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Abstract: The article contains a study of methods for solving integral equations in the context of
acoustic problems. The methodology considered is applied to describe acoustic wave propagation
and scattering. Efficient discretization methods are used together with iterative methods to solve the
operator equations, including an apparatus for fast multiplication of the resulting post-discretization
Toeplitz matrices by a vector using the fast Fourier transform. The theoretical analysis of the proposed
numerical algorithm demonstrates its efficiency in terms of the required number of arithmetic
operations and the memory footprint of the computing system. The presented numerical simulation
demonstrates the possibility of solving the problem of acoustic wave propagation in transparent
media using the proposed methods. A visualization of the obtained solutions for a practical problem
with a high level of discretization of the solution volume domain is also presented.

Keywords: integral equations; collocation method; iterative method; modified gradient descent
method; fast Fourier transform
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1. Introduction

The initial formulation for solving problems of mathematical physics using integral
equations refers to the works of Fredholm, who first proposed the study and solution
of classical problems of mathematical physics using the transformation of the original
differential equations to the formulation of the problem for solving related integral equa-
tions, later called Fredholm equations. The solution of problems of mathematical physics,
both in the form of differential and integral equations. at that time was impossible using
numerical methods and methods of discretization of the initial problem via a grid of high
dimensionality in the number of elementary partitions, as such problems were associated
with impossible manual calculations. With the development of computer technology ap-
peared the formulation and the first methods and algorithms for distributed computations
over differential equations, allowing the modeling of real physical processes, and integral
equations were used less frequently, due to problems with the complexity of calculations,
in the solution of systems of linear algebraic equations (SLEs) over fully filled operator
matrices.

Mikhlin, in his works, investigated different variations of problem statements for
solving integral equations in the theory of elasticity [1], and also investigated the possi-
bilities of obtaining analytical and numerical solutions of singular integral equations [2,3]
related to the problems of mathematical physics. Colton and Kress considered surface and
volume problems of acoustics and electrodynamics based on integral equations, as well as
their numerical formulations [4]. In these papers, however, due to the reasons described
above, there were no numerical results accompanying test problems. Miller, in a series of
papers [5], also investigated modern formulations for the solution of electrodynamics prob-
lems on the basis of computational methods for solving bulk singular integral equations,
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using features of kernels of integral operators based on Green’s functions [4], satisfying
solutions for the volumetric Helmholtz equation.

Mathematical formulation and development of effective computational methods for
solving problems of mathematical physics are the most important areas of science and
technology development today. Modern problems are associated with large requirements
for accuracy and speed of computation, in view of which the requirements of the dimen-
sionality of discretization of problems increase. The classical formulation of the solution of
differential and integral equations, as well as general computational methods for solution,
are becoming insufficient to meet the needs of experimenters, researchers and manufac-
turers. This aspect pushes us to the necessity of developing effective methods for solving
specific problem formulations based on a priori factual knowledge, assumptions about
the structure of the solution, and constraints on the conditions at the boundary of the
domain [6].

Overcoming these limitations, recent works on computational methods, applicable
to the solution of differential equations that reduce to solving systems of linear equations
(SLEs) with high-dimensional sparse operator matrices, have proposed a series of approx-
imate methods capable of addressing the problem of increasing the discretization of the
solution domain, based on homotopies. Among these are the homotopy method described
in detail in [7], the multigrid method [8], the multigrid–homotopy method [9], and the
wavelet multiscale method [10]. These methods are traditionally used in tasks related to
solving problems of mathematical physics, including, for example, [11–13], and conducting
numerical experiments with models based on partial differential equations.

Homotopy methods [7] for approximate solutions of large-dimensional SLEs, resulting
from the discretization of the solution domain of the corresponding differential equation,
allow the obtaining of solutions with specified accuracy on large grids. The main idea of
the method is to use the concept of homotopy for a gradual transition from a simplified
version of the problem to its original, more complex form, while following a path that
maintains connectivity between solutions. The homotopy grid method is especially useful
in cases where direct solving of the original problem is difficult due to its complexity or the
presence of multiple local minima/maxima.

The algebraic multigrid method [8] represents a class of algorithms for solving sys-
tems of linear equations, particularly effective for large sparse matrices arising from the
discretization of differential equations. This method does not require explicit knowledge of
the geometry of the problem and is built directly on the basis of the equation coefficients,
making it applicable to a wider class of problems. The key idea of multigrid methods is to
use iterations at different levels of discretization (grids) to accelerate convergence to the
solution. Simplified versions of the original problem are solved on coarse grids, effectively
reducing error components, which decrease slowly on finer grids. This is achieved by
analyzing the structure of the system matrix and grouping variables in such a way that
the problem dimension decreases at each subsequent level. Various coarsening strategies,
for example, based on the strength of connections between matrix elements, are used for
this purpose.

