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Abstract: Aims: Overlapping asymmetric data sets are where a large cohort of observations have
a small amount of information recorded, and within this group there exists a smaller cohort which
have extensive further information available. Missing imputation is unwise if cohort size differs
substantially; therefore, we aim to develop a way of modelling the smaller cohort whilst considering
the larger. Methods: Through considering traditionally once penalized P-Spline approximations, we
create a second penalty term through observing discrepancies in the marginal value of covariates that
exist in both cohorts. Our now twice penalized P-Spline is designed to firstly prevent over/under-
fitting of the smaller cohort and secondly to consider the larger cohort. Results: Through a series
of data simulations, penalty parameter tunings, and model adaptations, our twice penalized model
offers up to a 58% and 46% improvement in model fit upon a continuous and binary response,
respectively, against existing B-Spline and once penalized P-Spline methods. Applying our model to
an individual’s risk of developing steatohepatitis, we report an over 65% improvement over existing
methods. Conclusions: We propose a twice penalized P-Spline method which can vastly improve
the model fit of overlapping asymmetric data sets upon a common predictive endpoint, without the
need for missing data imputation.

Keywords: P-Spline; penalized regression; smoothing; asymmetric data; B-Spline; non-Parametric;
MASLD; MASH; health data science

MSC: 62R07

1. Introduction

In data science and statistics, it is common to have data sets which mix cheap and easy-
to-obtain information for a large sample of cases with more expensive and hard-to-acquire
additional information for a small sample of cases. In an epidemiological study, for instance,
a cohort may consist of a large number of individuals whose demographic characteristics
and phenotypes have been recorded, together with a smaller number who additionally have
biomarker data or genetic profiles. The purpose of this paper is to introduce a method which
enhances analysis of the smaller group by making best use of data from the larger group.

One approach might be to consider the detailed information as being missing for the
larger cohort, and then to adopt one of the many missing-data methodologies now available.
Kang (2013) presents several techniques for handling missing data, including case deletion,
mean substitution, and multiple imputation [1]. Indeed, one of the most common and
popular tools for handling missing data is the missing imputation tool MICE (Multiple
Imputation by Chained Equations), which is an available library in a vast number of
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coding languages [2]. However, when there is a large proportion of missing data, Multiple
Imputation (MI) is not considered to be the most effective way of dealing with missing
data issues [3]. Many authors have attempted to provide ’cutoff’ points for an acceptable
amount of missing data that MI can handle [4,5]; however, these are found to be largely
arbitrary and other factors need to be taken into account such as types of missingness and
imputation mechanisms, although vast amounts of missing data are unsuited to MI. This
paper explores how we can utilise the larger cohort of individuals to enhance what is learnt
from the smaller cohort, without the need for imputation.

Let us assume that there are two data sets: Horizontal Data (denoted H) and Vertical
Data (denoted V). For simplicity, H has a sample size of NH with two scalar covariates x
and z, V has a sample size of NV with only one covariate x, and in our case NV ≫ NH. Both
data sets contain a response variable y. In reality, x and z would represent a selection of
covariates each as we will show in Section 6. The validity of reducing multiple covariates
into single x and z vectors is discussed later. Illustrated in Figure 1 is how each data set
may look in practice:

Figure 1. Vertical Data, V and Horizontal Data, H.

We see that the V data set is tall and thin, while the H data set is short and wide;
hence the naming, Vertical and Horizontal data sets. Our overarching research question is
therefore whether it is possible to utilise what we learn from V to enhance the predictive
performance and modelling upon observations within H, thus improving our knowledge
about response variable y.

To tackle this research question, we firstly display the knowledge and motivation
for studying non-parametric modelling techniques in Section 2, wherein we specifically
focus upon smoothing methods and penalized regression modelling including B-Splines
and P-Splines. We show that they display specific qualities that make them attractive for
modelling our smaller cohort H and also show in Section 3 that they can be adapted into a
new model that is able to consider the larger cohort V through including a second penalty
term which takes into account discrepancies in the marginal value of x, i.e., covariates that
exist in both H and V . We compare our twice penalized model structure against a linear
B-Spline model and single penalty P-Spline estimation upon a series of controlled data
simulations in Section 4, before adapting our model further to take into account a binary
response y in Section 5. We will finally apply our model upon a real healthcare data set
in Section 6, where we utilise a large cohort of individuals who have undergone baseline
tests, alongside a smaller cohort who have extensive further testing in order to predict
an individual’s risk of developing metabolic dysfunction associated with steatohepatitis
(MASH). A discussion surrounding our work is presented in Section 7, before concluding
our work in Section 8.
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2. Background
2.1. Flexible Smoothing with Splines

Within this work, we focus solely upon non-parametric models specifically to take into
account conditional models. Our motivation for going this route is shown in Appendix A.
Many non-parametric modelling techniques exist; one popular approach is smoothing, in
particular spline methods. Eilers and Marx [6] cite several reasons for their popularity
including data sets being too complex to be modelled sufficiently through parametric models,
and also an increasing demand for graphical representations and exploratory data analysis.

2.1.1. An Introduction to Smooth Functions

Let us assume that x is a vector. A linear model therefore assumes:

E[y|x] = β0 + β1x1 + . . . (1)

A generalised linear model assumes that:

g(E[y|x]) = β0 + β1x1 + . . . (2)

where g(.) is some function.
When introducing generalised additive models (GAMs), first proposed by Hastie and

Tibshirani (1986) [7], it should first be noted that GAMs build upon familiar likelihood-
based regression models in a way that provides more robustness and flexibility, such
that more complex distributed data points can be modelled beyond linear or polynomial
regression. If there is a single covariate, a GAM assumes a model that is of the form:

g(E[y|x]) = β0 + γ(x) (3)

where γ(.) is a smooth function. With regards to how we select x, one way is through a
polynomial model that is of the form:

g(E[y|x]) = β0 + β1x + β2x2 + β3x3 + . . . (4)

However, a more flexible alternative is provided by the use of basis functions:

g(E[y|x]) = β0 + β1S1(x) + β2S2(x) + β3S3(x) + . . . (5)

evaluated at S1(x) = x, S2(x) = x2, S3(x) = x3 and so on. Here, S1(.), S2(.), S3(.), etc., are
smooth basis functions which can be displayed with a basis matrix, with each row being
evaluated at different values for x.

2.1.2. An Introduction to Splines

Common basis functions are spline basis functions. Spline models split the x-axis into
separate intervals and assume a different model for each, as for example:

S1(x) =

{
S∗

1(x), 0 < x ≤ 1
0, otherwise.

(6)

S2(x) =

{
S∗

2(x), 1 < x ≤ 2
0, otherwise.

(7)

The joins between each interval are known as ’knots’. In order for the function to be
differentiable everywhere and therefore smooth at the knots, the following conditions must
also hold:

S1(1) = S2(1), S′
1(1) = S′

2(1), S′′
1 (1) = S′′

2 (1), . . . (8)



Mathematics 2024, 12, 777 4 of 33

In practice, it is usually sufficient that the derivatives up to S′′(x) match at the knots;
this is because the human eye struggles to detect higher order discontinuities [8]. The
number and placement of knots, the choice of smooth polynomial pieces that are fitted
between two consecutive knots, and whether or not a penalty term is included, are what
defines the type of spline—for now we focus upon non-penalized splines, specifically
B-Splines.

2.1.3. B-Splines

First proposed by Schoenberg (1946) [9], B-Splines became an increasingly popular
tool for mathematical smoothing in the 1970s following publications by De Boor [10] and
Cox [11]. B-Splines are highly attractive in non-parametric modelling and indeed Cox
writes that B-Splines are ’eminently suitable for many numerical calculations’. Eilers and
Marx [6] and Perperoglou [8] offer good summaries of the key properties and advantages
of modelling with B-Splines, along with a review of the thousands of software packages
that exist for spline procedures. A B-Spline of degree q consists of q + 1 polynomial pieces
each of degree q, which join together at q inner knots. At the inner knots, the derivatives up
to q − 1 are continuous and therefore provide a smooth function. The B-Spline is positive
upon the support that is spanned over q+ 2 knots and is 0 everywhere else [6]; this provides
the advantage of high numerical stability and makes them relatively simple to compute.

Let us temporarily assume a model that is linear in selected spline functions of a single
covariate, x. Further, we assume n independent replications, so now for i = 1, 2, . . . , n

yi =
m

∑
j=1

β jSj(xi) + εi (9)

where εi is a zero mean error, and exactly one of the spline terms corresponds to an intercept.
This is a standard linear model, which can be written in vector form

y = Dβ + ε (10)

where y, β, and ε are vectors of appropriate length, and D is a design matrix with row i
corresponding to the spline vector of observation i.

The standard least-squares estimator is

β̂ = (DT D)−1DTy

provided that DT D is invertible.
An advantage of expressing coefficient vector β j in Equation (9) as linear is that

we can interpret the estimation of y as an optimisation problem in Sj(xi). This means
that traditional estimation methods can be used for splines in generalized multivariable
regression models [8]. Through fitting three kinds of model: linear regression (green),
polynomial regression (red), and a B-Spline (black) along with the true relationship between
x and y (orange) we illustrate in Figure 2 how a B-Spline can flexibly and robustly fit data
in which there is no obvious linear or polynomial relationship amongst bivariate data. All
graphical outputs within this work were created using R. For details on how this data was
generated, see Appendix B.

The B-Spline fit is comprised of polynomials of degree 3; hence, they are cubic polynomi-
als, and the number of knots is set to 50—this splits the domain [0,1] into 51 equidistant parts
where a cubic spline is fitted within each subinterval and fused together at each knot by the
conditions outlined above. Interestingly, the polynomial fit is fitted also by using a B-Spline
basis; however, the number of knots is set to zero, and the result is ultimately a standard cubic
polynomial fit. The linear fit is simply a straight-line relationship between x and y. We see
from Figure 2 that the B-Spline provides a far more flexible, robust, and accurate modelling
interpretation of the data, fitting more closely to the true function in orange than the linear or
polynomial fits. Indeed, when comparing the sum of squares for the fitted values, we find
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that the B-Spline has a value of 139.0, compared to values of 726.4 for the polynomial fit and
2095.3 for the linear fit. Our B-Spline fit in this case provides a 93% improvement over the
linear model and an 80% improvement upon the polynomial model.

