
Citation: Zhang, Q.; Xu, B.; Yao, M.;

Wang, J.; Guo, X.; Qin, S.; Qi, L.; Lu, F.

An Improved Moth-Flame Algorithm

for Human–Robot Collaborative

Parallel Disassembly Line Balancing

Problem. Mathematics 2024, 12, 816.

https://doi.org/10.3390/

math12060816

Academic Editor: António Lopes

Received: 23 January 2024

Revised: 28 February 2024

Accepted: 6 March 2024

Published: 11 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

An Improved Moth-Flame Algorithm for Human–Robot
Collaborative Parallel Disassembly Line Balancing Problem
Qi Zhang 1, Bin Xu 1, Man Yao 2, Jiacun Wang 3 , Xiwang Guo 4, Shujin Qin 5 , Liang Qi 6,* and Fayang Lu 4

1 College of Information Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China;
qizhang@syuct.edu.cn (Q.Z.); binxu3111@163.com (B.X.)

2 School of Basic Medicine, He University, Shenyang 110163, China; yaoman@huh.edu.cn
3 Department of Computer Science and Software Engineering, Monmouth University,

West Long Branch, NJ 07764, USA; jwang@monmouth.edu
4 College of Information and Control Engineering, Liaoning Petrochemical University, Fushun 113001, China;

xguo1@njcu.edu (X.G.); lfy6965@163.com (F.L.)
5 College of Economics and Management, Shangqiu Normal University, Shangqiu 476000, China;

qinshujin@sqnu.edu.cn
6 Department of Computer Science and Technology, Shandong University of Science and Technology,

Qingdao 266590, China
* Correspondence: qiliang@sdust.edu.cn

Abstract: In the context of sustainable development strategies, the recycling of discarded products
has become increasingly important with the development of electronic technology. Choosing the
human–robot collaborative disassembly mode is the key to optimizing the disassembly process and
ensuring maximum efficiency and benefits. To solve the problem of human–robot cooperative parallel
dismantling line balance, a mixed integer programming model is established and verified by CPLEX.
An improved Moth-Flame Optimization (IMFO) algorithm is proposed to speed up convergence
and optimize the disassembly process of various products. The effectiveness of IMFO is evaluated
through multiple cases and compared with other heuristics. The results of these comparisons can
provide insight into whether IMFO is the most appropriate algorithm for the problem presented.

Keywords: human–robot collaborative disassembly; parallel disassembly line; improved moth-flame
algorithm

MSC: 90-08

1. Introduction

The rapid pace of product development in society, particularly in the realm of electronic
products, has percipated a surge in end-of-life products. E-waste stands out as the fastest
growing type of solid waste globally. However, these discarded products often harbor
valuable subassemblies that can be recycled to generate fresh value. Disassembly emerges
as a pivotal stage in the recycling process. The disassembly line balancing problem (DLBP)
is characterized by the task of assigning disassembly tasks to workstations while adhering
to various constraints [1–4]. Furthermore, there exists a spectrum of options for configuring
the layout of the disassembly line, including a straight disassembly line [5], a U-shaped
disassembly line [6], a bilateral disassembly line [7], and a parallel disassembly line [8,9].

As depicted in Figure 1, a parallel disassembly line pertains to the arrangement of
two disassembly lines in running parallel on either side of the workstation. This configura-
tion enables the separation of different types of products onto distinct disassembly lines,
thereby averting the mixing and mishandling of subassemblies. Furthermore, given a fixed
conveyor speed, the throughput of the parallel disassembly line, expressed as the number
of products disassembled per unit time, is double that of the linear disassembly line. It
is imperative to consider which subassemblies are suitable for disassembly and which

Mathematics 2024, 12, 816. https://doi.org/10.3390/math12060816 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12060816
https://doi.org/10.3390/math12060816
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-4176-3947
https://orcid.org/0000-0002-4578-2726
https://orcid.org/0000-0002-0762-5607
https://doi.org/10.3390/math12060816
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12060816?type=check_update&version=1

Mathematics 2024, 12, 816 2 of 17

disassembly method yields the most cost-effective outcomes. The primary disassembly
methods include worker disassembly, robot disassembly, and human–robot collaborative
disassembly [10], with the latter increasingly emerging as a viable option. Robots can excel
in handling repetitive and dangerous tasks, while humans are adept at handling more
intricate and delicate operations.

Chen et al. [11] addressed the multi-objective sequential correlation robot disassembly
line balancing problem. It incorporates sequence-related time increments employing a
specific robot workstation allocation method. Subsequently, the resulting viable disas-
sembly sequence must be assigned to ordered disassembly workstations. The research
demonstrates that employing human–robot disassembly enhances the efficiency of the
dismantling line. Xu et al. [12] introduced the problem of parallel disassembly line
balancing involving human–robot collaboration and developed a multi-objective mixed
integer programming model. The optimization objectives encompass the determination
of the number of workstations, achieving balanced idle time, optimizing the total count
of disassemblers, and minimizing disassembly costs. The efficacy of human–robot disas-
sembly is further substantiated through comparative analysis with alternative algorithms.
Huang [13] presents a novel experimental robotic disassembly cell comprising two collab-
orative robots and a human disassembler. Robots and disassemblers can collaboratively
operate within a shared workspace, executing separate, parallel, or joint disassembly tasks
safely. Intelligent optimization algorithms exhibit characteristics such as global optimiza-
tion performance and broad applicability, rendering them suitable for parallel processing.
These algorithms are generally capable of identifying or approximating optimal solutions
over time. The utilization of intelligent optimization algorithms to solve DLBPs has been
extensively documented.

Guo et al. [14] employed the grey wolf optimizer algorithm to address multi-objective
disassembly sequencing problems and production line balance planning problems in their
research. Given that DLBP often has NP-hard problems, Zhao et al. [15] proposed a method
centered on an iterative greedy algorithm. Different neighborhood structures and the inte-
gral variable neighborhood descent method are used to procure an approximate optimal
solution. Cui [16] proposed a quantum-inspired Moth-Flame optimizer featuring an en-
hanced local search strategy. The Wilcoxon rank-sum test and the Friedman test are utilized
to evaluate the impact of Moth-Flame Optimization (MFO). Simulation results indicate that
MFO outperforms other algorithms significantly in terms of accuracy, convergence speed,
and stability. It is concluded that MFO can be effectively utilized for DLBP provided it
enhances local search capabilities. Consequently, MFO is chosen as the solution algorithm
for addressing the human–robot collaborative parallel disassembly line balancing problem.
To the best of our knowledge, the MFO algorithm has not been previously applied to the
disassembly line balancing problem.

