
Citation: Wang, J.; Wen, J.; Pajić, V.;
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Abstract: Thedistribution of products stands out as one of the pivotal activities for logistics companies
in recent years, particularly in the aftermath of the COVID-19 pandemic and other geopolitical
events. Intense competition compels companies to efficiently execute their logistical processes,
with cross-docking emerging as a frequently applied solution. However, the location of cross-dock
terminals in urban areas remains a problem insufficiently addressed in the literature, with a dearth
of studies and models tackling this issue. This paper introduces a novel and innovative model for
locating cross-dock terminals based on the CI-DEA–IDOCRIW–MABAC (Composite Indicators–Data
Envelopment Analysis-Integrated Determination of Objective Criteria Weights–Multi-Attributive
Border Approximation Area Comparison) methods. In the process of defining input indicators, the
following three sources were utilized: relevant literature, practical insights from logistics experts,
and the knowledge and experience of the authors. Eight inputs and three outputs were considered
(the number of users in the observed channel; the area served by the channel; the average distance
a vehicle travels in one delivery; the required number of vehicles; labor availability; competition;
construction, and expansion possibilities; proximity to the main infrastructure and traffic facilities; the
average number of deliveries; average delivered quantity; and service level). The model underwent
testing in a case study analyzing nine distribution channels (areas within the observed urban zone).
The results indicated that alternative A4 (in the southwest area) ranked the highest since it was
the best-ranked in accordance with the most important criteria, suggesting that the terminal is best
located in the southwest zone. The accuracy of the results was confirmed by company management.
By developing a completely new model and addressing the identified gap in the literature, this paper
provides unequivocal scientific contributions.

Keywords: cross-docks; location problem; logistics; CI-DEA; IDOCRIW; MABAC; optimization

MSC: 90B06

1. Introduction

Distribution process planning and execution is a key aspect of logistics. Among
various strategies, cross-docking has gained popularity alongside direct delivery and
storage-based approaches [1]. Direct delivery entails sending products directly from the
manufacturer to the end customers, allowing the delivery company complete control over
the process. This approach enhances customer relationship management, reduces delivery
times, and cuts costs associated with bypassing storage facilities. However, a drawback of
direct delivery is the underutilization of cargo space due to the frequent delivery of smaller
product quantities. This results in increased transportation costs and longer delivery times.
In response to these challenges, distribution strategies involving storage and cross-docking
have emerged.
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A storage-based strategy contributes to warehouse activities, especially order consoli-
dation, optimizing transport vehicle capacity, and reducing transportation costs. Various
warehouse systems and distribution centers facilitate the storage process [2]. This strategy
also offers flexibility in responding to demand changes through inventory storage and
management activities. Despite the advantages, implementing storage activities incurs
additional costs. It is crucial to note that this strategy aims to ship goods when the transport
vehicle’s cargo space is maximally filled to minimize transportation costs.

To address issues related to traditional warehousing, inventory ownership, and trans-
portation costs, the cross-docking strategy comes into play. Cross-docking involves consol-
idating and shipping goods without storage or with limited temporary storage if neces-
sary [3]. In a cross-dock terminal, incoming shipments are quickly unloaded, consolidated,
and loaded onto outgoing transport vehicles on the same day. If temporary storage is re-
quired, it typically lasts no more than 24 h, according to several authors. Implementing the
cross-dock strategy enhances transportation efficiency and cost-effectiveness without the
overheads associated with traditional warehousing systems. Also, cross-docking reduces
lead times and can impact improving customer order delivery time [4,5].

However, it is essential to recognize that the cross-dock strategy is not a universal
solution. It requires significant quantities of goods with a high turnover rate, a sophisti-
cated information system, and precision in coordinating incoming and outgoing transport
vehicles. Operators and users may encounter various strategic, tactical, and operational
challenges during cross-dock strategy implementation. In addition to cost-effectiveness,
one of the most important challenges of the cross-dock strategy is terminal location. Termi-
nal location directly affects distribution costs on the one hand, while on the other hand, it
influences the level of service quality provided.

The subject and objective of this paper entail the development of an innovative model
to address the challenges associated with the location of cross-docking terminals. This
model is based on the implementation of the CI-DEA–IDOCRIW–MABAC methodol-
ogy. Firstly, the CI-DEA method was applied in order to reduce the initial number of
inputs/outputs based on the correlation. In the next phase, the IDOCRIW method was
applied to determine criteria weights, while in the last phase, the MABAC method was
applied in order to rank the alternatives (in this case, potential cross-docking locations).
The developed methodology was employed to address a case study encompassing a large
region. The CI-DEA method is based on the principles of PCA-DEA [6], where the main
objective is to reduce the number of inputs and outputs used for the evaluation of DMUs
by taking into account the correlation between inputs/outputs and, hence, reducing their
number. The reason for implementing this method in the paper is reflected by the fact
that the implementation of the CI-DEA model results in an unambiguous and easy in-
terpretation of the obtained results. Also, another reason for its implementation is the
fact that, based on the simulation results [7], it was determined that this method assessed
the DMU efficiency better than the standard DEA, and the results seemed to be more
reliable. The IDOCRIW method was applied since the goal of this paper was to determine
criteria weights objectively. This approach combines the weights obtained from entropy
and criterion impact loss (CILOS) methods in order to obtain the aggregate criteria weights.
By applying both of the previously mentioned methods through the IDOCRIW method, the
drawbacks associated with one methodology are compensated by the strengths exhibited in
the alternative approach [8]. Finally, the MABAC method was applied for ranking because
this method represents a useful and reliable tool for rational decision making and provides
consistent (stable) solutions [9].

The structure of this paper is as follows: Section 2 offers an in-depth exploration of the
problem, accompanied by a relevant literature review. In this section, aside from defining
the concept, the significance and characteristics of implementing the cross-docking strategy
are expounded upon. Section 3 introduces a multi-stage model developed for determining
the location of cross-docking terminals in the distribution network. A comprehensive
presentation of the case study considered in this paper is provided in Section 4, inclusive
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of the results. Section 5 delves into a more detailed analysis of sensitivity, as well as its
theoretical and managerial implications and contributions. Finally, concluding remarks
and future research directions are articulated in Section 6.

