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Abstract: The advent of the Internet of Things brought a new age of interconnected device func-
tionality, ranging from personal devices and smart houses to industrial control systems. However,
increased security risks have emerged in its wake, in particular self-replicating malware that ex-
ploits weak device security. Studies modeling malware epidemics aim to predict malware behavior
in essential ways, usually assuming a number of simplifications, but they invariably simplify the
single most important subdynamics of malware: random propagation. In our previous work, we
derived and presented the first exact mathematical model of random propagation, defined as the
subdynamics of propagation of a malware model. The propagation dynamics were derived for the
SIS model in discrete form. In this work, we generalize the methodology of derivation and extend it
to any Markov chain model of malware based on random propagation. We also propose a second
method of derivation based on modifying the simplest form of the model and adjusting it for more
complex models. We validated the two methodologies on three malware models, using simulations
to confirm the exactness of the propagation dynamics. Stochastic errors of less than 0.2% were found
in all simulations. In comparison, the standard nonlinear model of propagation (present in ∼95% of
studies) has an average error of 5% and a maximum of 9.88% against simulations. Moreover, our
model has a low mathematical trade-off of only two additional operations, being a proper substitute
to the standard literature model whenever the dynamical equations are solved numerically.

Keywords: malware model; random propagation; Markov chain

MSC: 34F05

1. Introduction

Malware is one of the most ubiquitous cyberthreats of modernity. The Internet, as
the natural environment of malware, creates an incredibly complex and ever-diversifying
scenario for exploitation. As a consequence, this environment resembles more and more
life ecosystems, with malware behaving (and evolving) similarly to diseases, while defense
systems try to catch up with more robust measures like the immune system of our bodies.
The advent of the Internet of Things deepened the similarities even further. Billions of
Internet-connected devices with low specifications and limited security capability are being
deployed every year [1,2], creating even more niches to be exploited. Malware specific to
IoT readily emerged. As can be seen, studies on cybersecurity are more urgent than ever
to lay the foundation of sustainable development of the Internet in the age of the Internet
of Things.

Weak security measures implemented in IoT devices and networks are a chronic
problem that is being continuously exploited by self-replicating malware. In recent years,
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IoT botnets performed DDoS attacks that affected millions of users [3]. Mirai, the most
successful of them, infected half a million devices and took down services like Netflix and
Twitter for hours [2,4]. To hide the origin of Mirai, its creators uploaded the code to Internet
forums, leading to a whole strain of Mirai “offsprings”, each “evolving” with particularities
to avoid the countermeasures to Mirai. Evolving threats effectively led to the creation of
a field of malware taxonomy, with reports on diverse strains of traditional malware [5],
malware for mobile devices [6], and malware specific for IoT [7].

With so many similarities, it is no surprise the scientific study of malware approached
the field of biological epidemics. Since the seminal work of Kermack and McKendrick [8],
epidemic models are developed as stages of disease progression, dividing the affected
biological populations into demographics experiencing specific stages: susceptible to
infection, incubating, infectious, in recovery, quarantined, immunized or deceased. All
these biological concepts were then adapted or directly applied to “populations” of malware
hosts, the network devices (see Table 1 for a summary of the notation used throughout this
paper). While this is the most used baseline approach to modeling malware, over the years,
many mathematical and simulation studies explored different modeling methodologies,
but most of them still incorporate compartmental models.

Table 1. Definitions and symbols.

Independent Variable States

T Turn, where T ∈ N N Total number of devices
S Susceptible devices
E Exposed devices
I Infected devices
R Recovered devices
D Dead devices

Common Parameters Special terms of this study

α Infection rate In[T] Successful infections in a turn
β Detection rate Mn[T] Cleaned infections in a turn
µ Death rate by infections C[T] Cost of mitigation (total reset devices)
τ Infection delay I[Tf ] Value of convergence of I
ϕ Recovery delay Tc Time constant of I (95% of I[Tf ]).

Currently, the majority of studies develop models in the format of differential equa-
tions/Markov chains [9–13], agent-based models [14,15], cellular automata [16], or pure
stochastic models based on simulations [17,18], but there are also hybrid models
appearing [19,20]. A more detailed explanation and discussion of the state of the art
will be presented in Section 2.

Markov chains based on compartmental models are the most popular approach in the
literature. While reviewing studies on models of random propagation, it was noticed that
all studies assumed a simple model of random propagation and focused their contribution
on modeling different compartmental states and parameters to make the model more
realistic. The most popular model used to describe random propagation (which will
be called “standard nonlinear model” in this paper) is shared by more than 95% of the
reviewed literature, consisting of a very simple expression of three terms: αS(t)I(t), where
α is the rate of infection, S is the number of susceptible devices, and I is the number of
infectious devices. While this model is accurate enough to approximate the dynamics of
random propagation, it ignores one of two dynamics of inefficient target selection during
random malware propagation, resulting in an overestimation of the speed of propagation.
These dynamics were never explained in detail or explicitly in the literature before our
work, nor an exact model of random malware propagation was ever developed to take
them into account. In our previous work [21], we presented the first exact model of
random propagation in discrete form, provided an in-depth analysis of these dynamics of
inefficiency, and derived the exact Markov chain for the simplest cyclic epidemic model
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SIS. This paper discusses in detail the modeling assumptions of random propagation and
extends the derivation methodology to systems with more states. Step-by-step examples
of our methodology are provided for three epidemic models of increasing complexity, as
well as the principles to modify the propagation model and incorporate it into different
malware models without repeating the burdensome deriving process, demonstrating the
generality of methodology and proposed propagation model. The advantage of our model
is the exact representation of random propagation, with a trade-off of only two additional
mathematical operations compared to the standard nonlinear model, whose errors can reach
9.88% against simulations (the errors of our model are all below 0.2%). The disadvantage of
our model is the discrete formulation and the dependency on Markov chain assumptions
in the subdynamics of random propagation, i.e., to calculate the propagation of malware,
the dynamics need to depend only on the previous state of the system. However, we note
that this dependency does not apply to the complete malware model itself, as we will show
by deriving the exact dynamics of propagation for the malware model SEIRS, which has a
delay on two-state transitions and needs to keep track of past states beyond the last.

In summary, the contributions of this paper are:

1. The generalization of the methodology of derivation of the dynamics of random
propagation for any compartmental model of malware.

2. The proposal of an alternative rule-based methodology of derivation, carried out by
modification of the simplest form of the propagation dynamics.

3. An analysis of the impact of the propagation model in complex malware models,
including incubation, temporary immunity, and network heterogeneity.

The rest of this paper is organized as follows: Section 2 presents a review of the
literature and related works. Section 3 makes an in-depth discussion of random propagation
and its two mechanisms of inefficiency. It also presents our proposed canonical states of
random propagation and defines the proper way to model random propagation as Markov
chains. Section 4 showcases our methodology of the derivation of exact Markov chains
of random propagation using three epidemic models, SIS, SEIRS, and 2SEIS. Section 5
presents the derived complete dynamics of the three epidemic models using our proposed
propagation model. Section 6 presents the validation of our proposed model and compares
its performance with the most popular model in the literature. Section 7 summarizes the
paper and presents our conclusions.

2. Review of Literature Models

Malware models describe the rate of change of states in a network, in particular the
states of devices with respect to behavior before and after infection. All devices presenting
the same state are grouped in a population of the same name, whose size is tracked by the
model. In this work, we will limit our analysis to discrete models, which are formulated as
difference equations:

X[T + 1]− X[T] = f (X[T]) (1)

where X[T] is the vector of states representing the size of different populations, T is the
current instance of discrete time, and f (X[T]) is the resulting dynamics of malware that
alter the size of the populations.

The use of compartmental models of epidemics to represent the change of states
in populations started with Kermack and Kendrick, who proposed an SIR model that
described an epidemic as a noncyclic process of susceptible individuals being infected and
then acquiring a recovered-immunized state. This simple yet insightful model introduced
the two basic compartmental dynamics: the infection dynamic αIS and the recovery
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dynamic βI, shown in Equations (2a)–(2c). Since then, additional dynamics were introduced
in the form of additional states, transitions between states, and parameters.

