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Abstract: With the rapid development of the sharing economy, the distribution in third-party logistics
(3PL) can be modeled as a variant of the open vehicle routing problem (OVRP). However, very
few papers have studied 3PL with loading constraints. In this work, a two-dimensional loading
open vehicle routing problem with time windows (2L-OVRPTW) is described, and a multi-objective
learning whale optimization algorithm (MLWOA) is proposed to solve it. As the 2L-OVRPTW is
integrated by the routing subproblem and the loading subproblem, the MLWOA is designed as a two-
phase algorithm to deal with these subproblems. In the routing phase, the exploration mechanisms
and learning strategy in the MLWOA are used to search the population globally. Then, a local search
method based on four neighborhood operations is designed for the exploitation of the non-dominant
solutions. In the loading phase, in order to avoid discarding non-dominant solutions due to loading
failure, a skyline-based loading strategy with a scoring method is designed to reasonably adjust the
loading scheme. From the simulation analysis of different instances, it can be seen that the MLWOA
algorithm has an absolute advantage in comparison with the standard WOA and other heuristic
algorithms, regardless of the running results at the scale of 25, 50, or 100 datasets.

Keywords: open vehicle routing problem; two-dimensional loading problem; multi-objective learning
whale optimization algorithm; three-dimensional probability matrix

MSC: 68-04

1. Introduction

Third-party logistics (3PL) is an outsourcing model used by companies wishing to
entrust some or all of their logistics to third-party professional logistics service providers to
reduce their material costs. A key challenge in third-party logistics involves understanding
how to effectively plan and arrange the path of vehicles to meet customer needs and
minimize transportation costs. This involves the open vehicle routing problem (OVRP).
The OVRP is an important variant of the vehicle routing problem (VRP) proposed by
Dantzig and Ramser [1], which assumes that vehicles depart from the warehouse and do
not need to return to the warehouse after serving customers. In the actual transportation
process, it is necessary to properly load various sizes and shapes of goods from customers;
this involves knowing how to reasonably load the goods to maximize the quantity of loaded
goods and maximize space utilization. Many valuable items cannot be stacked because
they require special protection and safety measures to ensure their integrity and value;
this is called the two-dimensional loading problem. Two-dimensional loading refers to the
length and width of items that cannot be stacked in the carriage. These valuable items can
be artworks, electronic devices, jewelry, medicine, etc.
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In this paper, we investigate the application of the two-dimensional loading open
vehicle routing problem with time window constraints (2L-OVRPTW). As the OVRP is NP-
complete property [2] and can be reduced to the 2L-OVRPTW, the latter is also NP-complete.
Therefore, we develop a multi-objective learning whale optimization algorithm (MLWOA)
to solve it. In VRP problem research, it is common to consider variants such as time
windows and delivery constraints. However, there are relatively few multi-objective opti-
mizations that consider loading constraints in actual transportation. Therefore, considering
this issue in this context has certain scientific significance and management guidance value.

In terms of a solution, the 2L-OVRPTW can build two different models. One is the
0–1 mathematical programming model, and the other is the sorting model. For the former,
branch and bound, column generation, and other exact algorithms are used to provide
a solution. The common feature of these algorithms is that they decompose the original
problem and adopt a step-by-step optimization strategy to continuously generate and
evaluate candidate solutions, thereby approaching the optimal solution. In each iteration
of the solution, it is necessary to consider the constraints to ensure that the generated
solution does not violate the constraints, in order to ensure the feasibility and effectiveness
of the solution. For example, Yu et al. [3] propose a hybrid column generation algorithm
for the open vehicle routing problem with time windows. For the latter, the heuristic
algorithm is mainly used. This type of algorithm does not rely on knowledge in specific
problem domains but utilizes general search strategies to solve various types of problems.
These algorithms originate from the observation and abstraction of natural phenomena
or mathematical principles. For example, for the metaheuristic algorithms based on the
population, Zhao et al. [4] designed a cooperative water wave optimization algorithm to
address the distributed assembly no-idle flow-shop scheduling problem. For the heuristic
algorithms based on the probability model, Zhou et al. [5] developed a self-adaptive
differential evolution algorithm (DEA) for a scheduling problem involving single batch-
processing machines with unequal release times and job sizes. The main contributions of
this paper are as follows:

(1) This paper studies a multi-objective problem and establishes a mathematical model of
the 2L-OVRPTW, in which the optimization goals are to minimize the total driving
distance and to maximize customer satisfaction. The MLWOA is designed as a two-
phase algorithm to deal with this problem.

(2) The sorting operation based on the largest order value (LOV) rule is designed in
the MLWOA to replace the single individual update mode in the standard whale
optimization algorithm (WOA) and to realize the discretization of the algorithm, so
that the algorithm can be directly used to solve the 2L-OVRPTW.

(3) Based on the consideration of the customer service order, this paper proposes a
learning strategy that considers the location information of the block structure formed
by two adjacent customers.

(4) This paper proposes a scoring method and disturbance mechanism in the loading
phase to effectively improve the loading efficiency of items.

The rest of this paper is organized as follows. Section 2 discusses related work. The
problem description and formulation are discussed in Section 3. Section 4 introduces
the solution approach, including the population initialization, global search, local search,
and loading strategy. The simulation experiment and comparative analysis results are
summarized in Section 5. Section 6 gives the conclusion and some future potential studies.

2. Related Work

The research on VRP and its variants has been mature. In view of the fact that a
vehicle arriving too early or too late will affect customer satisfaction, the vehicle routing
problem with time windows (VRPTW) is studied [6–10]. Cai et al. [6] proposed a hybrid
evolutionary multitask algorithm (HEMT) that utilizes the similarity between multiple
problems for simultaneous optimization. Michel et al. [7] and Marinakis et al. [8] considered
heuristic algorithms to solve the variant problems of VRPTW. Moradi [9] presents a new
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multi-objective discreet learnable evolution model (MODLEM) to address the VRPTW.
The LEM can discover the correct directions of the evolution that leads to significant
improvements in the fitness of the individuals. In addition to time window constraints,
the delivery and pickup in the actual express delivery process can also be considered. Shi
et al. [10] studied the vehicle routing problem with simultaneous delivery and pickup
(VRPPD) and designed an effective learning-based two-stage algorithm involving variable
neighborhood search (VNS) and tabu search (TS) to tackle this problem. Based on the work
of Shi et al. [10], Zhou et al. [11] conducted research on a large-scale multi-objective VRPPD
and proposed a decomposition-based local search algorithm to solve the problem. In view
of the pollution routing problem (PRP), Barth et al. [12] studied the important role of
transportation in carbon dioxide (CO2) emissions. In order to reduce CO2 emissions, traffic
congestion and its impact on CO2 emissions were studied through three different strategies.
Xiao et al. [13] developed two ε-accurate methods for the nonlinear fuel consumption
rate function of a fossil fuel-powered vehicle, and theoretical analysis was provided to
confirm that the solutions of ε-CPRP were feasible. Zhang et al. [14] considered carbon
emissions and proposed a memetic algorithm based on Two_Arch2 (MATA) to tackle a
multi-objective optimization model of multi-depot heterogeneous VRP. In addition, Xiao
et al. [15] also reviewed the development of electric vehicles (EVs) in transport logistics
and then developed a new comprehensive model of the electric vehicle routing problem
(EVRP) that considers a general energy/electricity consumption function for EVs.