End-of-life (EOL) products refer to products that have reached the end of their life
cycle. For certain EOL products, profits can be realized through product disassembly and
recycling [17,18]. Currently, there exists a wide array of EOL products with increasingly
complex internal structures. Different subassemblies may exhibit differing degrees of
complexity or hazards. Xu [12] acknowledged the presence of complex and hazardous
subassemblies within the overall subassemblies. These components may necessitate distinct
processing methodologies; however, a specific solution is not provided. On this basis, a new
model of human–robot division of labor disassembly is established, wherein the subassem-
blies of each experimental case are classified. It is stipulated that special subassemblies
require designated disassembler and specify the distribution method accordingly. This
distribution method proves more conducive to multi-product disassembly.

This paper delves into parallel disassembly lines capable of processing multiple
products at a time. An AND/OR figure is utilized to describe the disassembly priority and
conflict relationships among any pair of disassembly tasks. In comparison with existing
studies, the following two contributions are made:

Mathematics 2024, 12, 816 3 of 17

1. A human–robot collaborative parallel disassembly line balancing problem (HCPDP) is
proposed. This issue aims to efficiently resolve multi-product disassembly sequences
while considering task distribution to maximize profit.

2. The Moth-Flame Optimization (MFO) algorithm is refined to enhance its local search
capability. MFO alone is insufficient for solving the presented problem. The en-
hanced algorithm can effectively address this problem and achieve faster solutions
and superior target values.

The subsequent sections of this article are organized as follows. Section 2 delineates
the problem. Section 3 introduces the proposed algorithm. Section 4 conducts numerical
experiments on small-, medium-, and large-scale cases and analyzes the experimental
results. Finally, Section 5 summarizes the findings and outlines future research directions.

Figure 1. Schematic diagram of the parallel disassembly line.

2. Problem Statement and Formulation

To optimize the disassembly profit of the product, we first divide the disassembly tasks
and components initially categorized based on their complexity and hazard level. Through
the AND/OR graph of disassembling the product, we obtain disassembly sequences that
adhere to priority and conflict relationships. By employing the refined algorithm, we
obtain the optimal disassembly sequence which maximizes the profit for disassembling the
product. The primary approach to address this problem is IMFO. IMFO discretizes the MFO
algorithm, increases solution paths, and enhances the algorithm’s global search capability.

2.1. Problem Description

There are many complex and hazardous subassemblies in EOL products. Complex
subassemblies are small precision parts with high potential for reuse, such as circuit boards,
capacitors, and chips. If a robot is used to remove them from the product, there is a
risk of damage during the disassembly process. Therefore, it is mandatory that tasks
involving these parts must be executed by workers. Frequent disassembly of hazardous
subassemblies can also cause injury to workers; for example, batteries, radioactive metals,
and saw blades, can pose safety hazards to workers. To mitigate these risks, it is mandatory

Mathematics 2024, 12, 816 4 of 17

that tasks involving such parts be performed by robots to maximize worker safety [19].
The indices of complex and hazardous subassemblies and tasks for a washing machine are
given in Table 1. The disassembler must be specified when performing these special tasks.
Other common tasks may be assigned to either humans or robots. Considering the goal of
maximizing profit, the allocation of routine tasks is contingent upon the disassembly costs
for both humans and machines. Ordinary tasks are allocated to either humans or machines
with lower disassembly costs wherever feasible.

Table 1. Special subassembly and task index of the washing machine.

Type Complex
Subassemblies

Complex Tassk Hazardous
Subassemblies

Hazardous Tasks

Index 3 2, 6, 9, 12 6 4, 7, 11

Given that a disassembly system is a discrete event system, various formal methods,
such as Petri nets [20–22], timed Petri nets [23], or any other recognized techniques [24],
can be employed for modeling and analyzing the disassembly processes. For simplicity,
an AND/OR graph is used to represent task precedence relationships. The corresponding
AND/OR graph for the washing is depicted in Figure 2. Similar cases are referenced for
certain parameter values of the model [25]. To ensure that the final disassembly sequence
aligns with requirements, the following assumptions are made about the model:

1. The disassembly AND/OR figure of each EOL product is known.
2. When each disassembly task is assigned to a workstation in the order in which it is

disassembled, the priority matrix and the conflict matrix (both matrices are known)
are satisfied.

3. Not all EOL products can be completely disassembled.
4. The cycle time of each workstation is known, and the processing time of each work-

station does not exceed the cycle time.
5. The complex subassemblies and hazardous subassemblies of each EOL product

are known.
6. The cost and energy consumption associated with workers and robots performing

different disassembly tasks are known.
7. The value of each sub-subassembly is known.
8. Each workstation can be assigned a maximum of two disassemblers.

Figure 2. The AND/OR graph of a washing machine.

2.2. Description of an Example with an AND/OR Graph

As illustrated in Figure 2, an AND/OR graph is utilized to depict the precedence
and conflict relationship in each EOL product disassembly task. The number enclosed in
angle brackets within the rectangular box denotes the subassembly index, followed by the
sequence index of parts. Arrows signify disassembly tasks, with the number positioned

Mathematics 2024, 12, 816 5 of 17

between the two arrows indicating the task index. Complex subcomponents are represented
by green rectangles, with associated tasks indicated by green numbers. Similarly, hazardous
subassemblies are depicted by red rectangles, with corresponding hazardous tasks denoted
by red numbers. Table 1 provides an overview of the specialized tasks and subassemblies
associated with the washing machine.

As illustrated in Figure 2, a subassembly can have multiple disassembly ways, but it
can only perform one disassembly task. For instance, Subassembly 〈3〉 1, 2, 3, 5, 6 can
obtain child Subassemblies 〈4〉 1, 2, 5, 6 and 〈11〉 3 via Task 2, or alternatively obtain child
Subassemblies 〈5〉 2, 3, 6 and 〈12〉 1, 5 via Task 3. Task 2 and Task 3 cannot be performed
in parallel, so Tasks 2 and 3 have an ‘OR’ relationship, which is the conflicted relationship
between tasks. The ‘AND’ relationship is represented by the fact that every two child
subassemblies can be dismantled by the parent component via a specified task. There is an
‘AND’ relationship between the two child subassemblies, for example, as shown in Figure 2,
with child Subassembly 〈12〉 1, 5 and child Subassembly 〈7〉 2, 6. Moreover, a precedence
relationship exists between tasks. For example, in Figure 2, there is a feasible disassembly
sequence 1-3-7. Task 1 must be executed before Task 3 can be executed because Subassembly
〈1〉 1, 2, 3, 4, 5, 6 can obtain child Subassemblies 〈3〉 1, 2, 3, 5, 6 and 〈2〉 4 via Task 1.

