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Abstract: Pooled sample testing is an effective strategy to reduce the cost of disease surveillance in
human and animal medicine. Testing pooled samples commonly produces matched observations
with dichotomous responses in medical and epidemiological research. Although standard approaches
exist for one-to-one paired binary data analyses, there is not much work on one-to-two or one-to-N
matched binary data in the current statistical literature. The existing Miettinen’s test assumes that
the multiple observations from the same matched set are mutually independent. In this paper, we
propose exact and asymptotic tests for one-to-two matched binary data. Our methods are markedly
different from the previous studies in that we do not rely on the mutual independence assumption.
The emphasis on the interdependence of observations within a matched set is inherent and attractive
in both human health and veterinary medicine. It can be applied to all kinds of diagnostic studies
with a one-to-two matched data structure. Our methods can be generalized to the one-to-N matched
case. We discuss applications of the proposed methods to the environmental testing of salmonella in
the United States.

Keywords: disease surveillance; production animals; exact test; asymptotic test; matched binary data;
diagnostic testing; sample pooling
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1. Introduction

Pooled sample testing is an effective strategy to reduce the cost of disease surveillance
in human and animal medicine. Testing pooled samples commonly produces matched
observations with dichotomous responses in medical and epidemiological research. Al-
though standard approaches exist for one-to-one paired binary data analyses, there is not
much work on one-to-two or one-to-N matched binary data in the current statistical literature.

Our research was originally motivated by the pooling of diagnostic tests. Often,
testing the units one-by-one is inefficient, especially when the prevalence is sufficiently
small. The concept of screening pooled samples originated during the second world war
to detect syphilis among US soldiers [1]. Since then, it has aroused significant attention
and has been used successfully in various applications. Many studies have demonstrated
the successful use of the pooling strategy in HIV testing [2–5]. However, budget reduction
is an important issue that limits the number of tests, causing the derived estimates to be
imprecise. One way to overcome the budget limitation and improve the accuracy of the
estimates is pooled testing. Vansteelandt et al. [6] showed that a good design can severely
reduce cost. An instance of practical applications in Vansteelandt et al. [6] demonstrated
that using data from a study on sample pools with an average size of seven reduced cost
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to 44% of the original price with virtually no loss in precision. In some circumstances, the
advantages of pooling go beyond reducing the cost but also earning more accuracy [2].

In the case of one-to-one matching, McNemar in 1947 [7] developed a test of marginal
homogeneity in a 2 × 2 table that is applicable to pair-matched observations or a cohort
measured twice on a variable with a binary outcome. Bennett and Underwood (1970)
conducted a comparison of exact power with the non-central Chi-square approximation for
sample sizes of 10, 20, and 40 and found the approximation to be adequate [8]. Miettinen [9]
derived the asymptotic power for testing the difference between cases and controls with a
dichotomous response in the case of one-to-one and one-to-R matching. Stephen derived
the exact power based on Miettinen’s work.

Using Miettinen’s work as a basis, Stephen (1984) calculated the exact power of the
test [10]. Additionally, Stephen compared the asymptotic power and exact power of
Miettinen’s test. However, Miettinen’s test assumes that the multiple observations from the
same matched set are mutually independent. It is clear that this assumption does not hold
for pooling test data because the pooled sample is dependent on the individual samples
being pooled.

In this paper, we propose exact and asymptotic tests for one-to-two matched binary
data. Our methods fit more realistic situations without assuming that observations from
the same subject are mutually independent. This method is suitable for various types of
diagnostic studies that use a one-to-two matched data structure, including but not limited
to dual-sample pooling, one-to-two case-control studies, and so on. Our methods can
be generalized to one-to-N matched cases. For clarity of presentation, we explain basic
concepts, terminologies, and notations in Section 2. We illustrate the exact test procedure
and asymptotic test procedure in Sections 3 and 4. In Section 5, we show the merits of
our tests by presenting a simulation study we conducted, where our tests outperformed
Miettinen’s test. In Section 6, we present the application our methods to two practical
situations that fail to obtain the independence required by Miettinen’s test. The results are
presented in Section 6, followed by a discussion in Section 7.