However, there are relatively few studies on the two-dimensional loading-capacitated
vehicle routing problem (2L-CVRP). The difference between 2L-CVRP and 2L-OVRP lies
in whether the vehicles need to return to the warehouse. Iori et al. [16] first proposed
the 2L-CVRP in 2007 and used an accurate algorithm based on branching and cutting
algorithms to solve it. So far, most of the relevant literature has focused on the research on
more efficient solution algorithms.

For the 2L-CVRP, Fuellerer et al. [17] proposed an ant colony optimization algorithm
based on a frugal algorithm after considering the processing of the customer service sequences
and using different heuristics to solve the loading problem. After obtaining the customer
service sequence, Wei et al. [18] proposed a VNS algorithm to exchange and insert the
customer’s service sequence. Wei et al. [19] designed four types of neighborhood structures
to adjust the customer service sequences of two individuals in the 2L-CVRP. At present, the
solutions for 2L-CVRP and its related problems primarily focus on individual customer service
orders, which limits the exploitation of valuable information within the solutions. Moreover,
existing algorithms tend to underutilize the available positional location information. In
both global and local search strategies, these algorithms often fail to effectively learn and
incorporate useful positional cues during each iteration of the optimization process. As a
result, the algorithms may overlook spatial patterns or dependencies that could significantly
impact the efficiency and quality of the routing solutions. By neglecting to fully leverage
the information contained in the customers’ spatial positions, the algorithms miss out on
opportunities to optimize the sequencing of services and to minimize travel distances or
time costs. Therefore, considering the location information of adjacent customers, this paper
designs the MLWOA to solve the 2L-OVRPTW.

In recent years, the variant problems of the 2L-CVRP have been studied. Many con-
straints are considered, such as time windows [20], multiple depots [21], heterogeneous
fleets [22,23], and pickup and delivery [24]. Through the literature research, it can be seen
that the research on the 2L-CVRP and its variant problems mainly focuses on single objec-
tives such as cost and distance. There is no research on the multi-objective 2L-OVRPTW.
Therefore, the research content of this paper has a certain theoretical significance.

In addition to the problem model, it is also very important to design an appropriate
method to solve 2L-OVRPTW. The WOA is a new swarm intelligence optimization algo-
rithm proposed by Seyedali et al. [25]. The WOA has been widely used in many fields. For
example, Zheng et al. [26] established a comprehensive prediction model for the end carbon
content of molten steel using a whale optimization algorithm. Wang et al. [27] proposed
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an improved WOA and verified its efficiency in realizing the optimal trajectory planning
of a grinding robot. Zeng et al. [28] proposed a competitive mechanism integrated whale
optimization algorithm (CMWOA), which improved the congestion distance calculation to
solve multi-objective optimization problems. As mentioned above, the WOA can achieve a
good result in these problems, which shows that the WOA has a strong adaptive ability.

The WOA also has some applications for the solving of the VRP and related prob-
lems [29–31]. The ability of the WOA mainly depends on the setting of control parameters.
Therefore, this paper designs a parameter that changes nonlinearly with the number of
evolution iterations to enhance the search ability. In order to make the population evolve in
a better direction, the MLWOA is proposed to solve the 2L-OVRPTW. Compared with the
WOA variants used above, the MLWOA designed in this paper can fully record the service
order relationship and location information of adjacent customers in the non-dominated
solutions. In the process of population updating, the information about the location of
neighboring customers and the service order in each generation of the non-dominant solu-
tion is learned and recorded in the three-dimensional probability matrix. Then, the matrix
can be used to more accurately put the block structure, which is composed of adjacent
customers, into the appropriate position in the new individual. The MLWOA reasonably
guides the evolution direction of the population and improves the search performance.

3. Problem Description and Formulation
3.1. Problem Description

The 2L-OVRPTW is defined on a directed network graph G = (V, E), where
V = {0, 1, 2, . . . , N} represents the vertex set. E = {( i, j) |i, j ∈ V, i ̸= j} is a set of di-
rections. The set V′ = V\{0} represents the customers that need to be served. The vertex 0
represents the central warehouse where all the vehicles k ∈ K need to leave from but do
not need to return to.

Each arc (i, j) ∈ E is associated with a travel distance dij and a travel time tij, and they
are equal since the velocity of the vehicle is 1. Table 1 is the definition of symbols.

This paper takes the minimization of the total driving distance and the maximization of
customer satisfaction as the optimization objectives and satisfies the following constraints:

(a) Each vehicle starts from the central warehouse and does not need to return to the
central warehouse after serving customers.

(b) When serving the current customer, the items of other customers are not moved.
(c) The loading edge of all items must be parallel to the edge of the carriage.
(d) All items in the carriage shall not be overlapped.
(e) The items on each vehicle are not allowed to exceed the length, width, and maximum

carrying capacity of the vehicle.

Figure 1 shows a sample solution for the 2L-OVRPTW, in which 3 vehicles de-
parted from the central warehouse to serve 11 customers. The distribution routes include
route_1 = 0, 1, 11, 3, route_2 = 0, 4, 6, 7, 2 and route_3 = 0, 8, 9, 10, 5. The loading scheme
of the items of vehicle 1 is shown in Figure 2. After using the upper left corner of the
carriage as the coordinate origin, the items are loaded into the carriage as required. During
the unloading process, all the items are unloaded in a direction parallel to the length of
the carriage. The bold lines in Figure 2 represent the skyline. The thick line segments
parallel to the length and width of the carriage are the longitudinal and horizontal skylines,
respectively, and the shaded part is the redundant space of the carriage.

Table 1. The definition of symbols.

Type Symbol Definition

sets

V = {0, 1, 2, . . . , N} Set of customers and central warehouse
V′ = V\{0} Set of customers
K = {0 , 1, . . . , |K|} Set of vehicles
Mi = {1, 2 , . . . , |Mi|} Set of the items required by the customer i
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Table 1. Cont.

Type Symbol Definition

parameters

dij The distance from customer i to customer j
tij The travel time from customer i to customer j
ei The earliest service time for customer i
hi The latest service time for customer i
fi The service of customer i
rti The time when the vehicle arrives at the customer i
sti The time to start serving customer i
qi The total weight of the items required by the customer
L The length of the carriage of the vehicle
W The width the of carriage of the vehicle
lig The length of the item g required by the customer i
wig The width of the item g required by the customer i

Vkig
The abscissa when vehicle k serves the item g of
the customer

Hkig
The ordinate when vehicle k serves the item g of
the customer

VVii′gg′
The difference between the length of the projection of
item g and item g′ on the abscissa axis and the sum of
the widths of the two items

HHii′gg′
The difference between the length of the projection of
item g and item g′ on the vertical axis and the sum of the
lengths of the two items

Decision
variables

xijk
i, j ∈ V′, k ∈ K are equal to 1 if arc (i, j) ∈ E is used by

vehicle k and 0 otherwise

yik
i ∈ V′, k ∈ K are equal to 1 if customer i ∈ V′ is served
by vehicle k and 0 otherwise

otri
Represents the satisfaction of the customer i ∈ V′, equal
to 1 if ei ≤ rti ≤ hi and 0 otherwise
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Figure 1. A sample solution for the 2L-OVRPTW.