S[T + 1]− S[T] = −αS[T]
I[T]
N

I[T + 1]− I[T] = αS[T]
I[T]
N

− βI[T]

R[T + 1]− R[T] = βI[T]

(2a)

(2b)

(2c)

The most common states modeled for network populations are susceptible (S), exposed
(E), infected (I), recovered (R), and dead (D). Susceptible devices operate normally. They
are not infected yet and thus susceptible to infection; they are the equivalent of healthy
human populations that were never infected by the pathological agent in question and
do not have antibodies or any immunity developed to it. Exposed devices are already
compromised by malware but not yet fully expressing the infection; they are equivalent
to human individuals whose infection is in a phase of incubation. In the case of computer
malware, this state usually represents infected devices that are not actively reproducing
the malware yet. Infected devices are carrying the malware and actively reproducing
it. Recovered devices were recently cleaned and acquired some form of immunity, be it
to the single type of malware that previously infected it or to a group of malware; this
immunity can be both permanent or temporary. Dead devices are usually not operating
at all, either because malware took it down or because the very network administration
answered to the epidemic by shutting it down indefinitely (meaning that the time it takes
to perform the device maintenance is bigger than the time window taken by the epidemic
to fully develop).

All malware mathematical models are based on a mix of these common states, devel-
oping specific transitions between them according to the modeled network. Examples can
be found in SIRS models [22,23], SEIRS models [24–26], or SEIRD models [27,28]), to cite
the most popular combinations. On top of them, innumerable variations introduce one or
more new subdynamics, e.g., [22], where an SIRS-L model was proposed to account for the
low-energy mode of wireless sensors.

However, modeling just stages of malware infection can lead to models that fail
to minimally represent the dynamics of IoT malware epidemics, due to the increased
(and increasing) complexity of IoT networks. For example, instead of static network
structures connected to the Internet through a single gateway, IoT networks have many
fluid structures that can connect smartphones and other mobile devices intermittently,
making it harder to isolate and control access to the network [29]. Moreover, the diversity of
software platforms on which Internet connectivity is built marks IoT networks as strongly
heterogeneous compared to former networks [30], increasing surfaces of attack. This
complexity can be introduced in models by adding more parameters and elements to the
transition between states, like the model of [28] did to model heterogeneous IoT networks
where malware spreads both via standard network infrastructure and device-to-device
connections (Equations (3a)–(3e)):

S[T + 1]− S[T] = µbd − α1SES[T]− α2SE − δS[T]− γS[T] + λR[T]

E[T + 1]− E[T] = α1SES[T] + α2SES[T]− α1EI E[T]− α2EI E[T]− γE[T]− δE[T]

I[T + 1]− I[T] = α1EI E[T] + α2EI E[T]− γI[T]− (δ + δex)I[T]

R[T + 1]− R[T] = γ(S[T] + E[T] + I[T])− δRDR[T]

D[T + 1]− D[T] = −µbdδ(S[T] + E[T]) + δRDR[T] + (δ + δex)I[T]

(3a)

(3b)

(3c)

(3d)

(3e)
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where µbd is a constant birth rate and death rate of devices; γ is the probability of successful
patching, λ is the probability of losing immunity; δ and δex are, respectively, the probability
of a node exhausting power either naturally or due to malware; δRD is the probability
of natural death of recovered devices; α1SE and α2SE are, respectively, the probability of
transition of nodes from state S to E either by infrastructure network communication or by
device-to-device communication, and α1EI and α2EI are equivalent for E to I.

But despite this main trend of research of proposing more realistic models by diver-
sifying the modeled dynamics, the improvement of the main subdynamics of malware
epidemics— the dynamics of random propagation of malware—has been largely ignored,
remaining in the same simplified form since the Kermack and Kendrick model. This is our
present focus: to improve the current dynamics of malware propagation into exact models
of random propagation. To understand this research gap, we will review the modeling of
random propagation separately.

Random Propagation of Malware: A Subcomponent of Malware Models

Although mathematical modeling of IoT malware theory has branched into important
subfields and proposed complete models with valid choices of simplification, the dynamics
of the propagation of malware is a subelement of modeling that has remained universally
simplified since the seminal work of Kermack and Kendrick. Here, “propagation dynamics”
means the logic of selection of targets used by malware as well as the mathematical
expression that describes the rate of change of susceptible populations into compromised
states (be it infected, exposed, or others). This submodel can be found in virtually every
model in the form of αS(t)I(t). Excluding models that develop very specific dynamics of
propagation, due to highly constrained possibilities of contact between individuals, all
models in the literature assume global random propagation dynamics. (On a note, random
propagation dynamics is also universally assumed because it can be easily modified to
include simple constraints in the possibilities of contact between individuals, working as a
canonical form of propagation).

From all studies that assume global random propagation, the overwhelming majority
use the Kermack and Kendrick submodel to represent it: according to our review, more
than 95% of the literature. It is so widespread that it will be called the “standard nonlinear
model” in the rest of this paper. The remaining 5% of models found in the literature use
either the most simple model possible in the form of the linear expression αS(t), or do not
represent random propagation at all. Below is a discussion of these two most common
models for global random propagation of malware. They will be presented in discrete time
to facilitate comparisons with our proposed discrete model later in the paper.

Linear Model [9,10]: In this model, randomness is abstracted as just the rate of
infection α. The number of infections is proportional to the population of susceptible
devices, and no consideration is given to the number of attacking devices.

In/lin[T] = αS[T] (4)

where In/lin[T] is the number of devices infected this turn only, according to the linear
model. It is different from both the population of infected devices I and its variation ∆I
(the latter also depends on the number of newly cleaned devices this turn).

This model is very convenient to insert in complicated malware models because it
yields closed-form solutions more easily, but the error of estimation of infected populations
can reach 50% [21]. This is due to the lack of consideration to the number of infected devices
that are performing attacks.

Standard Nonlinear Model [11–15]: In this model, randomness is modeled as the
number of encounters between susceptible and infected devices [11]. The expression of the
linear model is multiplied by the percentage of infected devices in the network, yielding
Equation (5).

In/std[T] = αS[T]
I[T]
N

(5)
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This model is more realistic because few infected devices will lead to few attempted
infections during a turn, regardless of the availability of susceptible devices and the rate of
infection. It also takes into consideration that infected devices can target another infected
device (since the choice of target is random between all the network members). However,
it does not consider the fact that random attacks are uncoordinated and can lead to devices
attacking the same target. An important consequence of this is that the standard nonlinear
model overestimates the number of infections. Refer to our previous work for a detailed
consideration of the difference between the pseudo-random propagation present in this
model and the true random propagation that considers both dynamics.

3. Random Propagation of Malware
3.1. Basic Definitions

Our proposed models are based on the following the assumptions:

1. Discrete model of time.
2. Fixed number of network devices.
3. Markov chain assumptions for propagation dynamics.
4. No local constraints to global propagation.

Discrete models will be used throughout this paper, both for the proposed models of
propagation and the complete malware models that utilize them. Time is defined as discrete
turns, changing incrementally from one [T] to [T + 1]. Moreover, the modeled network
model has a fixed number of devices N and is isolated from exterior contact. The propaga-
tion of malware is considered to start from an initial number of already-infected devices.

All propagation models will be derived as Markov chains, which only depend on the
current state to define the next. As a side note, only the dynamics of malware propagation
need to satisfy Markov chain assumptions, not the entire malware model. Examples will be
shown in the second and third malware models studied in this paper. The last assumption
involves the necessity of global reach and no bias towards target selection by attacking
devices, i.e., no local constraints.

As long as these assumptions are satisfied, our model of random propagation and its
methodology of derivation are applicable to any malware model that spreads randomly.

Three different systems of network + malware were studied. Each had a different
combination of compartmental states: (1) the simplest compartmental epidemic model
susceptible–infected–susceptible (SIS); (2) an extended model susceptible–exposed–infected–
recovered–susceptible (SEIRS) with time delay dynamics; and (3) a heterogeneous network
with different behavior regarding malware infection, which was modeled as a double
susceptible–exposed–infected–susceptible model and named 2SEIS.