Figure 2. Comparison between linear, polynomial, and spline fits to true function upon bivariate data.
Green = linear function/red = polynomial function/black = B-Spline function/orange = true function.

Selecting the number of knots is important: too high a number of knots can result in
overfitting with high variance, whereas if the number of knots is too low, this can result
in an underfit with high bias where the relationship is not properly observed [8]. Figure 3
demonstrates four cubic splines with varying numbers of knots. We see from here that
when the number of knots is equal to 1, there is an underfit, and there is a gross overfit
when the number of knots is equal to 100. The spline fits where the number of knots is
equal to 10 and 25, providing a more appropriate fit of the real data.

Figure 3. B-Splines fitted with varying number of knots. Orange line represents true function, black
line represents fitted B-Spline.

2.1.4. P-Splines (Penalized B-Splines)

Whilst unpenalized splines (also known as ’regresssion splines’) have their flexibility
controlled by the number of knots, penalized splines also known as ’smoothing splines’
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have theirs controlled by a penalty term, meaning that less emphasis is required on the
choice of the number and position of the knots in order to avoid a potential under/over-
fit of the data. One example of which is a P-Spline, short for penalized B-Spline. B-
Splines are formed sequentially and ordered; therefore, for a smooth function, we expect
neighbouring coefficients to be similar. Eilers and Marx in their work “Flexible Smoothing
with B-Splines and Penalties” (1996) [6] proposed a penalty term based upon the higher
order finite differences of these coefficient terms of adjacent B-Splines. This approach is a
generalisation of O’Sullivan’s work in 1986 who created a penalty based upon the second
derivative of the fitted curve [12]. The formed objective function, i.e., the sum of squares
(SS), is therefore represented as follows:

SS =
n

∑
i=1

{
yi −

n

∑
j=1

β jSj(xi)

}2

+ λ
m

∑
j=3

{
∆2β j

}2

(11)

in which the first term before the additive is the sum of squares between the observed
data and the fitted B-Splines, and the second term after the additive is the penalty term
which is controlled by smoothing parameter λ. The λ penalty term determines the level of
smoothness that occurs, with smaller values resulting in a more jagged rougher spline, and
larger values leading to smoother straighter curves. ∆ is a difference operator with

∆β j = β j − β j−1 (12)

and ∆2 is the second order difference

∆2β j = ∆(∆β j) = ∆β j − ∆β j−1 = (β j − β j−1)− (β j−1 − β j−2)

= β j − 2β j−1 + β j−2.
(13)

The penalties are therefore squared linear combinations of the coefficients. We can
collect the coefficients into a matrix C to give

n

∑
j=3

{
∆2β j

}2

= βTCTCβ, (14)

a quadratic in β, just as for the first term. It therefore follows that the sum of squares (SS)
for a B-Spline with the Eilers and Marx higher order difference penalty is

SS = (y − Sβ)T(y − Sβ) + λ ∑
j
(∆2β j)

2

= yTy − 2yTSβ + βTSTSβ + λ(βTCTCβ).
(15)

The estimated coefficients β̂ can be found through minimising the SS. We therefore
are able to find an equation for a fitted curve using a B-Spline with a high order difference
penalty:

∂SS
∂β

= −2yTS + 2STSβ + 2λCTCβ = 0. (16)

From this

β̂ = (STS + λCTC)−1yTS (17)

and so
ŷ = Sβ̂. (18)

Using the same data created within Figures 2 and 3, we fit four P-Splines with varying
magnitudes of penalty terms in Figure 4. Note that the number of knots is set at 50 for each fit.
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Figure 4. P-Splines fitted with varying magnitude of penalty term. Orange line represents true
function, black line represents fitted P-Spline

As we can see from Figure 4, where λ = 0 and therefore no difference penalty term is
applied, the resulting spline overfits the data and is particularly rough. As the penalty parameter
λ increases, the splines become smoother and move closer to the true function. Selection of an
optimal penalty parameter is something discussed in later sections of this work.

As their creators, Eilers and Marx provide several properties of P-Splines that make
them particularly advantageous to use over the standard B-Spline. The key advantage is
naturally the reduced need to focus on the number and position of knots that are necessary
to create an appropriate fit to data; the implementation of P-Splines is encouraged through
selecting a large number of knots and then simply using λ to control the level of smoothness
within the fitted curve [13]. P-Splines also display no boundary effects, i.e., an erratic
behaviour of the spline when modelled beyond the data’s support; this is because the
penalty term implements linearity constraints at the outer knots [8]. They are also able to
conserve moments of the data, meaning that the estimated density’s mean and variance
will be equal to that of the data itself—often other types of smoothing such as a kernel
smoother struggle to preserve variance to the data’s level [6]. This property allows for
valuable insights into the data’s shape, distribution, and central tendency.

The level of research that has been undertaken with P-Splines is extensive. This re-
search covers a broad range of applications as well as adaptations to the P-Spline method
itself, including modifications to the penalty term, as well as the addition of secondary
penalty terms to which this work also contributes. P-Splines have been applied within many
different domains, including in a medical context such as with Mubarik et al. (2020) [14]
applying P-Splines to breast cancer mortality data while managing to outperform existing
non-smoothing models, and also within a geospatial environment such as with Rodriguez
(2018) [15] using P-Splines to model random spatial variation within plant breeding experi-
ments while taking advantage of properties such as a stable and fast estimate and being
able to handle missing data and being able to model a non-normal response. P-Splines have
also been adapted to be used within a Bayesian context by Lang and Brezger (2004) [16]
and are shown in several works to improve predictive modelling, such as with Brezger and
Steiner’s (2012) [17] work of modelling demand for brands of orange juice and also with
Bremhorst and Lambert’s (2016) [18] work using survival analysis data.
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There have also been several works that have built upon the original P-Spline method
to incorporate a second additional penalty parameter; this has been undertaken for a
host of reasons. Aldrin (2006) introduces an additive penalty to the original Eilers and
Marx P-Spline to improve the sensitivity of the smoothing curve [19], whilst Bollaerts et
al. (2006) devise a second penalty to enforce a constraint in which the assumed shape of
the relationship between predictors and covariates is taken into account [20]. Simpkin and
Newell (2013) also introduce a secondary penalty, suggesting this method helps alleviate
fears when derivative estimation is of concern and can also lead to an improvement in the
size of errors made during estimation [21]. Perperoglou and Eilers (2009) devise a second
penalty term to capture excess variability and to explicitly estimate individual deviance
effects; they use a ridge penalty to constrain these effects and the result is a very effective
and more suitable model than the single penalty P-Spline [22]. This work aims to contribute
within the additionally penalized P-Spline method space; however, the second penalty we
use and our reasons for taking this direction are unlike that of other authors.

3. Model and Estimation

Our H data set consists of NH observations of response variable y and two covariates
(x, z), and data set V consists of NV observations of response variable y and single covariate
x. We are interested in modelling a relationship between y and the smooth function θ(x, z)
represented using spline basis functions S(.), which we can estimate from H. However, if
NH is small, then there is much uncertainty surrounding this relationship. We therefore
look to incorporate V to enhance our learning surrounding response variable y and the
relationship with covariates (x, z). Provided that V is large, this will provide an accurate
marginal estimate which can be incorporated into our analysis. We are planning to develop
three models for this relationship, with each one building upon the previous.

3.1. Model Assumptions

We assume in general that

g(E[y|x, z]) = θ(x, z) (19)

where θ(x, z) is a smooth function. For simulation purposes, we take [0,1] to be the domain
of each of x and z, and we will use B-Splines to model θ(x, z). We do this in two ways:

1. No Interaction Between Covariates: The relationship of the response y to covariates
(x, z) treats each variable separately such that the model is comprised of two smooth
relationships. This is expressed as θ(x, z) = S(x) + S(z).

2. Interaction Between Covariates: There is a single smoothing relationship that in-
corporates an interaction of covariates x and z with response y. This is expressed as
θ(x, z) = S(x, z).

Each relationship results in different ways in which the design matrix of the B-Spline
basis function is created which is explained in more detail in Appendix C.

3.2. Linear B-Spline Model

Let us firstly assume a standard linear B-Spline model, which throughout we denote
with subscript ‘0’:

y = Dβ + ε (20)

where D is the design matrix, β are the corresponding coefficients, and ε are N[0, σ2]
random errors as usual. We find estimated values for coefficients β̂ by minimising:

SS0 = (y − Dβ)T(y − Dβ), (21)

ultimately receiving the ordinary least squares estimate:

β̂0 = (DT D)−1DTy. (22)
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This value can then be used to receive fitted values for the linear model:

ŷ = Dβ̂0 (23)

3.3. P-Spline Estimation

Building upon the linear model and referring back to the penalty term described by
Eilers and Marx in Flexible Smoothing with B-Splines and Penalties (1996) [6], we now apply
a penalty to the B-Spline, known as a P-Spline estimation, using a fairly large number of
knots to create basis matrices Bx and Bz. We denote P1 and P2 to be roughness matrices
that are based upon the second-order differences in row and column directions, with P1
referring to covariate x and P2 referring to covariate z. The construction of roughness
matrices are discussed in more detail in Appendix D.

The least penalized squares estimate is now found through minimising:

SS1 = (y − Dβ)T(y − Dβ) + λ1(βT PT
1 P1β + βT PT

2 P2β)

= SS0 + λ1(βT PT
1 P1β + βT PT

2 P2β).
(24)

The least penalized squares estimate is now

β̂1 =

(
DT D + λ1(PT

1 P1 + PT
2 P2)

)−1

DTy. (25)

A proof of this is provided in Appendix E. This value as previous can then be used to
obtain the fitted value for the P-Spline estimation model:

ŷ = Dβ̂1 (26)

In the P-Spline estimation model (denoted with subscript ’1’), both roughness matrices
P1 and P2 are regulated by the same penalty parameter λ1. This assumes that for our case
x and z are symmetrical when simulating the data and for simulation purposes keep the
model complexity simple; however, in reality we would need two parameters.