2. Basic Concepts, Terminologies, and Notations
2.1. Joint Counting Table for Two Diagnostic Testing Strategies

Consider a research scenario involving n subjects undergoing two different diagnostic
testing strategies. In the “one-to-two” scheme, each subject yields one binary observation
under diagnostic testing Strategy 1 and two binary observations under diagnostic testing
Strategy 2. We denote the set of three observed values from subject j, j = 1, 2, ..., n as

(Y1j, Y2j1, Y2j2),

where Y1j is the observed value under Strategy 1, and Y2j1 and Y2j2 are from Strategy 2. This
set of three values are matched by subject j, j = 1, 2, ..., n. In this paper, uppercase letters
represent random variables, while lowercase letters denote their corresponding realizations.
For example, for the j-th subject, (y1j, y2j1, y2j2) represents a realization obtained for the
random response vector (Y1j, Y2j1, Y2j2). The value of the binary response variables is either
0 or 1. Denote the probability that a random observation under diagnostic testing Strategy
1 takes value 1 to be p1 and the probability that a random observation under diagnostic
testing Strategy 2 takes value 1 to be p2, i.e., p1 = Pr{Y1j = 1} and p2 = Pr{Y2j1 = 1} =
Pr{Y2j2 = 1}, j = 1, 2, ..., n. The parameter of interest for the statistical inference is

δ = p1 − p2.

For a hypothesis testing question, a null hypothesis of interest is

H0 : δ = p1 − p2 = 0,
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that is, there is no difference between the two diagnostic testing strategies in the probability
of observing value 1.

Now, consider the number of value 1s observed for subject j, (X1j, X2j), where X1j =
Y1j and X2j = Y2j1 + Y2j2, multinomial distributions of the response vector, for diagnostic
testing Strategy 1 and Strategy 2, respectively. The variable X1j can take the value 0 or 1 and
X2j can take the value 0,1, or 2. Usually, the data from such an experiment over n subjects

are summarized into a counting table, such as Table 1, where Z(j)
kl , k = 0, 1, l = 0, 1, 2 are the

number of subjects, i.e., counts, for the combinations of (X1j, X2j), j = 1, 2, ..., n diagnostic
testing observations. There are six possible realizations for the realization of (X1j, X2j) for

each j = 1, 2, ..., n. Denote Z(j)
kl = I(X1j = k, X2j = l) with k = 0, 1 and l = 0, 1, 2 for subject

j. The counts over all n subjects falling in the table’s cells, defined as Zkl = ∑n
j=1 Z(j)

kl , are
multinomially distributed with

(Z00, Z01, Z02, Z10, Z11, Z12) ∼ multinomial(n, p00, p01, p02, p10, p11, p12).

Here, the probabilities pkl = P(Z(j)
kl = 1, k = 0, 1, l = 0, 1, 2) do not depend on subject

j, j = 1, 2, ..., n. The joint counting table for two diagnostic testing strategies over n subjects
is illustrated in Table 1.

Table 1. Joint counting table for two diagnostic testing strategies over n subjects.

Diagnostic Testing Strategy 2

2 1 0 Total

Strategy 1
1 Z12 Z11 Z10 n1.

0 Z02 Z01 Z00 n0.

Total n.2 n.1 n.0 n

2.2. Miettinen’s Exact Test

Miettinen [9] proposed an exact test for this matching design under the following
two assumptions:

1. The n vectors (Y1j, Y2j1, Y2j2) are independently and identically distributed;
2. Y1j, Y2j1, Y2j2 are mutually independent conditionally on (p1, p2). Miettinen [9] proposed

an exact test based on the multinomial formulation. Conditioning on S1 = Z10 + Z01
and S2 = Z11 + Z02, Z10 and Z11 have independent binomial distributions. Under H0,

Z10 ∼ Binomial(S1,
1
3
);

Z11 ∼ Binomial(S2,
2
3
).

The computation of the p-value for hypothesis testing is p = Pr(Z10 + Z11 ≥ z10 +
z11 = v), i.e.,

p = ∑
k1+k2≥v

(
s1
k1

)(
1
3

)k1
(

2
3

)s1−k1
(

s2
k2

)(
2
3

)k2
(

1
3

)s2−k2

.