2. Problem Description and Literature Review
2.1. Cross-Dock Definition

Cross-docking represents a distribution strategy that has become increasingly preva-
lent over the last few decades. In the business realm, the significance of cross-docking began
to emerge in the second half of the 1980s, notably with its implementation in the supply
chain of retailers such as Walmart, resulting in significant savings and cost reductions. The
example of Walmart has indeed generated substantial interest among researchers in the
field of the cross-dock strategy [10].

Defining cross-docking as a concept sparks significant debate, leading to a myriad
of diverse definitions that highlight specific characteristics. However, at its core, these
definitions all converge on the idea that cross-docking is a logistics strategy aiming to
minimize inventory and transportation costs by consolidating the various flows of goods
with different origins at a single terminal. Below is an overview of this dispersion in
definitions, presenting a general definition and one from the Material Handling Industry
of America.

The general definition of the cross-dock strategy is as follows [11]:

“Cross-dock involves receiving products or materials from suppliers or manufacturers for
multiple end destinations and consolidating the received products with products from
other suppliers for a common destination, based on certain criteria”.

On the other hand, the definition from the Material Handling Industry of America is
the following [11]:

“Cross-dock involves the process of moving goods from the receiving to the shipping dock
without storage between the receiving and shipping docks”.

Within these two definitions, one can discern an aspect of diversity as well as si-
multaneous similarity. Specifically, the emphasis in the first “general” definition is on
consolidation to achieve greater economic efficiency by minimizing transportation costs. In
contrast, the second definition focuses on dispersion regarding the movement of goods.
However, fundamentally, the goal of the definitions is the same. The fundamental processes
executed within the cross-dock terminal are illustrated in Figure 1.
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2.2. Cross-Dock Implementation

The adoption of the cross-docking concept has become increasingly prevalent, driven
by a heightened awareness of its benefits and popularity in recent decades. However, it
is crucial to acknowledge that the cross-docking concept may not always represent the
optimal strategy. Some authors argue that the cross-docking strategy is most suitable
for goods characterized by high, predictable demand and specific quantity requirements,
especially those with a diminishing value aspect [12,13].

Furthermore, certain authors argue that the application of the cross-dock concept
is optimal when specific factors are satisfied. There are variations in the consideration
of these factors among different authors. The first crucial factor is the level of demand
for the product. If there are fluctuations in demand over time, the cross-dock strategy is
deemed suboptimal unless implemented with an appropriate planning system. Therefore,
the cross-dock strategy is deemed optimal for products with a consistent demand. The
second factor is the cost of stockouts [11].

In addition to the factors previously mentioned, there are other variables that can
impact the suitability of implementing the cross-dock concept. Some of these factors include
the following [3,4,10,11]:

• The distance between suppliers and customers;
• The value and lifecycle of the product;
• The required quantity of products;
• Timeliness of delivery, etc.

2.3. Cross-Dock Characteristics

The performance of cross-dock terminals can be assessed using various performance
indicators. Some of the performance indicators that need to be monitored in a cross-dock
terminal are described below [13].

• Inventory Level—since one of the primary motivations for implementing the cross-
dock strategy is to reduce inventory levels, it is essential to have indicators related to
monitoring the overall or maximum quantity of stocks stored in the terminal at any
given time or moment.

• Congestion—the drive to minimize the overall distance traveled within the cross-
dock terminal can lead to the clustering of loading and unloading activities in a
very confined space, potentially causing congestion and significantly reducing the
productivity of a cross-dock terminal.

• Total Dwell Time of Goods—given that the primary objective of a cross-dock terminal is
to minimize inventory levels and, consequently, the dwell time of goods, it is essential
to monitor the overall dwell time of goods as a crucial performance indicator.

• Time for Loading and Handling Operations—in order to minimize the overall dwell
time of goods and, concurrently, inventory levels, it is necessary to define the time
required for the loading and unloading of incoming and outgoing vehicles and ensure
adherence to the defined time frames.

• Number of Material Handling Operations—Depending on the design and purpose
of the cross-dock terminal, goods within the terminal may undergo handling once,
twice, or more, depending on the activities involved. Each material handling operation
requires the engagement of resources and, thus, introduces additional cost burdens.
Therefore, the average number of handling operations for a specific type of goods
represents a potential performance indicator, etc.

2.4. Location Problem

In the development of a cross-dock terminal, distinct phases are navigated, each re-
quiring decisions at the strategic, tactical, and operational levels. Consequently, challenges
arise at different decision-making tiers, which are aligned with the stages in the evolution
of a cross-dock terminal. The initial decisions revolve around the strategic planning phase
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of the cross-dock strategy and pertain to strategic elements such as the location and layout
of the cross-dock terminal. Following this, at the tactical level, decisions are made regard-
ing the execution of internal transport, the selection of loading and handling equipment,
operational methodologies, and capacity planning. Subsequently, operational-level deci-
sions fall under the responsibility of the cross-dock terminal operator and involve aspects
like vehicle routing, temporary storage, arrival, and departure schedules, preferences for
specific transportation modes, and the allocation of loading docks to vehicles [11,14].

The extensive range of decision-making issues mentioned, organized across a timeline from
long-term strategic to short-term operational problems, can be presented as follows [11,12,14–17]:

• Location problem, i.e., the decision-making process for the location of the cross-dock
terminal while adhering to the existing distribution network structure;

• Scheduling incoming and outgoing vehicles;
• The layout of the cross-dock terminal;
• The allocation of destinations, i.e., defining positions on the loading dock that specific

vehicles occupy based on their origin or final destination;
• Scheduling the loading and unloading operations of vehicles, i.e., defining the se-

quences in which arriving vehicles are serviced;
• The organization of internal transport within the cross-dock terminal.

