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Abstract: Controlling machine degradation enhances the accuracy of the remaining-useful-life esti-
mation and offers the ability to control failure type and time. In order to achieve optimal degradation
control, the system controller must be cognizant of the consequences of its actions by considering
the degradation each action imposes on the system. This article presents a method for designing
cost-aware controllers for linear systems, to increase system reliability and availability through
degradation control. The proposed framework enables learning independent of the system’s phys-
ical structure and working conditions, enabling controllers to choose actions that reduce system
degradation while increasing system lifetime. To this end, the cost of each controller’s action is
calculated based on its effect on the state of health. A mathematical structure is proposed, to in-
corporate these costs into the cost function of the linear–quadratic controller, allowing for optimal
feedback for degradation control. A simulation validates the proposed method, demonstrating that
the optimal-control method based on the proposed cost function outperforms the linear–quadratic
regulator in several ways.

Keywords: reliability control; degradation control; state-of-health control; improve production
reliability; fault control

MSC: 49J21

1. Introduction

In the context of manufacturing companies, production planning and control (PPC)
plays a crucial role in achieving the desired production quality and rate while also prevent-
ing potential disruptions [1]. One of the most significant disruptions that can affect system
efficiency is machine failure, which often results from gradual and irreversible damage
that accumulates over time during operation, commonly referred to as “soft failures” [2].
Failure to accurately predict or analyze faults can result in substantial costs associated with
production downtime and material waste [3]. One key challenge in accurately identifying
and predicting machine failures is incomplete or incorrect modeling and identification
of underlying machinery degradation [4]. To address this problem, researchers have ex-
plored and developed various methods of degradation identification, such as physics-based
models, data-driven models, and hybrid models, to estimate the state of health (SoH) and
predict the remaining useful life (RUL) of machines.

The results obtained from these estimates and predictions are crucial for optimizing
maintenance planning and high-level policy making [5]. Various studies, including [6,7],
have proposed methodologies for optimizing maintenance planning based on SoH estima-
tion for systems with different topologies. Other methods, such as those developed by [8,9],
rely on the predicted RUL for maintenance-planning-optimization purposes. However,
the applicability of these approaches in real-world scenarios may be limited because PPC
optimization requires information about the unique physical characteristics and working
conditions of field machines and some degree of control over the degradation of the ma-
chines. Nonetheless, most research on high-level-maintenance policy-making methods uses
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generic mathematical models for the system as a whole, without taking into account the
system’s physical characteristics, including all of its subsystems and their various operating
conditions [10,11].

Merely considering production planning from a high-level perspective is insufficient
because making informed high-level decisions requires insight into low-level operations.
To address this gap, an alternative approach that optimizes production and maintenance
has been adopted, grounding itself in the reliability analysis of machinery at the oper-
ational level. However, these methods face challenges similar to those encountered by
high-level planning strategies. Specifically, three factors make the majority of current
methodologies incompatible with high-level decision-making processes, thereby limiting
their effectiveness in supporting planning decisions on the shop floor. First, creating a
physical model to depict system degradation is a costly task, and although it provides
accuracy and physical interpretability, it makes the resulting techniques exclusive and ex-
pensive [12–16]. Second, the assumption that the deterioration of a system can be accurately
modeled using predetermined physical or mathematical models is wrong. This is because
the degradation of different components within the system may follow unique paths or
not conform to well-established or closed-form mathematical models [17,18]. Third, using
data-driven methods can lead to a loss of connection to the physical structure of the system,
resulting in significant information loss about the nature of the degradation and eventual
failures [19,20].

The lack of integration between high-level and low-level perspectives in production
and maintenance optimization highlights a significant gap. Neither approach, when applied
in isolation, has successfully established a comprehensive link for the joint optimization of
production and maintenance in a generalized manner. Consequently, a universal method
for optimizing PPC based on the system’s SoH remains elusive. This disconnect results
in maintenance planning for PPC optimization being largely reliant on estimations and
predictions. It limits the ability to support strategic decisions at the shop-floor level, such as
mitigating failures or managing the types of failures that occur. These decisions require an
understanding of the system’s physical properties and the ability to control system degra-
dation, which most existing methods cannot provide without the substantial investment
required for physical modeling. Therefore, there is an evident demand for cost-effective
strategies that can accommodate the distinct physical attributes of each system and its
operational conditions, to aid in making informed high-level decisions.