Combining these two approaches, the multigrid–homotopy method [9] leverages the
advantages of both in order to solve complex nonlinear problems. The homotopy method
allows effective finding of an initial approximation for a nonlinear problem or a series
of such approximations, while the multigrid approach ensures rapid convergence to an
accurate solution at each step of homotopy. This method is particularly useful for problems
where direct application of the multigrid method to a nonlinear system proves inefficient
due to the complexity of the problem or lack of a good initial approximation. Combining
the homotopy approach, to find an initial approximation, with the multigrid method for its
refinement can significantly improve the efficiency of the iterative process.

All the above methods can adequately solve high-dimensional problems related to
setting tasks in terms of differential equations; however, they may be difficult to apply to
tasks based on integral equations. This is due to the complexity of calculations with fully
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populated operator matrices that arise when applying various discretization methods to
integral formulations of mathematical physics problems.

The formulation of problems in terms of integral equations in mathematical physics
is also important, as it allows the finding of the desired solution with fewer restrictions
both on the form of the solution function itself and on the number of initial and boundary
conditions. Solving integral equations on a grid of large dimensionality is associated with
the use of fast iterative methods capable of solving full systems of linear equations in fewer
iterations with a given accuracy. For this, it is necessary to introduce special discretization
grids for a more accurate approximation [14] of the original solution domain, both in
volume and at the boundaries between different media. This work presents one such
technique for introducing a special discretization grid for volumetric integral equations,
allowing for the solution of such equations using efficient matrix–vector multiplications in
the process of any iterative method of solving systems of linear equations based on fast
Fourier transform (FFT).

The development of integral equations theory to date is described by a large num-
ber of works in the field of proving existence and uniqueness theorems for solutions of
the problems of mathematical physics, as well as the development and study of effective
numerical methods for their solution. In electrodynamics, Smirnov Yu.G. proved a large
number of existence and uniqueness theorems for problems of wave propagation, diffrac-
tion and polarization using the Fredholm theory for integral operators and the theory
of pseudo-differential operators [15–17]. In hydrodynamics and aerodynamics, integral
equations can be used in modeling stationary flows, shown in the works of Setukha [18].

In this paper we consider the problems of wave propagation in three-dimensional
bounded transparent structures with inhomogeneous refraction based on the Fredholm
integral equation of the second kind. Modeling problems of acoustic wave propagation in
an inhomogeneous medium has a wide range of applications in various fields. For example,
in oceanography, such models are used to investigate underwater sound channels and to
study the influence of various factors on sound propagation in water [19]. In the process
of developing printed circuit boards, defects, such as delamination, can occur during the
lamination process, which can be detected by the acoustic emission method discussed
in [20]. In electrodynamics, models of propagation and scattering of electromagnetic waves,
built on integral equations, help to make calculations for complex processes of radiation
effects and load on technical devices, necessary to their design [21,22]. Such models are
also used in medical diagnostics and industrial acoustics.

Numerical methods for solving integral equations, along with the growth of computing
power and memory capacity, allow the solution of more and more complex structural
problems with a high degree of discretization, due to optimization and the possibility
of efficient parallelization of the computations of problems with the full operator matrix.
Mathematical modeling of real physical problems on the basis of the apparatus for effective
methods for their solution, shown in this paper, will be useful in real-time calculations
for digital twins in many physical processes, natural phenomena, technical devices and
their manufacturing processes. The main part of the research, problem statements, and
computational methods used in the article grew out of the theoretical basis of the research
on problem statements, methods, and the algorithms for their numerical solution given in
the corresponding book [23].

2. Materials and Methods

In this study, we consider the integral equation within a bounded region of Q of
Euclidean space E3 [24]:

(1 + α η(x)) u(x) +
∫
Q

K(x − y)
Rm η(y) u(y) dy = u0(x), x ∈ Q, m ≤ 3. (1)
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In Equation (1), x = (x1, x2, x3), y = (y1, y2, y3) are the points belonging to the
bounded region Q; R = |x − y| is the distance between the points of the region; and
α, η, K, u0 are known functions, with K(x − y ) a differentiable coordinate function; u(x) is
an unknown function.

Further, suppose that Equation (1) has a unique solution in the corresponding function
space. Numerical methods turn out to be uniquely possible for solving Equation (1). In
this case, Equation (1), by applying the Galerkin method or the collocation method, is
approximated to an SLE with a fully filled matrix.

The equation in the form of Equation (1) describes a number of important applied
problems, including propagation and scattering of acoustic waves on transparent inho-
mogeneous obstacles [4]. In this case, m < 3, α = 0 and the other functions included in
Equation (1) are scalar. Then, the equation is a classical Fredholm integral equation of the
2nd kind, which can be written in the following form:

u(x) + k2
∫

Q G(R)n̂(x)u(y)dy = u0(x);

n̂(x) = η(x)− 1; G(R) = − exp(ikR)
4πR ; u0(x) = −

∫
Q G(R) f (y)dy; x ∈ Q,

c (2)

where η(x) is the function characterizing the acoustic refraction of the definition area, and
η(x) = 1, x /∈ Q; k is the wave number characterizing the properties of the simulated
external radiation; G(R) = −K(x − y)/R is the kernel of the integral equation, which is
the solution of the corresponding differential formulation of the Helmholtz equation in
three-dimensional space; f (x) is the modeled external radiation function; and u(x) is the
unknown scalar potential field characterizing the stress for the x ∈ Q.