In situations where the outcomes of diagnostic testing Strategy 1 and Strategy 2 are
biologically dependent, such as in the context of a pooling test scenario, the assumption
of independence between Test 1 and Test 2 becomes untenable. Traditional paired test
analysis methodologies, exemplified by McNemar’s test, typically do not necessitate the
assumption of independence between paired test results. In the subsequent sections, we
present novel statistical tests that do not rely on the assumption of independence.
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3. Randomized Exact Test

In this section, we propose a randomized exact test for one-to-two matched binary
diagnostic data without assuming independence between the diagnostic testing strategies
from the same subject.

3.1. Test Statistic

Following the model structure described in Section 2.1, for any j,

p1 = Pr{Y1j = 1} = P(Z(j)
12 = 1 or Z(j)

11 = 1 or Z(j)
10 = 1) = p12 + p11 + p10,

and

p2 = Pr{Y2j1 = 1} = P(Z(j)
12 = 1 or Z(j)

02 = 1) + 1
2 P(Z(j)

11 = 1 or Z(j)
01 = 1)

= p12 + p02 +
1
2 p11 +

1
2 p01.

Thus, the null hypothesis of interest H0 : δ = p1 − p2 = (p12 + p11 + p10)− (p12 + p02 +
1
2 p11 +

1
2 p01) = p10 − 1

2 p01 +
1
2 p11 − p02 = 0 is equivalent to H0: p10 +

1
2 p11 = p02 +

1
2 p01.

We propose a randomized test by considering variables R(j)
kl | Z(j)

kl ∼ Bin(Z(j)
kl , 1

2 ) and

Rkl = ∑n
j=1 R(j)

kl . The marginal probability of R(j)
kl is Pr{R(j)

kl = 1} = Pr{R(j)
kl = 1 | Z(j)

kl =

1}Pr{Z(j)
kl = 1} = pkl

2 . So, for k ̸= k′ or l ̸= l′, the distribution of Z(j)
k′ l′ + R(

kl j) is

Pr{Z(j)
k′ l′ + R(j)

kl = 2} = Pr{Z(j)
k′ l′ = 1, R(j)

kl = 1} = 0;

Pr{Z(j)
k′ l′ + R(j)

kl = 1} = Pr{Z(j)
k′ l′ = 1, R(j)

kl = 0}+ Pr{Z(j)
k′ l′ = 0, R(j)

kl = 1}
= Pr{Z(j)

k′ l′ = 1}Pr{R(j)
kl = 0 | Z(j)

k′ l′ = 1}+ Pr{R(j)
kl = 1}Pr{Z(j)

k′ l′ = 0 | R(j)
kl = 1}

= Pr{Z(j)
k′ l′ = 1} · 1 + Pr{R(j)

kl = 1} · 1 = pk′ l′ +
pkl
2 .;

Pr{Z(j)
k′ l′ + R(j)

kl = 0} = 1 − Pr{Z(j)
k′ l′ + R(j)

kl = 1} = 1 − (pk′ l′ −
pkl
2 ).

Then, we have ∑n
j=1(Z

(j)
k′l′ + R(j)

kl ) = Zk′l′ + Rkl ∼ Bin(n, pk′l′ +
pkl
2 ). Denote

S = Z10 + R11 + Z02 + R01 and ps = p10 +
p11
2 + p02 +

p01
2 . Under H0: p10 +

1
2 p11 = p02 +

1
2 p01,

we have Z10 + R11 | S ∼ Bin(S, 1
2 ). A two-sided Randomized Exact Test can be performed

through the following three steps:

1. Randomly sample r11 | z11 ∼ Bin(z11, 1
2 ) and r01|z01 ∼ Bin(z01, 1

2 ).
2. Calculate s1 = max(z10 + r11, z02 + r01) , s2 = min(z10 + r11, z02 + r01), and s =

z10 + r11 + z02 + r01.
3. Calculate the p-value as Pr{x ≤ s2 or x ≥ s1} with x ∼ Bin(s, 1

2 ).

