system

x′(t) = f(x(t))

for x(t) := (x1(t), x2(t), . . . , xJ(t)), x′(t) := (x′1(t), x′2(t), . . . , x′J(t)), and f := ( f1, f2, . . . , f J)

with f j : RJ → R, the algorithm aims to determine an efficient representation of f concerning
basis functions that best describe the dynamics of measurement data {x(tn) : n = 1, . . . , N}
for N ≥ J. A library of polynomials, trigonometric functions, or other relevant mathemati-
cal expressions may be used to represent f. We can numerically approximate the derivative
values, {x′(tn)}, from the given data set, {x(tn)}, in cases where the derivative values are
not available. Let {φℓ : RJ → R : ℓ = 1, . . . , L} for L ≤ N be a candidate library. We then
consider a sparse regression problem of the form

X′ = ΦA,

where

X′ := [x′(tn) : n = 1, . . . , N] ∈ RN×J ,

Φ := [φℓ(x(tn)) : n = 1, . . . , N, ℓ = 1, . . . , L] ∈ RN×L,

A := [αℓ,j : ℓ = 1, . . . , L, j = 1, . . . , J] ∈ RL×J .

The sparse solution A to this overdetermined system is obtained using the Sequential
Thresholded Least-Squares (STLS) method, which can be formulated as
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min
A

1
2
∥X′ − ΦA∥2 + ηR(A),

where η is the sparsity parameter, and R indicates the regularization function. See [17,27]
for details.

5. Proposed Method

The objective of this section is to introduce an effective method for deriving a system of
ordinary differential equations that captures the dynamics of Russia–Ukraine warfare. Due
to the unavailability of initial combat strengths for both Russian and Ukrainian forces, we
model the dynamics using the cumulative losses measured as in Section 3. This approach
can be considered an alternative application of the Lanchester model, as discussed in
Remark 1. On the other hand, since the duration of the warfare is long (579 days) enough
to exhibit diverse patterns resulting from changes in tactics or strategies during battle, we
opt to identify separate systems over subintervals of time to better capture the evolving
character of the data, rather than using a single system for the entire period.

5.1. Partition of Data

To implement the above discussion, we partition the entire set of measurement data
into disjoint subsets by examining the geometric properties of the data, specifically focusing
on the sign changes in their second-order derivatives. For this purpose, we initially create a
smooth approximation of the data using the Moving Least Squares (MLS) method [28]. The
reason for choosing the MLS method is that when averaging the data using this method,
we can control the number of contributing data points, the distribution of weights, and
the accuracy of approximation based on the data properties. To be specific, let { f (tn) :
n = 1, 2, . . . , N} be the data values in a neighborhood of an evaluation point t. The
approximation A f of the value f at location t is given by the expression

A f (t) =
N

∑
n=1

an(t) f (tn), (6)

where the coefficients {an} are determined by solving the minimization problem

min
{an}

N

∑
n=1

an(t)2θ(tn, t) subject to
N

∑
n=1

an(t)pℓ(tn) = pℓ(t), ℓ = 0, 1. (7)

Here, θ is a penalty function depending on the distance between tn and t, e.g., θ(t, s) =
exp((t − s)2/h2), and pℓ(·) := (· − t)ℓ. The problem (7) can be solved by applying the
Lagrange multipliers method. Using the matrix notation, the solution a := [an(t) : n =
1, . . . , N]T ∈ RN×1 can be represented as

a = D−1P(PTD−1P)−1p,

where

D := 2 diag(θ(t1, t), . . . , θ(tN , t)) ∈ RN×N ,

P := [p0(tn) p1(tn) : n = 1, . . . , N] ∈ RN×2,

p := [p0(t) p1(t)]T ∈ R2×1.

Next, we calculate the second-order finite differences, ∇2 A f , from the approximated
data A f , and apply the MLS method to the differences if smoothing is needed to facilitate
our investigation into the shape of the data. The resulting finite differences are denoted
by ∇̃2 f . Subsequently, we identify points where the sign of ∇̃2 f changes. Based on these
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locations, we partition the entire set T of sampling times into K disjoint subsets Tk for
k = 1, 2, . . . , K.