3.4. New Additional Marginalisation Penalty

As of yet, we have not introduced a method of being able to take into account the
vertical data set, V ; we now introduce an additional second penalty term to aid with this
task. Suppose xtest is a vector of x values of chosen length to provide a reasonable spread
across x domains. Let θtrue(xtest) be the true marginal function at xtest, such that

θtrue(xtest) = g(E[y|xtest]), (27)

which can be estimated from our vertical data V . We are also able to estimate these marginal
values from our horizontal data H.

Let

• ŷ = θ̂(x, z) = Dβ̂, a vector of size NH × 1.
• x0 be any element from xtest (a scalar).
• (xi, zi) be covariates for element i within H.
• k(.) be a kernel function, which we take to be the probability density function of a

normal distribution with mean = 0 and standard deviation = 1.
• σk be a smoothing parameter.

A consistent estimator, i.e., converges on the true value when sample size tends to
infinity, is therefore:

θ̂H(x0) =

∑i∈H k
(

xi−x0
σk

)
θ̂(xi, zi)

∑i∈H k
(

xi−x0
σk

) . (28)
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In vector arguments, we can write:

θ̂H(xtest) = Kθ̂(x, z) (29)

where K is a matrix comprised of scaled k(.) functions. Recalling θ̂(x, z) = Dβ̂, therefore:

θ̂H(xtest) = Kθ̂(x, z) = KDβ̂ = W β̂. (30)

We wish for θ̂H(xtest), i.e., our estimated marginal values from H of x, to be as close
as possible to θtrue(xtest), i.e., the true marginal values from V of x. In practice, of course,
θtrue(xtest) would be unknown; however, we can estimate this from the vertical data using
θ̂V (xtest). Conversely, we have assumed since NV ≫ NH, the error in θ̂V (xtest) will be
relatively small. Hence, for simplicity, we use the true marginal θtrue(xtest) rather than the
estimator θ̂V (xtest) for now. Our additional penalty term now added to the least penalized
squares estimate takes this into account.

The new least penalized squares estimate is now found through minimising:

SS2 = SS1 + λ2

(
θ̂(xtest)− θtrue(xtest)

)T(
θ̂(xtest)− θtrue(xtest)

)
= SS1 + λ2

(
W β̂ − θtrue(xtest)

)T(
W β̂ − θtrue(xtest)

)
.

(31)

This is thus providing the twice least penalized squares estimate:

β̂2 =

(
XTX + λ1(PT

1 P1 + PT
2 P2) + λ2WTW

)−1(
XTy + λ2WTθtrue(xtest)

)
. (32)

The proof for this is shown in Appendix F. This value as previous again can be used
to obtain the fitted value for the P-Spline estimation model now fitted with an additional
marginalisation penalty to take into account V :

ŷ = Dβ̂2 (33)

In this model, we note that our additional marginalisation penalty is regulated by
penalty parameter λ2, and our P-Spline smoothing penalty is regulated by λ1 as previously.
Within this paper, the model in which we use the additional marginalisation penalty is
denoted with a subscript ’2’.

4. Model Testing

In this section, we test our three models upon a series of data simulations. Simulations
allow for the exploration of a controlled space and also the freedom to adapt our models
to a range of different parameters, including sample size, data noise, and relationships
between covariates. Using data simulations also allows for the use of perfect knowledge
of true values for response variable y and true marginal values of x; this provides the
advantage that we are accurately able to compare our three models by comparing our fitted
values of each model to the ground truth, something that is naturally unknown in real
world data. The aim of these simulations is to show that our adapted model featuring the
additional marginalisation penalty outperforms both the linear B-Spline method and once
penalized P-Spline estimation.

4.1. Data Simulation
4.1.1. Simulating Covariates and Responses

We first of all generate some artificial H data, generate NH = 400 observations, and
define x and z within it in order to be distributed upon a regular grid spanning (0, 1)2.
The relationship the covariates have with response variable y depends upon whether we
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consider x and z to have independent effects (no interaction) from one another or not
(interaction); therefore, there are two separate equations, one to represent each model
structure. The equations for these bivariate data sets are from Wood’s Thin Plate Regression
Splines (2003) [23]. When we assume a model structure of no interaction effect, the true
value for y, denoted ytrue, is found through the equation:

ytrue =
0.75

πσxσz
exp

{
−(x − 0.2)2/σ2

x − (x − 0.3)2/σ2
z

}
+

0.45
πσxσz

exp
{
−(z − 0.7)2/σ2

x − (z − 0.8)2/σ2
z

}
. (34)

When we assume a model structure with an interaction effect, ytrue is found through
the equation:

ytrue =
0.75

πσxσz
exp

{
−(x − 0.2)2/σ2

x − (z − 0.3)2/σ2
z

}
+

0.45
πσxσz

exp
{
−(x − 0.7)2/σ2

x − (z − 0.8)2/σ2
z

}
. (35)

These equations are almost identical, the only difference being that when there is an
interaction each exponent contains both x and z, and when there is no interaction one
exponent contains just x and the other just z. The constants displayed in these equations
are arbitrary and hold no importance to the interaction between covariates x and z and are
there to simply create a relationship with response y, so they could feasibly be any value not
including 0. Both relationships are each evaluated at σx = 0.3 and σz = 0.4. The value for y
is provided through adding artificial noise generated by NH = 400 independent N[0, σ2]
random variables to the ytrue values, which for now we evaluate at σ = 0.2. Figure 5
displays the two relationships between covariates and responses:

Figure 5. Perspective plot of fitted relationships between (x, z) and y as model structure varies.
(Left): θ(x, z) = S(x, z) (interaction), (Right): θ(x, z) = S(x) + S(z) (no interaction).

4.1.2. Estimating Marginal Effects

We next need to find θtrue(xtest) in order to form our second penalty term. In our
simulations, take xtest to be an equidistant sequence of 100 values between [0,1] to provide
a reasonable spread across the x domain whilst remaining low in dimension. We estimate
θtrue(xtest) by calculating ytrue using either Equations (34) or (35) as appropriate, at each
value of xtest using 10,000 values of z equidistant between [0,1] and then averaging. The
value of 10,000 was selected to again provide a good spread across the z domain and also
to be large enough to provide an accurate true estimate. In this way, we estimate θtrue(xtest)
under the assumption that z is uniformly distributed. For other distributions, we would
need a weighted average. Figure 6 is an illustration of the true marginal values θtrue(xtest)
for both relationships outlined in Section 4.1.1.
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Figure 6. True marginal θtrue(xtest) for the two model structures. (Left): θ(x, z) = S(x, z) (interaction),
(Right): θ(x, z) = S(x) + S(z) (no interaction).

4.1.3. Assessing Model Fit

To assess model fit, we compare the fitted marginal of θ̂(x) attained by our models
with the true marginal of x found in H, θtrue(x), and we also compare the fitted values ŷ of
each model with the true values for y, ytrue. The comparison for each case is in the form
of sum of squares (SS), i.e., ∑{ŷ − ytrue}2. The desired value is for this sum to be as close
to zero as possible, as this will suggest a better fit. In practice, ytrue and θtrue(x) would
be unknown; however, for model testing/simulation purposes we assume that we have
perfect knowledge.

4.2. Model Fit Comparison

We will first of all fit our three models to a single simulated data set with a predeter-
mined number of observations, level of noise, and relationship between covariates x and z
using the sum of squares of fitted values and sum of squares of marginal values as a means
of comparison. Following this, we will then vary our simulated data’s parameters and
increase the number of simulations for each varying parameter combination.

Single Data Set

The following three model fits are applied to a simulated data set evaluated at NH = 400
and σ = 0.2. The data follows a structure where there is an interaction between x and z for
now, i.e., the effects are not independent. The number of knots for each covariate is set at
the highest even number they can be at px = pz = 18, noting that the restriction for this is
that px pz + 1 < NH in order to create a valid design matrix. Finally, penalty parameters
are given default values of λ1 = 0.5 and λ2 = 2 for now—we will investigate optimal
values later. Recall as shown in Section 3 that the fitted values for each model are defined
as follows:

ŷ = Dβ̂ (36)

in which:

Fit0: β̂ = β̂0 = (DT D)−1DTy

Fit1: β̂ = β̂1 =

(
DT D + λ1(PT

1 P1 + PT
2 P2)

)−1

DTy

Fit2: β̂ = β̂2 =

(
DT D + λ1(PT

1 P1 + PT
2 P2) + λ2WTW

)−1(
DTy + λ2WTθtrue(xtest)

)
.

(37)

And the fitted marginal values of x for each model are defined as:

θ̂(x) = W β̂ (38)
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in which
W = KD (39)

with K defined in Section 3.4.
We evaluate each model by finding the sum of squares for the fitted values

(∑{ŷ − ytrue}2) for all i’s and the sum of squares for the marginal values (∑{θ̂(x) −
θtrue(x)}2) for x in xtest. The closer both of these sums are to zero, the better the model fit is
to the data. In Table 1, we illustrate the sum of squares for each fit:

Table 1. Sum of squares for model fits upon a single data set where NH = 400, σ = 0.2 and the model
structure is such that there is an interaction between x and z. Bold indicates best value for each row.

Fit0 Fit1 Fit2

SS Fitted Values 21.72 8.98 8.79
SS Marginal Values 0.50 0.52 0.27

We see here that the sum of squares for the fitted values and the marginal values are
both at their lowest for Fit2, the fit which incorporates the additional penalty term. Fit1 is
also a better fit to the data than Fit0 in terms of sum of squares of fitted values; however,
Fit0 does display a better fit when comparing the sum of squares of marginal values. We
can illustrate the three fits upon the simulated data along with the true function in 3D plots
in Figure 7:

Figure 7. 3D plot of all three model fits and the true function. From left to right: True function, Fit0,
Fit1, Fit2.