Due to the randomization of r11 in the randomized test, the procedure can give differ-
ent answers for the same data. The arbitrariness of randomization can be avoided while
keeping the beautiful theory of these procedures through a simple change of viewpoints to
what is called “fuzzy p-value”, advanced by Geyer and Meeden (2005) [11]. In contrast to
traditional p-values, fuzzy p-values are random variables interpreted as p-values. In terms
of the randomized exact test illustrated above, r11 is called a latent variable; hence, the
p-value calculated in step 3 is named the latent p-value. The latent p-value would be
the p-value if the latent variable was observed. The exact test employing the notion of a
fuzzy p-value uses simulations of the latent variable under the null hypothesis. It provides
an expression of both the strength and the uncertainty of the evidence against the null
hypothesis. In practice, the randomized exact test procedure described above is repeated a
large number of times to obtain an empirical distribution of the fuzzy p-value for inference.

3.2. Power of Randomized Exact Test

In this section, we derive the power of the randomized exact test as a function of
δ = p1 − p2, p2, p12, and p11. Following the model structure described in Section 2.1, we
first express the parameters p01 ,p02, p10, and p00 as functions of δ, p1, p12, and p11,
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p01 = 2p2(1 − p2)− p11;

p02 = p2
2 − p12;

p10 = p2 + δ − p12 − p11;

p00 = (1 − p2)
2 − (p2 + δ − p12 − p11).

We have shown in Section 3 that Z10 + R11 ∼ Bin(n, p10 +
p11
2 ) and Z02 + R01 ∼

Bin(n, p02 +
p01
2 ). Furthermore, note that

ps = p10 +
p11

2
+ p02 +

p01

2
= 2p2 + δ − p11 − 2p12;

p10 +
p11
2

p10 +
p11
2 + p02 +

p01
2

=
p2 − p12 − p11

2 + δ

2p2 + δ − p11 − 2p12
≡ q. (1)

Then, S ∼ Bin(N, ps) and Z10 + R11 | S ∼ Bin(S, q). The unconditional power can be
obtained as the expectation of the conditional power. We derive the power expression of
the exact binomial test as a function of q defined in expression 1 as

Pr{Z10 + R11 ≤ uα/2 or Z10 + R11 ≥ u1−α/2}
= ∑n

S=0
(n

S
)

pS
s (1 − ps)n−S ∑Z10+R11≤lα/2,

Z10+R11≥uα/2

(
S
Z10+R11

)
qZ10+R11(1 − q)S−(Z10+R11), (2)

where lα/2 = max{n | ∑n
x=0(

S
x)(

1
2 )

S ≤ α
2} and uα/2 = min{n | ∑S

x=n(
S
x)(

1
2 )

S ≤ α
2}.

4. Asymptotic Test

In this section, we propose an asymptotic version of the test which avoids the ran-

domness in the randomized exact test proposed above. Let us denote T(j) = (Z(j)
10 +

Z(j)
11
2 )−

(Z(j)
02 +

Z(j)
01
2 ). Then

E[T(j)] = p10 +
p11

2
− p02 −

p01

2
= δ;

Var[T(j)] = E[T(j)2]− {E[T(j)]}2

= E[{(Z(j)
10 +

Z(j)
11
2 )− (Z(j)

02 +
Z(j)

01
2 )}2]− δ2

= E[(Z(j)
10 +

Z(j)
11
2 )2 + (Z(j)

02 +
Z(j)

01
2 )2 − 2(Z(j)

10 +
Z(j)

11
2 )(Z(j)

02 +
Z(j)

01
2 )]− δ2.

Since at most one of {Z(j)
10 , Z(j)

11 , Z(j)
02 , Z(j)

01 } is non-zero, we have Z(j)
kl Z(j)

k′ l′ = 0 if k ̸= k′

or l ̸= l′. Furthermore, we have Z(j)2
kl = Z(j)

kl . Then, we get the variance expression:

Var[T(j)] = E[Z(j)2
10 +

Z(j)2
11
4

+ Z(j)2
02 +

Z(j)2
01
4

)]− δ2 = p10 +
p11

4
+ p02 +

p01

4
− δ2.