5.2. Identification of System

Let x = x(t) and y = y(t) be the state variables representing the cumulative losses of
Russian and Ukrainian combat forces at time t, respectively. For each subset Tk obtained by
applying the partitioning method from the previous subsection, we consider a system of
the form {

x′(t) = f1(x(t), y(t)),
y′(t) = f2(x(t), y(t)),

(8)

where functions f1 and f2 represent the dynamics constraints of the data x(Tk) and y(Tk).
In this paper, f1 and f2 are determined based on the generalized Lanchester model in (4).
Specifically, we employ the SINDy algorithm described in Section 4 to identify a sparse set
of coefficients using the library of polynomials of degree up to 2,

{xpyq : 0 ≤ p + q ≤ 2}. (9)

Subsequently, for the resulting system, we conduct a phase plane analysis based on
qualitative theory, as presented in [29]. We investigate the battle performance in terms of
the ratio x′/y′, revealing patterns in Russia–Ukraine warfare. Refer to [30] for details on
the ratio.

6. Simulations

In this section, we showcase the simulation results of the proposed method detailed
in Section 5. We subdivide the complete dataset of Russia–Ukraine warfare, as obtained
in Section 3, into six disjoint subsets using the method introduced in Section 5.1. We then
identify a system representing the dynamics of warfare over each time interval by applying
the SINDy algorithm discussed in Section 5.2.

6.1. Partitioned Times

Denoting by T := Z ∩ [0, 578] the set of sampling times during the entire period of
the data, we applied the MLS approximation in (6) with a parameter setting of h = 30
to obtain the smoothed data Ax(T ) and Ay(T ), along with their smoothed second-order
finite differences ∇̃2x(T ) and ∇̃2y(T ). For the MLS evaluation at each time t ∈ T , we
used the data in the closest 61-point neighborhood of t (i.e., N = 61). Figure 1a–c illustrate
the original data, their smoothed versions, and the finite differences, respectively. We
located the points in T where the signs of ∇̃2x(T ) and ∇̃2y(T ) change. The union of
these locations constitutes the candidates for the end points of each subinterval. The final
locations for the partition were determined by taking the average of two points whose
distance are smaller than 60. We obtained six disjoint subsets Tk ⊂ T for k = 1, 2, . . . , 6 as

T1 = {0, . . . , 126}, T2 = {127, . . . , 225}, T3 = {226, . . . , 336},

T4 = {337, . . . , 420}, T5 = {421, . . . , 510}, T6 = {511, . . . , 578}.
(10)

The resulting partition is visualized in Figure 1c,d as dotted lines. If the character
of data changes over time, unlike the scenario where the data are governed by a single
system of equations throughout the entire time period, then the outcome of the system
identification through a data-driven method, such as the SINDy algorithm, will depend on
the choice of partition. The objective of the above approach is to find a suitable partition
capturing the change in character by investigating the local properties of data.
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Figure 1. Partition of the cumulative loss data: dotted lines visualize the partition.

6.2. Identified Systems

To identify systems of the form (8) capturing combat dynamics, we applied the SINDy
algorithm to the data x(Tk) and y(Tk) for each subset Tk in (10). For this, we used the
polynomial library in (9) and applied the STLS method with a threshold of 5 × 10−4. This
results in a first-order linear system of the form

x′ = a1 + b1x + c1y,

y′ = a2 + b2x + c2y,
(11)

where the coefficients of the second-degree terms vanish. The solutions to this system reveal
the characteristic of the warfare during the corresponding period. For a more informative
analysis, we conduct a phase plane analysis for the system based on qualitative theory,
as presented in [29]. Denoting

A :=
[

b1 c1
b2 c2

]
,

the solution to the system (11) can be characterized by the eigenvalues of the matrix A. To
this end, we denote the characteristic equation of A by

λ2 − τλ + δ = 0 (12)

for τ := tr(A) and δ := det(A), and its discriminant by γ := τ2 − 4δ. Moreover, we
investigate the ratio x′/y′ of loss rates, which assesses the battle performance in each
period. Eventually, from the identified system over each time interval Tk, we want to
compute the quantities τ, δ, γ, and also x′/y′ as a function of time. Our analysis results
on the systems identified from the data x(Tk) and y(Tk) for Tk, k = 1, 2, . . . , 6 in (10) are
presented as follows.
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• System over T1. From the data x(T1) and y(T1) with the initial values x(0) = 127 and
y(0) = 178, we obtained the coefficients of the system (11) as

a1 = 8.8548 × 102, b1 = 4.0035 × 10−3, c1 = −6.7647 × 10−2,

a2 = 2.2672 × 102, b2 = 1.0672 × 10−3, c2 = −1.7409 × 10−2.

The solution to the system with these coefficients is illustrated in Figure 2a. To
categorize the solution behavior, we compute τ, δ, and γ as defined in (12):

τ = −1.3405 × 10−2, δ = 2.4958 × 10−6, γ = 1.6972 × 10−4.
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(f) T6

Figure 2. Models over the six subsets of measurement times, Tk, k = 1, 2, . . . , 6: cumulative losses of
Russian forces (red), Ukrainian forces (blue), and models (black dashed).