To address this issue, a number of research studies have been published on methods
for extending the life of machines, focusing on soft failures rather than hard failures, and
utilizing physically interpretable degradation data. For instance, the study in [21] intro-
duced an innovative method to achieve a balance between reliability and performance
in control systems with degrading actuators. This was accomplished through a dynamic
model-predictive-control framework, which included the modeling of actuator degrada-
tion. Similarly, the works in [22,23] proposed strategies to prolong machine lifespan by
recognizing actuator degradation as one of the system states. Nonetheless, a common
limitation of these methodologies is their reliance on a predefined physical model to de-
scribe the degradation process. Additionally, the study in [24] detailed a novel approach
that integrates machine learning with reliability-centered maintenance, to rank industrial
assets for life-extension interventions based on condition-monitoring data. The research
in [25] focused on developing a dynamic-optimization framework aimed at improving
both the lifespan and economic efficiency of Li-Ion-battery-energy storage systems by
incorporating battery health into the operational decision-making process. Furthermore,
ref. [26] proposed a machine-learning-driven decision-making model for extending the
life of industrial assets. This model synergizes reliability-centered maintenance, condition
monitoring, and prognostics and health management strategies.

While these studies aimed to enhance the longevity of machinery and to bridge the
gap between high-level decisions and low-level actions, two significant practical challenges
persist. Firstly, to manage degradation, these approaches typically rely on predefined
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mathematical models or define the degradation process through differential equations,
to integrate it as a controllable state within the system model. This reliance on specific
assumptions introduces limitations and raises concerns about the method’s applicability,
including issues related to controllability and observability. Secondly, some strategies aimed
at prolonging machine lifespan emphasize maintenance or operational changes rather than
concentrating on controlling the degradation of individual machines. While beneficial for
specific scenarios, this approach generally has a considerable effect on production. Conse-
quently, optimizing the system’s performance becomes exceedingly complex, complicating
the feasibility of their practical implementation.

Thus, the main question to answer is whether it is possible to identify the degradation
in any system in a physically interpretable manner without using predefined mathematical
models or paying the high price of physical modeling. In this way, it becomes possible
to control the reliability of the machines and to support high-level decisions to keep
machines operational until the desired time of maintenance. To this end, this article
proposes a method that, instead of physically modeling the system and its degradation,
estimates the effect of every system action on its SoH, based on historical data. This method
of degradation identification is based on machines’ unique characteristics and working
conditions and is also physically interpretable. This will eventually offer the possibility
of optimization of PPC and maintenance planning by providing the ability to regulate
machine maintenance using the degrading effect that each action of the machine has on its
SoH. Additionally, being able to control the degradation means the accuracy of the RUL
prediction will increase dramatically and, eventually, the goal of maintenance planning will
only be to choose the best degradation rate for the machine, so that the best compromise
between production cost and maintenance cost becomes achievable.

The primary goal of this research was to develop degradation-aware systems. These
systems are designed from a standalone controller perspective, enabling them to make
informed decisions to preserve the machine’s output quality and manage its lifespan. This
objective was pursued without relying on predefined assumptions about the degradation
model or the system’s operating conditions, aiming for a smarter and more adaptable
approach to system maintenance and longevity. In this way, the existing gap in the field,
between high-level maintenance planning and low-level machine control for maximum
flexibility, would be filled by proposing a closed-form control policy based on the empirical
degradation model.

To this end, this article proposes a general method for controlling low-level actions in
machines according to the maintenance policy. This method was designed by altering the
quadratic cost function of the optimal control and by including the degradation cost in the
control strategy. The main examples used with this method are increasing the machine’s
mean time to failure (MTTF) by controlling the actions that have a more severe effect on
degradation and eventual loss of control.

For this reason, first, the cost of each machine’s action based on the SoH is calculated.
This method does not consider any predefined model for the degradation, and it makes
no assumption about the working conditions. Then, a control method based on a linear–
quadratic regulator (LQR) is proposed, so that the machine can optimally control the output
according to the SoH.

The outline of this article is as follows. The methods for SoH-aware controllers will be
proposed in Section 2. In Section 3, the methods and material used for the simulation to
validate the proposed method will be discussed. In Section 4, results from the simulation
will be shown and validated. The main pros and cons of the proposed method will be
discussed in Section 5. Section 6 will be the conclusion.