Previously, in [25], for the integral formulation of Equation (2), the theorem of the
existence and uniqueness of the solution of the corresponding differential equation was
proved under the condition of radiation at infinity, as well as under some conditions for
refraction η(x).

Equation (2) describes both the problems of acoustic wave propagation in bulk trans-
parent media with a homogeneous scalar refraction index η(x) and the problems of wave
scattering at the boundary of media with different η(x), where the function itself is piece-
wise continuous [4]. The method for solving Equation (2) does not depend on the form
of η(x).

In this paper, to demonstrate the proposed numerical methods, we propose to con-
sider a class of acoustic problems represented by Equation (2). It is also worth noting
that other classes of problems of mathematical physics can be described using integral
equations [4,22,26,27].

Collocation method on a uniform grid. In practice, in order to solve integral equations,
it is necessary to resort to discretization of the solution domain under consideration. To
approximate the integral Equation (2), we will use the collocation method [23,28]. For
three-dimensional problems, some difficulties arise in the discretization of integral equa-
tions defined in regions of complex shape.

Let us represent the area Q as a union of NQ cells Ω(i), i = 1, . . . , NQ. Nodal points
in these cells will be chosen in their centers, which are defined by the formulas [29]

xc
l =

∫
Ω xldx
mesΩ

, l = 1, . . . , 3, (3)

where dx = dx1dx2dx3 represents the integration of the volumetric l-th partition of the
solution domain Q, xc =

(
xc

1, xc
2, xc

3
)

is the cell center Ω, and mesΩ its volume. If in region
Ω a differentiable function of its arguments is defined f (x), then approximate equality
is true: ∫

Ω
f (x)dx ≈ f (xc)mesΩ. (4)

Expression (4) will be an exact equality if f (x) is a linear function of the arguments.
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We will approximate the integral Equation (2) by SLE of dimension ∼ NQ with respect
to the values of the unknown function at the nodal points of the domain Q, located in the
centers of the xci cells Ω(i), i = 1, . . . , NQ. We will choose the cell sizes so that the desired
function varies weakly within the cell. Then, redefining the corresponding SLE can be
represented in the following form [23,30]:

u(i) +
NQ

∑
j=1

A(i, j)η(j)u(j) = u0(i), i = 1, . . . , NQ,

A(i, j) = −k2∫
Ω(j)

K(xci−y)
|xci−y| dy; u0(i) = −

∫
Q

K(xci−y)
|xci−y| f

(
xci)dy;

i,= 1, . . . , NQ, u(i) = u
(
xci), u0(i) = u0(xci), η(i) = η

(
xci).

(5)

To calculate the integrals in Equation (5), we can use the approximate Formula (4)
or more accurate numerical integration algorithms. Note that, since the nodal points are
located in the center of the cells, the accuracy of approximation of the integral operators
∼ h2 where h is the maximum cell diameter (we define the cell diameter as the maximum
distance between the boundary points). For relatively small values of NQ ≤ 10000, we
can solve the system of Equation (5) by direct or iterative methods. Below, we will outline
efficient algorithms which, using iterative methods, allow us to solve system Equation (5)
with much higher dimensionality.

In the kernel of the integral Equations (1) and (2), there is a term depending on the
difference in Cartesian coordinates of points x and y. However, this circumstance was
not used in any way in the construction of SLE Equation (5). Below, using a uniform grid
and discrete Fourier transform algorithms, we construct an efficient numerical method for
solving Equation (2).

Consider a complex function f (n) of discrete argument n = 0, ±1, ±2, . . .., and let
us assume that f (n) is a periodic function with period N, i.e., f (n ± N) = f (n) for any n.
The discrete Fourier transform of the function f (n) is defined by the well-known formula:

F[ f ] = f F(k) =
N−1

∑
n=0

exp
(

i
2π

N
kn

)
f (n); k = 0, N − 1, (6)

where, obviously, the Fourier transformant f F(k)m is also a periodic function with period N.
If we know the Fourier transformant f F(k), then we can recover the original function

f (n) using the inverse discrete Fourier transform:

F[ f ] = f F(k) =
N−1

∑
n=0

exp
(

i
2π

N
kn

)
f (n); k = 0, N − 1. (7)

In general, the number of arithmetic operations TF(N), which is required to com-
pute the discrete Fourier transform without the cost of computing functions of the form
exp(i2πkn/N), is estimated by the formula:

TF(N) ∼ N2. (8)

When using fast discrete Fourier transform algorithms, the number of arithmetic
operations required is estimated by the formula [23]:

TFF(n) ∼ N · LOG(N), (9)

where LOG(N)—is the integer logarithm, i.e., the sum of all prime divisors of N. If N is a
power of two, then TFF(n) ∼ N · log2(N).