3.2. Mathematical Formulation

Goal: Minimize total travel distance and maximize customer satisfaction. The mathe-
matical model of the 2L-OVRPTW is as follows:

min f1 = ∑ K
k=1∑ N

i=0∑ N
j=0dijxkij (1)

max f2 =
1
N ∑ N

i=1otri (2)

∑ N
i=0qiyik ≤ Q , k ∈ K (3)
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∑ K
k=1yik = 1 ,∀i ∈ V′ (4)

∑ N
j=1x0jk = 1, k ∈ K (5)

∑ N
i=1xi0k = 0, k ∈ K (6)

∑ N
i=0xijk = yjk, ∀j ∈ V′, k ∈ K (7)

∑ N
j=0xijk = yik, ∀i ∈ V′, k ∈ K (8)

0 ≤ Vkig ≤ W − wkig, k ∈ K,
∀i ∈ V′, ∀g ∈ Mi

(9)

0 ≤ Hkig ≤ L − lkig , k ∈ K,
∀i ∈ V′, ∀g ∈ Mi

(10)

HHii′gg′ = (max(yik · (Hkig + lig), yi′k′ · (Hki′g′ + li′g′))
−min(yik · Hkig, yi′k′ · Hki′g′)− (yik · lig + yi′k′ · li′g′)),

∀i, i′ ∈ V′, ∀g, g′ ∈ Mi, g ̸= g′,k, k′ ∈ K
(11)

LLii′gg′ = (max(yik · (Vkig + wig), yi′k′ · (Vki′g′ + wi′g′))

−min(yik · Vkig, yi′k′ · Vki′g′)− (yik · wig + yi′k′ · wi′g′)),
∀i, i′ ∈ V′, ∀g, g′ ∈ Mi, g ̸= g ′ ,k, k′ ∈ K

(12)

max(HHii′gg′ , LLii′gg′) ≥ 0 , ∀i, i′ ∈ V′, ∀g, g′ ∈ Mi (13)

max(HHii′gg′ , (Vkig − Vki′g′)) ≥ 0 ,
∀i, i′ ∈ V′, ∀g, g′ ∈ Mi, i ̸= i′

(14)

rtj = sti + fi + tij, ∀i, j ∈ V′ (15)

rtj < hj, ∀j ∈ V′ (16)

sti = max(rti, ei) (17)

otri ∈ {0, 1}, i ∈ V′ (18)

xijk ∈ {0, 1}, i, j ∈ V′, k ∈ K (19)

yik ∈ {0, 1}, i ∈ V′, k ∈ K (20)

In the above model, objective functions (1) and (2) give the objective functions of
the 2L-OVRPTW, where function (1) represents the minimum total driving distance, and
function (2) represents the maximum customer satisfaction. The constraints (3) ensure that
the loading capacity does not exceed the maximum load capacity. Equation (4) ensures that
all the customers can be served. Equations (5) and (6) indicate that all the vehicles should
leave the central warehouse to serve a group of customers without returning to the central
warehouse. Equations (7) and (8) ensure that each customer can only be served by one
vehicle. Equations (9)–(14) are loading constraints. Equations (9) and (10) ensure that the
loaded items do not exceed the scope of the carriage. Equations (11)–(13) ensure that the
items do not overlap in the carriage. Equation (14) ensures that the items satisfy the first in
and last out (FILO) principle. Equations (15)–(17) represent the time window constraints,
where Equation (17) represents the possibility that the vehicle arrives early; if so, it needs
to wait until the earliest service time. Equations (18)–(20) ensure the integrality constraints
on the binary variable.
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Figure 2. Loading scheme.

4. Solution Approach

The MLWOA proposed for the 2L-OVRPTW consists of two stages, the routing phase
and the loading phase. The routing phase includes encoding and decoding, population
initialization, the global search, and the local search. The loading phase load includes the
scoring method, the arrangement of the loading sequence, and the disturbance mechanism.
The general flow chart of the MLWOA is given at the end. For the convenience of expression,
the symbols in this section and their definitions are given in Table 2.

Table 2. Symbols used in this section and their descriptions.

Symbol Definition

popsize The population size
p_π Individual integer sequence with central warehouse
π Individual integer sequence without central warehouse
X Real number location information corresponding to sequence π
g The current iteration number
Z The set including all unserved customers.
genmax The maximum iteration
πg The population of generation g
πg,w The individual w in the population of generation g
Xg,w Real number location information corresponding to individual w
Xg,w′ A random individual in the population of generation g
Xg∗ The non-dominant solution of generation g
π

g,w
best The non-dominated solution w in the population of generation g

π
g,w
best,p The customer at the position p in individual w of generation g

π
g,w
i Customer i in individual w of generation g

TMg
m×n×n The three-dimensional information matrix, n = N, m = N − 1

TMg
m×n×n(p) Two-dimensional block structure information matrix at position p

TMg
m×n×n(p, x, y) Elements in a three-dimensional information matrix

PMg
m×n×n

Three-dimensional probability model based on a three-dimensional
information matrix

sumg
p Represents the sum of all block structures at a position p in generation g

cos _sequence A collection of unserved customers
tabu A collection of customers that have been serviced
num_best Represents the number of non-dominated solutions in the population

4.1. Encoding and Decoding

The important problem when applying the MLWOA to the 2L-OVRPTW involves
finding a suitable mapping between the customer sequence and the individuals (continuous
vectors) in the MLWOA. The 2L-OVRPTW is a discrete optimization problem; so, this paper
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adopts the largest order value (LOV) rule to map the real position information to the
discrete position information. Similarly, after the discrete sequence changes, the real
position information can also be adjusted by the reverse largest order value (RLOV) rule.
The specific steps of the LOV rule are given below.

Step 1: Xg,w′
is the sequence from the largest to the smallest, which can be obtained by

real position information Xg,w = [Xg,w[1], Xg,w[2], . . . , Xg,w[g], . . . Xg,w[N]].
Step 2: Find out the corresponding position of each number in Xg,w′

in Xg,w and place
it in φg,w in turn. Then, the intermediate sequence φg,w is obtained.

Step 3: Each number in the discrete sequence Pg,w can be obtained by Pg,w[φg,w[g]] = g.
As shown in Table 3, an example of the LOV rule is given. The individual sequence of

real location information is Xg,w = [1.49, 2.41, 2.17, 1.78, 2.06, 1.80, 0.88], and the sequence
after ranking from the largest to the smallest is Xg,w′

= [2.41, 2.17, 2.06, 1.80, 1.78, 1.49, 0.88].
It can be seen that Xg,w[1] = 1.49; so, the position is φg,w[1] = 6, Pg,w[φg,w[1]] = Pg,w[6]= 1,
and with Xg,w[2] = 2.41, the position is φg,w[2] = 1, Pg,w[φg,w[2]] = Pg,w[1]= 2. By analogy,
the customer’s discrete sequence is Pg,w = [2, 3, 5, 6, 4, 1, 7]. After all the customers in Pg,w

are assigned a vehicle, the non-dominated solution must be an active schedule, in which
the minimized total travel distance or maximized customer satisfaction is better than that
of the other solutions.