The cross-dock location problem has been recognized in the literature, although the
proposed models are mainly based on the implementation of heuristics and metaheuris-
tics. For instance, Ref. [18] proposes a model for selecting the cross-dock location while
simultaneously determining a fleet of vehicles used to transport goods from suppliers to
the end users (assembly parts). In order to solve this NP-hard problem, a biogeography-
based optimization (BBO) algorithm was used. The authors compared this approach with
particle swarm optimization (PSO), and the results showed that the BBO performs much
better in terms of total network costs and computational time. Two Lagrangian relaxation
algorithms were proposed in [19] to define a reliable cross-dock network even in situations
of disruptions. Meidute-Kavaliauskiene et al. [5] focused on several problems regarding
the cross-docks. Namely, the authors proposed an algorithm based on the implementation
of the non-dominated sorting genetic algorithm-II (NSGA-II) and multi-objective particle
swarm optimization (MOPSO) for targeting the following three issues: cost optimization,
scheduling incoming and outgoing vehicles, and green supply chains (SC) consisting of
several cross-docks. Similarly, Rostami et al. [20] proposed a model for addressing the
optimization of incoming and outgoing vehicle schedules in order to minimize the total
operation time within SC. The observed SC consists of suppliers, cross-docks, and factories.
Several algorithms were then used by the authors in order to solve this NP-hard prob-
lem. Rahbari et al. [21] proposed two robust bi-objective models taking into account the
traveling time (for outgoing vehicles) and freshness-life of perishable products in order
to solve the vehicle routing problem. Similarly, Shahabi-Shahmiri et al. [22] proposed a
model for solving the routing and scheduling problems of perishable products that are
distributed via a cross-dock. The aim of the model was to minimize distribution costs and
shorten the distribution time while maximizing the capacity utilization of the cross-docking
network. A multi-objective optimization model for solving the routing problem and the
cross-dock selection problem by applying Pareto-based algorithms was proposed by [23].
A mathematical model for truck scheduling taking into account a multidoor cross-dock was
proposed by Taghizadeh et al. [24]. Soleimaninanadegany et al. [25] developed a model
based on a genetic algorithm (GA) for product allocation to the warehouse and cross-dock.
Cross-docks can also have an impact on the efficiency of the company. With this in mind,
a framework for designing cross-docks in order to improve the overall efficiency of the
distribution process was developed in [26].

On the other hand, after conducting the literature review, it was concluded that only a
few papers solved the described problem using MCDM (Multi-Criteria Decision-Making)
methods. Deng and Qu [16] focused on determining the cross-dock center location by apply-
ing Interval Multi-Granularity Multi-criteria Group Decision-Making. Mousavi et al. [15]
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developed a hybrid fuzzy possibilistic–stochastic programming solution approach for solv-
ing the two most common and crucial problems, i.e., determining locations for multiple
cross-docks and scheduling incoming and outgoing vehicles. As already explained, goods
are stored for only a short period in cross-docks. In these situations, it is essential to
determine the location of every unit load. This problem was addressed by [4] in order
to determine the optimal storage location for the unit load with the aim of minimizing
the travel distance of forklifts when manipulating these units. Since a certain dose of
uncertainty is present in selecting a location for a cross-dock, the authors in [17] determined
that conventional models are not sufficient. Therefore, they developed a novel model
based on Interval-Valued Intuitionistic Fuzzy (IVIF) sets to tackle this uncertainty. The
aforementioned models do not include methods for eliminating subjectivity (like CI-DEA
in this paper), and this represents their main limitation.

3. Methodology

To tackle the described problem, a methodology based on the implementation of the
CI-DEA–IDOCRIW–MABAC method was proposed in this paper. The proposed approach
consists of several phases (Figure 2). In the first phase, a literature review and interviews
with experts from the observed company were conducted to determine the inputs and
outputs that would be taken into account in this paper. Based on the results of this phase, in
the second step, the CI-DEA method was applied, firstly to reduce the number of observed
inputs/outputs since only nine DMUs (distribution channels) were analyzed and, secondly,
the implementation of the DEA method resulted in very poor discriminatory power (since
all DMUs were efficient). In the next phase, only efficient DMUs were taken into account.
During this phase, again, based on a literature review and interviews with experts from the
observed company, criteria for the evaluation of alternatives were defined. The IDOCRIW
method was applied in this phase to obtain the criteria weights. These values were then
used in the final phase using the MABAC method to rank the alternatives (for potential
cross-dock locations).

3.1. CI-DEA Method

CI-DEA was proposed in [7] to reduce the number of observed input/output in-
dicators, which is especially significant in a situation when there is a large number of
inputs/outputs and a smaller number of DMUs. This reduction is achieved by taking into
account the correlation that exists among indicators. The input-oriented CI-DEA model
can be defined using Equations (1)–(4) as follows [7].

max
VoUoVo,CIUo,CI

UT
o Yo + UT

o,CIYo,CI (1)

s.t.

VT
o Xo + VT

o,CI Xo,CI = 1 (2)

VT
o Xj + VT

o,CI Xj,CI − UT
o Yj − UT

o,CIYj,CI ≥ 0 (3)

Vo, Uo, Vo,CI , Uo,CI ≥ 0 (4)

where Xo represents vector of m inputs for the o-th DMU; Yo represents vector of s outputs
for the o-th DMU; Vo represents vector for input multipliers; Uo represents the vector
for output multipliers; Xj and Yj represent input and output vectors for the remaining n
DMUs (j = 1, 2, . . ., n), respectively; Xo,CI and Yo,CI are the input and output vectors of
CIs for o-th DMU; and Vo,CI and Uo,CI represent vectors of multipliers related to Xo,CI and
Yo,CI , respectively.
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3.2. IDOCRIW Method

The implementation steps of the IDOCRIW method are as follows [27].
Step 1. Formation of the initial decision matrix.
Step 2. Normalization of the initial decision-making matrix using Equation (5).

∼
x ij =

xij

∑n
i=1 xij

(5)

Step 3. Calculating the entropy of every variable or criterion using Equation (6).

Ej = − 1
ln(n)

n

∑
i=1

∼
x ijln

(∼
x ij

)
; j = 1, 2, . . . , m; 0 ≤ Ej ≤ 1 (6)

Step 4. Determining every alternative’s uncertainty or degree of deviation by applying
Equation (7).

dj = 1 − Ej; j = 1, 2, . . . , m (7)

Step 5. The calculation of the weight for each alternative using Equation (8).

wj =
dj

∑m
j=1 dj

; j = 1, 2, . . . , m (8)
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Step 6. Creating a square matrix where the maximum values of each column from the
normalized matrix are selected to create this matrix by applying Equation (9).

aj = max
i

∼
x ij = akij; i = 1, 2, . . . , n; j = 1, 2, . . . , m (9)

where akij is equal to the highest criterion value or the j-th column extracted from the
sample or row ki. To create a square matrix with m × m dimensions, the elements aij are
set equal to akij and ajj is assigned the value of aj. Consequently, the i-th row of the square
matrix incorporates the elements from the ki row of the normalized matrix, ensuring a
matrix with consistent dimensions.