Let A(l) bea periodic function of a discrete argument with period N. Consider the
sums of the following form:
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v(n) =
N−1

∑
m=0

A(n − m)u(m),n = 0, N − 1. (10)

The sums in Equation (10) arise from multiplication of circulant matrices by a vector.
Let us apply the discrete Fourier transform with period N to both parts of (10). It is not
difficult to show that:

vF(k) = AF(k)uF(k), k = 0, N − 1. (11)

Using Equation (11) and fast discrete Fourier transform (FFT) algorithms, one can
efficiently multiply circulant matrices by a vector. However, circulant matrices rarely
appear in real-world problems. However, in many problems, in particular those dis-
cussed below, one needs to compute sums of the form Equation (10), in which the func-
tion A(l),−(N − 1) ≤ l ≤ (N − 1) is arbitrary in the specified range. Such sums arise
when multiplying Toeplitz matrices by the vector [31,32]. This function A(l) is defined
at the (2N − 1) integer point. Let us further define the function A(l) zero at the point
l = N and extend it to all integer values with period 2N. Further, for the function of
the discrete argument u(m), m = 0, . . . , (N − 1), let us define this as zero at the points
m = N, . . . , 2N − 1. Now, consider the sums of the following form:

v(n) =
2N−1

∑
m=0

A(n − m)u(m),n = 0, 2N − 1. (12)

It follows from the above that, at n = 0, . . . , N − 1 function v(n) from Equation (12)
coincides with the values v(n) from Equation (10). Further, for quick calculation of the
sums in Equation (12), we will use the formula:

vF(k) = AF(k)uF(k), k = 0, 2N − 1. (13)

In the inverse Fourier transform, only the components of ν(n), n = 0, N − 1. Thus, it
follows from Equation (9) that the number of arithmetic operations to calculate Equation
(10) is estimated by the formula:

TA ∼ 2NLOG(2N). (14)

Moreover, it is necessary to store in the computer memory an array with the number
of elements equal to:

MA ∼ 2N. (15)

Let us proceed to the discretization of the integral Equation (2). In a rectangular
Cartesian coordinate system, define a parallelepiped Π, within which the region Q is
located. The edges of the parallelepiped are parallel to the coordinate axes, and the lengths
of the edges are equal to Nlhl , l = 1, 2, 3, where hl are the grid steps on the Cartesian
coordinates. Then, the parallelepiped Π can be represented as a union of cells (elementary

parallelepipeds) Π(p), p = (p1, p2, p3), pl = 0, . . . , Nl − 1. Let us define the area
∼
Q as a

union NQ of cells whose centers lie inside the area Q. The nodal points, in which the values
of functions are defined, will be defined in the centers of cells and denoted as x(p) and the
values of functions in these points as f (p).

The integral Equation (2) will be approximated, similarly to Equation (5), by an SLE of
the following form [24]:

u(p) + ∑
y(q)∈Q

A(p − q)η(q)u(q) = u0(p), x(p) ∈ Q,

A(p − q) = −k2∫
Π(q)

K(x(p)−y)
|x(p)−y| dy, p ̸= q, A(0) = 0.

(16)
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Since the nodal points are at the center of the cells, the accuracy of the approximation

of the integral operator is ∼ h2, h =
√

h2
1, h2

2, h2
3.

It follows from Equation (16) that the main computational cost of multiplying the SLE
matrix by a vector (performing one iteration) is associated with the computation of sums of
the form:

W(p) = ∑
y(q)∈Q

A(p − q)V(q),x(p) ∈ Q. (17)

To calculate W(p) at the nodal points x(p) ∈ Q requires performing ∼ N2
Q arithmetic

operations, where NQ—is the number of nodal points in the domain Q. To reduce the
number of arithmetic operations, we will apply the technique of fast multiplication of
Toeplitz matrices by vector, as described above.

Let us define the function V(q) as zero at the points x(q) of the parallelepiped P, not
belonging to the area Q. Consider the following sums:

W(p1, p2, p3) =
N1−1

∑
q1=0

N2−1

∑
q2=0

N3−1

∑
q3=0

A(p1 − q1, p2 − q2, p3 − q3)V(q1, q2, q3). (18)

It is obvious that at x(p) ∈ Q values W(p) from Equations (17) and (18) coincide. In
Equation (18) the matrix function of the discrete argument A(p) is defined for the values
−(N1 − 1) ≤ p1 ≤ (N1 − 1);−(N2 − 1) ≤ p2 ≤ (N2 − 1);−(N3 − 1) ≤ p3 ≤ (N3 − 1).

Let us denote by Π2 a parallelepiped with sides 2N1h1, 2N2h2 и 2N3h3. Let us continue
the matrix function of the discrete argument A(p1, p2, p3) to all integer values p1, p2, p3
assuming it to be periodic for each variable, with periods, respectively, 2N1, 2N2, 2N3. At
the same time, let us define the function A(p1, p2, p3) as zero at the points where it is not
defined. Next, let us define the function of the discrete argument V(p1, p2, p3) as zero at
all nodal points Π2, not belonging to Π, and extend this to all integer values p1, p2, p3,
assuming it is periodic for each variable, with periods, respectively, 2N1, 2N2, 2N3.