Table 3. Example of LOV.

g 1 2 3 4 5 6 7

Xg,w[g] 1.49 2.41 2.17 1.78 2.06 1.80 0.88
φg,w[g] 6 1 2 5 3 4 7
Pg,w[g] 2 3 5 6 4 1 7

4.2. Population Initialization

The individual in the first generation of the population is generated by three rules.
Firstly, Rule 1 and Rule 2 are used to generate two individuals, respectively; then, Rule 3 is
used to generate other individuals. The detailed procedures of these rules are as follows:

Rule 1: Nearest principle
Let i = 0, j ∈ Z, and G = ∅. The nearest customer j can be funded by Equation (21).

If rtj ∈ [ej, hj] are met, the customer j will be served and moved from Z to G. Let i = j and
find the next nearest customer to serve. Otherwise, let i = 0 and choose another vehicle to
service other customers.

min dij =
√
(xi − xj)

2 + (yi − yj)
2 , j ∈ Z (21)

Rule 2: Satisfaction principle
Step 1: Let i = 0, j ∈ Z, and G = ∅.
Step 2: Let Z0 = ∅. All the unserved customers that meet constraints (15)–(17) are

placed in Z0. Randomly select a customer j in set Z0 to service; if the constraints (3)–(14)
are met, let i = j and then move j from Z to G and perform step 4. If no customer meets the
constraints, then go to step 3.

Step 3: Select customer j from Z′ = Z\{Z0}. If the constraints are met, let i = j and
move j from Z to G. If there are no customers that can meet the constraints, perform step 4.

Step 4: If Z = ∅, output G. Otherwise, return to step 1.
Rule 3: Quasi-opposition strategy
The quasi-opposition strategy refers to the opposite individual j Xg,j = [Xg,j[1], Xg,j[2],

. . . , Xg,j[g], . . . , Xg,j[N]](Xg,j[g] ∈ [a, b]) of individual i calculated by Equation (22) in the
real field [a, b].

Xg,j[g] =
{

rand
(
X, Xg,i[g]

)
Xg,i[g] > X

rand
(
Xg,i[g], X

)
Xg,i[g] ≤ X

, X =
a + b

2
(22)
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The initial population can be generated according to the three rules. And a non-
dominated solution set is formed by the high-quality solutions in the population.

4.3. Global Search

Global search consists of exploitation mechanisms and a learning strategy. They are
introduced in detail below. The symbols in this section and their definitions are given in
Table 4.

Table 4. Symbols used in this section and their definitions.

Symbol Definition

r1, r2 The random numbers in [0, 1]
aint, a f in The initial and terminal values, which are 0 and 2, respectively
µ The coefficient of the nonlinear adjustment
b The parameter controlling the spiral shape
l The random number in [0, 1]
p0 The random number in [0, 1]

4.3.1. Exploration Mechanisms

In the WOA, the individual randomly selected from the non-dominated solution set
is regarded as the prey, and the other individuals are whales. By simulating the process
of a whale catching prey, the whale keeps approaching the prey position and guides the
optimization algorithm, which includes three mechanisms that are used to search for the
high-quality solution area.

D = |CXg∗ − Xg,w| (23)

a = aint − a f in + 1 − g/genmax/1 − µ · g/genmax (24)

A = 2ar1 − a (25)

C = 2r2 (26)

Equation (23) indicates the absolute value of the distance between the individual
Xg,w and the non-dominant solution Xg∗. Equation (24) shows the calculation process of
nonlinear factor a and the coefficient µ = 25. Equations (25) and (26) show the calculation
process of the coefficients; A and C are the coefficients [31]. The mechanisms are expressed
as follows:

Surrounding search mechanism: After determining the location of the non-dominant
solution, the other individuals would keep approaching the prey. Equation (27) is used for
the calculation of the surrounding search mechanism.

Xg+1,w = Xg∗ − A · D (27)

Spiral search mechanism: After calculating the distance between the non-dominant
solution and individuals, the spiral Equation (28) is then created to mimic the helix-
shaped movement.

Xg+1,w = D · eb·l cos(2πl) + Xg∗ (28)

In Equation (29), the individual approaches the high-quality solution in the form of a
reduced circle or along a spiral path. In order to simulate this simultaneous behavior, we as-
sume that during the optimization process, γ is the probability that the surrounding search
mechanism or the spiral search mechanism is chosen to update the individual position.

Xg+1,w =

{
Xg∗ − A · D, p0 < γ

D · eb·l cos(2πl) + Xg∗, p0 ≥ γ
(29)

Random search mechanism: An individual that was randomly selected would be used
to update the location of other individuals in the population. Equation (30) indicates the
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absolute value of the distance between the individual Xg,w and a random individual Xg′ .
Equation (31) is used for the calculation of the random search mechanism.

D′ =
∣∣∣CXg′ − Xg,w

∣∣∣ (30)

Xg+1,w = Xg′ − A · D′ (31)

The WOA starts with an initialized population. In each iteration, the individuals
update their location based on the randomly selected individual or the non-dominant
solution that is currently obtained. When |A|> 1 , select the randomly individual Xg′ , and
when |A|≤ 1 , select non-solution Xg∗. According to the value of p0, it can switch between
the surrounding search mechanism and the spiral search mechanism. The mechanisms
in WOA have the advantages of simple operation, the ability to find the optimal solution
quickly, and good convergence and stability for various types of optimization problems.

4.3.2. Learning Strategy

After the global search with the WOA-based mechanisms, the next process in the ML-
WOA is the learning strategy. It includes the block structure, three-dimensional information
matrix, and three-dimensional probability matrix, which are designed to accumulate each
customer location and the order relationship information of the non-dominated solutions.
The relevant definitions are as follows:

Block structure: This consists of two adjacent customers in any solution of the 2L-
OVRPTW. Therefore, the number of the block structure in a solution is n − 1 if there are n
customers in this solution. The customer service order information in the block structure is
given by the Equation (32). If the block structure [x, y] exists, ONE_Tg,w

p×x×y = 1, otherwise,
ONE_Tg,w

p×x×y = 0.

ONE_Tg,w
p×x×y =

{
1, i f x =π

g,w
best,P, y = B est _π

g,w
best,p+1

0, else
,

p = 1, 2, · · · , m x, y =1, 2, · · · , n
(32)

Three-dimensional information matrix: An example is shown in Figure 3; the first
dimension (m) records the location of the block structures. The two-dimensional matrix
(n, n), which is composed of the second and third dimensions, records the information
of the customer service order of all the block structures in the same location. The spe-
cific mathematical formulas of the three-dimensional information matrix description are
as follows:

TMg
m×n×n(p, x, y) = ∑num_best

w=1 ONE_Tg,w
m×n×n(p, x, y),

p = 1, 2, · · · , m x, y =1, 2, · · · , n
(33)

TMg
m×n×n(p) = [TMg

m×n×n(p, x, 1), · · · , TMg
m×n×n(p, x, n)]

=

TMg
m×n×n(p, 1, 1), · · · , TMg

m×n×n(p, 1, n)
...