Since observations from different subjects are independent, we have

µ = E
n

∑
j=1

T(j) = nδ,

σ2 = Var
n

∑
j=1

T(j) = n(p10 +
p11

4
+ p02 +

p01

4
− δ2).
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By the central limit theorem (CLT), under the null hypothesis H0,
∑n

j=1 T(j)√
Var(∑n

j=1 T(j))
=

(Z10+
Z11

2 )−(Z02+
Z01

2 )√
n(p10+

p11
4 +p02+

p01
4 )

is asymptotically standard normal when n is large. The asymptotic

test is to compare the following test statistics to a standard normal distribution N(0, 1) :

(Z10 +
Z11
2 )− (Z02 +

Z01
2 )√

z10 +
z11
4 + z02 +

z01
4

.

When δ ̸= 0, (Z10+
Z11

2 )−(Z02+
Z01

2 )−nδ√
n(p10+

p11
4 +p02+

p01
4 −δ2)

is asymptotically standard normal. The power

with respect to the effect size δ is a function of the mean and variance of the test statistic

β = 2Φ(
ϕα/2

√
n(p10 +

p11
4 + p02 +

p01
4 )− nδ√

n(p10 +
p11
4 + p02 +

p01
4 − δ2)

), (3)

where ϕα/2 is the α/2 lower quantile of the standard normal distribution and Φ(·) is the
cumulative distribution function of the standard normal distribution.

5. Simulation

In this section, we present the simulation studies we conducted to validate our pro-
posed methods and compare them to Miettinen’s exact test.

5.1. The Simulation Setting

The simulation results were based on n = 10, 20, 30, 50, 100, 200, 300. We set various
values for p1, p12, and p11 and set δ as

δ = 0.05 ∗ (h − 1), where h = 1, 2, 3, 4, 5.

We study the following four different settings:

Setting 1 : p1 = 0.3, p12 = 0.01, p11 = 0.01;

Setting 2 : p1 = 0.3, p12 = 0.08, p11 = 0.15;

Setting 3 : p1 = 0.4, p12 = 0.15, p11 = 0.24;

Setting 4 : p1 = 0.4, p12 = 0.11, p11 = 0.03.

For each case, M = 2000 simulations were performed. Function “rmultinom()” in R
was used to simulate the multinomial samples.

It is unprofitable to compute expression (2) for n with large values. Therefore, the
power for each test was estimated using 2000 simulations. The powers for the exact test in
expression (2) and asymptotic test in expression (3) were also calculated. Since the exact
power is dependent on the individual binomial or multinomial parameters, the arbitrary
choice of a further parameter is necessary. The type I error rate for the simulations was set
to be 0.05.

5.2. Simulation Results

The resulting power of the exact test and the asymptotic test for each of the four
settings are plotted in Figures 1–4. In the figures, the horizontal axis is for the effect size δ
and the vertical axis is for R, the rejection rate. The curves represent the methods: AsyTest—
the asymptotic test; Exact—the exact test; MC Exact—the exact test power using Monte
Carlo simulation; and Miettinen—Miettinen’s exact test.