Step 7. Determining the lost impact matrix by applying Equation (10).

pij =
ajj − aij

ajj
; i, j = 1, 2, . . . , m; pjj = 0 (10)

where pjj represents the loss of the relative effect of the criterion or j alternative if the i-th
criterion is selected as the best solution.

Step 8. Determining the matrix of the weight system using Equation (11).

F =



−
m
∑

i=1
pi2 p12 · · · p1m

p21 −
m
∑

i=1
pi2 · · · p2m

...
...

. . .

pm1 pm2 · · · −
m
∑

i=1
pim


(11)

Step 9. Criteria weights are determined using the criterion impact loss method (CILOS).
Assuming the weight of each criterion or variable is denoted as qj, and these weights are
derived using Equation (12).

FqT = 0 (12)

where qT represents the linear vector of weights (q = [q1, q2, . . ., qm]. When using the CILOS
method to determine criteria weights, the following condition must be met: ∑m

j=1 qj = 1.
Step 10. Determining the criteria weights using the cumulative method (weights are

obtained using the entropy and CILOS methods) by applying Equation (13).

ωj =
qjwj

∑m
j=1 qjwj

; j = 1, 2, . . . , m (13)

where ωj represents the weight of the j-th criterion.

3.3. MABAC Method

When implementing the MABAC method, the following steps must be conducted [9,28].
Step 1. Define the initial decision-making matrix (X) with m alternatives and n criteria.
Step 2. Normalize the initial decision-making matrix (X) by applying Equation (14)

for benefit criteria and (15) for cost criteria.

nij =
xij − x−i
x+i − x−i

(14)

nij =
xij − x+i
x−i − x+i

(15)
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where xij, x+i and x+i represent the elements obtained from the initial decision-making
matrix using Equations (16) and (17):

x+i = max(x1, x2, . . . , xm) (16)

x−i = min(x1, x2, . . . , xm) (17)

Step 3. In this step, the weighted decision-making matrix (V) is determined by
applying Equation (18).

vij = wi ×
(
nij + 1

)
(18)

Step 4. The border approximation area (BAA) matrix (G) is determined by applying
Equation (19).

gi = (
m

∏
j=1

vij)
1/m

(19)

Step 5. In order to form matrix Q, the calculation of the distance of the alternative
from the BAA is conducted. The determination of the alternative’s proximity to the border
approximation area (qij) involves computing the discrepancy between elements in the
weighted matrix (V) and the value assigned to the border approximation area (G). In this
context, gi denotes the border approximation area associated with criterion Ci, while vij
represents the weighted matrix of the elements (V).

Alternative Ai is subject to classification into the border approximation area (G), up-
per approximation area (G+), or lower approximation area (G−) articulated as
Ai ∈ {G ∨ G+ ∨ G−}. The upper approximation area (G+) encapsulates the ideal alterna-
tive (A+), whereas the lower approximation area (G−) comprises the anti-ideal alternative
(A−). The assignment of alternative Ai to the approximation area (G, G+, or G−) can be
performed using Equation (20).

Ai ∈


G+ i f qij > 0
G i f qij = 0

G− i f qij < 0
(20)

Step 6. In the final step, alternatives are ranked by calculating the values of the
criterion functions for the alternatives using Equation (21).

Si =
n

∑
j=1

qij, j = 1, 2, . . . , n i = 1, 2, . . . , m (21)

4. Optimizing Cross-Dock Terminal Location Selection–Case Study

In the preceding sections of this paper, general forms of distribution strategies, along
with their concept, types, characteristics, application, and implementation, as well as the
challenges, performance metrics, advantages, and disadvantages of the cross-dock strategy,
are presented. In this chapter, we delve into the issue of locating cross-dock terminals,
recognizing it as a paramount challenge. The initial segment provides an overview of
the observed system, with a specific focus on its operational framework, taking into
account certain constraints and formulating the problem that necessitates a resolution. The
subsequent segment addresses the procedural application of the methodology developed
in this study, presenting and analyzing the obtained results.

4.1. Case Study Description

The observed company, among other activities, engages in providing distribution
services for fast-moving consumer goods across a broader geographical area for various
clients. The distribution system is anchored in a central distribution center, dispatching
vehicles with various capacities and specifications to carry out a nationwide distribution.
Following a comprehensive analysis, the company determined the need to implement a
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cross-dock terminal for a region covering approximately 4000 km2. This company set out
to identify the most optimal channel for introducing the cross-dock facility.

In order to tackle the issue, data spanning from 1 January 2022 to 1 January 2023
were employed. The observed timeframe was considered significant as it encompasses
diverse variations in the demands attributed to seasonal patterns and other internal and
external factors. The distribution within the examined area is categorized into nine primary
distribution channels (DCs) (Figure 3).

• Distribution Channel 1–The Narrowest Central City Zone;
• Distribution Channel 2–Northern Part of the Area;
• Distribution Channel 3–Southern Part of the Area;
• Distribution Channel 4–Eastern Part of the Area;
• Distribution Channel 5–Western Part of the Area;
• Distribution Channel 6–Northeastern Part of the Area;
• Distribution Channel 7–Northwestern Part of the Area;
• Distribution Channel 8–Southeastern Part of the Area;
• Distribution Channel 9–Southwest Part of the Area.

All distribution channels are executed in the same manner. Vehicles, loaded with
prepared orders, are dispatched from the main distribution center to specific locations.

In response to the company’s request to identify the most justified distribution channel
for introducing a cross-dock facility, it was imperative to define the relevant parameters for
evaluating the observed channels. To ensure the utmost reliability of the results, this study
synergized data from the following three sources:

• Indicators utilized in the literature;
• Information and requirements provided by the company’s management;
• The prior knowledge and experience of the authors.
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Through several iterations, a final set of 11 variables was determined by combining
the following mentioned sources:

• The number of users in the observed channel (I1);
• The area served by the channel (I2);
• The average distance a vehicle travels in one delivery (I3);
• The required number of vehicles (I4);
• Labor availability (I5);
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• Competition (I6);
• Construction and expansion possibilities (I7);
• Proximity to the main infrastructure and traffic facilities (I8);
• The average number of deliveries (O1);
• Average delivered quantity (O2);
• Service level (O3).

The number of users in the observed channel is a highly significant indicator as it
serves as the catalyst for all logistics requirements. Therefore, it is positioned as the first in
a series of 11 parameters. This indicator is frequently referenced in the literature [17,29,30],
as well as in practical applications.