Consider the expression:

W(p1, p2, p3) =
2N1−1

∑
q1=0

2N2−1

∑
q2=0

2N3−1

∑
q3=0

A(p1 − q1, p2 − q2, p3 − q3)V(q1, q2, q3). (19)

Considering the above, it is clear that at x(p) ∈ Q function W(p1, p2, p3) from
Equation (19) coincides with the values from Equation (17). Below, by Π и Π2 we denote
integer parallelepipeds with the number of discrete arguments on each axis N1, N2, N3 и
2N1, 2N2, 2N3, respectively. Now, performing a discrete Fourier transform on each variable
from both parts of Equation (19), we obtain the following equality:

WF(k1, k2, k3) = AF(k1, k2, k3)VF(k1, k2, k3), k ∈ Π2. (20)

Thus, to perform one iteration when solving the SLE Equation (16), it is necessary
to perform the direct Fourier transform of the function V(p1, p2, p3) for each variable and
the inverse transform of the function WF(k1, k2, k3) (the transformation of the function
A(p1, p2, p3) is performed once before starting the iteration procedure). The number of
arithmetic operations and the amount of memory required to perform one iteration are
estimated by the formulas:

TA ∼ 10N LOG(N), MA ∼ 10N, N = N1N2N3. (21)

When choosing grid steps and values N1, N2, N3, it is necessary to be guided by the
following criteria: first, the desired function does not change much within the cells; second,

the region
∼
Q, consisting of cells whose centers are inside Q, describe Q well enough.

Performance indicators of numerical algorithms. Having mentioned earlier that the
solution of integral equations by numerical methods reduces to the solution of SLE with
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fully filled matrices, let us explain the main criteria for the efficiency of the algorithms, and
demonstrate the visual advantage of iterative methods over direct methods in these classes
of problem.

The main efficiency parameters of numerical algorithms are the number of operations
T required to solve the initial problem, the amount of memory M required to implement
the algorithm, the storage of N2 elements of the SLE matrix with N unknowns, etc. It is
obvious that a large number of computational resources is required to solve the problem
under consideration. In the case of the iterative method, these properties of the algorithm
can be estimated using the relations:

T ∼ LTA, M ∼ MA, (22)

where TA is the number of arithmetic operations required to multiply the SLE matrix by a
vector, which is estimated in terms of complexity as TA ∼ N2; L is the number of iterations
required to obtain a solution with a given accuracy; and MA is the number of unique
elements of the matrix.

Let us denote by TG, MG the characteristics of the direct methods for solving SLE. In
comparison to this, when using the direct Gauss method to solve SLE, it is necessary to
perform TG ∼ N3 arithmetic operations and store in the computer memory at the order
of MG ∼ N2 numbers, which demonstrates the preference for using iterative methods in
solving these problems.

Note that only iterative methods can be used to solve SLE Equation (16) using the
considered algorithm. This is due to the fact that iterative algorithms are based on mul-
tiplications of the SLE matrix by a vector. The number of arithmetic operations and the
amount of memory required to solve SLE Equation (16) are estimated by Formulas (21),
(22). At the same time, the number of iterations required to obtain the solution is usually
much smaller than the dimensionality of the SLE. Thus, it is possible to numerically solve
the integral Equation (1) and, in the special case, Equation (2), which is reduced to the SLE
of dimensionality NQ ≥ 106.

Iterative method for solving the problem. In the numerical formulation of Equation (5),
and in particular Equation (16) for the case with approximation of the volumetric domain
of the solution Q by a system of parallelepipeds Π(q), q ∈ Q, we will solve the initial
problem Equations (1) and (2) by the iterative method of gradient descent [33]. Let us
describe the iterations and peculiarities of the method for solving a particular problem.

The task of finding a solution to an SLE is to solve the operator equation:

(H)u = b, (23)

where (H) is a known, in the general case a complex, matrix operator; b is a known, in the
general case complex, vector of the right-hand side; and u is the vector whose values we
want to find. When solving the problem Equations (1) and (2) by numerical methods, the
values of the elements of the matrix operator H are found as a result of discretization of
Equations (5) and (16) of the initial integral equation and calculation of integrals over the
obtained partitions Π(q).

In addition, the action of the integral operator Equation (1) or Equation (2) with respect
to the unknown vector u is not the usual multiplication of a high dimensional matrix by a
vector. Strictly speaking, it follows from Equation (2) that:

(H)u = u + A(η̂u),
(H)u = u(p) + ∑

y(q)∈Q
A(p − q)η̂(q)u(q),p ∈ Q, (24)

where A ∈ CNQ×NQ is the matrix of coefficients of the integral equation kernel obtained as
a result of calculation of Equations (4) and (5); η̂ ∈ CNQ is the vector of refraction values at
each point of the p of the given area partition p ∈ Q; u ∈ CNQ , also in the general case, is
the complex vector of unknown values of the scalar field strength at each discrete point of
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the given region. Each matrix-to-vector multiplication of any iterative algorithm that will
solve the given problem of Equation (2) must be further defined according to Equation (24),
resulting in iterated methods.