We see that the linear model with B-Spline basis functions produces a very jagged fit
between response y and covariates (x, z). When the penalty parameter λ1 is introduced
in Fit1, the fit becomes far smoother. It is difficult to spot any real difference between the
model fit of Fit2 to Fit1 in the above 3D plots. In Figure 8, we show the estimated marginal
functions of x, θ̂H(xtest) found from each model fit against the true marginal fit θtrue(xtest),
recalling that in practice this would not be known.

There is very little difference between the estimated marginal function in Fit0 and
Fit1; however, Fit2 does offer an improved fit to the true marginal function of x. This is
highlighted in Table 1 where Fit2 has a lower sum of squares of the marginal values than that
of Fit0 and Fit1. We have shown that for one particular data set where NH = 400, σ = 0.2,
in which there is an interaction between covariates, that Fit2 in which we use our novel
additional penalty to take into account the marginal value for x thus outperforms standard
linear B-Spline methods and penalized P-Spline estimations in terms of model fit.
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Figure 8. Blue = estimated marginal θ̂H(x)/Red = true marginal θ̂H(xtest). From left to right: Fit0,
Fit1, Fit2.

4.3. Varying Size, Noise, and Structure

Having observed that Fit2 provides a better model fit to Fit0 and Fit1 upon one
simulation of a data set with specific parameters, it is now necessary to investigate across
many simulations where parameters now vary. This includes the number of observations
within the horizontal data set NH, the level of noise in the data set σ (recalling that noise is
determined via N[0, σ2] independent random variables being added to the ytrue values),
and also the structure of the data set, i.e., whether or not there is an interaction between
covariates x and z. We therefore alter NH to be = 100 or 400, σ = 0.2, 0, 5 or 1.0, and
to represent the relationship the two covariates have with one another. We repeat each
combination of these three parameters in 100 simulations and report the mean average sum
of squares of fitted values and marginal values for each model fit across each parameter set
and report our results in Table 2. It is important to note the number of knots, px = pz = 18
for when NH = 400 and px = pz = 8 for when NH = 100, recalling that px pz + 1 < NH
must hold. Penalty parameters λ1 and λ2 are at their optimal values for each sample size,
noise, and covariate relationship combination—we will explore in Section 4.4 how these
values are evaluated.

Table 2. Mean average sum of squares of fitted and marginal values for each model fit as model
structure, sample size, and noise are varied (100 simulations). Bold indicates best value for each row
and SS metric.

Interaction NH σ Fit0 SS(Fitted) Fit1 SS(Fitted) Fit2 SS(Fitted) Fit0 SS(Marg) Fit1 SS(Marg) Fit2 SS(Marg)

Yes 100
0.2 6.55 4.74 4.71 0.94 0.98 0.73
0.5 19.95 7.73 7.34 1.71 1.51 0.74
1.0 70.26 15.41 13.20 4.93 3.53 0.76

Yes 400
0.2 20.64 9.07 8.99 0.32 0.40 0.22
0.5 88.66 13.18 12.53 0.56 0.67 0.20
1.0 333.85 23.46 20.32 1.34 1.22 0.16

No 100
0.2 0.68 0.54 0.45 0.81 0.95 0.53
0.5 4.23 3.04 2.08 1.89 2.13 0.58
1.0 16.84 10.47 5.88 4.77 4.73 0.48

No 400
0.2 1.56 0.75 0.68 0.75 0.83 0.67
0.5 8.98 3.43 2.67 0.90 1.10 0.64
1.0 37.76 11.65 8.19 1.95 2.35 0.62

The average sum of square values for both the fitted values and the marginal values
for x are such that Fit2 is the lowest for every model structure, sample size, and noise
combination across 100 simulations. It is also the case that for all mean average sum of
squares for fitted values that Fit1 outperforms Fit0; however, when looking at the mean
average sum of squares for marginal values, Fit1 does not always perform better than Fit0;
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this is not particularly surprising as there is nothing within the single penalty P-Spline
that pulls the estimated marginal towards the true marginal. It is worth mentioning that
comparing model fits between different combinations of parameters and structures is
unwise. The key purpose of this exercise was to illustrate that when we take into account
the marginal value of x through the use of an additional penalty term, that this offers an
improved model fit than that of existing linear and penalized regression methods.

4.4. Approximating Penalty Parameters

In P-Splines, the larger λ is, the more penalized the curvature of the fit is; therefore, it
is less sensitive to the data providing lower variance and higher bias. As λ → 0, bias is low
and variance is high. Typically, we would want N → ∞ as λ → 0. Our problem is more
complex to solve as previous literature offers solutions when there is only a single penalty
parameter; in our case with Fit2 and our additional penalty term, we require the selection
of two penalty terms, λ1 and λ2.

Focusing initially upon one data set which considers an interaction between covariates
x and z, and model parameters NH = 400 and σ = 1.0, we elect to treat the penalty
parameter λ1 differently within Fit1 and Fit2 such that λ1a determines Fit1 only and λ1b
determines Fit2 along with λ2. Within Fit1, we aim to find the value of λ1a that minimises
the value of the sum of squares between the fitted values, ŷ, and the true values of the
response, ytrue. We require λ values to be non-negative; therefore, we select an appropriate
range of [0,1, 2, . . . , 100] for λ1a. Note that in practice this is not possible as ytrue is unknown
(this is discussed later). We find that a value of λ1a = 13 provides the lowest value of
SS(Fitted) for Fit1 upon this particular data set. Fixing for now λ1a = λ1b = 13, we now
define λ2 to be along the range [0,0.5,1.0,. . . ,50.0] and find each SS value corresponding to
each λ2 value. The minimum value for λ2 = 24 for this data set. We repeat this process
now fixing λ2 to alter λ1b of which we find the approximate optimal value for λ1b = 12.

Naturally, these penalty parameter values will not hold as data set parameters are
altered; similarly, these values may even vary from simulation to simulation. The optimum
penalty parameters across 100 simulations of specified parameters are demonstrated within
Appendix G.1. We accept that this method is ad hoc; however, within simulations this
method of selecting penalty parameters is valid as the sum of squares is a comparison
between the fitted and true values of the response. In reality, this is unknown and a new
method of optimising λ is required which is discussed in Section 6.

5. Logistic Regression for a Binary Response

Several adaptations to our models are required to take into account a binary response
variable.

Let us now assume that

Pr(Y = 1|x, z) = θ(x, z) (40)

in which θ(x, z) is a smooth yet unknown function of probabilities. We can calculate the
marginal effect of x via

Pr(Y = 1|x) = θ(x) =
∫

θ(x, z) fz(z|x)dz (41)

As previously, we estimate the smooth function θ(x, z) from our horizontal data H.
We modify our estimated smooth function so that the marginal estimate of x from the
horizontal data θ̂H(x) is close to the more accurate marginal found from the vertical data,
θ̂V (x). For now, we assume that NV is so large that the uncertainty which comes from θ̂V(x)
is so small that we may as well use the true marginal θ(x) instead. We reiterate that in
reality this would not be possible as we would not know the true marginal; however, for
simulation purposes it is useful as we try to achieve a marginal estimate θ̂H(x) as close to
the truth as possible.
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5.1. Data Creation

For data creation in simulations, we allow the true probabilities to be equal to the
standard logistic function, also known as the expit:

θ(x, z) =
es(x,z)

1 + es(x,z)
(42)

in which s(x, z) is a scaled form of the smooth function we used previously in Section 4
for the linear model simulations. In simulated binary response data, y is created through
generating random samples from a uniform distribution. We find the true marginal θ(x) in
our simulations through the same way as previously.

In the linear model, we will begin with a B-Spline approximation to create design
matrix D for the horizontal data H; however, now we will take the logistic model rather
than the linear. Therefore, for any case i:

θ(xi, zi) =
edT

i β

1 + edT
i β

(43)

in which dT
i is row i in design matrix D.

We can now fit our three models once again, highlighting several differences that occur
from the linear approach.

5.2. No Penalty—B-Spline Logistic Regression (Fit0)

The first difference in this approach is that we estimate our coefficient values β̂ using
maximum likelihood estimation rather than through least squares. Allowing θi = θ(xi, zi)
for i ∈ H, the likelihood is

L(β) = ∏
i∈H

θ
yi
i (1 − θi)

1−yi (44)

and the log-likelihood is

l(β) = ∑
i∈H

{yi log θi + (1 − yi) log(1 − θi)} (45)

Unfortunately, there is no simple closed form for β̂ which maximises l(β), so we
therefore require a numerical method. As the first and second derivatives can be easily
obtained, the obvious choice is the Newton–Raphson method [24].

Let us assume that design matrix D is NH × p in dimension, and so

∂l
∂β

and
∂2l
∂β2 (46)

are a p × 1 vector of first derivatives and p × p matrix of second derivatives, respectively.
Iteratively, we start with an initial coefficient estimate guess of β0 and then create a sequence
β1, β2, . . . until the sequence has converged, or is adjudged to have converged, sufficiently.

Allowing the current estimate to be βk, then the next estimate according to the Newton–
Raphson method is defined as follows:

βk+1 = βk −
(

∂2l
∂β2

)−1

· ∂l
∂β

. (47)

If the absolute differences between βk and βk+1 are below some predefined tolerance
threshold, convergence can be declared and we decide we have obtained the estimated
coefficients β̂. Alternatively, if the algorithm fails to converge, we set a maximum number
of iterations to prevent an infinite loop.