The area served by the channel provides essential information about the geographical
locations of users. Among other factors, this parameter can impact the required number of
vehicles and the distances covered.

The average distance denotes the total distance covered by a vehicle in one tour,
expressed in kilometers. Unlike time, this metric offers more comprehensive insights into
the “coverage” of the area and its associated costs.

Each of the observed channels has a specific fleet size. The required number of vehicles
is defined as the minimum necessary to serve users in that area, representing one of the
most commonly utilized parameters in the literature.

Labor availability is one of the specific parameters under scrutiny in this analysis. The
shortage of labor in the logistics market of an observed country necessitates the inclusion
of this variable. In each distribution channel, the number of available workers required for
future cross-dock activities varies. It is crucial to note that this involves a larger geographical
area, and workers are not available to commute between zones, given the traffic congestion
and the necessary travel time.

Competition is an inevitable indicator when it comes to the implementation of logistics
services. The execution of services by the planned cross-dock terminal can be significantly
influenced by other providers offering similar services in the observed area.

The possibility of construction and potential expansion is crucial for logistics managers.
This parameter is largely influenced by factors such as available land and costs.

The closeness to key infrastructure is pivotal for efficiency and the prompt execution of
services. It affects both the inbound transport to the cross-dock and the outbound delivery
to end-users. Locations within the observed channels exhibit substantial variations in
this aspect.

The average number of deliveries is a crucial operational indicator that must not
be disregarded in such decision-making processes. This parameter has been extensively
utilized in the literature.

Similarly, the average quantity per delivery is a key traffic indicator, reflecting the
volume of operations in a distribution channel. Unlike comparable financial metrics, it
offers a wealth of information beneficial to the logistics system.

The final parameter is the level of service quality provided. In the literature, various
indicators such as service level, OTIF (On-Time In-Full), delivery time, lead time, etc.,
are employed [31–33]. The observed company utilizes the metric of successfully fulfilled
services expressed as a percentage.

In the initial phase of evaluating the observed channels using the CI-DEA approach,
the efficiency of these channels was appraised. The first 8 indicators were employed as
input variables (the number of users in the observed channel (I1); the area served by
the channel (I2); the average distance a vehicle travels in one delivery (I3); the required
number of vehicles (I4); labor availability (I5); competition (I6); construction and expansion
possibilities (I7); and proximity to the main infrastructure and traffic facilities (I8)), while 3
indicators were used as outputs (the average number of deliveries (O1); average delivered
quantity (O2); and service level (O3)). The data used for this analysis are presented
in Table 1.
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Table 1. Inputs and outputs of the CI-DEA model.

DMU DC I1 I2 I3 I4 I5 I6 I7 I8 O1 O2 O3
DMU1 City center 4123 55,106 84 25 7 3 10 9 6 1.80 0.93
DMU2 North 1749 37,468 129 20 8 10 8 4 8 2.32 0.94
DMU3 South 3418 48,036 178 19 3 6 5 4 11 3.24 0.98
DMU4 East 2772 64,365 148 23 7 5 6 6 10 3.95 0.99
DMU5 West 3885 38,246 126 12 6 6 7 7 7 2.86 0.96
DMU6 Northeast 1324 47,990 149 22 5 8 8 4 8 2.12 0.93
DMU7 Northwest 2120 54,569 173 24 5 9 9 3 5 2.35 0.99
DMU8 Southeast 2174 34,685 122 17 4 4 4 3 11 4.52 0.98
DMU9 Southwest 1286 25,176 164 19 5 3 3 2 13 3.02 0.99

4.2. Results
4.2.1. CI-DEA Results

In accordance with the methodology outlined in Chapter 3, the initial phase involved
the application of the CI-DEA method. The utilization of the standard DEA approach did
not provide satisfactory results. Namely, employing the standard DEA approach [34–37]
resulted in an efficiency score of one for all nine distribution channels. Consequently, the
CI-DEA approach was employed to overcome this limitation.

It is highly important to emphasize that the existence of correlation among variable
dimensions (inputs and outputs) in the DEA method is not desirable. A high degree of
interdependence can impact the discriminatory power of the model, prompting the often-
recommended practice of retaining only one indicator from a set of correlated variables
while excluding others from further analysis. In this regard, the novel CI approach recom-
mends reducing the number of variables by constructing new (artificial) variables derived
from the original data. This process allows decision makers to influence the significance of
each original variable in the newly formed component.

In the initial phase, an independent correlation analysis of inputs and outputs was
conducted. A correlation threshold of 0.5 or higher was employed to determine the
relationship between variables and facilitate the creation of artificial components. Within
the set of input components, two artificial components were generated, while two inputs
were retained and utilized in their original form. The essential variables, such as the
required number of vehicles and competition (inputs 4 and 6), were preserved in their
original form. On the other hand, inputs 1, 3, and 8 (the number of users in the channel, the
average distance in one delivery, and proximity to infrastructure) were combined to form
the first artificial component, with weighting coefficients of 0.4, 0.3, and 0.3, respectively.
Inputs 2, 5, and 7 (the area served, labor availability, and potential for construction and
expansion) constituted the elements of the second artificial component and were each
assigned an equal weight of 0.33. As a result, the total number of inputs was reduced from
8 to 4, significantly augmenting the model’s discriminatory power.

Within the output category, all three variables were employed to formulate a novel
unified output indicator. In this context, the average number of daily deliveries, average
delivered quantity, and service level were combined to form a new variable, with their
respective significances in the new component being 0.4, 0.3, and 0.3.

Both the CCR and BCC models were utilized, but in further analysis, the results of
the BCC model were considered. The ensuing results are reflective of the BCC input-
oriented model (Table 2). It is noteworthy that, when applying the CI approach, only 4
out of the 9 decision-making units (DMU) were deemed efficient, yielding an average
efficiency of approximately 0.91. This underscores a markedly enhanced discriminatory
power compared to the standard DEA approach. This improvement is a direct consequence
of the reduction in the overall number of inputs and outputs, streamlined from 11 to 5.
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Table 2. The efficiencies of the examined channels using both the standard DEA approach and the
CI-DEA approach.

DMU DMU Name Standard DEA Efficiency Score CI DEA Efficiecy Score

DMU1 City center 1 1

DMU2 North 1 0.92362

DMU3 South 1 0.891737

DMU4 East 1 0.752411

DMU5 West 1 1

DMU6 Northeast 1 0.912124

DMU7 Northwest 1 0.787446

DMU8 Southeast 1 1

DMU9 Southwest 1 1

The units found to be efficient in this phase are further scrutinized in subsequent analyses.