The precedence and conflict relationships ensure the rationality of the disassembly
order of the parent components. The precedence relationship matrix, conflict relationship
matrix, and relationship matrix for the washing machine are outlined. For instance, in
Figure 3, the precedence relationship matrix of the washing machine is presented. Simi-
larly, the precedence relationship, conflict relationship, and relationship matrices for other
products can be derived from the AND/OR graph. The elements in matrices P, C, and R
are defined below.

Figure 3. The precedence matrix of a washing machine.

Pij =

{
1, if task i is performed before task j
0, otherwise

Cij =

{
1, if task i is conflict with task j
0, otherwise

Rij =

{
1, if subassembly i is obtained by task j
0, otherwise

Notations used in the model to be presented are summarized as follows:
Indexes:
g Index of products, g ∈ {1, 2, . . . , G}.
h Index of humans, h ∈ {1, 2, . . . , H}.
i Index of tasks, i ∈ {1, 2, . . . , I}.
j Index of tasks, j ∈ {1, 2, . . . , J}.
k Index of disassemblers, k ∈ {1, 2, . . . , K}.
l Index of disassembly lines, l ∈ {1, 2}.
m Index of workstations, m ∈ {1, 2, . . . , M}.
w Index of subassemblies, w ∈ {1, 2, . . . , W}.
Parameters:
om The cycle time of each workstation m.

Mathematics 2024, 12, 816 6 of 17

em Startup cost of workstation m.
Nl Total number of product disassembly tasks on disassembly line l.
dg

iw A relationship between subassemblies and tasks of product g derived from the
AND/OR graph.

pg
ij A priority relationship derived from the AND/OR graph. If task i of product g

takes precedence over task j of product g, pg
ij=1; otherwise, pg

ij=0.

qg
ij A conflict relationship derived from the AND/OR graph. If task i of product g

and task j of product g are in conflict, qg
ij=1; otherwise, qg

ij=0.

α
g
i Complex task. If task i of product g is a complex task, α

g
i = 1; otherwise, α

g
i = 0.

β
g
i Hazardous task. If task i of product g is a hazardous task, β

g
i = 1; otherwise,

β
g
i = 0.

cg
ik The cost when task i of product g is assigned to disassembler k.

tg
ik The time when task i of product g is assigned to disassembler k.

vg
w The reuse value of subassembly w in product g.

Decision variables:

xgiml =

1, if task i of product g is assigned to side l
of workstation m to be executed, xgiml = 1;

0 otherwise.

ygimlk =

1, if task i of product g is assigned to side l

of workstation m to be executed by
disassembler k, ygimlk = 1;

0 otherwise.

um =

{
1, if the m-th workstation is started,um = 1;
0 otherwise.

zmlk =

1, if disassembler k is assigned to side l on

workstation m, then zmlk = 1;
0 otherwise.

2.3. Mathematical Model

Based on the listed notations, parameters and decision variables, the mathematical
models of HCPDP are formulated as follows:

max f =
G

∑
g=1

I

∑
i=1

W

∑
w=1

M

∑
m=1

2

∑
l=1

K

∑
k=1

dg
iwvg

wygilmk

−
G

∑
g=1

I

∑
i=1

M

∑
m=1

2

∑
l=1

K

∑
k=k

tk
gic

k
giygimlk −

M

∑
m=1

emum

(1)

M

∑
m=1

2

∑
l=1

K

∑
k=H+1

ygilmkα
g
i = 0,∀g ∈ {1, 2, . . . , G}, i ∈ {1, 2, . . . , I}, α

g
i = 1 (2)

M

∑
m=1

2

∑
l=1

H

∑
k=1

ygilmkβ
g
i = 0,∀g ∈ {1, 2, . . . , G}, i ∈ {1, 2, . . . , I}, β

g
i = 1 (3)

M

∑
m=1

2

∑
l=1

K

∑
k=1

ygilmk ≤ 1, ∀g ∈ {1, 2, . . . , G}, i ∈ {1, 2, . . . , I} (4)

Mathematics 2024, 12, 816 7 of 17

K

∑
k=1

zmlk ≤ um, ∀m ∈ {1, 2, . . . , M}, l ∈ {1, 2}

2

∑
l=1

M

∑
m=1

zmlk ≤ 1, ∀k ∈ {1, 2, . . . , K}

 (5)

M

∑
m=1

2

∑
l=1

xgilm ≤ 1, ∀g ∈ {1, 2, . . . , G}, i ∈ {1, 2, . . . , I}

G

∑
g=1

I

∑
i=1

2

∑
l=1

xgilm ≥ um, ∀m ∈ {1, 2, . . . , M}

 (6)

xgilm ≤ um, ∀m ∈ {1, 2, . . . , M}, g ∈ {1, 2, . . . , G}, i ∈ {1, 2, . . . , I}, l ∈ {1, 2} (7)

um−1 ≥ um, m ∈ {2, 3.....M} (8)

ygilmk ≥ xgilm + zmlk − 1, ∀g ∈ {1, 2, . . . , G}, i ∈ {1, 2, . . . , I}, m ∈ {1, 2, . . . , M},

l ∈ {1, 2}, k ∈ {1, 2, . . . , K}
(9)

ygilmk ≤ xgilm, ∀g ∈ {1, 2, . . . , G}, i ∈ {1, 2, . . . , I}, m ∈ {1, 2, . . . , M}, l ∈ {1, 2},

k ∈ {1, 2, . . . , K}
(10)

ygilmk ≤ zmlk, ∀g ∈ {1, 2, . . . , G}, i ∈ {1, 2, . . . , I}, m ∈ {1, 2, . . . , M}, l ∈ {1, 2},

k ∈ {1, 2, . . . , K}
(11)

G

∑
g=1

I

∑
i=1

K

∑
k=1

tg
ikygimlk ≤ om, ∀m ∈ {1, 2, . . . , M}, l ∈ {1, 2} (12)

