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Abstract: This study presents a four-objective mathematical model to improve closed-loop supply
chain (CLSC) management. The aim of this research is to reduce the costs of the entire chain, risk,
emission of pollutants, and time to deliver the product to the customer in uncertain demand condition.
In this paper, the NSGAII algorithm is used to solve the model. In this algorithm, among the answers
of each generation, a number of them are selected using the two-run tournament selection method.
In the binary selection method, the answers are randomly selected from the population, and then
a comparison is made between these two answers, and whichever is better is finally selected. The
selection criteria in NSGA-II are, firstly, the rank, and secondly, the crowding distance related to
the answer. Also, the performance of the NSGA-II algorithm on the same model and data has been
compared with the MOPSO algorithm. In the proposed algorithm, if it encounters an impossible
solution, it exits the local mode and solves the problem in global conditions. The results show that
the proposed method strikes a better balance between discovery and efficiency criteria and avoids
falling into local optima. Therefore, in addition to its effectiveness in discovering optimal answers,
the genetic-based method has high speed and subsequently, high convergence and diversity rates
compared to the particle swarm method. Also, compared to previous methods in the green closed-
loop supply chain, the proposed method is better than the modified genetic algorithm, reducing the
costs of the chain by about 2.38%.

Keywords: bundling strategy; closed-loop supply chain management; green supply chain management;
perishable products; quality deterioration

MSC: 90B06

1. Introduction

Supply Chain Management (SCM) represents the advancement of developing, imple-
menting, and monitoring supply chain (SC) processes, professionally utilizing information
and technology. SCM includes all operations that begin with the f raw material procure-
ment, warehouses, work-in-process inventory, and finished goods, i.e., at consumption and
origin points, and ensures organizational productivity while meeting customer demands
and fulfilling and satisfying the customers (Alzoubi et al., 2022) [1]. However, in the past
few decades, supply chains and their various stages have faced internal and external op-
erational challenges, which may be in the environment, nature, or society. The increasing
complexity and uncertainty of the environments in which supply chains operate double
the significant role of adaptive planning and control, to guarantee delivery to end con-
sumers with minimum delays and interruptions, avoiding unnecessary costs, and maintain
business continuity. To implement compliance-based management principles, real-time
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coordination of production planning, inventory control, and delivery schedules will be
essential, while system control parameters must be dynamically adjusted to minimize
costs, maximize revenue, meet target service levels, or pursue any other measurable goals
to account for dynamism, instability, and uncertainty (Rolf et al., 2022) [2]. Uncertainty
of customer demand and unpredictable disturbances, such as short product life cycles
and global sourcing, are challenges or problems that make supply chain management
ineffective, unstable, vulnerable, and turbulent (Boskabadi et al., 2022; Chen et al., 2022;
Roh et al., 2022) [3–5]. The application of supply chain design models has primarily failed
to consider carbon emissions throughout cost minimization processes. However, many
studies, including Zhu et al. (2015), Large et al. (2016), Abir et al. (2019), and Arani et al.
(2020) [6–9], are among those recently taking into account eco-friendly production, hence
considering carbon emissions and optimizing total costs.

The supply chain network has been known as a critically important aspect of supply
chain management, affecting the chain’s efficiency and effectiveness for many years. In a
general classification, supply chain management is evaluated through two forward and re-
verse supply chain (FSC and RSC, respectively) approaches. The former includes a set of ac-
tivities from the raw material to product conversion processes (Jabbarzadeh et al., 2018) [10],
while the latter is defined as the returned products’ collection and recovery within SCM.
This FSC and RSC combination leads to CLSC formation (Devika et al., 2014) [11], which
includes customers, collection centers, recycling, and destruction of used products. This
chain focuses on collecting, inspecting, and sending the returned products from the cus-
tomer to the relevant centers for recycling and destruction. Determining the location of the
construction of recycling and destruction centers, along with operational variables such as
the flow of returned materials, is one of the decision variables of these types of networks.
The issue of integration in CLSC network design involves simultaneously determining the
strategic and operational decisions of the two chain types (Farrokh et al., 2018) [12]. The
reverse logistics order starts from the customer to first-class warehouses, then to second-
class warehouses, and finally to the factory or other destinations. In this reverse logistics
process, secondary warehouses play a role in recycling, classification, inspection, and
transportation. First-class warehouses take responsibility for concentration, disposal, and
transportation (Liu et al., 2018) [13]. The main goal in the CLSC network design problem
is to maximize the profit of the entire supply chain by choosing the optimal number and
location of facilities, their capacities, and the flow (direct and return) of products between
facilities, while at the same time reducing environmental impact (through recycling or
destruction of reciprocating products) and maximizing social benefits (Mohtashami et al.,
2020) [14].

CLSC design comprises the location, number, and capacity determination of facilities
and material flow through the network, all of which affect the flexibility, efficiency, and
performance of the chains significantly (Rezae and Kheirkhah, 2017) [15]. Effectively de-
signed CLSCs can help reduce adverse environmental effects caused by human intervention
substantially (Garai et al., 2021) [16]. Through CLSC design, the chain of network pro-
cesses helps reduce waste through reuse or recycling. In line with environmental priorities,
economic savings also attract attention to the CLSC.

Considering the role of CLSC in improving the sustainable development process, this
paper uses a supply chain model with four objective functions. Thus, the main contributions
of the presented research paper include the following:

• Presenting a mathematical model of a CLSC encompassing the vectors of destruction
and recycling of products under cost, time, pollutant, and risk reduction conditions.

• Considering the parts related to destruction and recycling under conditions of uncer-
tainty, depending on the quality of the products, within a CLSC. Hence, the quality
level of the returned products from the customer’s side is evaluated, and based on the
evaluation results, decisions are made regarding recycling or destruction.

This paper has been organized as follows: Section 2 discusses the literature review and
research investigating CLSC management. Section 3 discusses the mathematical modeling
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and the developed method. In Section 4, we present the results obtained by implementing
the presented method and compare the results with other methods. Ultimately, Section 5
provides the research conclusions.