In order to derive the complete dynamics of an epidemic system, two terms are
necessary: a propagation term, In, which represents the rate of transition of susceptible
devices into a compromised state (which will vary depending on the compartmental model),
and a mitigation term, Mn, which represents the rate of recovery of infected devices into
a susceptible or recovering state, depending on the model. The term In will vary along
this paper, but for the sake of simplicity, the same mitigation term will be assumed for
all models: a simple, standard form of mitigation with network-wide scans that detect
infections with β detection rate and clean the detected infections. Therefore, the term for
this mitigation of malware device-by-device is given in Equation (6):

Mn[T] = βI[T] (6)

Once In is derived, it can be composed with Mn to build the vector ∆X[T] (Equation (1)).
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3.2. Canonical States of Random Propagation

In our previous work, we described in detail how to properly model the propaga-
tion of malware by random attacks, accounting for the disparity between the number
of attempted infections and actual infections (equal or smaller, due to the possibility of
failed attempts). We identified two sources of inefficiency during attempted infections by
random uncoordinated attacks: repetition of targets by different attacking devices and
attacks performed on already-infected devices. According to these possibilities, we defined
attacks as efficient and wasted and defined a maximum of four types of infection attacks,
summarized below:

1. Attacking a susceptible device for the first time (efficient).
2. Making a concomitant attack on a susceptible device when the other attack failed

(efficient).
3. Making a concomitant attack on a susceptible device when the other attack is

successful (wasted).
4. Attacking another infected device (wasted).

For modeling purposes, this can be translated as existing only one type of attacker
(infected devices), but four types of targets (one for each of the scenarios above). They are
represented in Figure 1.

Figure 1. The four types of attack in a scenario of random targeting. Numbers refer to the list
presenting the types of attacks. Blue arrows: efficient attacks. Red arrows: wasted attacks.

These four types of targets are equivalent to different states that a target device can
display when it is chosen for an attack. However, the different number of states in various
epidemic models creates a dilemma in directly representing the four scenarios of random
attack. For instance, models with fewer than four states, such as Equations (2a)–(2c), cannot
fully track the changes in all four target populations. On the other hand, models with more
than four states, such as Equations (3a)–(3e), may raise questions about whether the four
target populations described in the previous subsection can accurately represent malware
propagation in such a system. But as pointed out, the modeling of malware propagation is
just a sub-aspect of modeling. The standard nonlinear model is reused by very different
epidemic models, but nonetheless still holds the same level of precision, so far considered
satisfactory by the literature. All this means that the four scenarios of attack represent
abstract states related to the phenomenon of propagation and are independent of other
modeling aspects. Therefore, these states will be called hereafter the “canonical states of
random propagation”, since they significantly facilitate the derivation of mathematical
expressions for the rate of change of random infection, regardless of the number of system
states or their relationship. These canonical states are described in Table 2:
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Together they represent all devices in a network, being another way of representing
all populations of devices, as Equation (7) points out.

N = S1[T] + S f [T] + Si[T] + Ca[T] (7)

where S1 are susceptible devices attacked for the first time (victim of attack Type 1); S f are
susceptible devices in the process of concomitant attacks, but not infected yet (victim of
attack Type 2); Si are susceptible devices in the process of concomitant attacks of which
one already succeeded (victim of attack Type 3); and Ca[T] are already-infected devices
that are also attacking the network (victim of attack Type 4). Ca[T] also represents any
device whose state cannot change after a malware attack for any given reason (for example,
permanently immunized devices or devices inaccessible to malware).

Table 2. Canonical States of Random Propagation.

S1[T] Not attacked this turn
S f [T] Attacked but not infected yet
Si[T] Attacked and infected this turn
Ca[T] All compromised/unchanging states regarding infection

Our use of the word “canonical” is loosely borrowed from linear algebra: given a
coordinate vector space, every vector inside it is described by a linear combination of a set
of linearly independent vectors, called the basis of the vector space. There are infinitely
possible bases for vector spaces, but one set of vectors is the simplest possible: vectors with
unitary components in every perpendicular, linearly independent dimension. For example,
given the R3 vector space, its canonical basis is the set of vectors vi below:

v1 = (1, 0, 0)T v2 = (0, 1, 0)T v3 = (0, 0, 1)T (8)

The advantage of canonical bases is that the representation of vectors in the space
becomes simple and intuitive. There is no further simplification than the usage of the
canonical basis to represent vectors. Drawing an analogy to this, the canonical states of
random propagation are also the simplest way to divide the total population of devices N
into intuitive states that facilitate the derivation of the dynamics of random propagation.
Another similarity with linear algebra is the convenience of transforming one reference to
the canonical form to perform easier calculations and then transforming back if the results
are needed in the original reference. When calculating the exponential of matrixes, for
example, it is common to diagonalize the matrix and calculate only the exponential of the
diagonal elements, then transform the matrix back into the original form. In the same
way, epidemic states can be transformed into canonical states of random propagation to
simplify the derivation of random propagation dynamics and then are transformed back
into epidemic states. As will be shown, systems with less than four states need to divide
one condensed state into two or more canonical states, while systems with more than four
states need to group their additional states into one or more of the four canonical states
and proceed the derivation of random propagation dynamics using our methodology.

A final advantage of the canonical states is that, similarly to what is carried out with
the standard nonlinear model, usually it is not necessary to repeat the entire derivation
procedure, which is rather burdensome. Instead, the expression of random propagation
can be modified intuitively to include more states and adapted to fit the complete system
dynamics. Examples will be given in the malware epidemic models of this paper.

In the sequence, the random propagation dynamics will be derived and inserted in
the complete system dynamics of three epidemic models, demonstrating the flexibility of
using our model. In later sections, all models will be validated by comparing them with an
equivalent simulation.
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4. Modeling Cases
4.1. Derivation Case 1: SIS Model

The SIS model is the simplest cyclic compartmental model. It represents a closed cycle
where infected individuals can recover and the total population can be completely cleaned
of malware (see Figure 2 for the state transitions of the SIS model). Its states are only two:

Xsis[T] = (S[T], I[T])T (9)

Figure 2. Markov process of SIS model, the simplest compartmental model.

The dynamical equation of the SIS system is then extended from Equation (1) into
Equations (10a) and (10b). Note how ∆X is a composition of the infection term In and the
mitigation term Mn. This section will derive In to find Xsis[T + 1].

S[T + 1]− S[T] = −In/sis[T] + Mn[T]

I[T + 1]− I[T] = In/sis[T]− Mn[T]

(10a)

(10b)

4.1.1. SIS Derivation by Methodology of Attack-by-Attack Evolution of Populations

This system has less than four states; therefore, it is necessary to divide them into four
canonical states to derive the exact Markov chain of random propagation. The state I[T]
is directly translated into Ca[T], but S[T] needs to be subdivided into the other canonical
states, according to Equation (11).

S[T] = S1[T] + S f [T] + Si[T] (11)

I[T] = Ca[T] (12)

Considering that Si devices will waste any further attack aimed at them, separating
them from the total number of susceptible devices reveal the real availability of S for
infection after every attack in a turn (which is S1 + S f ). But since our real interest is the
total number of new infections at the end of the turn, the calculation Si after all attacks in a
turn directly yields In for our proposed Markov chain (Equation (13)).

In[T] = ISi[T] (13)

where ISi[T] represents Si[T] after all attacks performed in a turn (one attack per infected
device, in total I attacks).

After all attacks of the current turn are performed, the newly infected devices In[T] =
Si[T] will be moved from S to I to compose S[T + 1] and I[T + 1]. If there is no mitigation,
I[T + 1] is given by Equation (14):

I[T + 1]− I[T] = In[T] (14)

If there is mitigation, I[T + 1] is given by Equation (15):

I[T + 1]− I[T] = In[T]− Mn[T] (15)
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Having established all possibilities of random attacks and how they are used to
calculate In, the development of our exact Markov chain model can be now presented. To
calculate Si, it is necessary to analyze the evolution of all four populations during a single
turn and repeat. In a real-world scenario, attacks can happen at the same time, but an order
of attack will be assumed to facilitate the derivation of the Markov Chain. The order is the
sequence of network addresses. Because the size of the populations in Equation (11) will
change after every attack, another dependency on the states is necessary: k, standing for the
kth attack in a turn. As an example, kS1[T] is the size of the population of susceptible devices
never attacked this turn, evaluated on turn T after the kth attack (to clean up notation,
from now on, the T dependency will be omitted in some equations with the superscript k,
because k is always considered inside the same turn). This sequential analysis of attacks
will be used only to derive the Markov chain. During evaluation of the derived Markov
chain between two turns, the change of states will happen at once as if all attacks were
made at the same time. But note that a susceptible device that was infected this turn cannot
immediately assume the infected state and display infected behavior. It can only do so in
the next turn. Likewise, when the control server performs the mitigation of malware on an
infected device, it will return to the susceptible state only in the next turn. The procedure
of derivation is listed below.