According to the classification scheme in [29] Chapter 4.8, the solutions travel toward
the equilibrium as time goes toward infinity. This implies that the dynamics of military
confrontations approach a steady state as long as there is no change in strategy. The nature
of warfare is further revealed by the exchange rate x′/y′ [30]. As seen in Figure 3a, the
exchange rate stays around 4; although, it is slightly decreasing. It indicates that the Russian
force was losing its strength four times faster than Ukraine during this period.
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Figure 3. Ratio x′/y′ of loss rates over the six subsets of measurement times, Tk, k = 1, 2, . . . , 6.

• System over T2. For the measurements x(T2) and y(T2) with the initial values
x(127) = 53,307 and y(127) = 13,835, the coefficients were determined as

a1 = −4.8645 × 102, b1 = 1.9494 × 10−2, c1 = −2.7033 × 10−2,

a2 = 1.8309 × 102, b2 = 1.1743 × 10−3, c2 = −1.1203 × 10−2.

The graph of the solution to the corresponding system is presented in Figure 2b. In
this case, we have the quantities

τ = 8.2915 × 10−3, δ = −1.8665 × 10−4, γ = 8.1535 × 10−4,

from which the origin of the system is classified as a saddle point, meaning that the solutions
travel away from the origin. This indicates that the combat effectiveness was one-sided
in this time interval, a characteristic that can be precisely assessed by the ratio x′/y′. The
ratio, depicted in Figure 3b, rapidly increases, implying that the battle performance of the
Ukraine force was superior to its counterpart during this period.

• System over T3. The losses x(T3) and y(T3) with the initial observations x(226) = 84,524
and y(226) = 20,525 were fitted by the system (11) with the coefficients

a1 = 3.2046 × 103, b1 = −4.3059 × 10−2, c1 = 4.7392 × 10−2,

a2 = 1.2074 × 103, b2 = −1.5011 × 10−2, c2 = 1.4344 × 10−2.

This produces the fitting curve shown in Figure 2c. The measurements for the analysis
of long term behaviors are

τ = −2.8715 × 10−2, δ = 9.3742 × 10−5, γ = 4.4959 × 10−4,

whose signs are the same as the case over T1. It follows that the behavior of the solutions
to this system is equivalent to that over T1. From the graph of the ratio x′/y′ shown in
Figure 3c, we observe that the war situation had changed from the last time interval and
was improving for the Russian forces.

• System over T4. The cumulative losses over T4 with the initial measurements
x(337) = 109,293 and y(337) = 32,461 were modeled by the system with coefficients
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a1 = 2.5282 × 103, b1 = 5.1988 × 10−2, c1 = −2.4497 × 10−1,

a2 = 4.6444 × 102, b2 = 1.2166 × 10−2, c2 = −5.3601 × 10−2.

We illustrate its solution in Figure 2d. In this case, we have

τ = −1.6130 × 10−3, δ = 1.9364 × 10−4, γ = −7.7195 × 10−4.

The matrix A for this system has complex eigenvalues, and its trace is negative,
classifying the equilibrium point as a spiral. This suggests that the loss rates of the engaging
forces would dynamically change until reaching a steady state. The ratio of loss rates is
plotted in Figure 3d, from which it follows that the Russian force was reducing its loss
quickly in this period; although, its loss rate at the beginning was high.

• System over T5. With the initial measurements x(421) = 126,402 and y(421) = 36,758,
the estimation of the system over T5 resulted in the coefficient

a1 = −9.9682 × 102, b1 = 0, c1 = 2.9732 × 10−2,

a2 = −1.0718 × 103, b2 = 1.7079 × 10−2, c2 = −2.8389 × 10−2.

It is interesting to note that the loss rate of the Russian force is modeled not to depend
on its own losses in this period. The solution to this system is demonstrated in Figure 2e,
and its behavior is characterized in terms of

τ = −2.8389 × 10−2, δ = −5.0780 × 10−4, γ = 2.8371 × 10−3,

which indicates that the solutions travel away from the origin as during T2. This implies
that the losses of both forces would diverge as time goes by; although, the one-sidedness
of battle performance is not as significant as in the case over T2. As shown in Figure 3e,
the exchange rate stays around 2.375 within this period. This suggests that there were no
significant changes in tactics for both forces.

• System over T6. We modeled the dynamics of losses over T6 with x(511) = 141,866
and y(511) = 43,289 in terms of coefficients

a1 = 6.1406 × 10, b1 = 2.3476 × 10−2, c1 = −7.1825 × 10−2,

a2 = 4.1192 × 102, b2 = 8.0844 × 10−3, c2 = −3.2585 × 10−2.