2. Literature Review

To date, significant research has been allocated to the investigation of CLSC model-
ing and optimization. In this section, the most important articles from recent years are
examined. Jerbiaa et al. (2018) investigated the CLSC network with multi-component
recycling options, formulating deterministic problems with integer programming [17].
Their results showed that the solutions for stochastic problems are stable. Also, when using
the stochastic model, the profit increased. Mohtashami et al. (2020) introduced a green
CLSC design utilizing a queuing system to alleviate environmental impacts and energy
consumption [14]. Their paper focused on designing a green supply chain under forward
and reverse logistics and utilizing a queuing system to optimize transportation time and
fleet network waiting, finally reducing environmental impacts. Santander et al. (2020)
investigated a CLSC network for local and distributed plastic recycling for 3D printing [18].
Their research examined the economic and environmental dimensions of distributed plastic
recycling from the perspective of logistics, validating their method. Goodarzian et al. (2020)
introduced a novel mixed-integer multi-objective linear programming model in a drug
supply chain network [19]. Their problem formulation of the Mixed Integer Linear Pro-
gramming (MILP) model focused on minimizing economic costs and environmental impact
while maximizing social outcomes. Zarbakhshnia et al. (2020) presented a multi-product,
multi-stage, multi-period, and multi-objective MILP model for a forward and reverse logis-
tics network problem [20]. Nasr et al. (2021) developed a multi-objective, multi-product,
multi-period mathematical model within a sustainable CLSC, locating distribution, collec-
tion, recycling, and disposal centers while taking into account risk criteria [21]. The main
objective of their study was to minimize total costs, along with reducing negative environ-
mental outcomes and promoting social responsibility to provide more job opportunities.
A fuzzy inference system was used to model and determine uncertainty in demand and
parameters that are dependent on demand. Jian et al. (2021) introduced a green package
SC comprising a manufacturer and a retailer and solved it using the Stackelberg game
approach [22]. Their results showed that profit-sharing contracts improved the relationship
between supply chain members, ensuring sustainable economic and environmental growth.
Tavana et al. (2022) presented an inclusive framework for a sustainable CLSC network
using the multi-objective MILP (MOMILP) model [23]. This study considered the design
of stable CLSC networks with interconnection, location-inventory-routing, time window,
supplier selection, order allocation, and transportation with simultaneous pickup and
delivery in uncertain conditions. Cheng et al. (2022) examined optimal procedures re-
garding a CLSC network under economic constraints and greenhouse gas (GHG) emission
control [24]. This paper investigated how related parameters, including carbon quotas, con-
sumers’ low carbon preferences, and recovery rates, affected the network status. Kouchaki
Tajani et al. (2022) proposed a two-channel network of sustainable CLSC for rice, taking
into account energy resources and consumption taxes [25]. Their paper sought to formulate
an MILP model optimizing total costs, the number of pollutants, as well as job opportunities
throughout the introduced SC network considering cost, supply, and demand uncertainties.
Babaeinesami et al. (2022) developed a CLSC network considering the suppliers, assembly
centers, retailers, customers, collection centers, refurbishing centers, disassembly centers,
and disposal centers [26]. Their paper focused on designing a distribution network accord-
ing to customer demands for simultaneous total cost and total CO2 emission minimization.
Alinezhad et al. (2022) presented a stable CLSC network under uncertainty according
to fuzzy theory [27]. Their network was a multi-period multi-product problem formed
utilizing a two-objective MILP model with fuzzy demand and return rates for SC profit
and customer satisfaction maximization. Bathaee et al. (2023) developed an SLSC network,
including used product collection as well as new product distribution [28]. The designed
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mathematical model included three objective functions: profit maximization, total risk
minimization, and product scarcity. Wang et al. (2021) conducted a study on complex man-
ufacturing planning (MP) tasks, aiming to optimize order fulfillment rates and minimize
total costs [29]. To address the challenges of large-scale problems, they introduced a novel
interactive multi-objective optimization-based MP system. This system utilizes a two-stage
multi-objective optimization algorithm (TSMOA). Leung et al. (2020) addressed challenges
faced by existing metaheuristic approaches like MOPSOs in solving problems with more
than three objectives by introducing HGLSS, a Hybrid Global Leader Selection Strategy [30].
HGLSS incorporates two leader selection mechanisms for exploration and exploitation,
enabling each particle to select its global best leader. Bahrampour et al. (2023) presented
a novel nonlinear mathematical programming model using the mixed integer approach
for sustainable CLSC design problem formulation [31]. Their article evaluated the CLSC
model from three aspects of sustainability: social, environmental, as well as economic
impacts. Wu et al. (2023) evaluated the choice of recycling channels in CLSCs, taking into
account the retailer’s competitive preferences [32]. The authors particularly considered the
retailer’s competitive preferences and made conclusions based on the three-channel struc-
ture of CLSC. They also examined the manufacturer’s, the retailer’s, and the third-party
recycling channels (M, R, and T channels, respectively). Dey and Giri (2023) elaborated on
a CLSC with two-channel waste recycling considering corporate social responsibility [33].
In their article, various game theory models were used to optimize design and reduce the
economic costs of the model. In the following, the literature review summary is illustrated
in Table 1.

Table 1. Literature review summary.

References
Objectives Return System Type Condition Product Type

C
ost

Tim
e

Environm
ent

R
isk

Social

R
ecycling

D
estruction

C
ertain

U
ncertainty

Perishable

Im
perishable

Jerbiaa et al. (2018) [17] X X X X
Mohtashami et al. (2020) [14] X X X X X

Santander et al. (2020) [18] X X X X
Goodarzian et al. (2020) [19] X X X X X X

Zarbakhshnia et al. (2020) [20] X X X X X X
Nasr et al. (2021) [21] X X X X X
Jian et al. (2021) [22] X X X X

Tavana et al. (2022) [23] X X X X X
Cheng et al. (2022) [24] X X X X

Kouchaki Tajani et al. (2022) [25] X X X X X
Babaeinesami et al. (2022) [26] X X X X X X

Alinezhad et al. (2022) [27] X X X X
Bathaee et al. (2023) [28] X X X X

Bahrampour et al. (2023) [31] X X X X X
Wu et al. (2023) [32] X X X X X

Dey and Giri (2023) [33] X X X X X
Present Study X X X X X X X X

3. Mathematical Modeling

Figure 1 highlights the schematic of the problem’s mathematical model.
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3.1. Proposed Model Assumptions

The recent suppositions provided below formed the basis of the research model:

1. The problem represents a multi-objective, single-period, and multi-product model.
2. All customer demands must be met.
3. Material flow can only be established between two different levels of the network,

and there is no material flow between facilities in one layer.
4. The capacity of the facility is limited.
5. The suppliers’ location, production, distribution, collection, recycling, annihilation

centers, and customers are known.
6. A part of returned products is recycled in the reverse supply chain and returned back

into the chain, while part of it is excreted and removed from the network.
7. The packaging products’ sales volume is usually greater than that of individual sold

goods due to the lower price of packaging products than the total price of individual
items combined.

8. The productive–technical risk considered in the proposed network model includes
interruptions caused by equipment failure and a shortage of skilled labor.

9. Considering the uncertainties of demand in the real world, customer demand is
uncertain in the model as well.

10. The amount of products returned from customers and the rates of recycling and
destruction are considered uncertain. Disposal refers to the return of a product
that enters the recycling stage, but destruction means returning the product to the
destruction center. In fact, a product that cannot be recycled is transferred to the
destruction center instead of the disposal center.