M

∑
m=1

(mxgiml)−
M

∑
m=1

(mxgjml)− (
2

∑
l=1

Nl)(1 −
M

∑
m=1

xgjml) ≤ 0, ∀g ∈ {1, 2, . . . , G},

i ∈ {1, 2, . . . , I}, j ∈ {1, 2, . . . , J}, l ∈ {1, 2}, pg
ij = 1

M

∑
m=1

(mxgiml) + (
2

∑
l=1

Nl)(1 −
M

∑
m=1

xgjml) ≥ 0, ∀g ∈ {1, 2, . . . , G}, i ∈ {1, 2, . . . , I},

j ∈ {1, 2, . . . , J}, l ∈ {1, 2}, pg
ij = 1

(13)

M

∑
m=1

2

∑
l=1

(xgilm + xgjml) ≤ 1, ∀g ∈ {1, 2, . . . , G}, i ∈ {1, 2, . . . , I}, j ∈ {1, 2, . . . , J}, qg
ij = 1 (14)

xgilm, ygilmk, zmlk, um,∈ {0, 1}, g ∈ {1, 2, . . . , G}, i, j ∈ {1, 2, . . . , I}, m ∈ {1, 2, . . . , M},

l ∈ {1, 2}, k ∈ {1, 2, . . . , K}
(15)

Objective Function (1) represents the maximum expected profit to disassemble EOL
products. Disassembly profit is calculated as total disassembly revenue minus total disas-
sembly cost. The total disassembly cost consists of the expenses associated with workers
and robots that perform the disassembly actions and the cost of workstations. Constraint
(2) ensures that complex tasks can only be dismantled by workers. Constraint (3) ensures
that hazardous tasks can only be disassembled by robots. Constraint (4) guarantees that
each task can be executed only once. Constraint (5) ensures that each workstation must
be operated by a different disassembler. The first formula of Constraint (5) specifies that
only when the workstation is operational can employees be assigned to corresponding
positions on each line. The second formula indicates that each employee can be assigned
to a maximum of one workstation. Constraint (6) ensures that each task can only be as-

Mathematics 2024, 12, 816 8 of 17

signed to one side of the workstation. The first formula of Constraint (6) implies that at
most one task of a product is scheduled on one side of the workstation, and the second
formula states that if the workstation is operational, at least one task is assigned. Constraint
(7) mandates that each open workstation must be assigned at least one task. Constraint
(8) ensures workstations are turned on one after another, disallowing idle workstations.
Constraint (9) guarantees the performance of each assigned task. Constraint (10) asserts
that tasks can only be executed if they are assigned to the workstation side. Constraint (11)
ensures that tasks can only be executed if the disassembler is assigned to the workstation.
Constraint (12) ensures that the processing time of each workstation cannot exceed the
cycle time. Constraint (13) enforces a priority relationship for each disassembly product.
Constraint (14) requires that the feasible disassembly sequence adheres to the conflict
relation. Constraint (15) indicates the range of values for variables.

3. Proposed Algorithm

Seyedali Mirjalili [26], drawing inspiration from the laws of nature, proposes a new
swarm intelligence optimization MFO algorithm. It is grounded in moth behavior, striking
a good balance between exploration and development through a specialized mechanism
called lateral directional navigation, thereby achieving globally optimized performance.
MFO has strong parallel optimization ability and good overall characteristics. MFO excels at
extensive exploration of search space and identifying the regions with a greater probability
of global optima; however, it is susceptible to falling into the local optimal situation. Many
researchers have made improvements to the local optimization ability of the algorithm.

In addressing the limitations of the standard algorithm—namely low optimization
accuracy and vulnerability to local optimal solutions—Zhang proposes an enhanced al-
gorithm based on sinusoidal mapping and Gaussian variation [27]. The incorporation of
Gaussian variation to regulate the population of individuals improves population diversity,
which is conducive to better searching potential areas. This modification also accelerates
the search speed and increases the probability of escaping from the local optimal solution.
The aforementioned improved algorithm, designed for continuous problems, may not be
suitable for the disassembly line balance problem. Consequently, a modification of the
continuous operator of the algorithm is necessary to solve HCPDP.

3.1. Introduction of Improved MFO

In MFO, each moth serves as a candidate solution, while in HCPDP, each moth
represents a disassembly sequence. The process of the moth flying in space is regarded as
the process of optimization. In the traditional MFO algorithm, the moth update formula
guides the moth search through the information carried by the jth flame. However, this
approach relies solely on the information obtained from one dimension that does not
effectively utilize the information carried by other flames, resulting in the slow convergence
of the algorithm in the late iteration period. To address this, the concept of the historical
optimal flame mean as a factor influencing the moth’s search behavior is introduced. It
provides relevant information for individual moths so that the reference information of
moth search behavior is no longer limited to the moths’ own dimensions. The improved
moth position updating formula is shown in Equation (16).

Mi = S(Mi, Fj) = Di ∗ ebt ∗ cos(2πt) + Aj (16)

S is the logarithmic spiral function, Mi is the ith moth individual, Fj is the Jth flame,
Di = |Fj − Mi| represents the distance between the ith moth individual and the Jth flame,
b is a constant that determines the shape of the flight spiral, and t is the random number
that controls the distance between the moth and the next flame. The value range is [−1, 1].
When t = −1, it indicates that the next flame is closest to the moth, and when t = 1, it implies
that the next flame is farthest from the moth. In Equation (16), the historical optimal flame

Mathematics 2024, 12, 816 9 of 17

average is introduced into the calculation of the moth flight target; see Equation (17) for
calculating the mean value.

Aj =
∑n

j=1 Fj

n
(17)

In Equation (17), n represents the number of flames that surpass the flame of moth i,
while Aj signifies the mean value of the superior flames relative to the historical optimal
flame position of moth i among all moths, which equates to the mean value of the historical
optimal flame. By leveraging the insights conveyed by each generation of optimal flames,
the breadth of flame-related information accessible to moths can be expanded. This expan-
sion guides the subsequent movements of moths and ensures the quality of the solutions
obtained by moths during each search behavior, facilitating a swifter approach towards the
optimal solution. Consequently, the algorithm’s convergence speed is accelerated.

3.2. Improved MFO Algorithm from MFO with Crossover Probability

Based on the aforementioned characteristics, a flowchart of the enhanced algorithm is
presented in Figure 4. Furthermore, improvements are made to the crossover section of the
MFO. Given the algorithm’s inherent continuity, it is not suitable for HCPDP, modifications
are implemented to render it discrete. This adaptation involves the introduction of a random
crossover probability. Notably, the cross-variation of the algorithm remains unchanged,
preserving its iterative approach. Following the initial crossover operation, the algorithm
incorporates the random crossover probability variable and repeats the crossover operation.
The pseudocode outlining the improved algorithm is provided in Algorithm 1.