The solution of the system with these coefficients is plotted in Figure 2f. It follows
from the measurements

τ = −9.1094 × 10−3, δ = −1.8430 × 10−4, γ = 8.2017 × 10−4

that the solutions behave as in the last period, implying that the nature of warfare was not
significantly changed. The ratio of loss rates shown in Figure 3f indicates that the Ukraine
force was gaining in combat performance during this season.

The aggregate plot of the simulations over the entire period is presented in Figure 4.
In Table 2, we summarize the mean relative errors

MRE(xdata, xsimul) :=
1
N

N

∑
j=1

|(xdata(tj)− xsimul(tj))/(xdata(tj) + ϵ)| (13)

between the data xdata and the simulations xsimul . In our simulation, we set ϵ = 1. To
validate the improvement in data fitting performance achieved by the proposed approach,
we tested the SINDy algorithm without data partitioning, which resulted in a single model
with coefficients
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a1 = 5.1789 × 102, b1 = −4.6750 × 10−3, c1 = 6.8759 × 10−3,

a2 = 1.2181 × 102, b2 = −8.6829 × 10−4, c2 = 1.6349 × 10−3.
(14)

This model is illustrated in Figure 5. The effectiveness of the proposed method can
be assessed by comparing Figures 4 and 5. The mean relative errors for the model with
coefficients (14) are 6.9007 × 10−2 and 7.8420 × 10−2 for Russia and Ukraine, respectively.
These values are over three times larger than the corresponding average errors of the proposed
method, which are 1.8712 × 10−2 and 1.6154 × 10−2 for Russia and Ukraine, respectively.
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Figure 4. Aggregated model over the entire time period: cumulative losses of Russian force (red),
Ukrainian force (blue), and model (black dashed).
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Figure 5. Model with coefficients in (14) obtained by the SINDy algorithm without partitioning of
data: cumulative losses of Russian force (red), Ukrainian force (blue), and model (black dashed).

Table 2. Mean relative errors (13) between the data and the model over subsets of times in (10).

Time Subset Errors of Russia Errors of Ukraine

T1 6.1514 × 10−2 3.4004 × 10−2

T2 1.6780 × 10−2 1.4301 × 10−2

T3 6.0071 × 10−3 2.2299 × 10−2

T4 3.0560 × 10−3 3.8061 × 10−3

T5 2.8975 × 10−3 5.7214 × 10−3

T6 2.5939 × 10−3 4.5478 × 10−3

7. Conclusions

In this study, we embarked on a journey to bridge the historical foundations of
combat modeling, epitomized by the Lanchester model, with the intricate dynamics of
contemporary warfare, exemplified by the Russia–Ukraine war. The persistent need to
comprehend the essence of war and predict its outcomes propelled us to explore innovative
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methodologies, particularly the Sparse Identification of Nonlinear Dynamics (SINDy)
algorithm, to enhance the applicability and adaptability of the Lanchester model in the face
of modern complexities. Our application of SINDy to armor-centric combat loss data from
the ongoing Russia–Ukraine war has yielded insightful results. The algorithm, operating
without prior knowledge of the system’s dynamics, successfully identified governing
equations for the Lanchester model, specifically tailored to the attrition data of combat
equipment. This approach not only overcomes the challenges posed by the nonlinear and
analytically complex nature of the modern warfare dynamics but also provides a pathway
for efficient simulation and analysis.

Our proposed method, outlined in Section 5, strategically partitioned the time-series
data and employed SINDy for system identification, enhancing the fidelity of the model
to the dynamic nature of the conflict. The subsequent simulations, discussed in Section 6,
provided a nuanced understanding of the dynamics, offering valuable insights into the
evolving nature of warfare in the Russia–Ukraine war. Despite this, the MLS and SINDy
algorithms utilized in the current study have limitations. It is not easy to preserve abrupt
changes in data because the MLS smoothing uses the same weights for every evaluation.
The derivative values required for applying the SINDy method are estimated from mea-
surement data using a simple finite difference, which may lead to degraded performance
under noisy circumstances, as discussed in [24]. To obtain more accurate results, we can
enhance the current versions of MLS and SINDy by incorporating data-adapted weights
and employing more sophisticated techniques to estimate derivatives, respectively. This
issue could be addressed through a more in-depth investigation into combat scenarios and
the geometric characteristics of the data. Such research endeavors have the potential to
provide a basis for more sophisticated analysis and predictions of combat performance. It is
our intention to address these challenges in future research, aiming to contribute solutions
that enhance the precision of analysis and predictions related to combat effectiveness.
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