4.2.2. IDOCRIW Results

Following the application of the CI-DEA method and the identification of efficient
units, the next step involved defining the criteria used for evaluating alternatives (potential
locations for cross-dock terminals). The criteria employed in this study were established
through a comprehensive literature review and interviews with experts from the company
under consideration in this case study (Table 3). It is crucial to emphasize that certain
criteria were evaluated on a scale of 1–5 while others were evaluated using a scale of 1–10.
The reason for this lies in the fact that certain values when considering these criteria, had to
be divided into more intervals in order to improve the discriminatory power of the model.
This approach was adopted to safeguard the confidentiality of the company’s data, which
is the focal point of this case study. Given the involvement of six experts in the evaluation
process, the average value of their assessments was used as a consolidated measure.

Table 3. Criteria used for potential location evaluation.

Criterion Definition References

Investment costs (C1) Investment costs required to open a cross-dock terminal at a certain
location (data provided by the company) [30,38,39]

Cross-docking capacity (C2) Cross-docking capacity in terms of inbound/outbound doors, temporary
storage area, etc. [17]

Proximity to the customers (C3) Observed average delivery time [17,29,30]

Competitiveness (C4) The number of competing companies observed situated in close
proximity to the location [38]

Expansion possibility (C5) The potential for expanding the cross-dock terminal at a specific location [17,30]

Proximity to the infrastructure (C6) Proximity to infrastructure (highways, roads, city) aimed at reducing the
time required for the delivery of goods [29,30,38,39]

Labor availability (C7) Labor availability near the cross-dock terminal location (data provided
by the company) [29,38]

Impact on service level (C8) The influence of constructing a cross-dock at a specific location at the
service level (data obtained from the company) [38]

Distribution costs (C9) Distribution costs from the cross-dock terminal to end-users (estimated
value provided by the company) [17,38]
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Following the establishment of criteria, the assessment of alternatives in accordance
with all the criteria began, resulting in the formation of the initial decision matrix (Table 4).
This matrix serves as the input for the IDOCRIW method to determine the criteria weights.

Table 4. Initial decision-making matrix.

Alternative/Criteria C1 C2 C3 C4 C5 C6 C7 C8 C9

Type min max min min max max max max min

City center (A1) 3 4 2 6 3 2 4 2 4

West (A2) 3 2 3 3 4 3 5 3 5

Southeast (A3) 5 5 4 4 7 7 7 4 4

Southwest (A4) 4 3 5 6 10 9 6 5 3

Following the steps outlined in Section 3.2 and utilizing Equations (5)–(13), the criteria
weights were derived (Table 5). Subsequently, these weights were employed in the next
phase when applying the MABAC method.

Table 5. Criteria weights obtained after applying the IDOCRIW method.

Criterion C1 C2 C3 C4 C5 C6 C7 C8 C9

Weights 0.0340 0.1266 0.0643 0.0401 0.2059 0.3005 0.0763 0.1358 0.0163

4.2.3. MABAC Results

The initial step in implementing the MABAC method entails normalizing the initial
decision matrix (Table 4), using Equations (14) and (15) based on the criteria type outlined
in Table 6.

Table 6. Normalized decision-making matrix obtained after implementing MABAC method.

C1 C2 C3 C4 C5 C6 C7 C8 C9

A1 1 0.666667 1 0 0 0 0 0 0.5

A2 1 0 0.666667 1 0.142857 0.142857 0.333333 0.333333 0

A3 0 1 0.333333 0.666667 0.571429 0.714286 1 0.666667 0.5

A4 0.5 0.333333 0 0 1 1 0.666667 1 1

The weighted normalized decision-making matrix was determined next by applying
Equation (18). In this way, the values obtained are presented in Table 7.

Table 7. Weighted normalized decision-making matrix obtained after implementing MABAC method.

C1 C2 C3 C4 C5 C6 C7 C8 C9

A1 0.068076 0.210972 0.128606 0.040095 0.205939 0.300525 0.076349 0.135841 0.024489

A2 0.068076 0.126583 0.107172 0.08019 0.235359 0.343457 0.101799 0.181121 0.016326

A3 0.034038 0.253166 0.085737 0.066825 0.323618 0.515186 0.152698 0.226402 0.024489

A4 0.051057 0.168777 0.064303 0.040095 0.411878 0.60105 0.127248 0.271682 0.032652

In the fourth and fifth steps, it is crucial to calculate the border approximation area
matrix (Table 8) using Equations (19) and (20).
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Table 8. Border approximation area matrix obtained after implementing MABAC method.

C1 C2 C3 C4 C5 C6 C7 C8 C9

gi 0.053272 0.183793 0.093365 0.054176 0.28351 0.422821 0.110856 0.197236 0.023778

In the last step of implementing the MABAC method, alternatives were ranked based
on the values of Si (Table 9), with the highest-ranked alternative being the one with the
greatest value according to Equation (21).

Table 9. Ranking of alternatives after implementing MABAC method.

C1 C2 C3 C4 C5 C6 C7 C8 C9 Si Rank

A1 0.0148 0.0272 0.0352 −0.0141 −0.0776 −0.1223 −0.0345 −0.0614 0.0007 −0.2319 4

A2 0.0148 −0.0572 0.0138 0.0260 −0.0482 −0.0794 −0.0091 −0.0161 −0.0075 −0.1627 3

A3 −0.0192 0.0694 −0.0076 0.0126 0.0401 0.0924 0.0418 0.0292 0.0007 0.2594 2

A4 −0.0022 −0.0150 −0.0291 −0.0141 0.1284 0.1782 0.0164 0.0744 0.0089 0.3459 1

Drawing conclusions from the results presented in Table 9, it is evident that the
best-ranked alternative (location) was A4, followed by A3, A2, and, lastly, A1. These
findings were subsequently communicated to the company’s management, who affirmed
the validity of the results. Their confirmation was grounded in an analysis of distribution
channels, indicating that the most intensive flows occur in the distribution channels near
locations A4 and A3.