In the iterations of the modified iterative gradient descent method, the action of the
conjugate operator is also presented (H∗) on the vector u. Considering that, by definition
for the matrix operator H∗ = HT where H is a matrix with complex-conjugate elements to
the elements of matrix H, then the action of the operator Equation (24) can be rewritten in
the form:

(H∗)u = u − η
(

ATu
)

,

(H∗)u = u(p) + η(p) ∑
y(q)∈Q

A(q − p)u(q), p ∈ Q (25)

where η is also a refraction vector with complex-conjugate elements to vector η̂. The iterative
method aims to find an approximation um ≈ u of the unknown desired function. Iterations
of the modified iterative method of gradient descent are defined as follows:

r0 = (H)u0 − b; u1 = u0 −
∥(H∗)r0∥2

∥(H)(H∗)r0∥2 (H∗)r0; (26)

rm = (H)um − b; ∆rm = rm − rm−1;
tm∥∆rm∥2 + hmRe(∆rm, (H)(H∗)rm) = Re(rm, ∆rm),

tmRe(∆rm, (H)(H∗)rm) + hm
∥∥ (H)(H ∗)rm

∥∥2
= Re(rm, (H)(H∗)rm),

um+1 = um − tm(um − um−1)− hm(H∗)rm, m = 1, 2, . . . .

(27)

The only restriction on the iterative method for Equations (24) and (27) is the existence of
a bounded inverse operator to (H). Proofs of convergence of iterations for Equation (26) and
convergence analysis of iterations and increasing dimension of the matrix are presented
in [33].

As a criterion for stopping iterations for Equations (24) and (27), we choose the metric
δm as the relative error of the approximated vector at step m iterations:

δm =
∥um − um−1∥

∥b∥ < ε, (28)

where um и um−1 are the obtained approximations of the unknown scalar field u at the
partition points; and ε is the given accuracy of iterations, which is most often set as equal
to 10−d+1, where d—is the number of significant digits of the computer representation of
floating-point numbers.

As a result, we have a method that effectively copes with the problem of solving
operator equations. The study and comparison of the iterative method for the real problem
of solving SLE with a fully filled matrix was carried out in our previous work [25].

3. Results

Let us present the formulation of the conducted numerical experiment devoted to the
solution of the acoustics problem Equation (2).

The rectangular solution domain Q is characterized by linear dimensions l = 1 on
each of the Cartesian axes x = (x1, x2, x3) and the point of the center of the cubic region
c = (0, 0, 0) at the origin of coordinates. The propagation of a plane wave in a medium is
characterized by the value of the wave number k = 15 as well as the vector of the wave
propagation direction

→
v =

(
1/

√
3 , 1/

√
3 , 1/

√
3
)

. The external function f (x) from
Equation (2) is modeled as complex harmonic oscillations:

f (x) = exp
(
−ik

(
x,

→
v
))

, x ∈ Q, (29)

with a given value of the wave number k and vector of propagation direction
→
v .
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Let us set for the time of the experiment the following function η(x) of refraction of
the transparent bulk medium:

η(x) =

{
2.5 + 1.5i = η1(x), where x1 ∈ (−l/4, l/4),

1.0 + 0.0i = η2(x), where x1 ∈
[
− l

2 ,− l
4

]
∪
[

l
4 , l

2

]
.

(30)

In fact, this formulation of the refraction function does not correspond in any way to a
concrete real object, such as a transparent screen with appropriate physical properties. This
value of refraction was chosen on the basis of considerations of conducting a numerical
experiment with two media having different physical properties, in order to obtain the
effect of refraction of a wave and attenuation of its energy when passing through a point l/4.
A flat screen is defined by a stepwise refraction transition along the Cartesian coordinate x1.
As a result of Equation (30), we have a piecewise constant given function η(x) of refraction
of the region Q, which defines a transition from the medium with constant real refraction
η2(x) to a constant complex refraction η1(x).

Discretization of the area Q is according to Equation (16), into parallelepipeds of equal
volume with equal sides. Modeling the problem in the cubic space, we will vary N, the
number of such cubes, which are located along each of the axes of the Cartesian coordinate
system, and the number of which along each of the coordinates is the same. Then the total
number of partitions is strictly equal to NQ = N3. Within the results of this paper, we will
compare the influence of the degree of discretization of the problem on the final quality of
the solution of the problem for Equation (2).

In a series of numerical experiments, we computed (16) based on the modified iterative
gradient descent method for Equations (24)–(27), in the private formulation of Equations
(29)–(30), with specifically specified parameters. In each of the selected discretizations, for
convenience, we set the stopping criterion of the iterative method ε = 10−4 for the metric
Equation (28).