Mathematics 2024, 12, 741 7 of 12

0.00

0.05

0.10

0.00 0.05 0.10 0.15 0.20
delta

R

10 AsyTest
10 Exact
10 MC_Exact
10 Miettinen

0.00

0.05

0.10

0.15

0.00 0.05 0.10 0.15 0.20
delta

R

20 AsyTest
20 Exact
20 MC_Exact
20 Miettinen

0.00
0.05
0.10
0.15
0.20
0.25

0.00 0.05 0.10 0.15 0.20
delta

R
30 AsyTest
30 Exact
30 MC_Exact
30 Miettinen

0.0

0.1

0.2

0.3

0.4

0.00 0.05 0.10 0.15 0.20
delta

R

50 AsyTest
50 Exact
50 MC_Exact
50 Miettinen

0.0

0.2

0.4

0.6

0.00 0.05 0.10 0.15 0.20
delta

R

100 AsyTest
100 Exact
100 MC_Exact
100 Miettinen

0.00

0.25

0.50

0.75

1.00

0.00 0.05 0.10 0.15 0.20
delta

R

200 AsyTest
200 Exact
200 MC_Exact
200 Miettinen

0.00

0.25

0.50

0.75

1.00

0.00 0.05 0.10 0.15 0.20
delta

R

300 AsyTest
300 Exact
300 MC_Exact
300 Miettinen

Figure 1. Comparison of exact test power and asymptotic test power for simulation setting 1 of
one-to-two case. In the figure, the horizontal axis is for the effect size δ and the vertical axis is for R,
the rejection rate. The curves represent the methods: AsyTest—the asymptotic test; Exact—the exact test;
MC Exact—the exact test power using Monte Carlo simulation; and Miettinen—Miettinen’s exact test.
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Figure 2. Comparison of exact test power and asymptotic test power for simulation setting 2 of
one-to-two case. In the figure, the horizontal axis is for the effect size δ and the vertical axis is for R,
the rejection rate. The curves represent the methods: AsyTest—the asymptotic test; Exact—the exact test;
MC Exact—the exact test power using Monte Carlo simulation; and Miettinen—Miettinen’s exact test.
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Figure 3. Comparison of exact test power and asymptotic test power for simulation setting 3 of
one-to-two case. In the figure, the horizontal axis is for the effect size δ and the vertical axis is for R,
the rejection rate. The curves represent the methods: AsyTest—the asymptotic test; Exact—the exact test;
MC Exact—the exact test power using Monte Carlo simulation; and Miettinen—Miettinen’s exact test.
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Figure 4. Comparison of exact test power and asymptotic test power for simulation setting 4 of
one-to-two case. In the figure, the horizontal axis is for the effect size δ and the vertical axis is for R,
the rejection rate. The curves represent the methods: AsyTest—the asymptotic test; Exact—the exact test;
MC Exact—the exact test power using Monte Carlo simulation; and Miettinen—Miettinen’s exact test.
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When the effect size δ = 0, the null hypothesis is true and the rejection rate is the type
I error of the methods being compared. When the effect size δ > 0, the null hypothesis is
false and the rejection rate is the power of the methods. Figures 1–4 show that our proposed
methods control the type I error rates very well (around or below the desired level 0.05)
and outperform Miettinen’s exact test in almost all combinations of sample size, effect size,
and parameter setting. The power increases steadily as the effect size increases for the exact
binomial test and asymptotic test as we would expect. Miettinen’s test performs poorly
when the assumption of mutual independence does not hold, especially in terms of power.
The asymptotic test consistently dominates the other for all settings.

6. Application Examples
6.1. Dual Sample Pooling Test

Salmonella enteric serovar Enteritidis (SE) has emerged in the past 30 years as a
leading cause of human salmonellosis in the United States [12,13]. If SE is isolated from the
environment of chicken houses, then eggs from SE-positive houses must be tested. Testing
eggs for SE requires a large sample size, as only a small proportion are contaminated in an
infected flock. Therefore, environmental sampling is the primary means by which flocks are
monitored for SE. Environmental (or egg) testing has traditionally been carried out using
bacterial culture, which is the standard that all other tests are compared to. Bacteriological
culturing typically requires 5 to 7 days before results are obtained. Real-time polymerase
chain reaction (RT PCR) is one testing method that has been developed to decrease the time
required for testing. Testing costs are high because of the implementation of the U.S. Food
and Drug Administration (FDA)’s Final Rule. Sampling pooling is one strategy to reduce
costs and labor. The aim of the study was to examine the validity of an SE-specific RT PCR
in pooled samples. The provisionally approved National Poultry Improvement Plan (NPIP)
modified semisolid Rappaport-Vassiliadis (MSRV) method was used as the gold standard.
RT PCR results from a pool size of two were compared with a single-sample testing. A total
of 208 environmental field samples were collected from three commercial layer houses on
the same site. Houses were previously found to be positive for SE through culture at the
Iowa State University (ISU) Veterinary Diagnostic Laboratory (VDL). Each house contained
twelve rows of cages with three tiers of cages within each row. Flocks within each house
consisted of adult laying hens. Gauze drag swabs, pre-soaked with sterilized skim mile,
were used to sample egg belt sections from each tier of cages within each row and from
fecal material on support beams directly under the cage section sampled. Samples were
taken every fifty feet along the length of the house. Swabs were put into Whirl-Pak bags
and transported in ice to the Iowa State University Veterinary Diagnostic Laboratory for
testing. After incubation, 1 mL aliquots were removed from the enrichment broth of field
environmental samples for RT PCR analysis. A set of pooled samples were prepared from
these aliquots so that each individual sample was represented once and randomly assigned
to a pooled set of two samples (208 individual, 104 pools of two). In the example, the pooled
test was test 1, and the single test was test 2 in our model with n = 104. The counting results
are presented in Table 2.