Formulation of Target Probabilities

Firstly, it is necessary to define the probability of the kth attacker choosing each one of
the four populations. The vector containing these four probabilities will be called “Target
Probabilities”. To define it, Equation (9) is expanded using Equation (11), creating the
vector of canonical states kXc. The Target Probabilities of the kth attack will be simply the
vector Xc before the current attack: k−1Xc. This probability is represented by P(kXc) in
Equation (17).

kXc =

(
kS1

N
,

kS f

N
,

kSi
N

,
kCa

N

)T

(16)

P(kXc) =
k−1Xc (17)

Formulation of Evolution of Populations

Secondly, it is necessary to determine the new size of a population in case the kth
attacker targets any member of the four populations. This is carried out once for every
scenario of attack (four) for each population (also four). In total, there will be 16 calculations
represented by kS1|j,

kS f |j,
kSi|j and kCa|j, where j is the index for the scenario of attack. These

quantities will be called “Evolution of Populations” (see in Table 3 the form that these
quantities take, both as a recursive formula and as its evaluation for different values of k).
After a wasted attack, the Evolution of Populations will not exhibit any change (since no
state was changed), but after an efficient attack, a single device will be removed from one
population and given to another. In Table 3, the absence of change is shown in the two
columns under “Evolution of Populations (Wasted Attacks)”, while the cases with changes
are shown in the two columns under “Evolution of Populations (Efficient Attacks)”. In
the “Efficient Attacks” cases, note how the “If S1 is Attacked” case removes one device
from S1 and adds a fraction of 1 to both S f and Si. This happens because Table 3 shows the
stochastic average size of a population after an attack. The average for the Evolution of
Populations is calculated by summing the two possible outcomes: new size after successful
and after failed infection. That is why kS f |j and kSi|j shows two components: one weighted
by α and another weighted by 1 − α. The first is the size of the population in the case of a
successful attack, while the second is the size in the case of a failed attack.
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Table 3. Evolution of SIS populations. Grey cells: iterative formula to calculate all possible state changes after every attack. Yellow cells: calculations of final
expression of Population Sizes for k = 0, 1, 2, 3.

Evolution of Populations (Efficient Attacks) Evolution of Populations (Wasted Attacks) Population Size after kth Attack

If S1 is attacked If S f is attacked If Si is attacked If Ca is attacked

(Success or Failure) (Success or Failure) (Always Failure) (Always Failure) Pop Size

j = 1 j = 2 j = 3 j = 4
kS1|j

k−1S1 − 1 k−1S1
k−1S1

k−1S1
kS1[T] ∑4

j=1 P
(kXc(j)

)kS1|j
kS f |j (1 − α)

(k−1S f + 1
)
+ αk−1S f (1 − α)k−1S f + α

(k−1S f − 1
) k−1S f

k−1S f
kS f [T] ∑4

j=1 P
(kXc(j)

)kS f |j
kSi|j (1 − α)k−1Si + α

(k−1Si + 1
)

(1 − α)k−1Si + α
(k−1Si + 1

) k−1Si
k−1Si

kSi [T] ∑4
j=1 P

(kXc(j)
)kSi|j

kCa|j
k−1I k−1I k−1I k−1I kCa[T] ∑4

j=1 P
(kXc(j)

)kCa|j

Target Probabilities

j = 1 j = 2 j = 3 j = 4

P
(kXc(j)

) (k−1S1
)
/N

(k−1S f
)
/N

(k−1Si
)
/N I/N

Before any attack (k = 0)
0S1|j - - - - 0S1 S
0S f |j - - - - 0S f 0
0Si|j - - - - 0Si 0
0Ca|j - - - - 0Ca I

P
(0Xc(j)

)
- - - -

After the 1st attack (k = 1)

1S1|j S − 1 - - S 1S1 S − S
N

1S f |j 1 − α - - 0 1S f (1 − α)
S
N

1Si|j α - - 0 1Si α
S
N

1Ca|j I I I I 1Ca I

P
(1Xc(j)

)
S/N 0 0 I/N
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Table 3. Cont.

Evolution of Populations (Efficient Attacks) Evolution of Populations (Wasted Attacks) Population Size after kth Attack

If S1 is attacked If S f is attacked If Si is attacked If Ca is attacked

(Success or Failure) (Success or Failure) (Always Failure) (Always Failure) Pop Size

j = 1 j = 2 j = 3 j = 4

After the 2nd attack (k = 2)

2S1|j S − S
N

− 1 S − S
N

S − S
N

S − S
N

2S1 S − 2
S
N

+
S

N2

2S f |j

(1 − α)

(
S
N

− α
S
N

+ 1
)
+

α

(
S
N

− α
S
N

) (1 − α)

(
S
N

− α
S
N

)
+

α

(
S
N

− α
S
N

− 1
) (1 − α)

S
N

(1 − α)
S
N

2S f 2(1 − α)
S
N

−
(
1 − α2) S

N2

2Si|j (1 − α)

(
α

S
N

)
+ α

(
α

S
N

+ 1
)

(1 − α)

(
α

S
N

)
+ α

(
α

S
N

+ 1
)

α
S
N

α
S
N

2Si 2α
S
N

+ 2α2 S
N2

2Ca|j I I I I 2Ca I

P
(2Xc(j)

) (
S − S

N

)
/N

(
(1 − α)

S
N

)
/N

(
α

S
N

)
/N I/N

After the 3rd attack (k = 3)

3S1|j S − 2
S
N

+
S

N2 − 1 S − 2
S
N

+
S

N2 S − 2
S
N

+
S

N2
S − 2

S
N

+
S

N2
3S1 S − 3

S
N

+ 3
S

N2 − S
N3

3S f |j

(1 − α)

(
2(1 − α)

S
N

−
(
1 − α2) S

N2 + 1
)

(1 − α)

(
2(1 − α)

S
N

−
(
1 − α2) S

N2

)
2(1 − α)

S
N

−
(
1 − α2) S

N2
2(1 − α)

S
N

−
(
1 − α2) S

N2 3S f
+α

(
2(1 − α)

S
N

−
(
1 − α2) S

N2

)
+α

(
2(1 − α)

S
N

−
(
1 − α2) S

N2 + 1
) 3(1 − α)

S
N

− 3
(
1 − α2) S

N2 +
(
1 − α3) S

N3

3Si|j

(1 − α)

(
2α

S
N

+ 2α2 S
N2

)
(1 − α)

(
2α

S
N

+ 2α2 S
N2

)
2α

S
N

+ 2α2 S
N2

2α
S
N

+ 2α2 S
N2 3Si

+α

(
2α

S
N

+ 2α2 S
N2 − 1

)
+α

(
2α

S
N

+ 2α2 S
N2 + 1

) 3α
S
N

− 3α2 S
N2 + α3 S

N3

3Ca|j I I I I 3Ca I

P
(3Xc(j)

) (
S − 2

S
N

+
S

N2

)
/N

(
2(1 − α)

S
N

−
(
1 − α2) S

N2

)
/N

(
2α

S
N

+ 2α2 S
N2

)
/N I/N
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Formulation of New Size of Populations after an Attack

Finally, the probabilistic size of each population is calculated after the kth attack using
Equations (18)–(21). They are the internal product of Target Probabilities and Evolution
of Populations. This internal product is calculated once for each population. Note that,
given any of the four populations, its Target Probability is the same in all scenarios of attack
(because of Equation (17)), but its Evolution of Population is different for every scenario of
attack (because of j and Table 3). The Population Size of all four canonical states after the
kth attack is shown on the rightmost side of Table 3 in the yellow cells after the Evolution
of Populations are weighted by the Target Probabilities and are all summed into the final
Population Size.

kS1[T] =
4

∑
j=1

P(kXc(j))kS1|j (18)

kS f [T] =
4

∑
j=1

P(kXc(j))kS f |j (19)

kSi[T] =
4

∑
j=1

P(kXc(j))kSi|j (20)

kCa[T] =
4

∑
j=1

P(kXc(j))kCa|j (21)

Expanding these series for k > 3 (more than three attacks) becomes burdensome
and yields increasingly big expressions. To deduce a simplified expression for any k, we
expanded Equations (18)–(21) for each k from 0 to 3 and looked for mathematical patterns.
The calculations are shown in Table 3. The table is divided into five vertical sections: the
top section shows the recursive formulas with respect to k, while the second to bottom
sections show the resulting expressions from k = 0 to k = 3. Each section is further divided
into three subtables: top-left is the subtable containing the expression for the Evolution of
Populations; below it is the subtable containing the Target Probabilities; and the top-right is
the subtable containing the Population Size After kth Attack. Table 3 takes us into every step
necessary to calculate the desired Population Size After kth Attack. As Equations (18)–(21)
indicate, we multiply the Target Probabilities by Evolutions of Populations (j by j, from 1 to
4), and sum the four multiplications to find its Population Size. Looking at the Population
Size of all canonical states for k = 0, 1, 2, 3 (last column, marked in yellow), it can be
seen that after every attack, a new term was added to the Population Size. Checking the
coefficients of 0S1, 1S1, 2S1, and 3S1, we find they are, respectively, the same as the elements
of Rows 1, 2, 3, and 4 of the extended Pascal triangle (which has the same elements as
Pascal’s triangle but with consecutive elements alternating between positive and negative
values). Figure 3 shows the first four rows of Pascal’s triangle, while Figure 4 shows the
same for the extended Pascal triangle

Figure 3. Pascal’s triangle.
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Figure 4. Extended Pascal triangle.