3.2. Notations and Formulations

The research model is introduced using the following related notations:

â Sets:

T The entire sales period
s Suppliers set (s = 1, . . . , N)
i Products set (i = 1, . . . , N)
f Production centers ( f = 1, 2)
µ Customers (µ = 1, . . . , N)
dc Distribution-collection centers (dc = 1, . . . , N)
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di Annihilation centers (di = 1, 2)
r Recycling centers (r = 1, 2)
k Staff (k = 1, . . . , N)
l Equipment set (l = 1, . . . , N)
m Vehicle types (m = 1, . . . , N)
t Decision cycle, pricing, and packaging phases (t = 1, . . . , N)

â Parameters:

ni,t Number of type i products produced in period t
ci Inventory cost of type i product per decision period

Si,t Product i inventory in period t
qi Product i logistics cost
fs Purchasing costs for each raw material unit from supplier s

trms f
Raw material transportation costs from supplier s to production center f utilizing type
m vehicle depending on distance

trm f dc
Product transportation costs from the production center f to the distribution-collection
center dc by type m vehicle depending on distance

trmdcµ
Product transportation costs from the distribution–collection center dc to customer µ by
type m vehicle depending on distance

trmµdc
Transportation costs for the returned products from customer µ to the
distribution–collection center dc by type m vehicle depending on distance

trmdcr
Transportation costs for the returned products from the distribution–collection center dc
to the recycling center r by type m vehicle depending on distance

trmdcdi
Transportation costs for the returned products from the distribution–collection center dc
to the annihilation center di by type m vehicle depending on distance

trmr f
Transportation costs for the recycled products from the recycling center r to the
production center f by type m vehicle depending on distance

trmrdi
Transportation costs for the returned products from the recycling center r to the
annihilation center di by type m vehicle depending on distance

Ch Maintenance costs of type i products in the distribution–collection center dc
CN Equipment repair and maintenance costs
Ctr Cost of staff training
Cri Recycling costs of type i products at the recycling center r
Cdi Costs of annihilating type i products in the annihilation center di
Cd Delay costs per time
fR Inspection costs for each returned product unit in the distribution–collection center dc
fH Purchasing costs for each unit of type i product from customer µ

Crentm Renting costs for a car type m
Cbm Purchasing costs for a car type m
Ti f1d Person–hour needed to manufacture each type i product unit at the first production center
Ti f2d Person–hour needed to manufacture each type i product unit at the second production center
Tw1 Working hours during the order period at the first production center
Tw2 Working hours during the order period at the second production center
ka1 Number of existing workers in the first production center
ka2 Number of existing workers in the second production center
ke1 Number of hired workers in the first production center
ke2 Number of hired workers in the second production center

es f
Transport-related CO2 emission rates from supplier s to the production center of f per
product unit

e f dc
Transport-related CO2 emission rates from the production center f to the
distribution–collection center dc per product unit

edcµ
Transport-related CO2 emission rates from the distribution–collection center dc to
customer µ per product unit

eµdc
Transport-related CO2 emission rates from customer µ to the distribution–collection
center dc per product unit

edcr
Transport-related CO2 emission rates from the distribution–collection center dc to the
recycling center r per product unit
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er f
Transport-related CO2 emission rates from the recycling center r to the production
center f per product unit

erdi
Transport-related CO2 emission rates from the recycling center r to the annihilation
center di per product unit

edcdi
Transport-related CO2 emission rates from the distribution–collection center dc to the
annihilation center di per product unit

ei CO2 emission rates for producing each type i product unit
eri CO2 emission rates for the recycling process of each type i returned product unit
edii CO2 emission rates for the annihilation process of each type i returned product unit

edc
CO2 emission rates for the returned product inspection process in the
distribution–collection center dc

ds f Supplier s to the production center f distance
d f dc Production center f to the distribution–collection center dc distance
ddcµ Distribution–collection center dc to client µ distance
dµdc Client µ to the distribution–collection center dc distance
ddcr Distribution–collection center dc to the recycling center r distance
dr f Recycling center r to the production center f distance
drdi Recycling center r to the annihilation center di distance
ddcdi Distribution–collection center dc to the annihilation center di distance
Cas Maximum capacity for supplier s
Ca f Maximum capacity for the production center f
Cadc Maximum capacity for the distribution–collection center dc
Car Maximum capacity for the recycling center r
Cadi Maximum capacity for the annihilation center di

G Maximum allowable CO2 emissions from production
MR Maximum allowable production–technical risk
tk Maximum acceptable delivery time for customer µ

dµ Customer demand
d f Raw materials’ demand of the production center f from supplier s
Rl Device L failure risk
Tei CO2 emission rate of total production at the production center

tt
Total time from supplying raw materials from supplier s to sending final product to
customer µ

ts f Length of time for supplying raw materials from supplier s to the production center f

t f dc
Length of time for finished products to be sent from the production center f to the
distribution–collection center dc

tdcµ
Length of time for sending the finished product from the distribution–collection center
dc to customer µ

α Product return rate
β Product return rate from the distribution–collection center dc to the annihilation center di
γ Product return rate from the distribution–collection center dc to the recycling center r
λ Recycled product sending rate from the recycling center r to the production center f
τ Recycled product sending rate from the recycling center r to the annihilation center di

qsµ Customer µ expected quality

qsdcdi
Quality level of the product that leads to transfer from the distribution–collection center
dc to the annihilation center di

qsdcr
Quality level of the product that leads to transfer from the distribution–collection center
dc to the recycling center r

qsrdi
Quality level of the product level that leads to transfer from the recycling center r to the
annihilation center di

Model’s Decision Variables

The proposed mathematical model has two types of decision variables. The first
category includes non-zero continuous decision variables to determine the material and
product flow between different facilities and the number of employees in each production
facility, while also determining the time period of product delivery between various fa-
cilities in the direct supply chain. The second category consists of zero and one variables,
which are used to select facilities, automobiles, and equipment for production centers.
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â Continuous Decision Variables:

pi,t Sale price of product i in cycle t
Ys f Raw material amounts sent from supplier s to the production center f

Yi f dc
Type i product amounts sent from the production center f to the distribution–collection
center dc

Yidcµ Type i product amounts sent from the distribution–collection center dc to customer µ
Yiµdc Type i product amounts sent from customer µ to the distribution–collection center dc

Yidcr
Type i product amounts delivered from the distribution–collection center dc to the
recycling center r

Yir f Recycled product amounts delivered from the recycling center r to the production center f
Yirdi Product amounts delivered from the recycling center r to the annihilation center di

Yidcdi
Returned product amounts delivered from the distribution–collection center dc to the
annihilation center di

ts f Time to send raw materials from supplier s to the production center f
t f dc Time to send product from the production center f to the distribution–collection center dc
tdcµ Time to send product from the distribution–collection center dc to customer µ

ri
µ Returned rate of product i with quality level qs from customer µ

xµdc.qs

Returned product amounts considering quality level qs from customer µ to the
distribution–collection center dc

â Binary Variables:

Xs If supplier s is chosen, it is equal to 1; otherwise, it equals 0.
X f If the production center f is chosen, it is equal to 1; otherwise, it equals 0.
Xdc If the distribution–collection center dc is chosen, it is equal to 1; otherwise, it equals 0.
Xµ If customer µ is chosen, it is equal to 1; otherwise, it equals 0.
Xr If the recycling center r is chosen, it is equal to 1; otherwise, it equals 0.
Xdi If the annihilation center di is chosen, it is equal to 1; otherwise, it equals 0.
Xv If the vehicle type m is sent, it is equal to 1; otherwise, it equals 0.