5. Discussion
5.1. Sensitivity Analysis

Following the solutions obtained through the described methodology, a sensitivity
analysis was carried out to assess whether changes in inputs could lead to variations in the
output. To explore this, four scenarios were defined, each involving the modification of
criteria weights using different methods. In the first scenario, weights were determined
using the Entropy method. The second scenario employed the CRITIC (Criteria Importance
Through Intercriteria Correlation) method. The MEREC (Method Based on the Removal
Effects of Criteria) was applied in the third scenario, while in the last scenario, it was
assumed that all criteria held equal significance, and consequently, equal weight was
assigned to each (Table 10). Besides this, criteria weights could be obtained using indirect
eliciting [40,41].

Table 10. Criteria weights in different scenarios.

Scenario 1
(Entropy Method)

Scenario 2
(CRITIC Method)

Scenario 3
(MEREC Method)

Scenario 4
(Equal Weights)

C1 0.0462 0.0850 0.0861 0.1111

C2 0.1019 0.1253 0.1302 0.1111

C3 0.1019 0.0769 0.1174 0.1111

C4 0.0753 0.1780 0.0723 0.1111

C5 0.2009 0.0798 0.1430 0.1111

C6 0.3007 0.0779 0.1958 0.1111

C7 0.0405 0.0761 0.0721 0.1111

C8 0.1019 0.0769 0.1239 0.1111

C9 0.0306 0.2242 0.0593 0.1111
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After applying the MABAC method with varying criteria weights in different sce-
narios, the results obtained closely aligned with those achieved through the proposed
methodology (Table 9). Based on these results, it is evident that the alternative ranking
remains consistent in three scenarios, corresponding to the ranking presented in Section 4,
and can be summarized as follows: A4 > A3 > A2 > A1. The ranking only deviates after
applying the second scenario, specifically after determining criteria weights using the
CRITIC method. In this scenario, the alternative ranking can be represented as follows:
A3 > A4 > A2 > A1. The values of the criteria’s functions, upon which the ranking was
based, are presented in Table 11. These results affirm the robustness of the proposed model,
as there were no significant changes in the final ranking of alternatives.

Table 11. Ranking of alternatives in different scenarios.

Alternatives
Scenario 1 Scenario 2

Si Rank Si Rank

A1 −0.189646486 4 −0.077606244 4

A2 −0.112486534 3 −0.047350434 3

A3 0.218342514 2 0.175059756 1

A4 0.297135347 1 0.158585589 2

Alternatives
Scenario 3 Scenario 4

Si Rank Si Rank

A1 −0.115187398 4 −0.088615521 4

A2 −0.084694732 3 −0.038350971 3

A3 0.188271506 2 0.165352733 2

A4 0.221328602 1 0.170643738 1

In addition to sensitivity analysis, model validation was undertaken to assess whether
the ranking of alternatives would be affected by employing different MCDM methods.
For this purpose, TOPSIS (the Technique for Order of Preference by Similarity to Ideal
Solution) and MOOSRA (Multi-objective Optimization on the Basis of Simple Ratio Anal-
ysis) methods were applied. The criteria weights were determined using the IDOCRIW
method. Following the implementation of these aforementioned methods, it was deter-
mined that there were no alterations in the ranking of alternatives (Table 12), thereby
providing additional confirmation of the validity of the proposed model.

Table 12. Alternative ranking using TOPSIS and MOOSRA.

Alternatives TOPSIS Ranking MOOSRA Ranking

A1 4 4

A2 3 3

A3 2 2

A4 1 1

5.2. Theoretical, Managerial Implications and Contributions

Considering all these aforementioned points, it can be inferred that the paper provides
numerous theoretical and practical implications, along with tangible contributions. The
identified gap in the initial part of this paper highlights the insufficient number of papers
addressing this issue. Several papers dealing with the location of cross-dock terminals
rely on specific examples and have notable limitations in practical application. The model
developed in this paper approaches the location problem in a fundamentally different way
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by linking the efficiency of existing distribution channels in the network. In the decision-
making process, relevant indicators were drawn from the following three significant sources:
indicators from the literature, indicators considered important by competent practitioners,
and the experience and knowledge of the paper’s authors. Methodologically, there is no
paper in the literature that has employed a hybrid approach using the CI-DEA–IDOCRIW–
MABAC methods to address problems in any field. Additionally, this approach has never
been applied to solve the problem of locating cross-dock terminals. All the aforementioned
points unequivocally validate the undeniable scientific contributions of this paper:

• Addressing the gap in the lack of work on locating cross-dock terminals using MCDM
methods.

• A completely novel approach never before utilized in the literature that combines the
best features of the following methods: CI-DEA–IDOCRIW–MABAC.

• Synergy of three sources in defining input indicators.

This paper lays a solid groundwork for the development of future models and the
resolution of problems in other domains using this approach. Further insights will be
elaborated in the future research directions section in the subsequent chapter.

In terms of practical implications and contributions, this paper stands out as one of
the few that offers relatively straightforward applications in real-world scenarios. The
application involves utilizing suitable/prepared Excel tables and enabling decision makers
to easily input relevant parameters and obtain solutions. Through adjustments to indica-
tors and weights, this approach can be flexibly applied to address various location-based
problems. Decision makers are empowered to conduct sensitivity analyses, facilitating
well-informed decisions. Also, the proposed methodology can be implemented by deci-
sion makers around the globe for different location selection problems, especially in the
preliminary (feasibility) phase.

The practical applicability and robustness of this model were affirmed through testing
on a real-world case. The obtained results underwent thorough verification and analysis,
with the management of the company endorsing the validity and reliability of the outcomes.
Notably, the simplicity of its application and its extensive adaptability to diverse problems
have been underscored as a key characteristic.

6. Conclusions

In recent years, product distribution has become more demanding. Customer demands
are increasing in frequency and in smaller quantities. Competition in the logistics market is
also intensifying. New strategies and emerging players in the product distribution market
necessitate companies to achieve maximum efficiency in logistics processes and activities.
Smaller cross-dock terminals in urban areas are becoming an increasingly common solution
for many logistics companies. Among the various challenges associated with opening
cross-dock terminals, the location of the terminal is one of the primary and most crucial
tasks. Companies typically transition to this distribution strategy gradually.