. . .
...

TMg
m×n×n(p, n, 1), · · · , TMg

m×n×n(p, n, n)

 (34)

TMg
m×n×n = [TMg

m×n×n(1), TMg
m×n×n(2), · · · ,

TMg
m×n×n(p), · · · , TMg

m×n×n(m)]
(35)

Equations (33)–(35) give the hierarchical structure of the three-dimensional information
matrix. Equation (33) is used to count the distribution information of all the block structures.
TMg

m×n×n(p, x, y) represents the element which is the cumulative number of the block
structure [x, y] at position P. The TMg

m×n×n(p) given in Equation (34) is a two-dimensional
matrix (n, n) and refers to the customer service order information of all the block structures
at location P. In Equation (35), the TMg

m×n×n is a three-dimensional information matrix; it
records the information of all the block structures in the non-dominated solution set.
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Three-dimensional probability matrix: After the three-dimensional information matrix
is determined, the three-dimensional probability matrix will be calculated in the next step.
The specific mathematical formulas are as follows:

sumg
p = ∑ n

x=1∑ n
y TMg

m×n×n(p, x, y), p = 1, 2, · · · , m (36)

PMg
m×n×n(p) =


TMg

m×n×n(p,1,1)
sumg

p
, · · · , T TMg

m×n×n(p,1,n)
sumg

p
...

...
TMg

m×n×n(p,n,1)
sumg

p
, · · · , TMg

m×n×n(p,n,n)
sumg

p

 (37)

PMg
m×n×n = [PMg

m×n×n(1), PMg
m×n×n(2), · · · ,

PMg
m×n×n(p), · · · , PMg

m×n×n(m)]
(38)

PMg+1
m×n×n = η · PMg+1

m×n×n + (1 − η)PMg
m×n×n (39)

In Equation (36), the sumg
p represents the number of all the block structures in position

P. Equation (37) gives the probability of each element in PMg
m×n×n(p) at position P.

Equation (38) gives the three-dimensional probability matrix. Equation (39) represents the
update method of the probability matrix, and η is the random numbers in [0, 1].

As shown in Figure 3, an example of a three-dimensional information matrix that
includes six individuals is given. For example, in the first individual, π1 = [1, 2, 5, 3, 4], the
block structures are [1, 2], [2, 5], [5, 3], and [3, 4]. In addition, at the position P = 1, there
are six block structures, including [1, 2], [1, 2], [5, 2], [3, 5], [4, 5], and [2, 3]. Therefore, in
the three-dimensional information matrix, the values of the elements with subscripts the
(1, 2, 3), (1, 3, 5), (1, 4, 5), and (1, 5, 2) are 1; the value of the element with the subscripts
(1, 1, 2) is 2; and the other elements are 0.

As mentioned above, the new individuals can be generated based on the three-
dimensional probability matrix. The pseudocode of the update strategy is shown in
Algorithm 1.

The pseudocode of the update strategy is shown in Algorithm 1.
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Algorithm 1 Update strategy

1: Input:
2: Set the number of popsize and N.
3: Begin:
4: Set loop = 1, num = 1, p = 1.
5: while loop ≤ max_l do
6: Calculate the TMg

m×n×n through the non-dominated solution set π
g
best.

7: while num ≤ num_bestg do
8: while p ≤ num_customer do
9: Generate the probability matrix of position p as PMg

m×n×n(p).
sum = ∑n

x=1 ∑n
y=1 PMg

m×n×n(p, x, y)
10: if sum > 0, then
11: Place the block structure in the position p and the tabu
12: Let p = p + 2.
13: else
14: Randomly select a customer from cos−sequence to position p and the tabu
15: Let p = p + 1.
17: end if
18: end while
19: Put the tabu into the population as an individual
20 Let num = num + 1
21: end while
22: Update the πg and π

g
best

23: Let loop = loop + 1
24: end while
25: Output:
26: The current population πg and its non-dominated solution set π

g
best

4.4. Local Search

After the global search, a better non-dominated solutions set is obtained. However, the
2L-OVRPTW has a large solution space, and the non-dominated solutions are distributed
in various regions. Therefore, the local search of the MLWOA is used for the exploitation of
the non-dominated solutions. As shown in Figures 4–6, this section designs a local search
with three neighborhood operations.
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Figure 5. Insert operation.

Interchange operation: Randomly select customer i and customer j from route[k] and
route[l], respectively, and then exchange them.

Insert operation: Randomly select two non-adjacent customers i and customer j in
route[k], and then insert the customer i in front of customer j.

Swap operation: Randomly select customers i and customer j in route[k], and then
exchange them.
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After each operation, if a better solution that satisfies the constraints is generated, the
better solution will replace the current optimal solution. Otherwise, it will not be accepted.

The complexity analysis for the algorithm is detailed as follows. Let the population
size of the MLWOA be popsize, the number of customers be N, the number of global search
iterations be genglobal , the number of updates based on the three-dimensional probability
matrix be max_l, the number of local search iterations be genlocal , and the average total
number of neighborhood operations used during the local search be Z. The algorithm
complexity TMLWOA of the MLWOA consists of global search complexity and local search
complexity. The algorithm complexity of the MLWOA consists of global search complexity
and local search complexity, where the global search complexity includes the complexities
of the initialization of the population O(popsize ∗ N), the updating of the three-dimensional
probability matrix O(popsize ∗ 2 ∗ N2), the generation of individuals based on the sampling
probability matrices O(popsize ∗ N), and the evaluation of the population O(popsize ∗ N).
The local search complexity is O(genlocal ∗ Z ∗ N). Therefore, TMLWOA = O(genglobal ∗
(max_l ∗ popsize ∗ N2 + genlocal ∗ Z ∗ N)).

The pseudocode of the local search is shown in Algorithm 2.