The elements of Pascal’s triangle can be described by the operator (n
p), which represents

the number of ways to choose p elements from a set of n distinct elements. Multiplying
it by (−1)i will modify its sign alternately along the rows, describing the elements of the
extended Pascal triangle. With this operator, we formulate a simplified expression for the
Population Size of the canonical states after an arbitrary number of I attacks, shown in
Equations (22)–(25):

IS1[T] = N
I

∑
i=0

(−1)i
(

I

i

) S
Ni+1 (22)

IS f [T] = N
I

∑
i=1

(−1)i
(

I

i

)
I(1 − αi)

S
Ni+1 (23)

ISi[T] = N
I

∑
i=1

(−1)i
(

I

i

)
Iαi S

Ni+1 (24)

ICa[T] = Ca[T] (25)

Note how only S1 has a summation that starts with i = 0, while S f and Si start with
i = 1. This highlights how S f and Si are subtractions of S1 that grow in time as more
attacks are performed. But despite the exactness of the derivation above, the model is still
computationally heavy. By using the Binomial Theorem it is possible to further simplify the
equations. The coefficients of the k expanded summation of S1 are equal to the elements
of the k + 1 row of the extended Pascal triangle (the version with alternating negative
elements). Since the theorem posits that every row can be simplified to the same binomial
and that the exponent is equivalent to the number of the row, Equations (22)–(25) can be
transformed into the following ones:

IS1[T] = S[T]
(

1 − 1
N

)I
(26)

IS f [T] = S[T]

((
1 − α

N

)I
−
(

1 − 1
N

)I
)

(27)

ISi[T] = S[T]− S[T]
(

1 − α

N

)I
(28)

ICa[T] = Ca[T] (29)

Substituting Equation (28) into Equation (13), the exact Markov chain is found for
random malware propagation:

In/sis[T] = S[T]
(

1 −
(

1 − α

N

)I[T]
)

(30)

Compare it with the SIS standard nonlinear model (Equation (5)). The three original
mathematical operations become five, with the benefit of an exact calculation that eliminates
errors as big as ∼10% of a population, as we will see in Section 6.2.
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4.2. Derivation Case 2: SEIRS Model with Delay

The compartmental model SEIRS is a popular template used in many studies with
specific modifications to the modeled network [25,26,31]. It presents a delay mechanism
in both infection and mitigation. After being infected, devices are first brought to a
state of temporary incubation (called exposed and represented by E), where they remain
asymptomatic for some turns and do not replicate the infection. After being cleaned,
devices are brought to a state of temporary immunity (called recovered and represented by
R) and cannot be infected again for some turns. In most models, devices stay in E and R
for a fixed number of turns and then finish transitioning to the final state. E takes ω turns
to transition to I, while R takes τ turns to transition to S. Its states are four:

Xseirs[T] = (S[T], E[T], I[T], R[T])T (31)

See Figure 5 for the state machine of SEIRS. An important observation is that the
complete model is not a Markov chain because it depends on older states than the current
one (the transition of E to I and R to S are mediated by delays). But the propagation model
In/seirs that we are modeling depends only on the previous state; therefore, it is a Markov
chain by itself.

Figure 5. State machine of SEIRS model.

The dynamical equation of the SEIRS system is developed from Equation (1) into
Equations (32a)–(32d).

S[T + 1]− S[T] = −In/seirs[T] + Mn[T − τ]

E[T + 1]− E[T] = In/seirs[T]− In/seirs[T − ω]

I[T + 1]− I[T] = In/seirs[T − ω]− Mn[T]

R[T + 1]− R[T] = Mn[T]− Mn[T − τ]

(32a)

(32b)

(32c)

(32d)

Although this system has four states, to derive the exact Markov chain of random
propagation, it is necessary to consider them only in terms of efficient and wasted attacks.
From the four states, only S can possibly change states after an attack. Devices from E, I,
and R change states due to other dynamics, not infection attempts (I is due to mitigation,
and E or R are due to the time delay after infection or mitigation). Therefore, S will be
divided into the canonical states S1, S f , and Si (Equation (33))

S[T] = S1[T] + S f [T] + Si[T] (33)

and E, I, and R will be grouped into Ca[T] (Equation (34)).

Ca[T] = E[T] + I[T] + R[T] (34)



Mathematics 2024, 12, 835 16 of 28

Moreover, the number of attacks will be determined by I only, since E devices are
already compromised but are not yet propagating the infection.

4.2.1. Methodology 1 of Derivation of SEIRS Propagation: Modification of the Basic
Propagation Term In/sis

There are two important factors to take into account when modifying the basic propa-
gation term In/sis:

1. Which epidemic states are equivalent to S1, S f and Si.
2. How to parameterize the number of malware attacks in terms of epidemic states.

The first factor is due to the fact that from the four canonical states, only S1, S f , and Si
actually change during attacks. The equivalence between the epidemic states, and these
three canonical states will affect S in the basic formula of In/sis (Equation (30)). The second
factor is simply related to the exponent I in the formula of In/sis: does only I contribute to
the number of attacks, or does any other epidemic state also contribute? If it is the latter
case, this needs to be reflected in the binomial exponent of In.

Moving on to the modification of In/sis for the SEIRS model, at first, big changes could
be expected since the SEIRS delays introduce a complex dynamic in the interaction between
S and I. They also affect malware propagation significantly by reducing the populations
available to infection. But when the two factors above are considered, the SEIRS model
shows characteristics equivalent to the SIS model: only S is transformed into S1, S f , and
Si, and only I is considered in the number of malware attacks. Therefore, the formula for
In/seirs will be exactly the same as Equation (30):

In/seirs[T] = S[T]
(

1 −
(

1 − α

N

)I[T]
)

(35)

The delayed transition from E to I is modeled by the simple subtraction of the delay
ω from T in In/seirs, leading to Equation (36):

In/seirs[T − ω] = S[T − ω]

(
1 −

(
1 − α

N

)I[T−ω]
)

(36)

Compare them with the SEIRS standard nonlinear model of propagation, Equations
(37) and (38):

In/seirs/std[T] = αS[T]
I[T]
N

(37)

In/seirs/std[T − ω] = αS[T − ω]
I[T − ω]

N
(38)

The normal SEIRS mitigation (non-delayed) is the same as the SIS one (Equation (6)).
The delayed transition from R to I is modeled by subtracting τ from T in the equation
for Mn.

Mn[T − τ] = βI[T − τ] (39)

4.2.2. Methodology 2 of Derivation of SEIRS Propagation: Formulation of Evolution
of Populations

If one wants to derive the propagation term In more precisely than by intuitive
modification of In/sis, then the same recursive formulas shown in Table 3 can be applied
in the SEIRS model. To do that, Equations (33) and (34) can be analyzed to see how the
four epidemic states S, E, I, and R will be transformed into the four canonical states of
propagation, then apply the same formulas of adding or removing one device from the
populations of canonical states as explained in “Formulation of Evolution of Populations”
(Section 4.1.1). For the SEIRS model, only the recursive formula will be shown, but the
evaluation will be omitted for the sake of conciseness.
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As Table 4 shows, the only difference in the iterative formulas between SIS and SEIRS
models is the unchanging canonical state Ca, which does not affect the derivation of In.
When the mathematical patterns of the first three attacks are extrapolated to all attacks, the
number of attacks in turn continues to be I[T] as in SIS. Therefore, the results of Table 4 are
exactly the same as the SIS table, and the terms In/sis and In/seirs are exactly the same.

Table 4. Evolution of SEIRS populations. Grey cells: iterative formula to calculate all possible state
changes after every attack.