Table 2. Counting table for dual pooling test.

Test 2

2 1 0 Total

Test 1
1 0 7 0 7

0 0 0 97 97

Total 0 7 97 104

Fisher’s exact test for independence resulted in a p-value of 4.707 × 10−11, indicating
convincing evidence of dependency between the two tests in the table. Thus, Miettinen’s
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test should not be applied in this situation because it is derived under the independence
assumption. The cumulative distribution function of the fuzzy p-values for the dual sample
pooling test is shown in Figure 5. The probability that the fuzzy p-value is less than 0.05 was
only 0.0613. The median fuzzy p-value was 0.25. The result indicates very weak evidence
against H0.
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Figure 5. Cumulative distribution function of the fuzzy p-values for the dual sample pooling test.

6.2. Pen-Based Oral Fluid Specimens for Influenza a Virus Detection

Christa K. Goodell et al. used the matched design in their influenza A virus (IVA)
monitoring study. For IAV detection, the traditional ante mortem specimen nasal swab
(NS) is hard and expensive to get because it is necessary to select, restrain, and swab
individual pigs. Alternatively, oral fluid (OF), a specimen new to swine diagnostics but
well characterized in human diagnostics, is easy to collect because pigs naturally investigate
their environment by chewing. The question is to compare the probability of detecting
IAV in OF and NS specimens collected from vaccinated pigs. IAV-vaccinated pigs were
inoculated with subtypes H1N1 or H3N2. Pen-based oral fluid samples were collected on
the day post inoculation. The OF and NS samples were tested in the laboratory with results
to be either negative or positive. Each OF sample from one pen was matched with two NS
samples from two individual pigs in the same pen. The data are presented as follows in
Table 3:

Table 3. Counting table for influenza A virus detection.

NS

2 1 0 Total

OF
1 114 28 29 171

0 2 7 42 51

Total 116 35 81 222
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Fisher’s exact test for independence resulted in a p-value < 2.2 × 10−16, indicating
convincing evidence of dependency between tests in the table. Thus, Miettinen’s test should
not be applied due to the violation of the independence assumption. The cumulative
distribution function of the fuzzy p-values for the dual sample pooling test is shown in
Figure 6. The whole distribution of the fuzzy p-value is concentrated below 0.05. This
provides very strong evidence that there is a difference between the positive rates of the
two tests.
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Figure 6. Cumulative distribution function of the fuzzy p-values for the pen-based oral fluid speci-
mens for influenza A virus detection.

7. Discussion and Conclusions

Sample pooling is a very common practice in disease surveillance for both animals
and human beings. In this paper, we propose novel statistical tests for proportion difference
in one-to-two matched binary data. The results show that both tests we propose are
valid, whereas Miettinen’s test performs poorly when the multiple observations from the
same matched set are dependent. The asymptotic test takes less than one millisecond
on a PC equipped with an INTEL Xeon® X5482 Quad-Core Processor 3.2 GHz and 4 Gb
RAM and outperforms the exact test in computational speed. The asymptotic test is
also more friendly to practical users as it avoids the randomness of a randomized test.
The estimated power for the asymptotic test based on 2000 simulated data sets is very
close to the calculated results from the power function. The tests proposed in the present
work have rather wide applicability in medical and other research, e.g., oral fluid testing in
animals, environmental testing of salmonella, and COVID-19 testing in humans. Both the
exact and the asymptotic versions of our proposed statistical tests can be generalized from
1-to-2 to 1-to-N matched data.
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