Algorithm 2 Variable neighborhood local search

1: Input:
2: Set max_search = 10, loop = 1, N_inter = 1, N_ins = 1, N_swap = 1 and N_max = 10.
3: Begin:
4: while loop ≤ 10 do
5: while N_inter ≤ 10. do
6: Randomly select a solution π

g,w
best, randomly select vehicle k and vehicle l,

k, l ∈ π
g,w
best, and randomly select customer i and customer j.i ∈ vehicle k,

j ∈ vehicle l, then int_π
g,w∗
best =interchange(πg,w

best, k, l, i, j)
7: if int_π

g,w∗
best satisfies all constraints, then

8: π
g,w
best = int_π

g,w∗
best

9: else N_inter = N_inter + 1
10: end while
11: while N_ins ≤ 10 do
12: Randomly select vehicle k, k ∈ π

g,w
best, randomly select customer i and customer j,

i, j ∈ vehicle k, then ins_π
g,w∗
best =insert(πg,w

best, k, i, j)
15: if ins_π

g,w∗
best satisfies all constraints, then

16: ins_π
g,w
best = ins_π

g,w∗
best

19: else N_ins = N_ins + 1
20: end while
21: while N_swap ≤ 10 do
22: Randomly select vehicle l, l ∈ π

g,w
best, and randomly select customer i and customer j,

i, j ∈ vehicle l, then swap_π
g,w∗
best =swap(πg,w

best, l, i, j)
23: if swap_π

g,w∗
best satisfies all constraints, then

24: π
g,w
best = swap_π

g,w∗
best

27: else N_swap = N_swap + 1
28: end while
30: loop = loop + 1
31: end while
32: Output:
33: Updated non-dominated solution set π

g
best.
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4.5. Loading Strategy

The 2L-OVRPTW is integrated by the routing subproblem and the loading subproblem.
The non-dominated solutions optimized by the MLWOA’s routing phase also need to be
loaded. This section describes in detail how to optimize the loading process of the non-
dominated solutions by the MLWOA’s loading phase.

The loading strategy based on the skyline mainly consists of a scoring method, the
arrangement of the loading sequence, and the disturbance mechanism.

4.5.1. Loading Sequence

The loading sequence of the customers adopts the first in and last out (FILO) principle.
For example, the service sequence of the route is [4–7]. It can be seen that the loading
sequence is [7,6,5,4]. Obviously, the FILO principle can save service time.

In addition, the number of each customer’s items is not unique; Rule 4 and Rule 5 are
used to initialize the order of each customer’s items. Then, all the items are loaded into the
carriage through the scoring method.

Rule 4: Initialize and sort according to the length of the first customer’s items from
small to large.

Rule 5: Initialize and sort according to the size of the rest of the customers’ items from
small to large.

4.5.2. Scoring Method

The scoring method is an important part of the skyline-based loading strategy. As
shown in Figure 7, the red line segment represents the horizontal skyline, and the green
line segment represents the vertical skyline. The figure shows all the scores that would
appear when an item I was placed on any horizontal skyline. That means that the items
placed on each horizontal skyline receive a score, with a full score of 5 points.
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The specific scoring methods are as follows:
Five points: When the width of the item is equal to the horizontal skyline of the current

segment: if the length of the item is equal to the length of the vertical skyline on either side
of the adjacent sides, the score is 5 points, as shown in parts (a) and (b).
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Four points: There are two cases; the first is that the width of the item is equal to the
horizontal skyline of the current segment, and the length is less than the vertical skyline on
the adjacent two sides, as shown in part (c) in Figure 7. The other is that the width of the
item is less than the horizontal skyline of the current segment, and the length is equal to
the shorter side of the vertical skyline on both adjacent sides, as shown in part (d).

Three points: There are three cases; the first is that the width of the item is equal to the
horizontal skyline of the current segment, and the length is between both adjacent sides, as
shown in part (e) in Figure 7. The second is that the width is less than the horizontal skyline
of the current segment, and the length is less than the vertical skyline on both adjacent
sides, as shown in part (f) in Figure 7. Finally, the width is less than the horizontal skyline
of the current segment, and the length is equal to the vertical skyline of the longer side on
both adjacent sides, as shown in part (g).

Two points: There are three cases; the first is that the width of the item is equal to the
horizontal skyline of the current segment, and the length is more than the vertical skyline
on both adjacent sides, as shown in part (h) in Figure 7. The second is that the width is less
than the horizontal skyline of the current segment, and the length is between the vertical
skylines on both adjacent sides, as shown in part (i) in Figure 7. Finally, the width is less
than the horizontal skyline of the current segment, and the length is more than the vertical
skyline on both adjacent sides, as shown in part (j).

One point: If the width of the item is more than the horizontal skyline of the current
segment, the score is 1 point, as shown in part (k).

If all horizontal skylines are less than the item’s width, the horizontal skylines that
need to be filled are selected before loading the item. Otherwise, the item will be inserted
at the horizontal skyline position with the highest score, and the skyline will be updated.
As shown in Figure 8, the loading process of the customer’s items is given. The solid line
represents the customer’s service sequence, and the dotted line represents the customer’s
item loading sequence.
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4.5.3. Disturbance Mechanism

Integrating a disturbance mechanism is conducive to the optimization of the loading
processes. If the loading process is unreasonable, there may be a large area of redundant
space, which will make it impossible to load all the customers’ items on the service route
into the carriage. In view of this situation, the loading order of two items of any customer
are randomly selected to exchange and are then re-loaded, as shown in parts (a) and (b) in
Figure 9.

Table 5 below shows the comparison results of the loading success rate related to
whether or not the disturbance mechanism is used in the different customer sizes. The
No represents the non-use of the disturbance mechanism, and the Yes represents the use
of the disturbance mechanism during loading. Among them, the success rate refers to
the proportion of the number of times that all the goods are loaded into the carriage
after 20 independent operations. It can be clearly seen that the results after adding the



Mathematics 2024, 12, 731 16 of 24

disturbance mechanism are significantly higher. In Figure 10, the flow chart of the MLWOA,
except for loading, and the flow chart of loading can be seen.
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Table 5. Loading success rate.

Customer
Size

Instances
Success Rate

No Yes

15 2l_cvrp103 0.75 0.90
20 2l_cvrp403 0.65 0.80
21 2l_cvrp603 0.60 0.90
25 2l_cvrp903 0.55 0.85
30 2l_cvrp1203 0.90 0.90
35 2l_cvrp1603 0.50 0.80
40 2l_cvrp1703 0.80 0.90
44 2l_cvrp1803 0.70 0.85
50 2l_cvrp1903 0.55 0.75
75 2l_cvrp2403 0.35 0.80

100 2l_cvrp2703 0.40 0.75
120 2l_cvrp2803 0.35 0.55
199 2l_cvrp3103 0.35 0.65
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The pseudocode of the MLWOA algorithm is shown in Algorithm 3.

Algorithm 3 Multi-objective learning whale optimization algorithm

1: Input:
2: Set gen _max, popsize, max_l, γ

3: Begin:
4: Let l ∈ random[−1, 1], p ∈ random[0, 1]
5: Population initialization
6: while g ≤ gen _max do
7: while t ≤ max_l do
8: while i < popsize do
9: if A ≤ 1, then
10: Update πg,i by Equation (30)
11: else
12: if p < γ, then
13: Update πg,i by Equation (24)
14: else
15: Update πg,i by Equation (27)
16: end if
17: end if
18: i = i + 1
19: end while
20: t = t + 1
21: end while
22: Update the population, non-dominated solution set and three-dimensional probability matrix
23: for π

g,w
best ∈ π

g
best, do

24: Initialize the loading sequence of all items of customers by Rule 4 and Rule 5.
25: for MMi,k ∈ π

g,w
best do

26: for c ∈ MMi,k do
27: for Ing ∈ c do
28: Loading the customer’s items into the carriage by the loading strategy.
29: end for
30: end for
31: end for
32: end for
33: g = g + 1
34 end while
35: Output:
36: Return the non-dominated solution set π

g
best.