2. Methods

This section will present a comprehensive analysis of the various techniques employed
in designing the linear–quadratic degradation controller (LQDR). The first part will outline
how the degradation can be recognized as a function of the system’s states and actions,
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without resorting to physical modeling. The second part will put forth an optimal feedback
mechanism that effectively regulates the rate of degradation within the system, thereby
enhancing its reliability and availability.

The assumptions for this problem are as follows:

1. The system model is available and linear.
2. The record of the system input(s) and output(s) are available with or without state-

estimation techniques (the system must be observable and controllable).
3. The record of the failure time is available.

2.1. Control Criteria

According to [27] and Figure 1, the definition of a control problem is: “given a system
S with a measured output signal y, determine a feasible control input u, so that controlled
variable z as closely as possible follows a reference signal (or set point) r, despite the
influence of disturbance v1, measurement error v2, and variations in the system”, where R
is the controller.

Figure 1. A controlled system.

Multiple cost functions can be formulated by considering the desired output preci-
sion and system characteristics to solve the control problem. Subsequently, the optimal-
control problem can be defined as the process of minimizing the cost function, such as a
quadratic cost:

J =∥ e ∥2
Q1

+ ∥ u ∥2
Q2

, (1)

where e = z − r is the error and Q1 and Q2 are penalties for the error and input signal,
respectively [28].

Considering that wear, corrosion, deformation, and fracture, which are physical
phenomena happening only during the operation of systems, constitute the components
of degradation (the deterioration of an inactive machine does not present a concern for
predictive maintenance), it can be inferred that the degradation model and rate of a machine
are inherently correlated with the decisions and actions taken by the controller. This
relationship highlights the significance of effective control strategies in the preservation of
machine health and the subsequent optimization of system performance.

In the context of Industry 4.0, it has become feasible to employ advanced techniques
such as big-data analysis and machine learning to predict the impact of each decision or
action of the machine on any system’s parameters. Examples of such parameters include
the impact of elevated torque on gearbox degradation, which can subsequently be utilized
to regulate the SoH; the impact of high current consumption on battery state of charge,
which can subsequently be utilized to regulate the state of charge (SoC); and the cost
associated with delayed delivery relative to the low angular velocity of the motor working
in the conveyor system, which can subsequently be utilized to optimize the maintenance
policy [29].

Therefore, through the redefinition of the cost function associated with the optimal-
control problem, it becomes possible to optimize control actions not solely based on the
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output error and system input but also with consideration for additional desired factors,
such as degradation.

Eventually, (1) can be redefined as:

J =∥ e ∥2
Q1

+ ∥ u ∥2
Q2

+ ∥ f ∥2
Q3

, (2)

where f can be any desired function depending on the optimization goal.

2.2. Optimality of Control

Consider the state-space model as the machine model for control,
x(t + 1) = Ax(t) + Bu(t) + Nv1(t)
z(t) = Mx(t)
y(t) = Cx(t) + v2(t)

, (3)

where x includes the system state(s), u is the system input(s), A and B represent the
nominal system’s parameters (considered constant in time-invariant systems), C is the
relationship between the output(s) and state(s) of the system, N defines the relationship
of the disturbances to the system states, M defines the parameter(s) to control, v1 is the
process disturbance, and v2 is the measurement noise.

Based on the optimal-control cost function presented in (1), it is evident that each
action is associated with a particular cost. Therefore, optimizing the system based on
a cost function that includes additional factors beyond the system’s error and output,
as demonstrated in (2), introduces an extra cost to the computation process that can
potentially alter the optimality criteria and render the optimal point of (1) suboptimal. As a
consequence, the output of the system is highly likely to be impacted. This change in the
output represents the cost incurred for reducing the system’s degradation rate.

The constraints imposed by control systems necessitate that the cost associated with
degradation control can solely be paid via one of the following forms: more energy con-
sumption, reduction in output quality, reduction in output rate, or degradation sharing
(load sharing). The choice of the particular parameter to be adjusted as compensation for
the degradation control cost is based upon the interrelationships among the quantities of
Q1, Q2, and Q3 as depicted in (2).

Taking into account (2) as the designated objective function for minimization, the
penalty matrices, denoted as Q1, Q2, and Q3, serve to present the production priorities
and effectively map high-level decisions to corresponding field machine actions. In this
way, Q1 conveys the relative significance of the final product quality, Q2 quantifies the
significance of the input utilization costs, and lastly, Q3 reflects the criticality of preserving
the system health.