Figure 4. The flow chart of IMFO.

Mathematics 2024, 12, 816 10 of 17

Algorithm 1 Improved Moth-Flame Optimization Algorithm

Input: case data, number of iterations, population size
Output: the best solutions

1: Initialize the moth population as solutions.
2: while (t < maximum number of iterations) do
3: for each individual do
4: The objective function value is taken as the fitness of each individual.
5: Calculate the fitness rank.
6: end for
7: for each individual do
8: Select one best individual I and one random individual II from M.
9: Choose a random number r between 0 and 2.

10: if r > 1 then
11: Execute the MFO interleaved operation.
12: Get new individual III.
13: else if r < 1 then
14: Execute the MFO interleaved operation.
15: Calculate and Aj and Mj then update Aj and Mj.
16: Get new individual III.
17: end if
18: The best individual is selected from individual I, individual II, and the new indi-

vidual III.
19: Check if the optimal value is improved.
20: Check if it is necessary to regenerate the population.
21: Update the best solutions.
22: end for
23: t = t + 1
24: end while
25: return the best solutions.

As shown in Figure 5, an enhanced crossover process is demonstrated. Every individ-
ual in a population is a feasible disassembly sequence. To distinguish the tasks of different
products, the task number of each product on the first conveyor belt is set to “+”. The fitness
of each individual is determined by the objective function value. Amalgamation of the two
disassembly sequences results in the iterative generation of a new disassembly sequence
treated as an individual within the algorithm. In the process of iteration and evolution of
the algorithm, each iteration identifies the best individual based on the magnitude of the
fitness function. Subsequently, these exceptional individuals are stored within the flame
matrix for preservation. Within MFO, it is observed that the moth matrix functions to retain
the individual population, while the flame matrix serves to preserve the optimal solution.

Mathematics 2024, 12, 816 11 of 17

Figure 5. Cross−Process.

3.3. Encoding and Decoding

Within the moth population, individuals are ranked according to their fitness rank [28].
Then, the better random individual is selected as the first parent. The flame matrix which
stores the local optimal solution is utilized to randomly select another individual from the
flame matrix as the second parent. This crossover mode guarantees the production of more
favorable individuals with each iteration. The MFO crossover and variation is retained
and the code of the random crossover to increase the diversity of the population is added.
The global searching ability of the algorithm is improved and the locally optimal solution
is avoided [29,30].

The following steps are performed:
Step 1: The fitness rank of each individual in the population is calculated, and

individuals are identified with the highest rank. An individual is randomly selected from
this group to act as Parent 1.

Step 2: A random search is conducted in the flame matrix which stores the optimal
solution in the iterative process, and then the individual is found as Parent 2. Equation (15)
is updated.

Step 3: Aj is calculated and then the new individual is evaluated. The new disassembly
sequence must meet the precedence relation matrix and the conflict relation matrix, and then
the fitness must be calculated. The fitness value is compared with that of the parent in the
moth population, and the parent is replaced if the fitness value is higher.

In this part, a three-step formula is used to represent a disassembly sequence: π = π1,
π2, π3. π1 = O1, O2, O3 composed of integer strings is a disassembly task sequence; π2 is
composed of binary strings and used to determine whether the task is executed; π2 = X1,
X2, X3 · · · Xj ; if Xj = 1, task j in π1 is executed; if Xj = 0, it is not executed. π3 = Y1, Y2, Y3
· · · Yj indicates whether the current task is performed by a human or a robot. If Yj = 1, then
task j in π1 is performed by a human. If Yj = 0, it means that task j in π1 is performed by
a robot.

In a decoding process, task sequence is allocated to each workstation, enabling the
workstation to execute the disassembly sequence. Concurrently, for each station, the initial
mission is commenced, and an assessment is performed to determine whether the task
execution time surpasses the cycle time of the workstations. If the execution time does not

Mathematics 2024, 12, 816 12 of 17

exceed the cycle time, the disassembly task is performed and the next task is added followed
by an evaluation to ascertain whether the cumulative time exceeds the workstation’s cycle
time. The task is not assigned to the next workstation until the specified time is exceeded.
As shown in Figure 6, a feasible coding diagram of the disassembly sequence is given.
The disassembly sequence is 1-4-9-13, Ordinary Task 1 and Ordinary Task 9 are assigned
to workers, Complex Task 4 is assigned to workers, and Hazardous Task 13 is assigned
to robots.

Figure 6. A coding example.

4. Experimental Studies
4.1. Test Instances

In the context of the parallel disassembly line, multiple products, including the wash-
ing machine [28], refrigerator [31], and copy machine [31], are employed to simulate
multi-product disassembly tasks. Table 2 presents combinations of three EOL products,
resulting in six distinct cases. The progression from Case I to Case VI reveals an increase
in the number of both subassemblies and tasks, indicative of heightened difficulty and
complexity in the disassembly process. Due to constraints stemming from incomplete
disassembly and division disassembly, the number of workstations, workers, and robots
along the parallel disassembly line varies across different combinations. As shown in
Table 3, indexes of complex subassemblies and complex tasks of three EOL products are
given, as well as indexes of hazardous subassemblies and hazardous tasks. Within the
mathematical model, it is implied that complex tasks are to be performed exclusively by
workers and hazardous tasks are to be performed by robots.

Table 2. Case description.

Case Num Instance Num of
Tasks

Num of
Subassemblies

I Refrigerator and washing machine 35 40
II Washing machine and copy machine 45 44
III Refrigerator and copy machine 57 54
IV Two copy machines and washing machine 52 59
V Two refrigerators and washing machine 82 79
VI Two copy machines and refrigerator 89 83

Table 3. Case index.

Case

Index Type Complex
Subassemblies

Complex
Task

Hazardous
Subassemblies

Hazardous
Task

Washing machine 3 2, 6, 9, 12 6 4, 7, 11
Copy machine 5, 6 1, 2, 17 26, 27 14, 22, 25, 27

Refrigerator 12 9, 11 21 2, 7

All of the algorithms and program tests are based on the implemented Intel IDEA
2021.2.2 “x64” and CPLEX and use the operating system Windows 10 AMD Ryzen 5 4600 h
CPU (3.0 GHz/16 G RAM) run on a PC. Population sizes of 300, 400, 500, and 600 are
used, respectively. The largest number of iterations is fixed 100 times, and each algorithm
runs 20 times. The trial is conducted to compare the data objective value of IMFO with
other algorithms.