Xrm If the vehicle type m is rented, it is equal to 1; otherwise, it equals 0.
Xim If the vehicle type m is purchased, it is equal to 1; otherwise, it equals 0.
Xl If equipment l is used, it is equal to 1; otherwise, it equals 0.

3.3. Objective Functions

The study addresses a multi-objective, single-period, and multi-product model within
a closed-loop supply chain network. The network design integrates environmental factors
and imposes restrictions on material flow across different network levels. Facilities have
limited capacities, and a dual-purpose location is implemented to minimize network costs
for product distribution and collection. The locations of suppliers, production centers,
distribution and collection centers, recycling centers, annihilation centers, and customers
are known. The network consists of two production centers, two annihilation centers,
two recycling centers, and various suppliers and distribution and collection centers. The
reverse supply chain partially recycles returned products while removing the remaining
ones from the network. Meeting specific inventory targets within a fixed sales period is
crucial, particularly for perishable products. Packaging products have higher sales volumes
due to their lower price compared to individual items. The total costs encompass several
components, including sales, logistics, production, raw material procurement, transporta-
tion, delay, inventory, staff training, equipment maintenance, inspection, and recycling
and annihilation costs. The model incorporates productive–technical risks associated with
equipment failure and labor shortages. Uncertainty is considered in customer demand,
product returns, recycling rates, and destruction. Greenhouse gas emissions are accounted
for in production, transportation, and inspection processes throughout the supply chain
network. The proposed model of the present study has four objective functions, all of which
aim for minimization. Objective function (1) presented below, calculates and minimizes all
network costs.
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Min Z1 =

(
∑

t∈N
∑
i∈N

pi,tni,t + ∑
i∈N

Si,0qi+∑
t∈N

∑
i∈N

Si,t − ni,tci + ∑
s∈S

∑
f∈F

fsYs f XsX f

)
+ ∑

i∈N
∑
f∈F

ciniX f

+∑
i∈N

∑
µ∈N

∑
dc∈DC

fHYiµdcXdc + ∑
i∈N

∑
µ∈N

∑
dc∈DC

fRYiµdcXdc + ∑
i∈N

∑
r∈R

∑
dc∈DC

CriYidcrXr

+∑
i∈N

∑
di∈i

Cdi(Yidcdi + Yirdi)Xdi + ∑
l∈L

CN Xl + ∑
µ∈N

∑
i∈N

∑
dc∈DC

Cdmax(0, tt − tk)Yidcµ

+ ∑
m∈M

∑
s∈S

∑
f∈F

trms f ds f Ys f XsX f + ∑
m∈M

∑
i∈N

∑
dc∈DC

∑
f∈F

trm f dcd f dcYi f dcXdcX f

+ ∑
m∈M

∑
i∈N

∑
µ∈N

∑
dc∈DC

trmdcµddcµYidcµXdcXµ + ∑
m∈M

∑
i∈N

∑
µ∈N

∑
dc∈DC

trmµdcdµdcYiµdcXdcXµ

+ ∑
m∈M

∑
i∈N

∑
r∈R

∑
dc∈DC

trmdcrddcrYidcrXdcXr + ∑
m∈M

∑
r∈R

∑
i∈N

∑
f∈F

trmr f dr f Yir f XrX f

+ ∑
m∈M

∑
i∈N

∑
r∈R

∑
di∈DI

trmrdidrdiYirdiXdiXr + ∑
m∈M

∑
i∈N

∑
r∈R

∑
dc∈DC

trmdcdiddcdiYidcdiXdiXdc

+∑
i∈N

∑
dc∈DC

∑
f∈F

ChYid f cXdc + ∑
m∈M

CrentmXrm + ∑
m∈M

CbmXim + ∑
ke1∈K

∑
ke2∈K

Ctr(ke1 + ke2)

(1)

The first statement represents the cost of sales and logistics of product i based on
inventory levels, costs, and raw material purchasing costs from supplier s. The second
statement represents the production costs of each product unit. The third and fourth
statements represent the purchasing costs of each product unit returned from customers
and the inspection costs of each returned product unit in the distribution–collection center,
respectively. The fifth and sixth statements represent the recycling costs of each returned
product unit and the annihilating costs of each returned and unrecyclable product unit,
respectively. The seventh and eighth statements represent the cost of equipment repairs
and maintenance, and the cost of delaying product delivery per unit of time, respectively.
The ninth to sixteenth statements, respectively, represent the raw material transporta-
tion costs from suppliers to production centers, products transported from production to
distribution–collection centers, products from distribution–collection centers to customers’
locations, returned products transported from customers to distribution–collection centers,
products from distribution–collection centers to recycling centers, products from recycling
centers to production centers, products from recycling centers to annihilation centers, and
products from distribution–collection centers to annihilation centers. The seventeenth state-
ment represents maintenance costs in distribution–collection centers, and the eighteenth
and nineteenth statements indicate the cost of renting and purchasing cars for transporting
raw materials and products between facilities, respectively. Lastly, the twentieth statement
is equivalent to the cost of training staff.

Min Z2 = ∑
i∈N

niei + ∑
i∈N

∑
r∈R

Yidcreri + ∑
i∈N

∑
di∈DI

∑
r∈R

(Yidcdi + Yirdi)edii + ∑
i∈N

∑
dc∈DC

Yiµdcedc + ∑
m∈M

∑
s∈S

∑
f∈F

Ys f es f Xv

+ ∑
m∈M

∑
i∈N

∑
dc∈DC

∑
f∈F

Yi f dce f dcXv + ∑
m∈M

∑
i∈N

∑
dc∈DC

∑
c∈C

YidcµedcµXv

+ ∑
m∈M

∑
i∈N

∑
µ∈N

∑
dc∈DC

YiµdceµdcXv + ∑
m∈M

∑
i∈N

∑
dc∈DC

∑
r∈R

YidcredcrXv + ∑
m∈M

∑
i∈N

∑
r∈R

∑
f∈F

Yir f er f Xv

+ ∑
m∈M

∑
i∈N

∑
r∈R

∑
di∈DI

YirdierdiXv + ∑
m∈M

∑
i∈N

∑
dc∈DC

∑
di∈DI

YidcdiedcdiXv

(2)

Objective function (2) aims to minimize greenhouse gas emissions from different
supply chain network processes. The first and second statements indicate the amount
of emissions caused by the production process of products in production centers and
the amount of emissions caused by the process of recycling, respectively. The third and
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fourth statements indicate the amount of emissions caused by the annihilation process
and the amount of emissions caused by the inspection process of returned products in
distribution–collection centers, respectively. The fifth to twelfth terms also represent
the amount of emissions from the transportation process: from suppliers to production
centers, from production to distribution–collection centers, from distribution–collection
centers to customers, from customers to distribution–collection centers for transporting
returned products, from distribution–collection centers to recycling centers, from recycling
centers to production centers, from recycling centers to annihilation centers, and from
distribution–collection centers to annihilation centers.