Controlling the production priorities by utilizing these penalty values can be eluci-
dated more effectively through an illustrative example. Rolling mills are important in the
steel industry as they facilitate the production of steel in accordance with specific require-
ments. However, irrespective of the quality of the final steel product, a market demand
persists for it. Further clarity can be gained by considering three distinct scenarios.

The first scenario involves a situation where the utmost emphasis is placed on the
quality of the final product, and production batches are ordered with a specific objective.
In this context, Q1 is chosen to have a very high value. Consequently, the production cost J
in (2) becomes highly sensitive to any deviation of the final product quality from the desired
standards. As a result, the controller strategically allocates other resources (comprising the
other two terms in (2)) to minimize J as much as possible.

The second scenario is when there is a substantial increase in energy costs, necessitating
scrupulous conservation of energy usage during production. In this case, it becomes
imperative to assign a high value to the parameter Q2. As a result, the controller is granted
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the flexibility to lower the output quality and/or subject the system to greater degradation,
all in the pursuit of minimizing energy consumption and thereby keeping J at a minimum.

Lastly, the third scenario arises when there is a delay in the delivery of a spare part
or a shortage of maintenance staff for a certain period. In such instances, it is prudent to
increase the value of the parameter Q3. By doing so, the production policy of extending the
machine’s lifetime can be followed. Consequently, the controller is authorized to increase the
energy usage and/or compromise the output quality to achieve the objective of extending
the machine’s operational lifespan.

By considering these three scenarios within the context of a rolling mill, it becomes
apparent how the selection of values for Q1, Q2, and Q3 can effectively translate production
priorities into maintenance activities for the field machines. This allows for precise control
of production and maintenance planning in accordance with the established priorities.

Upon establishing the system’s model and the degradation control cost-payment
method, using the penalties relationship, the state–action cost (SAC), denoted as f in (2),
should be computed.

2.3. State–Action Cost Calculation

Unlike the first and second terms of (2) that depend solely upon output error (first
term) or input to the system (second term), the third term, degradation, is potentially a
function of both the input(s) and the state(s) of the system:

J(x, u) =∥ e(x) ∥2
Q1

+ ∥ u ∥2
Q2

+ ∥ f (x, u) ∥2
Q3

. (4)

In order to effectively control the degradation, it is imperative to compute the cost
of each state–action pair, which can be subsequently employed in the generation of the
function f .

A universal approach that can be applied to any system, irrespective of its structure
and operating conditions, involves the computation of costs associated with every possible
combination of state–action pair. This calculation is based on historical system-failure data.
Assuming that the machine is in a healthy state following each maintenance activity, a
vector denoted by Ψ can be formulated. This vector represents the costs of all feasible
state–action combinations:

Ψ = [J(x1, u1)︸ ︷︷ ︸
ψ1

J(x1, u2)︸ ︷︷ ︸
ψ2

· · · J(xn, um−1)︸ ︷︷ ︸
ψk

J(xn, um)︸ ︷︷ ︸
ψk

]T , (5)

where n is the number of all possible (combinations of) system states, m is the number of
all possible (combinations of) system actions, and k is the number of all possible system
state–action combinations. Define S as a vector including the number of times that each of
the members of Ψ is repeated in one run-to-failure record,

Γ =[nψ1 nψ2 · · · nψk ]
T , (6)

and define Ω as a matrix including N run-to-failure records, (Γ)

Ω =[Γ1 Γ2 · · · ΓN ]. (7)

Then, the cost of each state–action combination from the degradation viewpoint can
be calculated using

min
Ψ

(ΩTΨ − 1N×1 · L), (8a)

s.t. Ψ ≥ 0k×1, (8b)

where L can be any positive constant.
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In the context of optimization as described in (8), the system’s SoH is modeled as a
reservoir with a capacity of L. This reservoir is replenished to full capacity following each
maintenance event and depleted to empty with each system failure. Through the application
of (8a), a specific cost is allocated to each state–action pair, reflecting the quantity of the
SoH consumed by the action. Consequently, every action depletes a portion of the system’s
health. Given the absence of any state–action pair capable of enhancing the system’s health,
(8b) incorporates this constraint into the computation. The optimization process is entirely
reliant on the records of the system’s input and output, without taking into account the
structure of the system itself. Moreover, given that the system being analyzed operates in a
closed-loop manner, access to its input and output is deemed sufficient for the study.