Mathematics 2024, 12, 816 13 of 17

4.2. Performance Metrics

Multi-objective parallel disassembly lines were simulated and experiments were con-
ducted for each case. Optimal solutions were initially obtained using CPLEX. Subsequently,
IMFO, Discrete Fruit Fly Optimization Algorithm (DFOA) [32], Elitist Evolution Strategy
Algorithm (EA) [33], and Carnivorous Plant Algorithm (CPA) [34] were employed indi-
vidually within the jMetal framework to solve the model. Finally, the optimal solutions
obtained using the four algorithms were compared with those obtained using CPLEX.

The model studied is a single-objective model. CPLEX is used to to verify the cor-
rectness of the model. Six different cases were constructed for the three scenarios and
evaluated using CPLEX. The solution results and disassembly sequences of CPLEX and
IMFO algorithms are presented, respectively, in Tables 4 and 5. In these tables, hazardous
tasks, denoted in red, necessitate robotic disassembly, while complex tasks, marked in
green, require human intervention. CPLEX successfully resolved cases of medium and
small scales but struggled with larger cases; for instance, Case VI exhibited extensive
subassemblies and tasks, causing CPLEX to exceed its normal runtime. Conversely, IMFO
consistently delivered accurate results across all case sizes, albeit with increased solving
time corresponding to case complexity. Notably, as case complexity increased, IMFO
significantly outperformed CPLEX in terms of computational efficiency.

Table 4. Results of solving the instances set on CPLEX.

Case Num Disassembly Sequence f T

I 1 → 4 → 8 → 12 → −14 836.2 4.84 s
II 2 → 11 → −14 → 5 → −18 → 7 → 8 1306.3 4.798 s
III 2 → 4 → −20 → 12 → −22 → −26 → 13 1467.9 5.513 s
IV 2 → 5 → 8 → 9 → 11 → −25 → −33 → −35 → −44 1923.8 12.66 s
V 1 → 3 → −20 → −21 → −25 → 13 → 12 1411.0 10.737 s
VI – – 9000.00 s

The red numbers represent hazardous tasks, while the green numbers represent complex tasks.

Table 5. Results of solving the instances set based on IMFO.

Case Num Disassembly Sequence f T

I 1 → 4 → 8 → 12 → −14 836.2 2.865 s
II 2 →11 → −14 → 5 → −18 → 7 → 8 1306.3 2.679 s
III 2 → 4 → −20 → 12 → −22 → −26 → 13 1467.9 5.782 s
IV 2 → 5 → 8 → 9 → 11 → −25 → −33 → −35 → −44 1923.8 4.236 s
V 1 → 3 → −20 → −21 → −25 → 13 → 12 1411.0 6.456 s
VI 2 → −34 → −66 → 3 → 12 → −53 → −82 → 13 → −44 → −57 2450.3 5.836 s

The red numbers represent hazardous tasks, while the green numbers represent complex tasks.

4.3. Instance Analysis

In the Jemetal framework, the HCPDP is addressed using IMFO, DFOA, EA, and CPA
algorithms. Various population sizes, such as 300, 400, 500, and 600, are examined, and cor-
responding target values are provided. Additionally, the optimal target value attained at
the maximum number of iterations is presented. Table 6 illustrates the results. It is evident
that in Case I, the IMFO algorithm achieves the target value of 836.2, whereas DFOA only
reaches 789.9. Similarly, in Case V, IMFO attains 1411 compared to DFOA’s 1400. In Case
VI, IMFO reaches 2450.7 while DFOA reaches only 2432.3.

As evident from the results presented in Table 6, the performance of algorithms varies
due to the differing complexities of the cases. Cases I to IV, characterized by a relatively
small number of subassemblies and tasks, are deemed small-scale with low complexity.
IMFO outperforms DFOA and EA across small, medium, and large cases. Particularly
for small-scale cases, DFOA and EA exhibit relatively inferior performance. Moreover,

Mathematics 2024, 12, 816 14 of 17

Cases V and VI are large-scale with numerous subassemblies and tasks, resulting in longer
program runtimes. Different algorithms demonstrate varying capabilities in handling
large-scale cases. IMFO and EA display superior performance compared to DFOA in
managing large-scale cases, although EA also exhibits the longest runtime among the
algorithms evaluated.

The convergence of the algorithms can be assessed based on the number of iterations
and the final target value, as depicted in Figure 7. A comparison is made between the
number of iterations and the objective function values of the two algorithms. Notably,
in the experiment conducted for Case V with a population size of 600, the DFOA demon-
strates stronger optimization capabilities at the onset, particularly evident within the initial
10 iterations. However, beyond 12 iterations, the IMFO algorithm demonstrates supe-
rior optimization capabilities. Similarly, the EA algorithm exhibits better optimization
abilities initially, albeit consuming the most time. The IMFO algorithm achieves conver-
gence approximately 50 times, whereas the DFOA achieves convergence approximately
60 times. In conclusion, these results underscore the superiority of the IMFO algorithm in
addressing HCPDP.

Table 6. Profit obtained using different algorithms.

Cases Algorithm
Population Size

300 400 500 600

I

IMFO 708.3 759.5 789.9 836.2
DFOA 667.2 735.0 765.9 789.9

EA 688.6 733.0 746.7 759.5
CPA 673.3 719.9 767.3 820.2

II

IMFO 1617.9 1658.9 1687.6 1706.3
DFOA 1607.2 1622.9 1656.2 1688.9

EA 1579.3 1600.3 1640.3 1669.7
CPA 866.3 877.9 902.0 927.6

III

IMFO 1184.5 1267.9 1308.2 1467.9
DFOA 1136.9 1195.4 1244.3 1288.6

EA 1136.3 1344.2 1402.2 1447.8
CPA 714.3 756.4 792.5 876.8

IV

IMFO 1821.4 1871.6 1888.9 1923.8
DFOA 1809.5 1833.7 1853.0 1865.0

EA 1827.3 1833.7 1855.4 1863.1
CPA 1804.8 1810.5 1901.0 1916.4

V

IMFO 1406.0 1408.0 1411.0 1411.0
DFOA 1399.0 1399.0 1400.0 1400.0

EA 1402.3 1406.0 1410.1 1410.1
CPA 1385.4 1388.0 1391.9 1392.3

VI

IMFO 2434.9 2443.0 2450.3 2450.3
DFOA 2424.6 2427.3 2431.0 2432.3

EA 2424.6 2417.3 2424.6 2441.0
CPA 2426.3 2425.9 2433.7 2441.5

Mathematics 2024, 12, 816 15 of 17

1

Figure 7. Algorithm convergence of Case V with population size 600.