Min Z3 = ∑
l∈L

RlXl (3)

Objective function (3) aims to minimize the risk of device failure. This function
is aimed at minimizing production–technical risk, which is the most critical risk in the
green supply chain. As mentioned in the model assumptions, two factors of interruption,
caused by equipment failure and a shortage of skilled labor, are considered as the main
causes of production–technical risk. The repair and maintenance of network equipment
seem necessary and inevitable to minimize the interruption caused by equipment failure.
Therefore, the costs for repairing and maintaining equipment in the network to prevent
equipment failure or reduce downtime are considered and modeled in objective function
(1). Also, staff training is considered an effective solution to solve the problem of the
shortage of skilled labor, so costs for training employees to compensate for this shortfall
and increase the skills of employees are modeled in objective function (1):

Min Z4 = ∑
s∈S

∑
f∈F

ts f X f+∑
f∈F

∑
dc∈DC

t f dcXdc + ∑
dc∈DC

∑
µ∈N

tdcµXµ (4)

The fourth objective function aims to minimize product delivery time. The first to last
statements indicate time taken for raw materials to be sent from the supplier to the produc-
tion center, the time taken for products to be sent from production to distribution–collection
centers, and the time taken for products to be sent from distribution–collection centers to
customers, respectively.

3.4. Constraints

In the following, the constraints of the whole system is described in detail.

∑
s∈S

XsYs f ≤ Cas (5)

The amount of raw materials sent from suppliers should be smaller than their capacity.

∑
f∈F

∑
i∈N

∑
dc∈DC

∑
µ∈N

(
Yi f dc + Yiµdc

)
Xdc ≤ Cadc (6)

The amount of products entering distribution–collection centers should be smaller
than their capacity.

∑
µ∈N

∑
i∈N

∑
dc∈DC

YidcµXdc ≥ ∑
µ∈N

dµ (7)

All customer requests must be satisfied.

∑
i∈N

∑
r∈R

∑
dc∈DC

YidcrXr ≤ Car (8)
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The total amount of goods sent from distribution–collection to recycling centers should
be smaller than the capacity of recycling centers.

∑
i∈N

∑
r∈R

∑
f∈F

Yir f Xr ≤ Ca f (9)

The total amount of products delivered from recycling centers to production centers
must be smaller than the production center’s capacity.

∑
i∈N

∑
dc∈DC

∑
r∈R

∑
di∈DI

YidcdiXdcXdi + YirdiXdiXr ≤ Cadi (10)

The total amount of goods sent to annihilation centers should be smaller than the
capacity of annihilation centers.

∑
f∈F

∑
s∈S

XsYs f ≥ d f (11)

The amount of raw materials sent from the suppliers to the production centers should
be large enough to meet the demands of the production center.

∑
i∈N

∑
dc∈DC

∑
µ∈N

Yiµdc = ∑
µ∈N

∑
i∈N

∑
dc∈DC

αYidcµ (12)

The total amount of returned products from customers to distribution–collection
centers should be α% of the total products sent to customers.

∑
i∈N

∑
dc∈DC

∑
f∈F

Yi f dc = ∑
i∈N

Ni (13)

The total number of type i products delivered from the production centers to distribu-
tion centers must equal the total production of type i products.

∑
i∈N

∑
dc∈DC

∑
di∈DI

Yidcdi = ∑
i∈N

∑
µ∈N

∑
dc∈DC

βYiµdc (14)

The total product delivered from the distribution–collection centers to annihilation
centers can be represented as β% of the total returned products sent from customers to
distribution–collection centers.

∑
i∈N

∑
dc∈DC

∑
r∈R

Yidcr = ∑
i∈N

∑
µ∈N

∑
dc∈DC

γYiµdc (15)

The total number of products sent from distribution–collection centers to recycling
centers can be indicated as γ% of the total returned products sent from customers to
distribution–collection centers.

∑
di∈DI

∑
i∈N

∑
r∈R

Yirdi = ∑
i∈N

∑
dc∈DC

∑
r∈R

τYidcr (16)

The total number of products sent from recycling centers to annihilation centers should
be τ% of the total products sent from distribution–collection centers to recycling centers.

∑
i∈N

∑
dc∈DC

∑
µ∈N

∑
f∈F

Yi f dc + Yiµdc ≥∑
i∈N

∑
dc∈DC

∑
µ∈N

∑
r∈R

∑
di∈DI

Yidcµ + Yidcr + Yidcdi (17)
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The sum of products that enter distribution–collection centers must exceed the output
sum from distribution–collection centers.

∑
i∈N

∑
r∈R

∑
f∈F

Yir f = ∑
i∈N

∑
dc∈DC

∑
r∈R

λYidcr (18)

The total product sent from recycling centers to production centers should be λ% of
the total product amounts sent from distribution–collection centers to recycling centers.

∑
i∈N

∑
dc∈DC

∑
r∈R

Yidcr = ∑
f∈F

∑
i∈N

∑
r∈R

∑
di∈DI

Yir f + Yirdi (19)

The total product amounts entering recycling centers must equal the total output of
recycling centers.

∑
i∈N

∑
dc∈DC

∑
µ∈N

Yidcµ = ∑
i∈N

∑
dc∈DC

∑
f∈F

Yi f dc (20)

The sum of type i products delivered from distribution–collection centers to customers
must equal the type i product total number sent from production centers to distribution–
collection centers.

∑
m∈M

Xv ≤ Xrm + Xim (21)

The total number of vehicles on the journey must be less than or equal to the total
purchased and rental vehicles in the organization.

∑
l∈L

Rl ≤ MR (22)

Production–technical risk must be smaller than the maximum production–technical
risk allowed.

∑
i∈N

Tei ≤ G (23)

The total CO2 emission rate of production in production facilities should be less than
the maximum allowable rate of CO2 emissions from production.

tt = ts f + t f dc + tdcµ (24)

The product delivery total time to the customer equals the total time for product
transfer from the supplier to the production centers, the product transfer time from pro-
duction centers to distribution–collection centers, and the product transfer time from
distribution–collection centers to the customers.

β + γ + λ + τ = 1 (25)

The above constraint ensures that the value of 1 is obtained for the sum of the returned
products’ coefficients.

∑
dc∈DC

∑
µ∈N

xµdc.qs = ri
µ (26)

The above statement ensures the collection of all returned products from customer
centers throughout the return process.

qsdcdi + qsdcr + qsrdi = qsµ (27)
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The above statement ensures that the total product quality in the whole chain (except
the product transfer stage from recycling centers to manufacturing centers) equals the
original product quality.

∑
l∈L

∑
i∈N

niXl = ∑
dc∈DC

∑
f∈F

∑
i∈N

Yi f dc (28)

The total production of type i equipment in each production center equals the number
of products delivered from the desired production center to distribution–collection centers.