To construct the function Ψ as described in (5), it is necessary to perform a quantization
of the system’s states and actions. The level of quantization required is determined by
the desired accuracy of the degradation control. In situations where the desired output
of the system has only a small number of distinct settings, the number of combinations
of states and actions will be limited and can be handled easily. Conversely, in systems
with a continuous interval of desired output values or a large number of possible states,
constructing Ψ may not be feasible.

Function estimators are the most effective solutions for addressing this issue, and
various linear and nonlinear regression techniques can be employed for this estimation.
However, neural networks and relevance vector machines are the most appropriate function
estimators for this task, due to the unsmooth nature of the SAC function. To utilize function
estimators, a limited number of state–action combinations can be used to construct Ψ. The
outcomes of (8) can be used to train a function estimator. Finally, the trained function
estimator can eventually estimate the entire spectrum of Ψ.

2.4. Linear–Quadratic Control

Now that the SAC of the system is calculated, it is possible to design the controller
based on the minimization of (4). An LQR is an optimal controller designed based on the
state space. The quadratic criterion that the LQR minimizes is (1). The optimal-control
signal for this controller can be written as follows [27]:

u(t) = −Lx(t), (9)

x(t + 1) = Ax(t) + Bu(t). (10)

The optimal feedback gain is then calculated by solving

L = (BTSB + Q2)
−1BTSA, (11)

subjected to a discrete Riccati equation,

S = ATSA + MTQ1M − ATSB(BTSB + Q2)
−1BTSA. (12)

The stability of the LQR is ensured by two key conditions: firstly, the system must
be linear and, secondly, the system must be observable and controllable. When these
conditions are met, the feedback matrix L derived from the control strategy is optimal,
based on the specified penalty matrices.

The LQR optimizes the control problem for the infinite horizon, which means that
the optimal feedback gain stays the same regardless of the inputs and outputs throughout
the system’s lifetime. However, as the system’s parameters are time-variant (considering
degradation), the actual system parameters deviate from the nominal values employed
in designing the controller. Such deviations, over time, lead to a reduction in the control
quality of the controller. Ultimately, when the deviation between the desired and actual
output surpasses a predetermined threshold, the system is deemed to have failed [30].
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To be able to control the degradation for an infinite horizon, the SAC should be
assumed as a smooth function and should be defined as a linear function of the state(s)
and action(s),

f (x, u) =
[

Wxx
Wuu

]
, (13)

where Wx and Wu are row vectors including the effects of state–action (x, u) on the system’s
degradation. Regardless of the number of states and input, f will always be a vector with
two rows. The first row is the effect of the states on the degradation, and the second row is
the effect of the input on the degradation. As the Ψ is already calculated, Wx and Wu can
be calculated by minimizing

min
W

(XWT − Ψ), (14a)

W =
[
Wx Wu

]
, (14b)

X =


x1 u1
x1 u2
...

...
xn um

. (14c)

Then, using the calculated W from (14), it is possible to generate f in (4) and minimize
it as the cost function of the optimal degradation control. In this case, the optimization
problem is

min
uk

∞

∑
k=1

1
2
(xT

k Q1xk + uT
k Q2uk + f T

k Q3 fk) (15a)

s.t. xk+1 = Axk + Buk. (15b)

(For for better readability in this section only, the apostrophe “′” is used instead of “T”
to show the matrix transpose.)

Theorem 1. The optimal feedback that minimizes the cost function in (15) is

u∗
k = −Lxk, (16)

where L is calculated according to (11), but in order for L to be optimal according to cost func-
tion (15), which includes degradation terms, S must be calculated using

S = U21U−1
11 , (17)

instead of solving (12). The Schur vectors
[

U11
U21

]
span the stable deflating subspace [31–33], and

they are the results of the decomposition of Z in the form of

Z =

[
U11 U21
U21 U22

][
Λ11 Λ21

0 Λ22

][
U′

11 U′
21

U′
21 U′

22

]
, (18)

and Z is

Z =

[
T3 T4

T−1
1 T2T3 T−1

1 (T2T4 − I)

]
, (19)
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where

T1 = A′ − (W ′
xq32Wu)(Q2 + W ′

uq33Wu)
−1B′, (20)

T2 =Q1 + W ′
xq31Wx − (W ′

xq32Wu)(Q2 + W ′
uq33Wu)

−1(W ′
uq32Wx), (21)

T3 =A − B(Q2 + W ′
uq33Wu)

−1(W ′
uq32Wx), (22)

T4 = −B(Q2 + W ′
uq33Wu)

−1B′, (23)

and

Q3 =

[
q31 q32
q32 q33

]
. (24)

This approach integrates degradation cost into the feedback control loop alongside error and
input costs. This stands in contrast to S computed by solving (12), which only considers error and
input costs.