5. Conclusions

This paper, in view of the parallel disassembly line, proposes a mixed integer program-
ming mathematical model based on the human–robot disassembly joined division of sub-
assemblies that allows the model to deal with more scenarios. An improved multi-objective
optimization algorithm IMFO is proposed, which is adapted to HCPDP by changing the
algorithm from continuous to discrete. Multiple cases are used, combined with their respec-
tive AND/OR graphs, to distinguish between complex and hazardous tasks. The results
are compared with those of DFOA, EA, and CPA. The results show that IMFO is superior
to DFOA, EA, and CPA in solving HCPDP. Because the disassembly time required for
different disassembly sequences of the same product is not much different, and considering
the disassembly time increases the complexity of the model, this article uses disassembly
profit as the target value. The forthcoming endeavor involves the application of IMFO to
alternative disassembly configurations, such as bilateral routes, while also delving into
multi-objective optimization, encompassing factors such as disassembly time and profit.
Additionally, it seeks to integrate recently proposed optimization methodologies.

Author Contributions: Writing—original draft preparation, Q.Z. and B.X.; Writing—review & editing,
Q.Z., J.W. and L.Q.; Supervision, X.G. and S.Q.; Data curation, F.L.; Visualization, M.Y. All authors
have read and agreed to the published version of the manuscript.

Funding: This work is supported in part by NSFC under Grant Nos. 61573089 and 51405075;
Liaoning Province Education Department Scientific Research Foundation of China under Grant No.
JYTQN2023366; The Natural Science Foundation of Shandong Province under Grant ZR2019BF004.

Data Availability Statement: In accordance with MDPI’s research data policy, we hereby declare that
the data utilized and generated throughout the research process are thoroughly integrated into the
paper, and the data presented in the paper have been adequately furnished and duly cited.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Zhao, Z.; Zhou, M.; Liu, S. Iterated Greedy Algorithms for Flow-Shop Scheduling Problems: A Tutorial. IEEE Trans. Autom. Sci.

Eng. 2021, 19, 1941–1959. [CrossRef]
2. Zhao, Z.; Liu, S.; Zhou, M.; Abusorrah, A. Dual-Objective Mixed Integer Linear Program and Memetic Algorithm for an Industrial

Group Scheduling Problem. IEEE/CAA J. Autom. Sin. 2021, 8, 1199–1209. [CrossRef]
3. McGovern, S.; Gupta, S. Combinatorial optimization methods for disassembly line balancing. Proc.-Spie Int. Soc. Opt. Eng. 2004,

5583, 53–66. [CrossRef]
4. Gungor, A.; Gupta, S.M. A solution approach to the disassembly line balancing problem in the presence of task failures. Int. J.

Prod. Res. 2001, 39, 1427–1467. [CrossRef]

http://doi.org/10.1109/TASE.2021.3062994
http://dx.doi.org/10.1109/JAS.2020.1003539
http://dx.doi.org/10.1117/12.570493
http://dx.doi.org/10.1080/00207540110052157

Mathematics 2024, 12, 816 16 of 17

5. Gungor, A.; Gupta, S.M.; Pochampally, K.; Kamarthi, S.V. Complications in disassembly line balancing. SPIE 2001, 4193, 289–298.
[CrossRef]

6. Lu, F.; Liu, P.; Qi, L.; Qin, S.; Xu, G.; Xu, Z. Multi-objective discrete strength pareto evolutionary algorithm II for multiple-product
partial U-shaped disassembly line balancing problem. J. Phys. Conf. Ser. 2021, 2024, 012058. [CrossRef]

7. Liang, J.; Guo, S.; Du, B.; Li, Y.; Guo, J.; Yang, Z.; Pang, S. Minimizing energy consumption in multi-objective two-sided
disassembly line balancing problem with complex execution constraints using dual-individual simulated annealing algorithm.
J. Clean. Prod. 2021, 284, 125418. [CrossRef]

8. Hezer, S.; Kara, Y. A network-based shortest route model for parallel disassembly line balancing problem. Int. J. Prod. Res. 2015,
53, 1849–1865. [CrossRef]

9. Zhu, L.; Zhang, Z.; Guan, C. Multi-objective partial parallel disassembly line balancing problem using hybrid group neighbour-
hood search algorithm. J. Manuf. Syst. 2020, 56, 252–269. [CrossRef]

10. Lou, S.; Zhang, Y.; Tan, R.; Lv, C. A human-cyber-physical system enabled sequential disassembly planning approach for a
human-robot collaboration cell in Industry 5.0. Robot.-Comput. Manuf. 2024, 87, 102706. [CrossRef]

11. Chen, Q.; Yao, B.; Pham, D.T. Sequence-Dependent Robotic Disassembly Line Balancing Problem Considering Disassembly Path.
In Proceedings of the International Manufacturing Science and Engineering Conference, Online, 3 September 2020; Volume 2.
[CrossRef]

12. Xu, P.; Zhang, Z.; Guan, C. Modeling and Hybrid Teaching Optimization Algorithm for Parallel Disassembly Line Balance
Problem of Human-machine Co-station. In Computer Integrated Manufacturing Systems; Prentice-Hall, Inc.: Upper Saddle River,
NJ, USA, 2022; pp. 1–17.

13. Huang, J.; Pham, D.T.; R, L. An experimental human-robot collaborative disassembly cell. Comput. Ind. Eng. 2021, 155, 20.
[CrossRef]

14. Guo, X.; Zhang, Z.; Qi, L.; Liu, S.; Tang, Y.; Zhao, Z. Stochastic Hybrid Discrete Grey Wolf Optimizer for Multi-objective
Disassembly Sequencing and Line Balancing Planning in Disassembling Multiple Products. IEEE Trans. Autom. Sci. Eng. 2021, 19,
1744–1756. [CrossRef]

15. Zhao, Z.; Liu, S.; Zhou, M.; You, D.; Guo, X. Heuristic Scheduling of Batch Production Processes Based on Petri Nets and Iterated
Greedy Algorithms. IEEE Trans. Autom. Sci. Eng. 2022, 19, 251–261. [CrossRef]

16. Cui, X.; Luo, Q.; Zhou, Y.; Deng, W.; Yin, S. Quantum-Inspired Moth-Flame Optimizer With Enhanced Local Search Strategy for
Cluster Analysis. IEEE/CAA J. Autom. Sin. 2022, 5, 794–806. [CrossRef] [PubMed]