Evolution of Populations (Efficient Attacks) Evolution of Populations (Wasted Attacks) Population Size After kth Attack

If S1 is attacked If S f is attacked If Si is attacked If Ca is attacked
(Success or Failure) (Success or Failure) (Always Failure) (Always Failure) Pop Size

j = 1 j = 2 j = 3 j = 4
kS1|j

k−1S1 − 1 k−1S1
k−1S1

k−1S1
kS1[T] ∑4

j=1 P
(

kXc(j)
)

kS1|j

kS f |j
(1 − α)

(
k−1S f + 1

)
+

αk−1S f

(1 − α)k−1S f +

α
(

k−1S f − 1
) k−1S f

k−1S f
kS f [T] ∑4

j=1 P
(

kXc(j)
)

kS f |j

kSi|j
(1 − α)k−1Si +
α
(

k−1Si + 1
) (1 − α)k−1Si +

α
(

k−1Si + 1
) k−1Si

k−1Si
kSi [T] ∑4

j=1 P
(

kXc(j)
)

kSi|j

kCa|j
k−1E + k−1I + k−1R k−1E + k−1I + k−1R k−1E + k−1I + k−1R k−1E + k−1I + k−1R kCa [T] ∑4

j=1 P
(

kXc(j)
)

kCa|j

Target Probabilities

j = 1 j = 2 j = 3 j = 4

P
(

kXc(j)
) (

k−1S1
)
/N

(
k−1S f

)
/N

(
k−1Si

)
/N (E + I + R)/N

4.2.3. Note on the Evaluation of Complete SEIRS Dynamics

Although the propagation model In is the same for SIS and SEIRS, there is an important
difference in the complete system dynamics (Equations (32a)–(32d)): In/seirs is a Markov
chain, but the system dynamics is not. The delays make the system dependent on older
states than the current one. When evaluating the system dynamics, it will be necessary
to store previous states and to index the proper turn of the delayed terms with [T − ω] or
[T − τ]. Apart from this, SIS and SEIRS models are basically different systems using the
same terms In and Mn in different ways (like the standard nonlinear model of random
propagation).

4.3. Derivation Case 3: 2SEIS Model of Heterogeneous Network

The 2SEIS model is proposed in this work with the didactic purpose of demonstrating
how to derive the random propagation model for a heterogeneous network. In this network,
there are two types of devices: CCTV devices (indicated by S) and mobile devices (indicated
by S′). The former behaves like the SIS model and transitions from S to I immediately after
infection, while the latter has the “incubation” delay of the SEIRS model and transitions
from S′ to E′ first, then to I′. However, this different behavior is caused by a single
malware that can infect both devices and be passed from one type to the other. Another
motivation for proposing this model is to explore characteristics of heterogeneous dynamics
in modeling, aiming to better relate epidemic models with the increasing complexity of
cross-platform Internet connectivity that is seen today.

Like in the SEIRS model, the delay from exposed to infected is represented by ω turns
of delay, and therefore, the complete model is not a Markov chain while the propagation
model In/2seis is. See Figure 6 for the state machine of 2SEIS. There are five states in total:

X2seis[T] =
(
S[T], I[T], S′[T], E′[T], I′[T]

)T (40)
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Figure 6. State machine of 2SEIS model.

The dynamical equation of the 2SEIS system is then extended from Equation (1) to
Equations (41a)–(41e). Note how each device has its own infection and mitigation terms.

S[T + 1]− S[T] = −In/2seis[T] + Mn[T]

I[T + 1]− I[T] = In/2seis[T]− Mn[T]

S′[T + 1]− S′[T] = −I′n/2seis[T] + M′
n[T]

E′[T + 1]− E′[T] = I′n/2seis[T]− I′n/2seis[T − ω]

I′[T + 1]− I′[T] = I′n/2seis[T − ω]− M′
n[T]

(41a)

(41b)

(41c)

(41d)

(41e)

4.3.1. Methodology 1 of Derivation of 2SEIS Propagation: Modification of the Basic
Propagation Term In/sis

Although this system has five states, two of them are susceptible states, one for each
type of device; two are infected states, one for each type; and one is the exposed state for
the mobile type. Regarding the first factor listed in Section 4.2.1, the susceptible state of
each device will be divided into its own trio of susceptible canonical states, because CCTV
and mobile devices behave differently with respect to infection. Regarding the second
factor, consider how the same malware infects both types of devices and each type can
infect the other. This translates into a synergy between I and I′ that is reflected in the
binomial exponent of the propagation terms (In[T], I′n[T], and I′n[T − ω]). Both I and I′ will
contribute to the quantity of attacks in each device, leading to (1 − α/N)(I+I′).

Paying attention to these two factors, the following propagation terms are found.
Equation (42) represents random malware propagation in CCTV devices, Equation (43)
represents the same in mobile devices and Equation (44) represents the delayed change of
exposed mobile devices into infected ones.

In/2seis[T] = S[T]
(

1 −
(

1 − α

N

)I[T]+I′ [T]
)

(42)

I′n/2seis[T] = S′[T]
(

1 −
(

1 − α

N

)I[T]+I′ [T]
)

(43)

I′n/2seis[T − ω] = S′[T − ω]

(
1 −

(
1 − α

N

)I[T−ω]+I′ [T−ω]
)

(44)

Compare them with the 2SEIS standard nonlinear model of propagation, Equations (45)–(47):



Mathematics 2024, 12, 835 19 of 28

In/2seis/std[T] = αS[T]
I[T] + I′[T]

N
(45)

I′n/2seis/std[T] = αS′[T]
I[T] + I′[T]

N
(46)

I′n/2seis/std[T − ω] = αS′[T − ω]
I[T − ω] + I′[T − ω]

N
(47)

With this reasoning, the terms are readily adapted from the basic random propagation
term of SIS model (Equation (30)) an the delayed term of exposed state of SEIRS model
(Equation (36)).

4.3.2. Methodology 2 of Derivation of 2SEIS Propagation: Formulation of Evolution of
Populations

The modification of In for 2SEIS was minimal, something recurrent in the derivation
of propagation terms for different epidemic models. But in the case of difficulty in the
modification, a sure derivation of In/2seis can be performed through the recursive formulas of
Table 5.

Table 5. Evolution of 2SEIS populations. Grey cells: iterative formula to calculate all possible state
changes after every attack.
.

Evolution of Populations (Efficient Attacks) Evolution of Populations (Wasted Attacks) Population Size After kth Attack

If S1 is attacked If S f is attacked If Si is attacked If Ca is attacked
(Success or Failure) (Success or Failure) (Always Failure) (Always Failure) Pop Size

j = 1 j = 2 j = 3 j = 4
kS1|j

k−1S1 − 1 k−1S1
k−1S1

k−1S1
kS1[T] ∑7

j=1 P
(

kXc(j)
)

kS1|j

kS f |j
(1 − α)

(
k−1S f + 1

)
+

αk−1S f

(1 − α)k−1S f +

α
(

k−1S f − 1
) k−1S f

k−1S f
kS f [T] ∑7

j=1 P
(

kXc(j)
)

kS f |j

kSi|j
(1 − α)k−1Si +
α
(

k−1Si + 1
) (1 − α)k−1Si +

α
(

k−1Si + 1
) k−1Si

k−1Si
kSi [T] ∑7

j=1 P
(

kXc(j)
)

kSi|j

kCa|j
k−1I + k−1I ′ + k−1E k−1I + k−1I ′ + k−1E k−1I + k−1I ′ + k−1E k−1I + k−1I ′ + k−1E k−1Ca [T] ∑7

j=1 P
(

kXc(j)
)

kCa|j

If S′
1 is attacked If S′

f is attacked If S′
i is attacked

(Success or Failure) (Success or Failure) (Always Failure) Pop Size

j = 5 j = 6 j = 7
kS′

1|j
k−1S′

1 − 1 k−1S′
1

k−1S′
1

kS′
1[T] ∑7

j=1 P
(

kXc(j)
)

kS′
1|j

kS′
f |j

(1 − α)
(

k−1S′
f + 1

)
+

αk−1S′
f

(1 − α)k−1S′
f +

α
(

k−1S′
f − 1

) k−1S′
f

kS′
f [T] ∑7

j=1 P
(

kXc(j)
)

kS′
f |j

kS′
i|j

(1 − α)k−1S′
i +

α
(

k−1S′
i + 1

) (1 − α)k−1S′
i +

α
(

k−1S′
i + 1

) k−1S′
i

kS′
i [T] ∑7

j=1 P
(

kXc(j)
)

kS′
i|j

Target Probabilities
j = 1 j = 2 j = 3 j = 4

P
(

kXc(j)
) (

k−1S1
)
/N

(
k−1S f

)
/N

(
k−1Si

)
/N (I + I ′ + E)/N

j = 5 j = 6 j = 7

P
(

kXc(j)
) (

k−1S′
1

)
/N

(
k−1S′

f

)
/N

(
k−1S′

i

)
/N

Firstly, all nonsusceptible states are separated from the two susceptible states and grouped
together into Ca[T] because none of them can change state due to a malware attack:

Ca[T] = E′[T] + I[T] + I′[T] (48)

Then, one subdivision of S into the three other canonical states is created for each
device. In other words:

S[T] = S1[T] + S f [T] + Si[T] (49)

S′[T] = S′
1[T] + S′

f [T] + S′
i [T] (50)
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Then, the recurrent formulas shown in Table 5 are developed, iterating for the three first
attacks to see how the patterns emerge. Since there are five states, the recursive calculation
is rather burdensome, but many terms cancel themselves, and the general format of the
propagation term is identical for both S and S′. It is almost the same result of In/sis, but when
the iterations are extrapolated to the total numbers of attacks, the difference in the binomial
exponent takes the form of I + I′, because in a single turn, there are I + I′ malware attacks.
This leads to Equations (42)–(44) as derived in the last subsection by modification of In/sis.

5. Exact Markov Chains
5.1. Dtmc of Example 1: SIS Model

Substituting Equations (30) and (6) into Equations (10a) and (10b) (for the propagation
term In and the mitigation term Mn respectively) yields the complete dynamics of the SIS
model in Equations (51a) and (51b).

S[T + 1]− S[T] = −S[T]
(

1 −
(

1 − α

N

)I[T]
)
+ βI[T]

I[T + 1]− I[T] = S[T]
(

1 −
(

1 − α

N

)I[T]
)
− βI[T]

(51a)

(51b)

5.2. Dtmc of Example 2: SEIRS Model

Substituting Equations (35) and (6) into Equations (32a)–(32d) for the propagation
term In[T], the mitigation term Mn[T] and their respective versions with delays In[T − ω]
and Mn[T − τ], yields the complete dynamics of the SEIRS model in Equations (52a)–(52d).

S[T + 1]− S[T] = −S[T]
(

1 −
(

1 − α

N

)I[T]
)
+ βI[T − τ]

E[T + 1]− E[T] = S[T]
(

1 −
(

1 − α

N

)I[T]
)
− S[T − ω]

(
1 −

(
1 − α

N

)I[T−ω]
)

I[T + 1]− I[T] = S[T − ω]

(
1 −

(
1 − α

N

)I[T−ω]
)
− βI[T]

R[T + 1]− R[T] = βI[T]− βI[T − τ]

(52a)

(52b)

(52c)

(52d)

5.3. Dtmc of Example 3: 2SEIS Model

Substituting Equations (42)–(44) and (6) into Equations (41a)–(41e) yields the complete
dynamics of the 2SEIS model in Equations (53a)–(53e).



S[T + 1]− S[T] = −S[T]
(

1 −
(

1 − α

N

)I[T]+I′ [T]
)
+ βI[T]

I[T + 1]− I[T] = S[T]
(

1 −
(

1 − α

N

)I[T]+I′ [T]
)
− βI[T]

S′[T + 1]− S′[T] = −S′[T]
(

1 −
(

1 − α

N

)I[T]+I′ [T]
)
+ βI′[T]

E′[T + 1]− E′[T] = S′[T]
(

1 −
(

1 − α

N

)I[T]+I′ [T]
)
− S′[T − ω]

(
1 −

(
1 − α

N

)I[T−ω]+I′ [T−ω]
)

I′[T + 1]− I′[T] = S′[T − ω]

(
1 −

(
1 − α

N

)I[T−ω]+I′ [T−ω]
)
− βI′[T]

(53a)

(53b)

(53c)

(53d)

(53e)

6. Validation Of Proposed Model

In order to demonstrate the validity of our model and compare its performance with
the main model of literature, we developed a stochastic simulation that performs infections
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and mitigation actions device by device. Setting the same parameters for the Markov
chain models and the simulation, the results of the Markov chain and the simulation
were generated independently and compared. The simulation results are independent of
the Markov chain because Equations (51a)–(53e) represent the epidemic states of entire
populations of devices without keeping track of the state of individual devices. The
simulation, however, stores the state of every device. Moreover, the infection and detection
rates behave as deterministic parameters in the equation, but in the simulation, they are
real random tests performed at every attempt of infection and cleaning. By running the
simulation against a sufficiently big population, the stochastic variability of the simulation
is minimized, and a fair, independent comparison becomes possible. The simulation code
is available on a public GitHub repository (link at the end of the paper).

Figures 7–9 show the results of the simulation of SIS, SEIRS, and 2SEIS. Although
simulations were performed for many different parameters (see Table 6), only the figures of
the simulation for the high rate of infection will be shown since this is the scenario with
the biggest degradation of performance for the standard nonlinear model. This and other
results will be discussed later in this section.

Figure 7. Results of simulation of models SIS for α = 90/β = 45, with the curves of all populations of
each model.

Figure 8. Results of simulation of models SEIRS for α = 90/β = 45, with the curves of all populations
of each model.
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Figure 9. Results of simulation of models 2SEIS for α = 90/β = 45, with the curves of all populations
of each model.

Table 6. Comparison of performance between the standard nonlinear model and our proposed
model of random propagation, applied in the epidemic models SEIRS and 2SEIS. Errors “Max E” and
“RMSE” are calculated comparing the results of a mathematical model with its equivalent simulation.

DTMC Model SIS SEIRS 2SEIS

Value of α Low Average High Low Average High Low Average High

Max Error of S Standard 3.15% 5.96% 9.88% 2.54% 4.05% 5.58% 2.95% 5.32% 8.34
Proposed 0.14% 0.13% 0.20% 0.13% 0.13% 0.14% 0.11% 0.16% 0.11%

RMSE of S Standard 2.69% 5.44% 9.33% 2.10% 3.68% 5.23% 2.53% 4.83% 7.88%
Proposed 0.0510% 0.0551% 0.0582% 0.0652% 0.0551% 0.0504% 0.0480% 0.0716% 0.0532%

S[T f ] Standard 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0%
Proposed 53.0% 55.7% 59.6% 52.4% 53.9% 55.46% 52.8% 55.2% 58.2%

Tc of S Standard 36 18 11 39 22 13 38 21 13
Proposed 35 18 10 39 21 13 38 20 12

6.1. Parameters

To nullify the variability of the stochastic simulation, a network model of 106 IoT
devices was used, at which size the variability of our random tests decreases to ∼0.1%. The
network is isolated from external interactions, and the simulations start with a percentage
of devices already infected from the beginning, which then propagate the malware to other
devices. This initial percentage of infections is I[0]

N = 10% in all simulations.
Two important parameters are the rate of infection α and detection β. Their ratio

approximates R0, the “basic reproduction number”, which defines the behavior of the
malware epidemic: R0 < 1 creates a scenario of natural eradication of malware; R0 = 1
creates a balance between infection and mitigation, leading to slow transitions; and R0 > 1
propagates malware aggressively until an endemic state with high percentages of infection.

R0 =
α

β
(54)

The focus of our previous work was a mitigation strategy that compensated weak
security in IoT networks, modeled as low detection rates of malware by the detection
system. This goal motivated our choice of parameters in a different way when compared
to the present study. We validated our propagation model for three different scenarios in
SIS dynamics: R0 = 0.5, R0 = 1, and R0 = 2, which defines the behavior of the malware
epidemic as described above. We used the same low rate of infection α = 25% to emulate
weak network security and varied β to generate each of these three R0 values according to
Equation (54). With this choice of parameters, our 2021 study [32] proposed a network-level
mitigation strategy for constrained networks, while our 2023 study [21] extended it to
global networks.

In this work, we focused on the generalization of derivation of the propagation
dynamics and on the investigation of its improvement over the standard nonlinear model.
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One of the main objectives was to identify the maximum errors of both models. Since the
previous work limited α to 25%, this time we varied it to three values representing weak,
average, and aggressive rates of infection: a low value of α = 25%, an average value of
α = 50% and a high value of α = 90%. In the previous study, we identified that bigger
errors occur when R0 > 1 (aggressive rate of infection); therefore, this time, we fixed R0 at
R0 = 2 and made β = α/2 for each of the three chosen values for α described above.