This paper presents a new model for determining the optimal location of a cross-dock
terminal in urban environments. The model adopts a novel approach by utilizing CI-
DEA–IDOCRIW–MABAC methods. It is grounded in the analysis of existing distribution
channels, employing a set of indicators that effectively characterize their operations. These
indicators were carefully chosen based on the synergy of models from the literature,
practical knowledge, and experience, as well as the expertise of the authors. This paper
contributes both scientifically and practically. Scientifically, it addresses a gap in the
literature, as no similar models currently exist. The combination of methods employed in
this model is unprecedented, making it unique. Furthermore, the set of indicators used
is introduced for the first time in the literature. From a practical perspective, the model is
notably characterized by its simplicity and applicability in real-world scenarios. Testing
the model in a case study unequivocally confirmed its practical effectiveness.
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By applying the CI-DEA method, the initial set of inputs/outputs (which numbered
eleven) was condensed to five indicators (inputs/outputs). Moreover, out of the total
number of decision-making units (DMUs), which amounted to 9, only 4 of them were
validated as efficient. These efficient units were then subjected to further analysis through
the subsequent stages of the proposed methodology. In the second phase, the IDOCRIW
method was employed to ascertain the criteria weights. The outcomes of this method re-
vealed that criterion 6 (proximity to infrastructure) had the highest weight, while criterion 9
(distribution costs) had the lowest weight. In the final phase, the MABAC method was
utilized for alternative ranking. Conclusively, the results indicate that alternative 4 (A4)
secured the top rank, while alternative 1 (A1) held the least favorable position. To validate
the model’s robustness and gauge whether there would be alterations in the alternative
ranking, a sensitivity analysis was conducted. In three out of four proposed scenarios, the
alternative ranking remained constant, underscoring the robustness of the suggested model.
In the scenario where a change in ranking occurred, only alternatives A3 and A4 swapped
positions. The validity of the outcomes received confirmation from the company man-
agement, which was the focus of the case study, as their independent analyses suggested
constructing the cross-dock facility near distribution channels 4 or 3. In practical terms and
in its contributions, this paper distinguishes itself as one of the rare studies that provide a
relatively simple application in real-world situations. By making adjustments to indicators
and weights, this method can be adaptably employed to tackle different location-based
issues. Decision makers are given the capability to perform sensitivity analyses, aiding
them to make well-informed decisions.

Regarding the limitations of this research, the relatively small urban area and a smaller
number of channels can be mentioned. The groundwork laid by this paper opens directions
for various future research. Principally, it is essential to validate the model in different areas
and diverse markets in upcoming studies to scrutinize the influence of external factors.
Additionally, the suitability of its application to substantially larger-scale problems can
be explored through simulation models. Examining the potential enhancement of this
model’s discriminative power by incorporating new approaches and methods is also advis-
able. Combining the proposed methodology with other MCDM methods and developing
diverse metaheuristic algorithms is another promising direction for future research. The
development of software for simpler applications in practice also represents one of the
directions for future research.
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2. Pajić, V.; Andrejić, M.; Sternad, M. FMEA-QFD Approach for Effective Risk Assessment in Distribution Processes. J. Intell. Manag.

Decis. 2023, 2, 46–56. [CrossRef]
3. Vogt, J. The Successful Cross-Dock Based Supply Chain. J. Bus. Logist. 2010, 31, 99–119. [CrossRef]
4. Vis, I.F.A.; Roodbergen, K.J. Positioning of goods in a cross-docking environment. Comput. Ind. Eng. 2008, 54, 677–689. [CrossRef]

https://doi.org/10.3390/su151914527
https://doi.org/10.56578/jimd020201
https://doi.org/10.1002/j.2158-1592.2010.tb00130.x
https://doi.org/10.1016/j.cie.2007.10.004


Mathematics 2024, 12, 736 19 of 20

5. Meidute-Kavaliauskiene, I.; Sütütemiz, N.; Yıldırım, F.; Ghorbani, S.; Činčikaitė, R. Optimizing Multi Cross-Docking Systems
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Urban Dev. Manag. 2023, 2, 160–171. [CrossRef]

31. Andjelkovic, A.; Radosavljevic, M. The length of the distribution channel as a factor of its efficiency. Strateg. Manag. 2020, 25,
009–017. [CrossRef]

32. Nallusamy, S. Performance Measurement on Inventory Management and Logistics Through Various Forecasting Techniques. Int.
J. Perform. Eng. 2021, 17, 216–228.

33. Siregar, H.; Suroso, A.I.; Siregar, H.; Djohar, S. Enhancing Operational Performance of Indonesia Pine Chemical Industry Through
Delivery Improvement. Int. J. Sustain. Dev. Plan. 2022, 17, 1923–1929. [CrossRef]

34. Maghbouli, M.; Yekta, A.P. Undesirable Input in Production Process: A DEA-Based Approach. J. Oper. Strateg Anal. 2023, 1, 46–54.
[CrossRef]

https://doi.org/10.3390/en15041530
https://doi.org/10.1016/j.eswa.2012.12.085
https://doi.org/10.3390/su14063610
https://doi.org/10.1142/S0219622016500036
https://doi.org/10.1016/j.eswa.2014.11.057
https://doi.org/10.1016/j.omega.2012.01.005
https://doi.org/10.1007/s00187-011-0124-9
https://doi.org/10.1016/j.omega.2015.09.006
https://doi.org/10.1016/j.omega.2009.10.008
https://doi.org/10.1016/j.apm.2013.10.029
https://doi.org/10.3390/sym12091564
https://doi.org/10.3846/transport.2019.7442
https://doi.org/10.1016/j.cie.2016.10.023
https://doi.org/10.1007/s12351-020-00583-5
https://doi.org/10.3390/a15080265
https://doi.org/10.1016/j.apm.2019.01.047
https://doi.org/10.1016/j.cie.2021.107299
https://doi.org/10.1016/j.jclepro.2020.122927
https://doi.org/10.1155/2022/2171305
https://doi.org/10.1504/IJSOM.2017.083767
https://doi.org/10.1080/713682769
https://doi.org/10.56578/jimd010102
https://doi.org/10.1080/18756891.2016.1144156
https://doi.org/10.56578/judm020305
https://doi.org/10.5937/StraMan2002009A
https://doi.org/10.18280/ijsdp.170627
https://doi.org/10.56578/josa010201


Mathematics 2024, 12, 736 20 of 20

35. Sinha, R.P.; Edalatpanah, S.A. Efficiency and Fiscal Performance of Indian States: An Empirical Analysis Using Network DEA. J.
Oper. Strateg Anal. 2023, 1, 1–7. [CrossRef]
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