17. Özceylan, E.; Kalayci, C.B.; Güngör, A.; Gupta, S.M. Disassembly line balancing problem: A review of the state of the art and
future directions. Int. J. Prod. Res. 2019, 57, 4805–4827. [CrossRef]

18. Kim, H.J.; Xirouchakis, P. Capacitated disassembly scheduling with random demand. Int. J. Prod. Res. 2010, 48, 7177–7194.
[CrossRef]

19. Xu, W.; Cui, J.; Liu, B.; Liu, J.; Yao, B.; Zhou, Z. Human-robot collaborative disassembly line balancing considering the safe
strategy in remanufacturing. J. Clean. Prod. 2021, 324, 129158. [CrossRef]

20. Xiang, D.; Lin, S.; Wang, X.; Liu, G. Checking Missing-Data Errors in Cyber-Physical Systems Based on the Merged Process of
Petri Nets. IEEE Trans. Ind. Inform. 2023, 19, 3047–3056. [CrossRef]

21. Xiang, D.; Zhao, F.; Liu, Y. DICER 2.0: A New Model Checker for Data-Flow Errors of Concurrent Software Systems. Mathematics
2021, 9, 966. [CrossRef]

22. Qi, L.; Su, Y.; Zhou, M.; Abusorrah, A. A State-Equation-Based Backward Approach to a Legal Firing Sequence Existence Problem
in Petri Nets. IEEE Trans. Syst. Man Cybern. Syst. 2023, 53, 4968–4979. [CrossRef]

23. Zhou, J.; Wang, J.; Wang, J. A simulation engine for stochastic timed Petri nets and application to emergency healthcare systems.
IEEE/CAA J. Autom. Sin. 2019, 6, 969–980. [CrossRef]

24. Wang, J.; Tepfenhart, W. Formal Methods in Computer Science; John Wiley & Sons: Hoboken, NJ, USA, 2019.
25. Qin, G.; Guo, X.; Zhou, M.; Liu, S.; Qi, L. Multi-Objective Discrete Migratory Bird Optimizer for Stochastic Disassembly Line

Balancing Problem. In Proceedings of the 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Toronto,
ON, Canada, 11–14 October 2020; pp. 420–425. [CrossRef]

26. Seyedali, M. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 2015,
89, 228–249.

27. Zhang, Y.; Wang, P.; Yang, H.; Cui, Q. Optimal dispatching of microgrid based on improved moth-flame optimization algorithm
based on sine mapping and Gaussian mutation. Syst. Sci. Control Eng. 2022, 10, 115–125. [CrossRef]

28. Nowakowski, P. A novel, cost efficient identification method for disassembly planning of waste electrical and electronic
equipment. J. Clean. Prod. 2018, 172, 2695–2707. [CrossRef]

29. Li, H.; Gao, K.; Duan, P.; Li, J.; Zhang, L. An Improved Artificial Bee Colony Algorithm With Q-Learning for Solving Permutation
Flow-Shop Scheduling Problems. IEEE Trans. Syst. Man Cybern. Syst. 2023, 53, 2684–2693. [CrossRef]

30. Fu, Y.; Ma, X.; Gao, K.; Li, Z.; Dong, H. Multi-Objective Home Health Care Routing and Scheduling With Sharing Service via
a Problem-Specific Knowledge-Based Artificial Bee Colony Algorithm. IEEE Trans. Intell. Transp. Syst. 2024, 25, 1706–1719.
[CrossRef]

31. Fu, Y.; Ding, J.; Wang, H.; Wang, J. Two-objective stochastic flow-shop scheduling with deteriorating and learning effect in
Industry 4.0-based manufacturing system. Appl. Soft Comput. 2018, 68, 847–855. [CrossRef]

http://dx.doi.org/10.1117/12.417274
http://dx.doi.org/10.1088/1742-6596/2024/1/012058
http://dx.doi.org/10.1016/j.jclepro.2020.125418
http://dx.doi.org/10.1080/00207543.2014.965348
http://dx.doi.org/10.1016/j.jmsy.2020.06.013
http://dx.doi.org/10.1016/j.rcim.2023.102706
http://dx.doi.org/10.1115/MSEC2020-8268
http://dx.doi.org/10.1016/j.cie.2021.107189
http://dx.doi.org/10.1109/TASE.2021.3133601
http://dx.doi.org/10.1109/TASE.2020.3027532
http://dx.doi.org/10.3389/fbioe.2022.908356
http://www.ncbi.nlm.nih.gov/pubmed/36032716
http://dx.doi.org/10.1080/00207543.2018.1428775
http://dx.doi.org/10.1080/00207540903469035
http://dx.doi.org/10.1016/j.jclepro.2021.129158
http://dx.doi.org/10.1109/TII.2022.3181669
http://dx.doi.org/10.3390/math9090966
http://dx.doi.org/10.1109/TSMC.2023.3241101
http://dx.doi.org/10.1109/JAS.2019.1911576
http://dx.doi.org/10.1109/SMC42975.2020.9283371
http://dx.doi.org/10.1080/21642583.2022.2042424
http://dx.doi.org/10.1016/j.jclepro.2017.11.142
http://dx.doi.org/10.1109/TSMC.2022.3219380
http://dx.doi.org/10.1109/TITS.2023.3315785
http://dx.doi.org/10.1016/j.asoc.2017.12.009

Mathematics 2024, 12, 816 17 of 17

32. Shao, Z.; Pi, D.; Shao, W. Hybrid enhanced discrete fruit fly optimization algorithm for scheduling blocking flow-shop in
distributed environment. Expert Syst. Appl. 2020, 145, 113147. [CrossRef]

33. Dao, S.D.; Abhary, K.; Marian, R.M. Maximising Performance of Genetic Algorithm Solver in Matlab. Eng. Lett. 2016, 24,
EL_24_1_11.

34. Ong, K.M.; Ong, P.; Sia, C.K. A carnivorous plant algorithm for solving global optimization problems. Appl. Soft Comput. 2020,
33, 106833. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.eswa.2019.113147
http://dx.doi.org/10.1016/j.asoc.2020.106833

	Introduction
	Problem Statement and Formulation
	Problem Description
	Description of an Example with an AND/OR Graph
	Mathematical Model

	Proposed Algorithm
	Introduction of Improved MFO
	Improved MFO Algorithm from MFO with Crossover Probability
	Encoding and Decoding

	Experimental Studies
	Test Instances
	Performance Metrics
	Instance Analysis

	Conclusions
	References