Proof. Using the Lagrange multiplier, optimization of (15) becomes

min
uk

∞

∑
k=1

1
2
(x′kQ1xk + u′

kQ2uk + f ′kQ3 fk) + λk(Axk + Buk − xk+1). (25)

The optimal solution can be found using the derivative of the cost function equal
to zero:

∂J
∂xk

= Q1xk + W ′
xq31Wxxk + W ′xq32Wuuk + A′λk − λk−1 = 0, (26a)

∂J
∂uk

= Q2uk + W ′
uq32Wxxk + W ′

uq33Wuuk + B′λk = 0, (26b)

∂J
∂λk

= Ak + Buk − xk+1 = 0. (26c)

Then solving for u from (26b):

u = −(Q2 + W ′
uq33Wu)

−1(W ′
uq32Wxxk + B′λk). (27)

Substituting u derived from (27) in (26a) and (26c) gives

(A′ − (W ′
xq32Wu)(Q2 + W ′

uq33Wu)
−1B′)λk + (Q1 + W ′

xq31Wx−
(W ′xq32Wu)(Q2 + W ′

uq33Wu)
−1(W ′

uq32Wx))xk − λk−1 = 0, (28)

(A− B(Q2 +W ′
uq33Wu)

−1(W ′
uq32Wx))xk − B(Q2 +W ′

uq33Wu)
−1B′λk−1 − xk+1 = 0. (29)

Matrix Z can be generated using (28) and (29):[
xk+1
λk+1

]
= Z

[
xk
λk

]
. (30)
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For x and λ in (30) to converge to zero as k → ∞, Z must be stable. This can be
done using eigen decomposition of the calculated Z and generating the Schur vectors[

U11
U21

]
according to (18). Using the Schur vectors S computed from the generated data, as

depicted in (17), and incorporating them into (11), ensures both stability and the integration
of degradation within the feedback loop. The stability criteria for the proposed method
align with those of the LQR. Stability is assured as long as the system remains linear and
all states are accessible, whether directly observed or estimated through state-estimation
techniques.

3. Simulation

The proposed techniques underwent validation via a simulation model. The primary
objective of the simulation was to demonstrate the controller’s ability to regulate machine
degradation and respond to changes in the system’s physical parameters resulting from
degradation, thereby increasing the MTTF by keeping the output quality inside the desired
threshold for a longer time. The methodology employed for the degradation simulation
was designed to simulate the actual degradation process in a system.

To be able to focus on the control policy of the proposed controller, two distinct degra-
dation models were defined. Each model was designed to elicit divergent responses from the
controller, thereby enabling an assessment of the efficacy of the new optimization criterion.
This will be explained further in the next section when the degradation models are discussed.

The device utilized in this simulation was a DC motor, which was favored for its
simple design and reliable performance across diverse applications. A primary limitation
of DC motors is the degradation of their internal parameters, particularly resistance, which
can have significant consequences on the motor’s operation. Two processes account for
changes in the internal resistance of DC motors. First, inter-turn short-circuiting as a result
of insulation damage ultimately decreases the motor’s internal resistance over time [34].
Second, the gradual wear of the brushes leads to a continuous decrease in motor resis-
tance [35]. When the controller is designed based on the nominal motor parameters, these
changes in internal parameters due to degradation lead to deviations between the desired
and actual output over time. Eventually, this deviation passes a certain threshold, and the
system will be considered to have failed.

On some occasions, particularly in critical systems such as CNC machines for carving
or pumps for 3D metal printing, minor discrepancies can have a significant impact on the
final product, resulting in substantial costs due to energy and material wastage. Therefore,
the primary objective of the simulation conducted to validate the method of degradation
control was to demonstrate that, in spite of the variation in the nominal parameters of the
motor, the LQDR diminished machine degradation and prolonged machine functionality
compared to the LQR. The LQDR achieved this by precisely regulating the output during
operation, ensuring that the system remained reliable throughout extended operations, in
accordance with the desired outcome.