We derive the first and second derivatives of the likelihood function with respect to β
to be
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∂li
∂β j

=
∂li
∂θi

∂θi
∂β j

(48)

and
∂2li

∂β j∂βk
=

∂li
∂θi

∂2θi
∂β j∂βk

+
∂2li
∂θ2

i

∂θi
∂β j

∂θi
∂βk

(49)

A full proof of this is found in Appendix H.1. The Newton–Raphson method for
finding β̂ that maximises the log-likelihood for logistic regression with no additional
penalty can therefore be expressed as follows:

βk+1 = βk −
(

∂li
∂θi

∂2θi
∂β j∂βk

+
∂2li
∂θ2

i

∂θi
∂β j

∂θi
∂βk

)−1(
∂li
∂θi

∂θi
∂β j

)
(50)

Convergence problems can, however, still exist. This occurs when the number of
parameters is large compared with the information in the data—as a result two different
errors can occur, either the algorithm does not converge or it does converge but some of the
estimated β coefficients are very high. There are two solutions that we can implement to
avoid these errors: replicate the data several times (denoted nrep) or reduce the number of
parameters to be estimated by reducing the number of knots, px and/or pz. The selection
of the number of replications and the numbers of knots is not explored in this work, but
as a result of these errors the default simulation setup is NH = 400 with two replicates of
each observation, using px = pz = 8 knots when fitting a B-Spline estimate to achieve the
design matrix D.

5.3. Single Penalty—P-Spline Estimation (Fit1)

As was the case for the linear model, we penalize using P-Spline estimations, selecting
β to maximise:

l(β)− λ1βT(PT
1 P1 + PT

2 P2)β (51)

in which P1 and P2 are the same row/column roughness matrices used previously in the
linear model to prevent overfitting. A key difference from the previous single penalty
usage, however, is that we are now trying to maximise the objective likelihood function
rather than minimise the least squares objective function—therefore, the penalty is now
subtracted rather than added.

We find the first and second derivatives of the P-Spline estimation to be used within
the Newton–Raphson method (of which a proof is provided in Appendix H.2) such that

∂li
∂β j

=
∂li
∂θi

∂θi
∂β j

− 2λ1

[
(PT

1 P1 + PT
2 P2)β

]
j

(52)

and:
∂2li

∂β j∂βk
=

∂li
∂θi

∂2θi
∂β j∂βk

+
∂2li
∂θ2

i

∂θi
∂β j

∂θi
∂βk

− 2λ1

[
PT

1 P1 + PT
2 P2

]
jk

(53)

We note that the penalty term for the first derivative is a vector and a matrix for the
second derivative, and hence the j and j, k subscripts, respectively. We use these values
within our Newton–Raphson approximation as outlined previously in Equation (47) to find
the estimated β̂ coefficients.

5.4. Double Penalty—Marginal Penalization (Fit2)

We now wish to add the novel second penalty taking into account the discrepancies
between the marginal estimated from the horizontal data H and vertical data V . To reiter-
ate, for simulation purposes we use the true marginal θtrue(xtest) instead of the estimate
θ̂V (xtest).

We use a kernel smoothing method to estimate θ̂H(x0) from the fitted θ̂H(xi, zi) such
that
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θ̂H(x0) = ∑
i∈H

k
(

xi − x0

σk

)
θ̂H(xi, zi)

/
∑

i∈H
k
(

xi − x0

σk

)
(54)

with k(.) being a kernel function, σk being a smoothing parameter, x0 being any element
from xtest (a scalar), and (xi, zi) representing covariates for element i within H. We can
express this in vector form:

θ̂H(x0) = KθH(x, z) (55)

where K is a n0 × NH matrix of weights that have been suitably scaled. These weights do
not contain β and so therefore K is a fixed constant in the optimisation of the maximum log-
likelihood objective function. The objective function now contains two penalties, evaluated
at test vector x0. The objective function is as follows:

l(β)− λ1βT(PT
1 P1 + PT

2 P2)β − λ2

(
θ̂H(x0)− θ(x0)

)T(
θ̂H(x0)− θ(x0)

)
(56)

As before and for simplicity, we define the marginal penalty (MP) as follows:

MP = −λ2

(
KθH(x, z)− θ(x0)

)T(
KθH(x, z)− θ(x0)

)
(57)

and for simplicity:

MP = −λ2(Kθ − θ0)
T(Kθ − θ0) (58)

We find the first derivatives of the marginal penalty as follows:

∂MP
∂β j

= −2λ2(θ
TKTK − θT

0 K)
∂θ

∂β j
(59)

And the second derivatives as follows:

∂2MP
∂β j∂βk

= −2λ2

{(
∂θ

∂βk

)T

KTK
∂θ

∂β j
+ θTKTK

∂2θ

∂β j∂βk
− θT

0 K
∂2θ

∂β j∂βk

}
(60)

A proof for these derivatives is found in the Appendix H.3. We use these values within
our Newton–Raphson approximation as outlined previously in Equation (47) to find the
estimated β̂ coefficients.

5.5. Measure of Fit

As we have undertaken previously, we will measure the fit of these three approaches
using the sum of squares, comparing the estimated probabilities θ̂H(x, z); however, we now
take into account heterogeneous variances that may exist within x and z; thus, we use a
weighted sum of squares as an alternative:

WSS = ∑
x,z

(
θ̂H(x, z)− θ(x, z)

)2

θ(x, z)
(

1 − θ(x, z)
) (61)

Varying sample size NH, number of knots px = pz, and the relationship between
covariates x and z are recorded. Displayed in Table 3 are the mean average sums of squares
for fitted and marginal values from 100 simulations of each data set with these varying
combinations. The penalty parameters λ1 and λ2 are at their approximate optimal values
and are illustrated in Appendix G.2.
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Table 3. Mean average weighted sum of squares of fitted values for each model fit as model structure, sample size, and number of knots are varied (100 simulations).
Bold indicates best value for each row and SS metric.

Interaction NH px = pz nrep Fit0 WSS(Fitted) Fit1 WSS(Fitted) Fit2 WSS(Fitted) Fit0 WSS(Marg) Fit1 WSS(Marg) Fit2 WSS(Marg)

No

100 4 4 16.76 11.86 9.22 1.37 1.32 0.99
100 8 4 16.50 10.34 8.66 1.14 1.21 0.83
400 8 2 17.75 12.85 9.26 0.85 1.00 0.49
400 18 2 37.99 12.32 9.13 0.77 0.90 0.47
900 8 1 17.94 12.62 9.14 0.76 0.88 0.46

Yes
100 8 8 83.63 32.44 30.79 0.85 0.72 0.34
400 8 2 74.55 22.98 20.71 0.65 0.56 0.24
900 8 1 73.20 22.48 20.18 0.54 0.45 0.21
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6. Application
6.1. Data Set

We now wish to test whether the double penalty method yields similarly better fitting
results upon real data. The data we use within this Application section is the LITMUS
(Liver Investigation: Testing Marker Utility in Steatohepatitis) Metacohort, making up a
part of the European Non-Alcoholic Fatty Liver Disease (NAFLD) Registry [25]. We utilise
19 covariates that are easily attained through a blood test or a routine GP appointment,
whereby this includes information such as age, gender, BMI, and pre-existing health
conditions, in order to form our vertical data set V . We focus upon a binary response
variable of ’At-Risk MASH’—a key stage in the MASLD natural progression between
benign steatosis and more serious fibrosis and cirrhosis—with ‘1’ representing an individual
being positive At-Risk MASH, and ’0’ representing negative. There are approximately 6000
individuals that have an At-Risk MASH response and have had the 19 covariates that make
up the vertical data set V measured. The horizontal data set H includes approximately 1500
individuals who have had the 19 core features of V measured, alongside further genomic
sequencing data collected. This includes a further 37 additional covariates within the
horizontal data set H.

A summary of the V and H data sets is illustrated in Table 4:

Table 4. Characteristics of H and V data sets within the LITMUS Metacohort.

Dataset N p Y = 0 Y = 1

V 6024 19 4014 2010
H 1456 19 + 37 860 596

6.2. Adaptations from Simulated Models
6.2.1. Dimensionality Reduction

Data simulations have been limited to where the number of covariates is equal to
two. In principle, the methods we have created would work for more than two covariates,
but the number of parameters would become very large and the fits therefore unstable.
Instead, we will adopt three dimensionality reduction techniques to obtain the best linear
combinations of the 19 and 37 covariates: linear predictor following the fit of a GLM;
principle component analysis (PCA); and t-distributed stochastic neighbour embedding
(tSNE). These will be taken as x and z, respectively. We discuss this issue of dimensionality
reduction in Section 7.

The first method of dimensionality reduction applied on the real data set is using the
linear predictor fitted on the link scale following the fit of a generalised linear model (GLM)
of the covariates to the response [26]. GLMs are formed using three components: a linear
predictor—a linear combination of covariates and coefficients; a probability distribution—
used to generate the response variable; and a link function—simply a function that ’links’
together the linear predictors and probability distribution parameter. By fitting a GLM to H
upon the 19 covariates that also exist within V with the corresponding binary response y for
these observations, we take the linear predictor fitted on the link scale and return a single
vector that represents x. In the same way, we fit a GLM upon the 37 additional covariates
that exist only within H with the corresponding binary response y for these observations
and take the linear predictor fitted on the link scale to return another single vector, this
time representing z. This technique is common in prognostic modelling within medical
domains where the linear predictor is often used as a prognostic index, i.e., a measure of
future risk), for patients [27,28].

The second method used in this section is principal component analysis (PCA). De-
veloped by Karl Pearson [29], PCA is one of the most common methods of dimensionality
reduction. In a nutshell, supposing we have p covariates, PCA transforms p variables
e1, e2, . . . , ep called principal components, each of which are linear combinations of the
original covariates x1, x2, . . . , xp. We select coefficients for each covariate so that the first
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principal component e1 explains the most variation within the data, and then the second
principal component e2 (uncorrelated with e1) explains the next most variation, and so on.
For our purpose, we use the first principal component when performing a PCA on the 19
and then the 37 covariates, thus providing x and z as single vectors we can use within our
analysis.