Besides α and β, the SEIRS model has two additional parameters: the exposed delay
ω and the recovery delay τ. The same value was used for them in all results: ω = 1
and τ = 1. Although bigger delays are important to explore the behavior of the SEIRS
model, the objective here is to investigate the difference in precision between the two
propagation models (our proposed model and the standard nonlinear model). Since the
measured variable is the infected population I, the most accentuated difference of precision
will happen when the infected population reaches its highest value. However, when
the delays are big, devices stay longer in the delay-related state, inflating their size and
consequently decreasing the size of S and I. Therefore, the delays were kept at the very
minimum to still have SEIRS behavior and create the biggest difference in precision between
propagation models.

The 2SEIS model has only the infection delay but requires the previous definition of
how many devices are CCTV and how many are mobile. 50% of the network was set for
each. Regarding E′, the same value of exposed delay ω = 1 was used.

6.2. Validation of Proposed Propagation Terms for SEIRS and 2SEIS

Table 6 presents four metrics to evaluate the accuracy of prediction of our proposed
DTMC and the standard nonlinear one. The four metrics were calculated only for the
curve of susceptible devices S, which in all simulated scenarios has the biggest value of any
population. Consequently, it displays the biggest percentage error. “Max Error of S” and
“RMSE of S” compare the results of a DTMC with its equivalent simulation (SIS, SEIRS, or
2SEIS). The first metric is simply the maximum error between DTMC and simulation. The
second one represents the root-mean-square error of the time series of S between DTMC
and simulation. Its calculation is presented in Equation (55). “S[Tf ]” represents the final
value of the susceptible population of DTMC. At last, “Tc of S” represents the time constant
of the S time series. “Time constant” here is defined as how many turns it takes for I[T] to
reach 95% of its final value.

RMSE =

√
∑Tmax

k=1 (Ssim[k]− Sdtmc[k])
2

Tmax
(55)

In addition to the table results, the time series of S is shown for both propagation
models and for the simulation in Figures 10–12, as well as the time series of error between
DTMCs and simulation in Figures 13–15. Like the figures of the last subsection, results are
shown only for the scenario of high α.

Figure 10. SIS epidemic model. Curve of population S for proposed model, standard nonlinear
model, and simulation.
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Figure 11. SEIRS epidemic model. Curve of population S for proposed model, standard nonlinear
model, and simulation.

Figure 12. Double susceptible–exposed–infected–susceptible (2SEIS) epidemic model. Curve of
population (S + S’) for proposed model, standard nonlinear model, and simulation.

Figure 13. SIS epidemic model. Error of population S for proposed model, standard nonlinear model,
and simulation.

Figure 14. SEIRS epidemic model. Error of population S for proposed model, standard nonlinear
model, and simulation.
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Figure 15. Double susceptible–exposed–infected–susceptible (2SEIS) epidemic model. Error of
population (S + S’) for proposed model, standard nonlinear model, and simulation.

The first result to discuss is the accuracy of our proposed model and the inadequacy
of the standard nonlinear model. The Max Error of S in the latter ranges ∼3% for low α,
∼5% for average α and ∼8% for high α, with a maximum error over all cases of 9.88%. In
our previous work, the maximum error was only 3.15% for the SIS model (mainly because
a new mitigation strategy focused on low infection and detection rates was investigated).
But it turns out that the error of the standard nonlinear model can go as high as ∼10%.
On the other hand, our proposed model has the same range of error of ∼0.15% over all
scenarios and models. This confirms our previous conclusion: such a small and constant
error is just the variability of the stochastic simulation and is independent of parameters
and models. The same conclusion can be taken from Figures 13–15, where the error of
S for the standard model increases as the turn passes and the infections grow, while the
error for our proposed model oscillates very slightly around 0%. Moreover, the RMSE
of our model is extremely low (∼0.05%); meanwhile, the standard nonlinear model has
RMSEs as high as 9.33%. These quantitative results clearly demonstrate that our model is
an exact match for the phenomenon of random propagation, independently of parameters
or epidemic models.

Conceptually, such differences between propagation models can be explained by actual
dynamics the standard nonlinear model represent exactly: pseudo-random propagation
dynamics with only one inefficiency mechanism, the malware targeting of already-infected
devices. The repetition of targets is not included in the small expression of αSI. More
details of this conclusion can be found in the previous work, where they demonstrated this
exact match for the standard model with simulations.

The two last metrics showed the qualitative differences between the two compared
propagation models. S[Tf ] of the standard model is 50% for all scenarios, but in our
exact model, it is higher than 50% and increases with α. This is an important conceptual
difference, especially in light of our mitigation strategy proposed in the previous work. It
has a trade-off between the number of nondetected infections being cleaned in the group
mitigation and the unnecessary cleaning (generating operation downtime) of already clean
devices. Our control policy is then based on calculating the number of blind cleanings to
match how much percent of the network is infected. The reason for the difference in S[Tf ]
between standard and proposed models can be understood by checking the dynamics of S
in the equilibrium state for both models. Taking the 2SEIS example, the expression for S[Tf ]
is given in Equation (56). It is independent of I, being simply the inverse of R0 times N.

0 = −αS[Tf ]
I[Tf ] + I′[Tf ]

N
+ β(I[Tf ] + I′[Tf ])

S2seis/std[Tf ] =
β

α
N =

β

R0
(56)
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S[Tf ] of our proposed model, however, depends not only on I[Tf ] but also on the
binomial (Equation (57)). Together with the numerical simulation, this mathematical result
points to the overestimation of malware propagation in the standard model.

0 = −S[Tf ]

(
1 −

(
1 − α

N

)I[Tf ]+I′ [Tf ]
)
+ βI[Tf ]

S2seis[Tf ] =
βI[Tf ](

1 −
(

1 − α

N

)I[Tf ]+I′ [Tf ]
) (57)

The last metric (Tc) does not show any significant difference between these two models
(however, it does when compared with the linear model, as shown in our last work). It
is presented here anyway to add the small observation of how many turns it takes for
the malware epidemic to stabilize for different ranges of α. Considering how α almost
doubled in every change of scenario, Tc of S almost shows a linear dependence. However,
investigation of this point is left in future studies.

These results show that the standard nonlinear model, widespread in the literature, is
not a good model for true random propagation of malware, and that our proposed model
represents the exact dynamics of random propagation with the small trade-off of a slightly
more complex expression (a binomial with six operations against a multiplication with
three operations). Being both models nonlinear, the advantages of using the standard
model instead of ours seem very small.

7. Conclusions

In this paper, we presented the generalization of our exact model of random propa-
gation of malware to any discrete malware model that makes Markov chain assumptions.
We further developed an alternative methodology of derivation that applies two rules to
modify the simplest form of the propagation dynamics (made for the SIS model) to any
compartmental malware model, simplifying the derivation process.

To validate this generalization, we performed the two forms of derivation for three
malware models—SIS, SEIRS, and 2SEIS—evaluated the equations with varying sets of
parameters and compared their results with their corresponding simulation. By comparing
the time-series progression of the network populations between the results of equations and
simulations, we found stochastic errors of less than 0.2%. This comparison was repeated
for the standard nonlinear model (the most popular model in the literature), finding an
average error of 5% and maximum error of 9.88% (almost two orders of magnitude).

This result confirms that our model is exact, and that errors in the standard nonlinear
model can have a significant impact on predictability. Therefore, we highlight the advantage
of substituting the standard nonlinear model with our proposed model. The only limitation
to its use is the requirement of Markov chain assumptions, preventing its application in
malware models with memory of the states S and I (models with memory of other states
can still use our propagation dynamics, as seen in SEIRS).

In future works, we will present an investigation of the algebraic tractability of our
propagation dynamics the in laws of control of automatic mitigation systems.
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The following abbreviations are used in this manuscript:

2SEIS Double susceptible–exposed–infected–susceptible
CCTV Closed-circuit television
DDoS Distributed denial of service
DTMC Discrete-time Markov chain
IoT Internet of Things
RMSE Root-mean-square error
SEIRS Susceptible–exposed–infected–recovered-susceptible
SEIRD Susceptible–exposed–infected–recovered–dead
SIR Susceptible–infected–recovered
SIRS-L Susceptible–infected–recovered–susceptible–low-energy
SIS Susceptible–infected–susceptible
WSN Wireless sensor network
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