∑
f∈F

∑
i∈N

Ti f1dYi f dc ≤ ∑
ka1∈k

∑
ke1∈k

(ka1 + ke1)Tw1 (29)

Person–hours needed to manufacture each product type i unit in the first production
center should be supplied by the existing labor force and by hiring new labor in case
of shortages.

∑
f∈F

∑
i∈N

Ti f2dYi f dc ≤ ∑
ka2∈k

∑
ke2∈k

(ka2 + ke2)Tw2 (30)

Person–hours needed to manufacture each product type i unit in the second production
center should be supplied by the existing labor force and by hiring new labor in case
of shortages.

Ys f , Yi f dc, Yidcµ, Yiµdc, Yidcr, Yir f , Yirdi, Yidcdi, ts f , t f dc, tdcµ, ri
µ, xµdc.qs > 0 (31)

Xs, X f , Xdc, Xµ, Xr, Xdi, Xv, Xrm, Xim, Xl ∈ {0, 1} (32)

These two constraints ensure that the mentioned parameters and variables are positive
and between zero and one, respectively.

ts f .min ≤ ts f ≤ ts f .max (33)

This constraint ensures that the time spent on raw material sending from supplier s to
the production center f must be within the time frame set by the production center f .

t f dc.min ≤ t f dc ≤ t f dc.max (34)

This constraint ensures that the time it takes to send final products from the production
center f to the distribution–collection center dc must be within the time frame set by the
distribution–collection center dc.

tdcµ.min ≤ tdcµ ≤ tdcµ.max (35)

This constraint ensures that the time it takes to send final products from the distribution–
collection center dc to customer µ must be within the time frame set by customer µ.

∑Xs, X f , Xdc, Xr, Xdi, Xv, Xrm, Xim, Xl ≥ 1

∀s ∈ S, ∀ f ∈ F, ∀dc ∈ DC, ∀r ∈ R, ∀di ∈ DI, ∀m ∈ M, ∀l ∈ L (36)

This constraint ensures that at least one facility is used during the product transfer to
the customer.

qi + ci ≤ pi,t ≤ pmax
i (37)
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This constraint ensures that pricing must be higher than the cost and below the
maximum price reserved by consumers.

ni,t ≥ 0 (38)

This constraint ensures that the volume of product sales in each decision cycle must
be non-negative.

∑ni,t ≤ Si (39)

This constraint is an indirect limiting condition to ensure that the sales volumes of the
two types of products must be less than the total inventory.

max{p1,t, p2,t} < p3,t < p1,t + p2,t (40)

According to the bundling strategy, this constraint represents a package pricing that
must be less than the sum of the separated pricing of two products and higher than
the highest price of the two separate products sold. Otherwise, advertising through the
bundling strategy is meaningless.

n3,t < min(Si,t) (41)

This constraint ensures that the sales volume of the bundling product must be less
than the minimum inventory of two products.

∑(n1,t + n3,t) ≤ Si, ∑(n2,t + n3,t) ≤ Si (42)

This constraint is also a limited requirement to ensure that the sales volumes of two
product types must be less than the total inventory.

4. Numerical Example and Results
4.1. Numerical Example

As a result of the NP-hard nature of the model and its computational complexity, it is
not possible to solve it with exact methods. Hence, we will use a meta-heuristic algorithm to
solve the model. Among multi-objective meta-heuristic algorithms, the NSGA-II algorithm
has been selected in this research due to its significant advantages. The nature of this
algorithm’s random search in the problem space is considered a parallel search, because
each of the random chromosomes generated by the algorithm is considered a new starting
point for searching a part of the problem state space, and the search is conducted across
all of them simultaneously. Also, due to the extensive dispersion of the points that are
searched, it obtains favorable results for problems that have large search spaces. It is also
considered a targeted random search and will reach different answers through different
paths. In addition, it does not face any restrictions in the search and selection of random
answers. Finally, due to competition among answers and selection of the best among the
population, it will reach the global optimal point with a high probability. The proposed
NSGA-II algorithm starts with a population initialization process that randomly generates
populations with the values of each gene bounded by given values. Then, it uses a selection
process to form a pool of parents to generate offspring using a crossover process. The
genetic algorithm used in this research uses a simple crossover process that randomly
selects two parents as parent1 and parent2 and then generates a random variable (r) from
0 to 1. The weight of this random variable is defined as R. We considered R as 0.8 and
used child = parent1 + r ∗ R ∗ (parent2− parent1) to create each gene from a child. This is
shown in Figure 2.
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In the proposed NSGA-II algorithm, in order to improve population diversity and con-
vergence speed, a combination of disorder mapping and conflict-based learning methods
is used to generate the initial population. Also, an approach based on a penalty function
is used for solutions that do not meet the time limit. This problem shows the differences
between the proposed method and the classical NSGA-II and MOPSO methods.

The problem at hand is a multi-objective, single-period, multi-product green CLSC
model. The settings for the NSGAII algorithm are presented in Table 2. It should be noted
that the implementation of the proposed method was carried out using MATLAB version
2023 software, and the coding was performed on a system with a core i5 processor and
8 GB of RAM.

Table 2. Initial parameters of NSGA-II.

Parameter Value

Population size 60
No. of generations 100
Selection method Random
Non-dominant choice Tournament DCD
Crossover method Laplace
Probability of crossover 95%
Mutation method Power
Probability of mutation 0.5%

Table 3 shows the initial values of some main parameters. These data were collected
from a food packaging company in Tehran, Iran.

Table 3. Initial model parameters.

Parameter Symbol Value

Supplier s 4
Production center f 2
Distribution-collection center Dc 5
Destruction center Di 2
Recycling center r 2
Customer C 10
Staff k 5
Set of products p 3
Set of equipment l 4
All vehicle types m 3
Number of products produced Np 1000
Production costs per product unit Cp 50,000
The costs of each raw material unit purchasing from the suppliers fs 10,000
The employee training costs Ctr 1,200,000
Product recycling costs Crp 20,000

Product destruction costs Cdi 13,000
Inspection fee per returned product unit Fchp 30,000
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During the process of solving the model, some solutions were infeasible, which is due
to the placement of the algorithm in local solutions. In order to overcome this issue, the
proposed algorithm shifts from local mode and solves this problem under global conditions.
The difference between feasible and infeasible solutions lies in establishing the necessary
restrictions and conditions to solve the problem that is considered in the model.

Now, results related to all four objective functions have been obtained by setting the
population number to 10, the operators’ probability to 0.8, and the mutation operators’
probability to 0.3. Nevertheless, as the developed model represents several different levels
with 10 customers, five distributors, and two manufacturers (Table 3), the flow of products
is determined considering the amount of customer demand. Hence, Table 4 illustrates the
amount of demand for the 10 target customers separately.

Table 4. Customer demand values.