The final method of dimensionality reduction we use is t-distributed stochastic neigh-
bour embedding (tSNE). Based upon the van der Maaten t-distributed variant of stochastic
neighbour embedding, developed by Hinton and Roweis [30,31], tSNE, unlike the linear
predictor and PCA methods, is a non-linear technique that aims to preserve pairwise simi-
larities between data points in a low-dimensional space. The tSNE method calculates the
pairwise similarity of data points within high and low dimensional space and assigns high
and low probabilities to data points that are close and far away from a selected data point,
respectively. It then maps the higher dimensional data onto a lower dimensional space
whilst minimizing the divergence in the probability distributions of data points within
the higher and lower dimensional data. This mapping then provides a vector which can
be used within our methods to represent both x and z variables. The greatest difference
between the PCA and tSNE methods are that PCA aims to preserve the variance of the data
whereas tSNE aims to preserve the relationship between the data points.

6.2.2. Estimating θ̂V (x)

Recall that for a binary response variable y

Pr(Y = 1|x, z) = θ(x, z) (62)

where θ(x, z) is a smooth but unknown function of all fitted probabilities. The associated
marginal is given as follows:

Pr(Y = 1|x) = θ(x) =
∫

z
θ(x, z) fz(z|x)dz (63)

in which fz(z|x) is the conditional probability density function of z given x.
As we have undertaken previously, we are planning to estimate θ(x, z) from H but

modify our estimate to make sure that θ̂H(x), i.e., the estimated marginal x attained from
our horizontal data, is close to the more accurate marginal from our vertical data, θ̂V (x). In
simulations we used the true marginal θ(x); however, it is not possible to calculate in real
data, so our first task is therefore to estimate θ̂V (x).

6.2.3. Marginal in the Second Penalty

In our simulations to use the second marginalisation penalty, we compare the marginal
from our fit using x and z in our horizontal data, and compare this with the true marginal
values. Naturally, the true marginal is unknown in our real data, so we therefore use an
accurate estimate from V . As mentioned in Section 3, we use a predefined vector xtest to
calculate the marginal from H. In our real data, we can now simply use xH, including the
observed x-values from H, to calculate the marginal. The advantage of this is that we use
all values in x from H rather than just unique values, allowing the second penalty term
to have greater weight for more common values of x. Another advantage is the marginal
from H, whereby θ̂H(xi) for i ∈ H is produced as a part of the fitting procedure.

6.2.4. Means of Comparison

In our real data as mentioned we now do not know the true smooth function θ(x, z);
therefore, a comparison by means of the sum of squares of fitted values as undertaken in
simulations is now redundant. By allowing the estimated marginal of x from V to now
replace the true marginal θ(x) which is now also unknown, our only means of comparison
now is through the sum of squares of the marginal values, with values closer to zero
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indicating a greater fit. In Section 7, we mention possible future work of evaluating model
fits upon data in which we do not have perfect knowledge.

6.2.5. Cross-Validation for Approximating Penalty Parameters

One final adaptation from modelling upon real data to simulations is that it is now feasible
to undertake a k-fold cross-validation method in order to determine the smoothing parameter
λ. Recall in simulations how λ1 was selected through comparing the sum of squares values
when fitting the simulated data across a grid of λ1 values. This sum of squares value was found
through comparing model fit values to the truth; however, in our real data application where
ground truth is unknown, k-fold cross-validation [32] is now required.

Setting number of folds k = 10 and allowing for a 90:10 train/test split, each train set
data is fitted using a P-Spline approximation whilst iterating through a grid of λ1 values.
The coefficients of each of these fits are then multiplied with the design matrix created from
the test set and then put into an expit function to give the estimated fitted probabilities
θ̂test(x, z). We use three different metrics to compare θ̂test(x, z) and the values of y within
the test set: sum of squares (SS), log-likelihood (LL), and area under curve (AUC). For each
λ1 value, the median value for each metric across the k = 10 folds is found. The ’best’ λ1
value is therefore the median value that is either the smallest SS or the greatest LL or AUC
value. We then use all three supposed ’best’ λ1 values according to these metrics to find
λ2. This is simply found through using these λ1 values and scanning through a grid of λ2
values, until an acceptable improvement in fit from using the additional marginalisation
penalty over the single penalty P-Spline approximation is found, whereby in our case this
acceptable improvement is a 50% reduction in the sum of squares in marginal values. We
can also select λ2 as simply the value that provides the lowest sum of squares of marginal
values when using the additional marginalisation penalty.

We accept that our method of selecting λ2 is ad hoc and discuss potential future work
options to select λ2 values in Section 7. Increasing λ2 values will take θ̂H(xtest) values
ever closer to θ̂V (xtest) at the expense of a poorer and more biased estimate of θ(x, z). In
practice, we would like θ̂H(xtest) to be just close enough to θ̂V (xtest) to consider a realistic
and feasible estimate of the underlying true θ(xtest). This depends upon the level of noise
that exists in θ̂H(xtest) and to a lesser extent the noise in θ̂V (xtest). Selecting λ2 based upon
a 50% reduction in the SS of marginal values is therefore preferable rather than the outright
best SS value—this is because we accept that there is a level of noise in θ̂H(xtest) and that it
would not be exactly the same as θ(xtest) even if we had perfect knowledge on the correct
marginal, so we just expect these values to be close. By increasing λ2, we force these values
to be closer together, leading to more bias within θ̂H(x, z).

6.3. Results

Following the dimensionality reduction of the real data set, x and z are now single
vectors. Errors frequently arose at two points during the modelling process for the ap-
plication data. The first occasion is when fitting the three model types upon the newly
scaled data, and the second occasion is when cross-validating upon the data to find optimal
values for λ1. In the second instance, errors occur in particular for values of high λ1. For
both occasions, this is due to the algorithm for fitting a generalised linear model either
not converging or producing coefficient β’s that are ridiculously high. This error happens
when the fitted probabilities are extremely close to 0 or 1, occurring when the predictor
variable x is able to perfectly separate the response variable. The consequence of this is that
maximum likelihood estimates of the coefficients do not exist, and therefore the algorithm
fails to converge. These errors can be alleviated by trimming the scaled values for x and z
by removing extreme values at either end of the range. Following an extensive search of
altering the minimum and maximum values of x and z, the number of data points that are
removed without causing either a fitting or cross-validation error was 24 for both the inter-
action and non-interaction data sets when using PCA as a form of dimensionality reduction.
This compares with 46 data points removed in the non-interaction data set and 52 data
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points removed in the interaction data set when using the Linear Predictor as a means of
dimensionality reduction, and no data points removed for both the non-interaction and
interaction data sets when using tSNE.

As mentioned within Section 6.2.1, we perform three methods of dimensionality reduc-
tion (linear predictor, PCA, and tSNE) and we have throughout two different relationship
covariates x and z with one another (interaction or no interaction). Along with having three
methods of determining λ1 as mentioned in Section 6.2.5 (AUC, SS, and Log-likelihood)
and two methods of determining λ2 (outright best SS of marginal values and lowest value
that offers a 50% improvement in SS of marginal values compared to Fit1), we simulate all
of these combinations of possible changes to our modelling.

Table 5 lists all results of these calculations. We can report that for every combination
of dimensionality reduction, choice of λ1 and λ2, interaction or no interaction between
covariates, Fit2 always provides a notable enhancement in marginal fit of on average
65%; this is because after all setting λ2 = 0 would at worst reduce Fit2 to Fit1. Generally
for interaction data sets, the additional penalty model offers less of an improvement in
comparison to non-interaction data sets—in some cases such as the modelling upon an
interaction data set using linear predictor as a dimensionality reduction method and using
AUC as the λ1 determination method, there is no value of λ2 that offers a greater than
50% improvement in Fit2 over Fit1. This is the case for four other instances, as shown in
Table 5. This is arbitrary, however, as it is clear from our results that Fit2 always provides
an improvement in fit compared to Fit1 and Fit0. It is also notable that the P-Spline
approximation method does not always offer an improvement upon the standard linear
model. Generally, log-likelihood and sum of squares methods select the same values for λ1;
however, there is more variation when AUC is the method of determination for λ1. Values
for λ2 are almost always identical regardless of λ1 determination method, typically offering
λ2 approximately equal to 2 when selecting Fit2 purely on best fit, and λ2 approximately
equal to 1 when selecting λ2 based upon a 50% improvement in fit for Fit2 over Fit1.

In Figure 9, we graphically compare the marginal estimates from H, θ̂H(x), which we
receive from each model fit as outlined in Section 6.2.3 with our estimated marginal of x
from V , θ̂V (x) (which we receive as outlined in Section 6.2.2), for each model fit and each
dimensionality reduction method— note that the relationship between covariates in this
case is one of which there is an interaction. The red lines in each plot represent θ̂V (x) and
blue lines represent θ̂H(x). The top row of plots are obtained through using the Linear
Predictor as a means of dimensionality reduction; the middle row via PCA; and bottom row
through tSNE. Each graph on the left of the plot illustrates the fitted marginal probabilities
achieved from Fit0; the middle via Fit1; and the right hand side via Fit2. Better model fit is
demonstrated the closer the blue and red lines are to one another, and as we can see for
Fit2 θ̂H(x) (red) is closest to θ̂V (x) (blue) for all dimensionality reduction methods. Fit2 is
therefore a better fit for our applications data compared to Fit0 and Fit1.

Table 5. Complete results for modelling upon the LITMUS Metacohort. Bold indicates best results for
each row.

Dim. Reduction Interaction λ1 Determination λ2 Determination λ1 λ2 Fit 0 SS(Marg) Fit 1 SS(Marg) Fit 2 SS(Marg)

Linear Predictor No

SS 50% Improvement 4 1.2 23.80 22.94 11.32
SS Best Fit2 4 2.2 23.80 22.94 7.66
Log-likelihood 50% Improvement 3 1.2 23.80 22.80 11.12
Log-likelihood Best Fit2 3 2.2 23.80 22.80 7.39
AUC 50% Improvement 6 1.3 23.80 23.16 11.11
AUC Best Fit2 6 2.3 23.80 23.16 7.70

Linear Predictor Yes

SS 50% Improvement 4 NA - - -
SS Best Fit2 4 2.4 24.69 25.83 13.42
Log-likelihood 50% Improvement 3 NA - - -
Log-likelihood Best Fit2 3 2.4 24.69 25.66 13.09
AUC 50% Improvement 6 NA - - -
AUC Best Fit2 6 2.4 24.69 26.03 13.76
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Table 5. Cont.