5. Simulation Experiment and Comparative Analysis
5.1. Experimental Setup

As there is currently no dataset suitable for 2L-OVRPTW, this paper selects an available
international dataset related to VRP (datasets from http://www.bernabe.dorronsoro.es/
vrp/ (accessed on 1 January 2024)). All experiments are run on Windows 10 platform,
which has 3.0 GHz CPU and 16 GB RAM, and are on a single thread. The algorithms in this
paper are implemented by Python 3.7. The coordinates of the central warehouse and its
service time window are (0, 0) and [0, ∞], respectively. Each vehicle’s load capacity Q is
200. The items in the datasets are generated by using the method from references [30,32],
as shown in Table 6. In this paper, there are datasets of different customer sizes. There are
four categories, as shown in Table 6. Category 4 is used to generate all items in an instance
containing 25 customers, and the items of the other instances are randomly generated by
the other categories. Each category can randomly generate the number Mi of items required
by the customer i. Vertical, uniform, and horizontal are three different ways to generate the
shape of all the items. The length and width of each item are generated based on the (L, W)

http://www.bernabe.dorronsoro.es/vrp/
http://www.bernabe.dorronsoro.es/vrp/
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of the carriage. The L and the W refer to the length and width of the carriage, respectively,
and their values are (40, 20).

Table 6. Rectangular corresponding items.

Category Mi
Vertical Uniform Horizontal

Length Width Length Width Length Width

1 [1, 2] [0.4 L, 0.9 L] [0.1 W, 0.2 W] [0.2 L, 0.5 L] [0.2 W, 0.5 W] [0.1 L, 0.2 L] [0.4 W, 0.9 W]
2 [1, 3] [0.3 L, 0.8 L] [0.1 W, 0.2 W] [0.2 L, 0.4 L] [0.2 W, 0.4 W] [0.1 L, 0.2 L] [0.3 W, 0.8 W]
3 [1, 4] [0.2 L, 0.7 L] [0.1 W, 0.2 W] [0.1 L, 0.4 L] [0.1 W, 0.4 W] [0.1 L, 0.2 L] [0.2 W, 0.7 W]
4 [1, 5] [0.1 L, 0.6 L] [0.1 W, 0.2 W] [0.1 L, 0.3 L] [0.1 W, 0.3 W] [0.1 L, 0.2 L] [0.1 W, 0.6 W]

5.2. Performance Index and Parameter Setting
5.2.1. Performance Index

(1) N index

For the non-dominated solution sets obtained by the different algorithms, the more
non-dominated solutions in the set, the better the algorithm’s performance in solving
the problem.

(2) N index

This performance is evaluated by counting the number of solutions remaining after
the set of non-dominated solutions obtained by the algorithm is dominated by the other
non-dominated solutions.

N(Sj) =
∣∣Sj −

{
x ∈ Sj|∃y ∈ Ssum : y ≺ x

}∣∣ (40)

In Formula (40), Ssum represents the set of non-dominated solutions obtained by all the
algorithms, and Sj is the solution set of the non-dominated solutions found by algorithm j.
N(Sj) represents the number of solutions remaining after the other non-dominated solution
sets dominate the non-dominated solution set obtained by the algorithm j.

(3) R index

In Formula (41), R(Sj) represents the ratio of the solution obtained by the algorithm j
in Ssum to the non-dominated solution set obtained by algorithm j

R(Sj) =
∣∣Sj −

{
x ∈ Sj|∃y ∈ Ssum : y ≺ x

}∣∣/∣∣Sj
∣∣ (41)

5.2.2. Parameter Setting

The parameters involved in the MLWOA include the population size, the search factor,
and the number of iterations based on the three-dimensional probability matrix; these are
denoted by by popsize, γ, and max_l, respectively. This paper selects the C201 instance
for parameter testing and analysis in the dataset. The DOE method is used to discuss the
influence of each parameter on the performance of the MLWOA. First, four level values
are set for each parameter, then an L16 (43) orthogonal test table is established. As shown
in Tables 7–9, The first target value is the average value of the number of non-dominated
solutions divided by the population size after each group of parameters runs 20 times. The
sum of all the non-dominated solutions obtained by running 20 times is denoted by S_P.
S_R is the number remaining after removing the dominated solution from S_P; so, the
second target value is S_R

S_P . The target values are each worth 50% in RV, which is used as an
evaluation metric to analyze the parameter performance.

Therefore, the parameter combination set based on the experimental analysis is
popsize = 70, γ = 0.6, max_l = 60.
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Table 7. Parameter level.

Parameter
Level

1 2 3 4

popsize 30 50 70 90
γ 0.2 0.4 0.6 0.8

max_l 20 40 60 80

Table 8. Orthogonal test results.

Parameter Combination Number
Parameter Level

RV
popsize γ max_l

1 1 4 3 0.628
2 1 3 4 0.628
3 1 2 2 0.612
4 1 1 1 0.612
5 2 4 1 0.626
6 2 3 2 0.643
7 2 2 4 0.653
8 2 1 3 0.648
9 3 4 1 0.653
10 3 3 3 0.658
11 3 2 2 0.651
12 3 1 4 0.653
13 4 4 3 0.673
14 4 3 2 0.678
15 4 2 1 0.653
16 4 1 4 0.679

Table 9. Average response value of parameters.

Level
Parameters

popsize γ max_l

1 0.620 0.648 0.636
2 0.642 0.642 0.646
3 0.660 0.658 0.658
4 0.671 0.645 0.653

range 0.051 0.016 0.022
grade 1 3 2

5.3. Comparison with Standard WOA

To verify the effectiveness of the MLWOA, the MLWOA was compared with the WOA.
Several instances, including 25, 50, and 100 customers, were selected for experimental
analysis. The experimental results after running for the same time are shown in Table 10.
The optimal results are shown in bold. The performance of the Wilcoxon rank-sum test
based on the N, N, and R parameters is shown in Table 10. Table 11 shows that with
p < 0.001, the effectiveness of the MLWOA algorithm is significantly higher than that of the
WOA algorithm.

The MLWOA makes the search scope in the solution space wider and the search
degree deeper and more detailed. The use of nonlinear factors in the MLWOA also makes
the algorithm not fall into local optimization. Therefore, compared with the WOA, the
number of non-dominant solutions obtained by the MLWOA is higher. In addition, the
non-dominated solutions obtained by the two algorithms are liberated together. After
removing the dominated solutions, the number of solutions from the MLWOA is obviously
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more than that of the WOA. This shows that the quality of the solutions obtained by the
MLWOA is better.

Table 10. Comparison results of the MLWOA with WOA.