Customers 1 2 3 4 5 6 7 8 9 10
Demand 176 329 427 729 102 356 449 224 234 332

According to the above table, the first customer demands 176 pieces, the second
demands 329 pieces, and so on until the end. It is necessary to note that the maximum
time needed for product delivery to each customer without causing dissatisfaction is set at
120 h. Additionally, given the completely random determination of initial model values
in problem-solving by the genetic algorithm (GA), unreasonable or infeasible solutions
may arise, prompting the algorithm to promptly address the problem and find a practical
answer. The above-mentioned process should be considered by the algorithm during
300 iterations. Table 5 presents the model implementation results with the genetic multi-
objective algorithm for all four specific objectives.

Table 5. Problem-solving results with the genetic algorithm (NSGAII).

The
Objective
Function

Cost
Objective

Function ($)

Pollutant Emission
Objective Function

(PPM)

Risk Objective
Function (%)

Time Objective
Function (h)

Execution
Time (s)

Value 10,981,185 11,744 0.27 117 14.5963

As shown in Table 5, the desired results are presented for the proposed model with
a numerical example. The point that should be mentioned, regarding the presentation of
results related to risk, is that in this research, supply chain risk assessment is related to two
interruption factors: equipment failure and the lack of skilled labor, both considered the
main factors contributing to production–technical risk. Any failure leads to an interruption
in production of the product and increases the costs of the entire chain. Therefore, equip-
ment maintenance costs and staff training costs are presented in the form of a cost model to
compensate for this deficiency and increase the skills of employees. Therefore, by reducing
risk, in addition to minimizing the delay in the production and shipping of the product,
the costs of the entire chain are also reduced.

Tables 6 and 7 present the product transfer amounts from manufacturers to distributors
and from distributors to customers to meet their expectations throughout the considered
interval. The presented values highlight the desired figures to achieve the target functions’
optimal amounts.

Based on Table 6, the first producer only transferred 1231 units of products to the fifth
distributor, and the second producer only transferred 1853 units to the first distributor,
2 units to the third distributor, and 272 units to the fourth distributor. However, there have
been no product deliveries to the second distributor. The issue that needs consideration is
that the total customer demand, as indicated in Table 6, is 3358 units. As mentioned before,
all demands should be answered. Therefore, the total amount of the provided products in
Table 6 should equate to 3358 units as well. In addition, the maximum production capacities
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for the first and second producers were 1577 and 3071 units, adopting 1231 and 2127 units
for each, respectively. In other words, the product amounts sent from manufacturers to
distributors showed lower values than the manufacturers’ maximum capacities. Table 7
presents the amounts of product transfers from each distributor to customers.

According to this table, the first customer takes all the demand of 176 units from the
fourth distributor, and the ninth customer receives 9 and 225 product units from the first
and second distributors, respectively, to satisfy its request of 234 units. As shown, each
row’s sum equals the total number of customer demands met.

Table 6. Transferring the products (units) from manufacturers to distributors.

Distributors

The first producer 0 0 0 0 1231
The second producer 1853 0 2 272 0

Table 7. Product transfer (units) from distributors to customers.

Customers

First Distributor 0 0 427 691 0 227 449 0 9 0

Second Distributor 0 0 0 0 0 0 0 0 0 0

Third Distributor 0 2 0 0 0 0 0 0 0 0

Fourth Distributor 176 0 0 0 96 0 0 0 0 0

Fifth Distributor 0 327 0 38 6 79 0 227 225 332

4.2. Different Sample Size Solution

Due to the complexity of the model and its limitations in the real world, this section
aims to use different numerical multiples across different dimensions to make applications
in the real world easier. So, in this section, we will examine the model’s solution for various
examples in small, medium, and large dimensions. Tables 8–10 highlight the findings for
all four objective functions for all three problem dimensions.

Table 8. Objective function results for the problem in small dimensions.

Samples 1 2 3 4 5 6 7 8 9 10

Costumer No. 1 2 4 4 7 7 8 8 9 9

Distributer No. 2 2 2 3 3 4 4 4 5 5

Cost 103,813 104,190 104,938 109,889 110,440 120,444 133,912 145,530 145,838 147,781

Pollution (ppm) 350 384 399 450 459 632 885 935 1002 1027

Time (h) 7 8 10 13 19 25 39 44 68 75

Risk (%) 0.058 0.119 0.13 0.298 0.151 0.224 0.324 0.133 0.237 0.276

Table 9. Objective function results for the problem in medium dimensions.

Samples 1 2 3 4 5 6 7 8 9 10

Costumer No. 12 14 14 15 15 16 16 18 18 18

Distributer No. 6 6 7 7 8 8 9 12 13 14

Cost 1,086,833 1,180,532 1,209,745 1,222,165 1,232,836 1,295,891 1,302,785 1,339,529 1,344,999 1,377,401

Pollution (ppm) 1178 1208 1321 1342 1574 1622 1700 1765 1932 2120

Time (h) 50 51 52 62 64 69 73 77 80 84

Risk (%) 0.059 0.341 0.367 0.228 0.309 0.23 0.399 0.202 0.217 0.389



Mathematics 2024, 12, 737 18 of 23

Table 10. Objective function results for the problem in large dimensions.

Samples 1 2 3 4 5 6 7 8 9 10

Costumer No. 30 45 50 50 60 65 65 70 70 70

Distributer No. 20 20 25 30 32 38 41 45 50 60

Cost 1,520,398 2,026,527 2,142,370 2,165,451 2,255,848 2,257,946 2,342,930 2,411,260 2,412,817 2,595,378

Pollution (ppm) 13,526 13,658 14,002 14,230 15,200 16,210 16,890 17,532 18,050 19,850

Time (h) 112 114 123 129 135 139 145 160 175 191

Risk (%) 0.177 0.346 0.443 0.303 0.391 0.408 0.479 0.587 0.599 0.631

Figures 3–6 are presented to compare the objective functions of cost, time, pollutant
emission, and risk level, respectively, to better understand the results.
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4.3. Sensitivity Analysis

Sensitivity analysis is a topic that can provide proper insight into solving problems.
In other words, sensitivity analysis determines how much the dependent variable will
change if the value of an independent variable changes in a specific and defined situation,
assuming that other variables are constant. Here, the values presented in Table 3 are
changed to find out how an increase or decrease in each parameter affects the final cost of
the model. Based on sensitivity analyses performed on the main model parameters, the
supplier, collection–distribution center, and producer numbers have the greatest impact
on the target functions. It should be noted that the time required for product delivery
to customers has an inverse relationship with the increase in these parameters. Hence,
increased supplier, collection–distribution center, and producer numbers would lead to a
decrease in the time required to transfer products to customers. Additionally, parameters
related to destruction and recycling centers only have an effect on pollutant levels and
chain costs, with no effects on objective functions related to time and risk. Thus, with an
increase in destruction centers, the amount of pollutants increases more, while an increase
in recycling centers results in a higher chain costs. The increased number of customers
and produced products does not affect risk. Since the impact of other problem parameters,
such as the costs of producing each product unit, purchasing raw materials, training,
recycling, destruction, and inspection, as presented in Table 3, only affect chain costs and
have no effects on other objective functions, they were not investigated in the sensitivity
analysis section.
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4.4. Comparison

We also use the MOPSO algorithm and compare its performance with the NSGA-II
algorithm in solving large-scale problems to evaluate the developed methodology. Table 11
presents the comparison results.