The obtained solution characterizes the unknown value of the scalar field of intensity u
at each point of the center of partitioning of the initial region Q into parallelepipeds of equal
volume. Let us visualize the obtained results with sufficiently small N = 25 in Figure 1. The
total number of obtainable elementary partitions in such a case is NQ = 15626. The figure
shows the obtained solution u as a result of convergence of iterations for Equations (24)–(27).
The first sub-drawing in Figure 1a shows the values of the |u| of the potential field modulus
in the center of each cube, which vary in the range of |u| ∈ (0.0025, 0.0325). The gradation
of these values is also highlighted in the graph. The sub-drawing Figure 1b shows the real
part of the complex scalar field u whose values vary in the range Re u ∈ [−0.025, 0.025].
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According to the character of the obtained picture, we obtain the expected type of the
solution. In Figure 1b, one can notice the refraction of the plane wave Equation (29) incident
from the point of x = (0.5, 0.5, 0.5) against the boundary located at the point along the axis
x1 = l/4 = 0.125. In the limit −l/4 < x1 < l/4, how the refracting wave changed the
direction of its propagation can be seen, and as it passed within this region it experienced
attenuation, due to which both the modulus of its value and the amplitude of its real values
decreased. After passing through the point x1 = −l/4 = −0.125, the propagation resumes
due to the run-up of the plane wave front, as in Equation (29).

We also visualize the obtained results with a sufficiently large N = 100 in Figure 2.
The limits of the scalar field values remained the same, and also the obtained structure for
the solution remained unchanged. The total number of obtainable elementary partitions in
this case amounted to NQ = 106.
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As a result, having increased the linear partitioning of the domain by approximately a
factor of 4, we obtain a 64-times increase in the discretization of the domain NQ, in view of
which the obtained solutions show more features at the refraction boundary. Let us note the
smoothness of the obtained solution, as a result of which it is possible to take into account
small features both on the refraction boundary and on possible inclusions, whose sizes do
not exceed the linear sizes of the obtained partitions Π(q).

On the center slices on the axis x3 ≈ 0 areas Q in Figure 3, we also see the picture of
the refraction and attenuation of the wave, both in the modulus value, Figure 3a, and in
the values of amplitudes of the real Figure 3b and the complex part of the wave Figure 3c.
On the graph of the modulus approximation of the scalar field values |um|, Figure 3a, we
can clearly see the transition in the range of −l/4 < x1 < l/4, which is a consequence of
the transition of the refraction value in this region. In Figure 3b,c, we see refraction in the
pattern of propagation of the plane wave, as well as the attenuation of the amplitude of the
scalar field values within −l/4 < x1 < l/4.

Performing calculations with different degrees of discretization of the solution domain,
we measure the efficiency of the presented iterative method, Equations (24)–(27), using
values of different metrics. For solutions with different discretization of the domain Q, we
measured the total number of matrix multiplications by the vector m during the algorithm
operation, the relative error of approximations of iterations δm counted by (28), the norm
of incoherence of the obtained approximate solution ||(H)um − b||, and the maximum
value of the modulus of the scalar field max

p∈Q
|um(p)| . In addition to the above metrics, we

measured the program execution time in seconds (t, sec) for a given discretization (N) of
the volume area of the solution on a personal computing device with an intel core i5-10400f
processor and DDR4 RAM, with a frequency of 3200 MHz and a volume of 32 GB. Time
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was measured via the implementation of a C++ program in a sequential single-threaded
execution of instructions.
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Table 1 demonstrates the values of the above metrics for different numbers of partitions
NQ. source region Q.

Table 1. Table of performance and convergence quality of the method with different numbers
of partitions.

N NQ m δm ||(H)um−b|| max
p∈Q

|um(p)| t,s

10 1000 48 9.652 × 10−5 4.221 × 10−5 5.618 × 10−6 0.833
15 3375 48 3.587 × 10−5 3.854 × 10−5 3.198 × 10−6 2.895
20 8000 42 5.366 × 10−5 2.984 × 10−4 1.491 × 10−5 6.131
25 15,625 45 4.784 × 10−5 2.601 × 10−4 9.216 × 10−6 13.065
30 27,000 57 7.434 × 10−5 4.631 × 10−4 1.100 × 10−5 29.069
35 42,875 45 8.941 × 10−5 2.603 × 10−4 6.935 × 10−6 36.775
40 64,000 42 6.731 × 10−5 3.751 × 10−4 6.805 × 10−6 51.703
45 91,125 42 5.311 × 10−5 3.083 × 10−4 5.210 × 10−6 74.258
50 125,000 54 2.992 × 10−5 5.041 × 10−4 6.793 × 10−6 132.335
100 1,000,000 42 9.680 × 10−5 1.273 × 10−4 5.321 × 10−6 1039.317

According to the results, we note that there is no dependence of the investigated values
of the metrics on the number of partitions of the solution domain. It is shown that the
number of matrix multiplications by vector m necessary to obtain an approximation um with
a predetermined accuracy ε does not increase depending on the number of partitions of the
domain Q. However, we observe an oscillation of this value, which may be due to a poor
choice of cube sizes, which resulted in an inaccurate description of the refraction region.