Customer Size Instances
WOA MLWOA

N ¯
N R N ¯

N R

25

C101 17 1 0.059 31 19 0.613
C102 12 1 0.083 35 18 0.514
C103 10 6 0.600 21 11 0.524
C104 11 2 0.182 30 17 0.567
C105 14 1 0.071 31 12 0.387
C106 25 2 0.080 32 18 0.563
C107 18 3 0.167 41 6 0.146
C108 13 1 0.077 29 21 0.724
C109 14 1 0.071 37 19 0.514
C201 19 1 0.053 30 10 0.333

50

C101 12 0 0.000 29 29 1.000
C102 15 4 0.267 18 8 0.444
C103 2 2 1.000 22 12 0.545
C104 12 3 0.250 39 17 0.436
C105 8 1 0.125 41 16 0.390
C106 22 1 0.455 28 10 0.357
C107 14 0 0.000 24 24 1.000
C108 18 1 0.056 34 17 0.500
C109 8 1 0.125 25 9 0.360
C201 7 0 0.000 27 27 1.000

100

C101 10 1 0.100 24 18 0.750
C102 8 0 0.125 27 27 1.000
C103 13 1 0.077 37 33 0.892
C104 12 2 0.167 25 14 0.560
C105 12 1 0.083 26 19 0.731
C106 8 0 0.000 26 26 1.000
C107 12 1 0.083 27 21 0.778
C108 16 1 0.063 36 31 0.861
C109 15 1 0.067 31 18 0.581
C201 15 2 0.133 31 21 0.677

Table 11. The results of the Wilcoxon rank-sum test for MLWOA and WOA.

Group Median
(P25, P75)

Wilcoxon Rank-Sum Test
Z p

WOA_N 12.5 (10, 15.25) −4.786 <0.001MLWOA_N 29.5 (25.75, 34.25)
WOA_N 1 (1, 2) −4.784 <0.001MLWOA_N 18 (12, 21.75)
WOA_R 0.083 (0.062, 0.167) −4.351 <0.001WOA_R 0.565 (0.442, 0.7988)

5.4. Comparison with Other Algorithms

In order to verify the effectiveness of the MLWOA in solving the 2L-OVRPTW, this pa-
per compares the MLWOA with other algorithms that solved similar problems at home and
abroad, including the QPSO algorithm [21], VNS algorithm [18], and SAHLS algorithm [19].
The instances with 25, 50, and 100 customers are selected for testing. The results are shown
in Table 12. For index N, all four algorithms can obtain some non-dominated solutions, but
obviously, the number of non-dominated solutions obtained by the MLWOA is more. For
index N, after being dominated by the non-dominated solution sets of the other algorithms,
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all three algorithms (QPSO, VNS, and SAHLS) have a small number of non-dominated
solutions left, while the MLWOA can retain most of the solutions. For index R, good results
are achieved in the MLWOA. According to the results from Figure 11, it can be observed
that our algorithm outperforms the other heuristic algorithms. For large-scale instances in
particular, the MLWOA obtained more non-dominated solutions. The findings given above
show that the MLWOA can effectively solve the 2L-OVRPTW.

Table 12. Comparison results of MLWOA with QPSO, VNS, and SAHLS.

Customer Size Instances
QPSO VNS SAHLS MLWOA

N ¯
N R N ¯

N R N ¯
N R N ¯

N R

25

C101 21 1 0.048 23 0 0.000 30 0 0.000 53 20 0.377
C102 22 0 0.000 8 4 0.500 12 3 0.250 41 17 0.415
C103 12 0 0.000 23 0 0.000 19 2 0.105 35 13 0.371
C104 14 0 0.000 15 1 0.067 7 0 0.000 41 19 0.463
C105 13 0 0.000 20 1 0.050 20 0 0.000 35 18 0.514
C106 23 0 0.000 27 3 0.111 16 2 0.125 38 18 0.474
C107 15 2 0.133 10 4 0.400 25 0 0.000 50 16 0.320
C108 10 0 0.000 7 0 0.000 12 0 0.000 51 27 0.529
C109 13 1 0.077 14 0 0.000 8 0 0.000 53 15 0.283
C201 10 0 0.000 15 3 0.200 12 0 0.000 34 20 0.588

50

C101 15 1 0.067 14 0 0.000 12 1 0.083 60 23 0.383
C102 11 0 0.000 13 0 0.000 17 1 0.059 43 24 0.558
C103 9 0 0.000 14 3 0.214 21 0 0.000 49 21 0.429
C104 10 1 0.100 11 1 0.091 22 0 0.000 51 25 0.490
C105 19 0 0.000 7 3 0.428 13 0 0.000 59 19 0.322
C106 13 0 0.000 18 1 0.056 23 0 0.000 52 27 0.519
C107 17 2 0.117 11 0 0.000 15 0 0.000 50 41 0.820
C108 13 0 0.000 12 1 0.083 13 0 0.000 61 22 0.361
C109 15 0 0.000 16 1 0.062 21 0 0.000 62 22 0.355
C201 11 0 0.000 15 0 0.000 14 1 0.071 38 16 0.421

100

C101 11 0 0.000 16 2 0.125 17 0 0.000 50 31 0.620
C102 15 1 0.067 24 4 0.167 17 0 0.000 48 41 0.854
C103 21 0 0.000 16 0 0.000 13 1 0.077 56 46 0.821
C104 17 0 0.000 15 1 0.067 11 0 0.000 64 60 0.938
C105 12 2 0.167 14 0 0.000 14 0 0.000 61 39 0.639
C106 14 0 0.000 16 2 0.125 7 0 0.000 63 37 0.587
C107 25 0 0.000 4 1 0.250 16 0 0.000 49 36 0.735
C108 12 0 0.000 14 1 0.071 14 1 0.071 48 40 0.833
C109 7 1 0.143 20 2 0.100 17 0 0.000 66 52 0.788
C201 14 1 0.071 10 1 0.100 19 2 0.105 48 42 0.875

The main reason is that the three-dimensional probability matrix used in the MLWOA’s
learning strategy can not only learn valuable information about the customer order existing
in the non-dominated solution but also accurately and reasonably record the position
of each block structure. With the algorithm that only considers the order of customers,
it is difficult to achieve the effect of the MLWOA. According to the above experiments
and analysis, it can be concluded that the three-dimensional probability matrix plays an
important role in the MLWOA.
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6. Conclusions

In this paper, a learning whale optimization algorithm (MLWOA) is proposed to solve
the two-dimensional loading open vehicle routing problem with time window constraints
(2L-OVRPTW). The objective of the optimization is to minimize the distance and maximize
customer satisfaction. The 2L-OVRPTW problem integrates both routing and loading
problems. In this context, both problems need to be considered together. When solving
this problem using the MLWOA, the individuals are first discretized using the LOV rules,
allowing the population to be updated using the update mechanism of the whale opti-
mization algorithm (WOA). During the initialization stage, diverse initial populations are
generated using different rules. To better capture customer location and order relationship
information in high-quality solutions, a three-dimensional probability matrix based on
the block structure of adjacent customers is constructed. A loading strategy based on the
skyline and scoring method is adopted to improve the loading efficiency. Compared to
the standard WOA and the other algorithms in the literature, the computational results
derived from the 2L-OVRPTW instances show that the MLWOA obtains better results than
the others.

The future research will consider expanding two-dimensi- onal loading to three-
dimensional loading problems based on open vehicle routing problems and will consider
more practical delivery constraints, such as pickup and delivery constraints, periodic
constraints, etc. In terms of solution methods, different learning mechanisms will be
integrated on the basis of the WOA, so that it can be applied in different scenarios.
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