Dim. Reduction Interaction λ1 Determination λ2 Determination λ1 λ2 Fit 0 SS(Marg) Fit 1 SS(Marg) Fit 2 SS(Marg)

PCA No

SS 50% Improvement 2 1.0 42.37 33.85 16.30
SS Best Fit2 2 2.0 42.37 33.85 9.81
Log-likelihood 50% Improvement 2 1.0 42.37 33.85 16.30
Log-likelihood Best Fit2 2 2.0 42.37 33.85 9.81
AUC 50% Improvement 2 1.0 42.37 33.85 16.30
AUC Best Fit2 2 2.0 42.37 33.85 9.81

PCA Yes

SS 50% Improvement 3 1.1 36.20 35.07 17.49
SS Best Fit2 3 2.0 36.20 35.07 12.12
Log-likelihood 50% Improvement 2 1.1 36.20 34.85 17.28
Log-likelihood Best Fit2 2 2.0 36.20 34.85 11.87
AUC 50% Improvement 1 1.1 36.20 34.55 16.91
AUC Best Fit2 1 2.0 36.20 34.55 11.48

tSNE No

SS 50% Improvement 3 1.4 46.66 36.29 17.54
SS Best Fit2 3 2.0 46.66 36.29 14.24
Log-likelihood 50% Improvement 3 1.4 46.66 36.29 17.54
Log-likelihood Best Fit2 3 2.0 46.66 36.29 14.24
AUC 50% Improvement 8 1.5 46.66 34.25 16.74
AUC Best Fit2 8 2.0 46.66 34.35 14.26

tSNE Yes

SS 50% Improvement 5 NA - - -
SS Best Fit2 5 2.0 48.59 53.35 30.19
Log-likelihood 50% Improvement 5 NA - - -
Log-likelihood Best Fit2 5 2.0 48.59 53.35 30.19
AUC 50% Improvement 0 2.1 48.59 48.59 21.00
AUC Best Fit2 0 2.1 48.59 48.59 21.00

Figure 9. Comparison between θ̂V (x) (Red) and θ̂H(x) (Blue) for each model fit and each dimension-
ality reduction: Linear Predictor (top row)/PCA (middle row)/tSNE (bottom row).

7. Discussion and Future Work

To our knowledge, this is the first work to propose additional marginal penalties in
a flexible regression. There are, however, a number of areas for future development. The
first is that we were unable to develop a succinct method of selecting penalty parameter λ2
relating to the discrepancies between marginal values of x; we relied upon cross-validation
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to select λ1; however, this method is not possible in selection for λ2—we therefore relied
upon manual scanning across a range of values to select λ2. We are prepared to accept a
slightly worse fit to the data in H if a more realistic marginal when compared with that
from V is obtained. This means we are not trying to optimise the fit but we desire as good
a fit as possible subject to the marginal estimate θ̂H(x) being consistent with θ̂V (x). Future
work would therefore include the development of a concise method to choose λ2. We
know that as λ2 → ∞, θ̂H(x) → θ̂V (x); therefore, one possibility for future work would be
to gradually increase λ2 until a consistent estimator is reached. Another method would
include a computationally intense method of iterating through a grid of λ2 values, this
time fitting our model to a sample of values within H for each λ2 value. For each iteration,
we can receive the marginal values θ̂H(x) from these samples as well as a percentage
confidence band for θ̂H(x). If θ̂V (x) also lies within this band, then we accept this λ2 value
as the ’optimal’, and if not then we try the next value in our defined λ2 grid. An alternative
solution could be to withhold some of H to assess fit, through dividing H into parts similar
to a train/test split, using the train set to determine penalty parameter values λ1 and λ2
and using the test set to evaluate model performance with these selected values.

Secondly, we are reliant upon the sum of squares of the marginal values to be our sole
measurement of fit for modelling within our application to the real data section. As seen in
simulations, we also used the sum of squares of fitted values as a means for comparison
between different model fits; however, with the true fitted values now unknown, the
method we utilised within simulations is now infeasible. Future work would therefore
include the development of other methods of evaluating the performance of our model
when the ground truth is unknown. One possible method of achieving this objective would
be to use two thirds of H to cross-validate and calculate optimal penalty parameter values
λ1 and λ2 while using the remaining third of H to assess fit. However, this is not entirely
necessary as our aim for this work was not to model H as well as possible but rather to
integrate the smaller cohort H and larger cohort V into a predictive analysis without the
requirement of imputation. We would therefore consider accepting a slightly worse model
fit for H to ensure a marginal that is closer to V .

Furthermore, we have developed our method for the case of x and z being scalars in
Section 6.2.1. We used dimensionality reduction methods to reduce multivariate covariates
to scalar summaries. These techniques naturally come with their own disadvantages. For
example, if data is strongly non-linear, then dimensionality techniques such as PCA can
struggle to fully capture covariate relationships, potentially resulting in a loss of informa-
tion. Dimensionality reduction can also result in difficult to interpret transformations of
covariates and are not always easy to visualize. Future work therefore includes being able
to develop our methods and additional marginalisation penalties to work upon data sets
without the need for transforming H covariates into single x and z vectors. Finally, we have
only considered non-parametric models for representing both V and H. We mentioned in
Section 2 and Appendix A our motivation and the suitability for non-parametric modelling,
noting that if f (y|x, z) takes a parametric modelling form, then it is unlikely f (y|x) could
also be of the same parametric form. However, it is possible for one of V or H to be mod-
elled parametrically provided the other is modelled non-parametrically. This is therefore
another potential avenue for future work.

8. Conclusions

Referring back to the purpose of this research, it is a common issue within data
science of how to maximise the level of information that can be attained from asymmetric
overlapping data sets. In a medical context, we have highlighted how particular subjects
may have more information available to utilise within predictive analysis than the more
common baseline information, such as specialist testing. Common solutions to this problem
involve missing data imputation or simply two separate predictive models, one using
baseline information only on a large number of individuals and one using baseline plus
specialist testing information on a select number of individuals. The issue with missing data
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imputation is that it is infeasible and bad practice to impute large levels of missing data,
particularly if the cohort with larger levels of information available is substantially smaller
than that of the larger cohort with less information. Utilising two separate predictive
models for each cohort limits analysis and what we can learn from both the response
variable and its interaction with covariates.

In this work, we propose a method to integrate the smaller cohort, named horizontal
data (H), and the larger cohort, named vertical data (V), without the requirement for data
imputation or data deletion. Simplifying the number of covariates down to two, x and
z, in which x represents covariates every individual has recorded, and z represents the
added covariates only individuals within H have recorded, we are motivated by non-
parametric models for modelling each cohort. We find that utilising flexible smoothing via
B-Splines offers opportunities to take into account both cohorts into our analysis. Flexible
smoothing models provide more robustness and flexibility to model complexly distributed
data points where linear and polynomial regression models are unsatisfactory. Smoothness
can be controlled by the introduction of a penalty term to B-Splines, also known as P-
Splines—these penalties are desirable to prevent over/under-fitting to data. By looking at
discrepancies between the marginal value of x obtained from H, denoted θ̂H(x), with the
marginal value of x obtained from V , denoted θ̂V (x), we introduce a second penalty term
to be able to model H whilst taking into account V .

Through a series of data simulations, penalty parameter tunings, and model adapta-
tions to take into account both a continuous and binary response, we found that the model
with the additional marginalisation penalty appended to a P-Spline approximation method
outperformed both the linear B-Spline method and the standard P-Spline approximation
method utilising the single smoothing penalty. Applying the model to a real life healthcare
data set of the LITMUS Metacohort with binary response relating to an individual’s risk of
developing MASH (metabolic dysfunction associated steatohepatitis), we let V represent
individuals who had a routine blood test taken, and H represent individuals who had
further specialist genomic sequencing data collected. We found similar results in that this
model with the additional marginalisation penalty fitted the marginal values of the data
better than both the linear B-Spline model and the single penalty P-Spline approximation.

Areas for future work include the development of a succinct method to select penalty
parameter λ2 and the finding of a measurement to take into account overall model fit when
applying models to a real world data set. In this work we omitted this, as our overall aim
was to develop a method in which we could integrate asymmetric data sets into a predictive
analysis upon a binary target, and therefore we had less of a focus on model fit. Future
work will also include adapting our method to not require dimensionality reduction and
also to consider parametric modelling for one of the V and H data sets. We have shown in
this work that the novel additional marginalisation penalty improved the fit of the models
as opposed to standard B-Spline and P-Splines approximation methods. These results are
encouraging and illustrate a novel technique of how it is possible to integrate asymmetric
data sets that share common levels of information without the need for data imputation or
separate predictive modelling.
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Appendix A. Motivation for Non-Parametric Models

Considering a response y and two vector covariates x and z, we denote f (.) as a
generic notation for probability functions, whether for discrete or continuous random
variables. We are particularly interested in the conditional probability functions f (y|x) and
f (y|x, z), with the former being the marginal after integrating out z of the latter. In general,
the relationship is as follows:

f (y|x) =
∫

f (y, z|x)dz =
∫

f (y|x, z) f (z|x)dz (A1)

When determining the suitability of either a parametric or non-parametric approach to
modelling both probability functions, we note that if f (y|x, z) takes a parametric modelling
form, then it is not usually possible for f (y|x) to also be the same parametric form.

Example: Assume y is binary and suppose the full conditional is logistic:

f (y|x, z) = Pr(y = 1|x, z) = expit(β0 + β1x + β2z) (A2)

where expit(a) = ea/(1 + ea). Take z to be a binary scalar that is independent of x with
Pr(z = 1) = 1/2, then

f (y|x, z = 0) = expit(β0 + β1x)

f (y|x, z = 1) = expit(β0 + β1x + β2)
(A3)
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Therefore

f (y|x) = 1
2

(
expit(β0 + β1x) + expit(β0 + β1x + β2)

)
̸= expit(β0 + β1x)

(A4)

Hence f (y|x) is not of logistic form. We are therefore motivated to look at non-
parametric models to take into account conditional models.