Metrics δm, ||(H)um − b|| do not change depending on the number of partitions; we
can only note the low value of the norm of non-convexity of the integral operator with
respect to the obtained solution at small discretizations NQ = 1000 и NQ = 3375. This
circumstance can also be related to the number of final calculations or to a weak description
of the solution domain of the problem. The index max

p∈Q
|um(p)| also varies within the

error limits.
We display the graphs of the metric Equation (28) of the relative error δm of approxi-

mations during the iterative method for Equations (24)–(27) depending on the number of
applications of the matrix-to-vector multiplication operation m. Figure 4 shows the value of
log10 δm depending on m, due to the exponential nature of the reduction of this metric. By
prologarithmizing δm, we see the convergence pattern of the method in Equations (24)–(27)
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for the problem in Equations (29)–(30), in the values of powers of 10 of the base of the
number system.
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In the linearized dependence shown, we see by the convergence pattern in Figure 4 an
oscillating graph of metric Equation (28), demonstratively converging (in natural values)
to the required value of approximation accuracy ε. It can be seen from the graph that,
with increasing discretization (n on the graph is equal to N or N1, N2 or N3) of the initial
domain, the number of iterations (matrix-to-vector multiplications) does not increase,
which cardinally contributes to the speed in solving the initial formulation of the integral
equation at large discretizations.

4. Discussion

The solution of problems using the most general approaches to approximation of
complex regions is widely used in various works on mathematical modeling of wave effects
on physical bulk multilayer objects of different shapes with different boundary conditions.
To date, there are many ways to solve wave propagation and scattering problems in
volumetric media, in particular for the problem of acoustics, in which, often, complex
discretizations based on tetrahedral meshes are applied. The approach based on tetrahedra
as units of elementary partitioning of the three-dimensional solution domain is due to the
need for the most accurate description of complex domain boundaries to the detriment of
the possibility of fast computations of problems on uniform mesh approximations.

The computational approach demonstrated in this paper will be useful in the case
of a large number of different refractive inclusions that can be described by rectangular
parallelepipeds. This method will also be useful in modeling subtle wave processes due to
the possibility of performing efficient computations over fully filled matrices of large size,
NQ ≥ 106. The condition of applicability of this computational method is the requirement
of the presence of the kernel of the integral operator depending on the coordinate difference;
therefore, the main computations are associated with the computation of the coefficients
of the operator in the form of the Teuplice matrix. The numerical experiment presented
demonstrates an effective approach to solving such a problem formulation, as well as



Mathematics 2024, 12, 789 14 of 16

qualitative pictures for solving the problems of acoustic wave propagation in a medium
with attenuation and wave scattering at the refraction boundary of transparent bulk media.

It is noteworthy that there are no requirements for the structure of the refraction
function, except for the physical limitations of the modeled materials, which makes it
possible to perform mathematical modeling of the problems presented above for areas of
high complexity. The main limitation will be the size of the area on which the function will
be set.

The modified iterative method of gradient descent proposed for solving the problem
has shown itself to be an effective method for solving the operator equation with a fully
filled operator matrix. According to the results of numerical experiments, it is shown that it
converges steadily when the dimensionality of the problem changes and also converges
steadily for a reasonable number of matrix-to-vector multiplications (about 100 operations).

Moreover, when the dimensionality of the problem increases, the number of such
operations does not change, which is associated only with the physical properties of the
problem formulation. The obtained numerical scheme allows us to seriously accelerate
computations in general formulations of the solution of SLE or operator equations and, with
the use of special discretization, will also allow us to solve a large number of unknowns in
applied modeling problems.

It is also worth noting that, due to the currently prevailing most accurate approach to
describing a three-dimensional domain based on complex elementary partitions, compara-
tive results with other studies cannot be given.

5. Conclusions

Today, the problem of economical fast computations for mathematical models of
physical processes to provide high quality and fast computations over digital doubles
of real in-situ experiments is acute. The development of efficient numerical methods for
solving a narrow class of problems in mathematical physics makes it possible to solve
such problems with increasing requirements on the degree of discretization due to the
reduced complexity of calculations and the required memory for the implementation of
the algorithm. This can be achieved by using the peculiarities of the kernels of the initial
formulation in the form of solving Fredholm integral equations describing mathematical
models of some real processes.

This paper shows how, taking into account the features of the integral equation kernel
function and introducing a special spatial grid, it is possible to obtain a multiple acceleration
of calculations and a reduction in the required memory for the realization of calculations.

The paper proposed a formulation for solving problems in mathematical physics using
integral equations and iterative solution methods. The theoretical efficiency of application
of fast Fourier transform in the optimization of multiplication of the Toeplitz matrix by a
vector is shown. Numerical results are demonstrated on the model problem of acoustic
wave propagation in a transparent bulk medium with an inhomogeneous refraction index.

In future works, it is assumed that the use of this numerical method for discretizing the
volume domain of the solution, the technique of multiplying a Toeplitz matrix by a vector
for optimization of iterative methods according to a given discretization form, as well as
they setting up of the solution of the integral equation problem, will be applied in related
tasks in the propagation and scattering of waves in electromagnetism, which will also find
its application in applied areas such as radio-physics, remote sensing, radio-spectroscopy,
and crystal growth.

Continuing this work will also be considered towards optimizing the numerical
method of solving linear systems with Toeplitz-type matrices, both in terms of specifically
optimizing multiplication with the use of multilevel Toeplitz matrices and in terms of
optimizing the iterative method proposed. This direction of work will be associated with
attempts to simplify the use of the proposed methodology for solving volumetric integral
equations in various related tasks, as well as to speed up computations and reduce estimates
of the required memory for iterations.
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