Table 11. Comparing the performance of NSGA-II and MOPSO in model solving.

Distribution
No.

Costumers
No.

NSGA-II MOPSO

Cost Pollution
(ppm) Risk (%) Time (h) Cost Pollution

(ppm) Risk (%) Time (h)

20 30 15,203,980 13,526 0.177 112 15,878,009 15,321 0.201 122

20 45 20,265,270 13,658 0.346 114 16,508,714 16,807 0.359 126

25 50 21,423,701 14,002 0.443 123 21,046,485 17,243 0.481 131

30 50 21,654,514 14,230 0.303 129 21,245,259 17,296 0.329 135

32 60 22,558,487 15,200 0.391 135 22,857,772 17,633 0.405 141

38 65 22,579,460 16,210 0.408 139 23,429,838 18,828 0.415 154

41 65 23,429,301 16,890 0.479 145 23,968,083 19,309 0.502 161

45 70 24,112,607 17,532 0.587 160 24,099,886 19,655 0.592 167

50 70 24,128,172 18,050 0.599 175 25,479,452 19,738 0.621 181

As revealed by comparisons, the genetic optimization method (NSGA-II) has higher
diversity in discovering solutions due to its ability to identify local and global optimal
solutions and its continuity. Compared to MOPSO, a better balance is established between
discovery and efficiency criteria to prevent the risk of falling into local optima. There-
fore, in addition to its high power in discovering optimal answers, the genetics-based
method shows higher speed and subsequently a higher convergence rate and diversity
than MOPSO.

In the following analysis, we use the MGA, as employed by Gholizadeh and Fazlol-
lahtabar (2020), to maximize the single objective model associated with the CLSC total
costs [34]. The objective function presented here seeks to maximize the total profit of the
closed-loop green SC. Gross profit equals the difference between income and expenses.
Revenue sources are products sold to customers in both Tier 1 and Tier 2. The company’s to-
tal costs also comprise operational and transportation costs. Thus, each period’s operating
costs within the future flow are equal to raw material purchasing costs, production of grade
1 products, assembly of grade 1 and 2 products, and the distribution centers’ operating
costs. A reverse supply chain also involves paying for the purchase of used products from
customers, separation costs of returned products, quality checking of separated parts in
the parts separation center, and waste disposal costs in the reverse flow. Hence, Table 12
presents the modeling results of the modified GA and the proposed model.

Table 12. Comparison of the developed algorithm (NSGA-II) and MGA, proposed by Gholizadeh
and Fazlollahtabar (2020) [34].

Problem No. 1 2 3 4 5 6 7 8 9 10

Modified GA 11,005,413 10,363,216 15,344,758 20,483,956 16,050,510 28,996,989 20,668,679 22,790,123 23,998,908 14,999,575

Present Study 11,152,821 10,852,524 15,817,908 20,854,215 16,642,758 29,528,210 21,217,931 23,269,604 24,752,042 15,241,798

Diff. (%) 1.34 4.72 3.08 1.81 3.69 1.83 2.66 2.10 3.14 1.61

Based on Table 12, among the 10 examples of the solved problem, the algorithm
introduced in this research has favorable performance in determining chain costs and



Mathematics 2024, 12, 737 21 of 23

enhacing profits, with the highest difference equal to 4.72% and the average difference
equal to 2.38% compared to MGA.

The Non-dominated Sorting Genetic Algorithm II (NSGA-II) outperforms the mod-
ified genetic algorithm due to several key factors inherent in its design and operational
mechanisms. NSGA-II’s enhanced performance, which led to a 2.38% reduction in costs,
can be attributed to its superior handling of multiple objectives, preservation of diversity
among solutions, and efficient sorting and selection process.

5. Discussion and Conclusions

In this paper, the multi-objective genetic optimization method was used to find the
optimal answer to the four-objective closed-loop supply chain nonlinear programming
problem. The study involved comparing and analyzing the optimal values obtained from
each method across different dimensions. The proposed algorithm was performed in
several phases. In the first phase, the problem was modeled and initialized, encoding the
supply chain network in question with a string of real numbers. Each solution (chromo-
some) in the genetic algorithm is equivalent to the components of suppliers, distribution
centers, producers, repair centers, collection, renovation, destruction, and recycling, and
the values of each sub-component of these parameters are randomly initialized within the
intervals determined for each. Genetic algorithms usually use a higher quality population
to speed up convergence. In the second phase, a criterion must be defined to evaluate
the members of the population and enable the recognition of the better organisms in the
population. This work, i.e., determining the suitability of an entity, is called the evaluation
of that entity. The fitness function is equivalent to the planning problem discussed in
Section 3, which deals with profit maximization and environmental impact minimization.
The determined values for each of the components of suppliers, distribution centers, pro-
ducers, and other investigated centers are placed in the objective function to calculate the
objective functions and solve the problem according to the considered limitations. In the
next step, Pareto solutions are extracted depending on the genetic algorithm model, repre-
senting the optimal values of regulatory parameters, including the number of disposals,
renovation, repair, recycling, distributor, and supplier centers. The experimental results
showed that the genetic algorithm had a favorable performance in finding solutions in all
three dimensions, small, medium, and large, in finding the optimal solution, maximizing
profit, and reducing the effects on the environment, risk and product transfer time. It
was also determined by sensitivity analysis that the parameters related to the number of
suppliers, collection–distribution centers, and manufacturers have the greatest impact on
the performance of the proposed model’s objectives. It was also found that the product
delivery time to the customer will have the opposite effect with the increase in these param-
eters, and with the increase in the number of suppliers, collection–distribution centers, and
manufacturers, the product transfer time to the customer will decrease. The results of the
comparison of the proposed method with the MOPSO algorithm showed that the genetic
optimization method has more diversity in discovering solutions due to finding local and
global optimal solutions and its continuous nature, and a better balance is established
between the discovery and efficiency criteria to avoid failing to local optima. It was also
found that compared to the MOPSO method, it has a high speed and subsequently higher
convergence and diversity in achieving optimal solutions. In other words, the advantage
of the proposed method compared to other methods is in automatic subset creation and
finding global optima and local optima to consciously maximize the profit from each stage
of the supply chain. In addition, the proposed method has wider applicability, and we
intend to focus on the design of supply chain systems with other objectives in the uncertain
and ambiguous periods in the future. Also, in the future, the authors will attempt to
perform a quantitative assessment of the environmental benefits resulting from pollutant
reduction strategies, possibly including life cycle assessments (LCAs) and economic anal-
yses of cost-saving measures, potentially incorporating a break-even analysis to assess
financial feasibility.
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