Appendix B. Data Generation for B-Splines Example

Data for Figures 2 and 3 was created within R by generating 400 random samples from
the uniform distribution for each covariate x and z. The relationship the covariates x and
z have with the true value for the response, denoted ytrue, is found through an example
arbitrary equation:

ytrue = −3.5 + 0.2x11(10 − 10x)6 + 10(10x)3(1 − x)10 − 1.8z7(6 − 6z)5z3
(A5)

Noise is then added to ytrue to give values for y which are then plotted, as shown by
the blue crosses.

Appendix C. Construction of Design Matrices

As outlined in Section 3.1, there are two relationships the response y has with co-
variates (x, z). The first instance of the smoothing relationship relating to there being no
interaction between response y and covariates (x, z), suggests that given a predefined
number of knots px, a B-Spline basis is fitted to covariate x to provide the B-Spline basis
matrix Bx, which has dimensions NH × px, i.e., the number of observations within the H
data set by the number of knots px. This matrix represents the list of basis functions across
all predefined knots, evaluated at each observation within NH. Similarly, fitting a B-Spline
basis function to covariate z with predefined number of knots, pz, basis matrix Bz with
dimensions NH × pz is outputted. The design matrix D is then constructed by appending
Bz to Bx and then adding an intercept term. The design matrix therefore has dimensions
NH × (1 + px + pz).

For the second instance of the smoothing relationships, in this case where response
y has an interaction with covariates (x, z), the design matrix D is constructed differently.
Matrices Bx and Bz are both constructed in the same way as before; however, D is now
achieved through taking all products of a column in Bx and a column in Bz and then
adding an intercept term. This therefore provides the design matrix D with the dimensions
NH × (1 + px pz).

Appendix D. Construction of Roughness Matrices

Section 3.3 introduces P-Spline estimation as a means of penalizing the B-Spline,
achieved through the creation of penalty roughness matrices P1 and P2. The way P1 and P2
are constructed depends upon the relationship between response y and covariates (x, z).
When there is an interaction, P1 is found through the product between the identity matrix,
I, of dimensions px × px, and the difference matrix of dimensions (px − 2)× px, plus an
intercept term, thus giving P1 the dimensions of (px(px − 2) + 1)× px px. Similarly, P2 is
found in the exact same way, using number of splines pz this time. P2 therefore has the
dimensions of (pz(pz − 2) + 1)× pz pz.

When there is no interaction between the response and the covariates, roughness
matrices P1 and P2 have identical dimensions. In this case, P1 and P2 take the dimensions
of [(px − 2) + (pz − 2) + 1 × (pz) + (pz) + 1], whereby this is simply the two difference
matrices applied to covariates x and z appended together, with an added intercept term.
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Appendix E. Proof of Least Penalized Squares Estimate with Single Penalty

Proof. Let Ω = PT
1 P1 + PT

2 P2. The penalized sum of squares is

PSS = (y − Dβ)T(y − Dβ) + λ1βTΩβ

= yTy − 2βT DTy + βT(DT D + λ1Ω)β
(A6)

Differentiating

∂PSS
∂β

= −2DTy + 2(DT D + λ1Ω)β (A7)

leading to

β̂1 = (DT D + λ1Ω)−1DTy (A8)

provided the inverse exists.

Appendix F. Proof of Least Penalized Squares Estimate with Additional Penalty

Proof. Let Ω = PT
1 P1 + PT

2 P2. The twice penalized sum of squares is

PSS = (y−Dβ)T(y−Dβ)+λ1βTΩβ+λ2

(
Wβ− θtrue(xtest)

)T(
Wβ− θtrue(xtest)

)
(A9)

Differentiating

∂PSS
∂β

= −2
(

DTy + λ2WTθtrue(xtest)

)
+ 2

(
XTXβ + λ1Ωβ + λ2WTWβ

)
(A10)

leading to

β̂2 =

(
DT D + λ1Ω + λ2WTW

)−1(
DTy + λ2WTθtrue(xtest)

)
(A11)

provided the inverse exists.

Appendix G. Approximate Optimum Penalty Parameters

Appendix G.1. Continuous Response

Rounded to sensible values, we display the optimum λ values for each model structure
and data set parameter combination in Table A1.

Table A1. Penalty parameter values for each model structure and parameter combinations.

Interaction NH σ λ1a λ1b λ2

Yes 100
0.2 0.1 0.1 0.2
0.5 0.3 0.3 0.6
1.0 0.9 0.9 1.8

Yes 400
0.2 2 2 2.3
0.5 6 6 7
1.0 18 18 21

No 100
0.2 0.1 0.1 0.5
0.5 0.3 0.3 1.5
1.0 0.9 0.9 4.5

No 400
0.2 4.3 6 1
0.5 13 18 3
1.0 36 54 9
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We see generally that as NH and σ increase, the size of each penalty parameter also
increases. For data sets with a covariate interaction, the optimum values for λ1 typically
follow λ1a = λ1b; however, for non-interaction data sets λ1a and λ1b differ when NH is larger.

Appendix G.2. Binary Response

We see in Table A2 that generally as NH increases, the size of each penalty parameter
also increases. For both interaction and non-interaction data sets, the optimum values
for λ1 typically follow λ1a = λ1b; however, the value of these penalty parameters greatly
increases when the number of knots px = pz increases significantly to 18. Values for λ2 also
tend to increase as sample size increases, albeit from a far greater initial value.

Table A2. Optimum penalty parameter values for each model structure and parameter combinations.

Interaction NH px = pz nrep λ1a λ1b λ2

No

100 4 4 0.06 0.23 8.94
100 8 4 0.21 0.22 8.92
400 8 2 0.28 0.30 18.86
400 18 2 6.34 7.06 18.98
900 8 1 0.25 0.33 20.82

Yes
100 8 8 0.71 0.67 13.06
400 8 2 0.62 0.59 15.98
900 8 1 0.57 0.59 18.46

Appendix H. Newton–Raphson Method for Finding β̂

Appendix H.1. No Penalties—Fit0

Let us consider a single term within the the log-likelihood (no penalty):

li = yi log θi + (1 − yi) log(1 − θi) (A12)

Therefore
∂li
∂θi

=
yi
θi

− 1 − yi
1 − θi

(A13)

and also:
∂2li
∂θ2

i
= − yi

θ2
i
− 1 − yi

(1 − θi)2 (A14)

which are both scalars.
Recall that

θi =
edT

i β

1 + edT
i β

(A15)

and so for j, k = 1, 2, . . . , p, we have

∂θi
∂β j

= dij
edT

i β

1 + edT
i β

− dij
edT

i βedT
i β

(1 + edT
i β)2

= dijθi(1 − θi) (A16)

and
∂2θi

∂β j∂βk
= dijdik(1 − 2θi)θi(1 − θi) (A17)

We can now derive the first and second derivatives of the likelihood function with
respect to β to be

∂li
∂β j

=
∂li
∂θi

∂θi
∂β j

(A18)

and
∂2li

∂β j∂βk
=

∂li
∂θi

∂2θi
∂β j∂βk

+
∂2li
∂θ2

i

∂θi
∂β j

∂θi
∂βk

(A19)
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Therefore

βk+1 = βk −
(

∂li
∂θi

∂2θi
∂β j∂βk

+
∂2li
∂θ2

i

∂θi
∂β j

∂θi
∂βk

)−1(
∂li
∂θi

∂θi
∂β j

)
(A20)

Appendix H.2. Single Penalty—Fit1

Defining this as the roughness penalty (RP):

RP = −λ1βT(PT
1 P1 + PT

2 P2)β (A21)

we are able to find the first and second derivatives that are to be added to the terms we
found in the previous chapter when using Newton–Raphson upon the no penalty method,
such that

∂RP
∂β

= −2λ1(PT
1 P1 + PT

2 P2)β (A22)

and
∂2RP
∂β2 = −2λ1(PT

1 P1 + PT
2 P2) (A23)

Thus giving the overall first derivative term of the P-Spline Estimation using the
Newton–Raphson method:

∂li
∂β j

=
∂li
∂θi

∂θi
∂β j

− 2λ1

[
(PT

1 P1 + PT
2 P2)β

]
j

(A24)

and second derivative:

∂2li
∂β j∂βk

=
∂li
∂θi

∂2θi
∂β j∂βk

+
∂2li
∂θ2

i

∂θi
∂β j

∂θi
∂βk

− 2λ1

[
PT

1 P1 + PT
2 P2

]
jk

(A25)

Appendix H.3. Double Penalty—Fit2

Defining the additional marginal penalty (MP) as follows:

MP = −λ2

(
KθH(x, z)− θ(x0)

)T(
KθH(x, z)− θ(x0)

)
(A26)

and for simplicity:

MP = −λ2(Kθ − θ0)
T(Kθ − θ0)

= −λ2

(
θTKTKθ − 2θT

0 Kθ + θT
0 Kθ + θT

0 θ0

) (A27)

Only θ depends upon β. Differentiating the i-th term of θ with respect to β j:

∂θi
∂β j

= dijθi(1 − θi) (A28)

and then collecting these into an NH vector ∂θ/∂β j, we find the first derivatives of the
marginal penalty as follows:

∂MP
∂β j

= −2λ2(θ
TKTK − θT

0 K)
∂θ

∂β j
(A29)
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Now differentiating the i-th term of θ again, this time with respect to βk:

∂2θi
∂β j∂βk

= dijdik(1 − 2θi)θi(1 − θi) (A30)

and then collecting these into an NH vector, ∂2θ/∂β jβk, we obtain the second derivatives of
the marginal penalty as follows:

∂2MP
∂β j∂βk

= −2λ2

{(
∂θ

∂βk

)T

KTK
∂θ

∂β j
+ θTKTK

∂2θ

∂β j∂βk
− θT

0 K
∂2θ

∂β j∂βk

}
(A31)

These values are then used within our Newton–Raphson approximation as outlined
previously to find the estimated β̂ coefficients.
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