3.1. DC Motor Model

The state space of the DC motor can be written as [36][
im(t + 1)
ωm(t + 1)

]
=

[
− Rm

Lm
− ke

Lm
kt
Jm

− fm
Jm

][
im(t)
ωm(t)

]
+

[ 1
Lm
0

]
v, (31a)

z(t) =
[
0 1

][ im(t)
ωm(t)

]
, (31b)

y(t) =I
[

im(t)
ωm(t)

]
, (31c)

where im is the motor current, ωm is angular velocity, Rm is the resistance, Lm is the
inductance, ke is the back-emf, kt is the torque constant, Jm is the motor inertia, fm is the
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friction coefficient, v is the input voltage, and I is the identity matrix. In this system, voltage
serves as the input, while current and angular velocity are the system’s states. Angular
velocity is also utilized as the control variable.

3.1.1. Degradation Model

The working cycle was defined as the time period commencing from the initiation
of the task execution by the machine until its cessation upon completion of the task. This
temporal interval was denoted by T. The two degradation models considered for this
system were defined as [37,38]

Di =

∣∣∣∣∣ T

∑
t=2

exp(im(t)− im(t − 1))

∣∣∣∣∣, (32a)

Dω =

∣∣∣∣∣ T

∑
t=2

exp(ωm(t)− ωm(t − 1))

∣∣∣∣∣, (32b)

Dv =

∣∣∣∣∣ T

∑
t=2

exp(vm(t)− vm(t − 1))

∣∣∣∣∣, (32c)

D1 =
[
Di Dω Dv

] 5
5

0.005

+ 10−6, (32d)

D2 =
[
Di Dω Dv

]0.1
0.1
0.1

+ 10−6, (32e)

Rm(c + 1) = Rm(c)− (5 · 10−4 · exp(0.5 · Dj)), (32f)

where c was the working cycle, and j ∈ {1, 2} defined the degradation model to be
used. In this particular formulation, the reduction in motor resistance was modeled as
a mathematical function of the cumulative summation of the exponent of the variations
in both the input and state variables of the system. Thus, the degree of degradation
experienced by the system was proportional to the sum of the magnitude of the changes
occurring in the input and state variables. Furthermore, the steady-state degradation of the
controller, wherein the input and state variables remained constant, was accounted for by
incorporating a term equal to 10−6 into the formula.

The difference between the two models of degradation can be attributed to the extent
to which changes in each of the states and inputs impacted the degradation of the system.
In the first model (D1), the degradation of the system was influenced significantly more by
changes in the states of the system, the angular velocity, and the current, as compared to the
second model (D2), where the impact of the input on degradation had notably increased
compared to the effects of the states that had decreased. This difference can be observed by
comparing the coefficient matrices in Equations (32d) and (32e). Consequently, the LQDR
needed to rationally compensate for the degradation caused by changes in the system
states in the first model, in contrast to the second model, where the controller needed to
compensate for the degradation caused mainly by changes in the input. Thus, the same
controller structure needed to function in two distinct ways, based solely on the coefficients
computed in (14) for each system. This computation had to be performed automatically
using the proposed method, assuming that no information regarding the degradation
model within the system was available, and that the only available data were the historical
records of the system’s inputs, outputs, and maintenance times.

It should be noted here that these degradation models were only used to generate the
data from the simulation model and to test the efficiency of the proposed method. In reality,
regardless of the degradation model and working conditions, the mapping from system
state–actions to degradation cost is done based on the historical data recorded from the
same machine and using the optimization in (8).
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3.1.2. Degradation in the Closed-Loop System

Degradation is defined as a monotonic change in the signal(s) of the system [39]. The
degradation model can be identified through an analysis of the variations in the input
(u) and output (y) [18]. However, in reality, the slow variations in u and y are primarily
caused by changes in the system parameters (A, B, or C as referenced in (3)) resulting from
degradation. Thus, as the controller is in action and tries to maintain output as close as
possible to the desired output, the changes in the system parameters are interpreted as
changes in the input and output of the system. Over time, the deviation of the actual output
from the desired output becomes uncontrollable, due to the increasing deviation of the
system parameters from the nominal parameters for which the controller was originally
designed. This deviation continues to increase until it exceeds a threshold level of acceptable
output quality, at which point the system is deemed to have failed.

In this study, the root-mean-square error (RMSE) was designated as the preferred
metric for measuring output quality. Furthermore, a deviation threshold of 10% was
considered the maximum allowable difference between actual and desired outputs. Three
different desired outputs (angular velocity) were considered for the system. These three
desired outputs were 1, 2, and 3, and it was assumed that the desired output was constant
over each cycle. This mimicked the situation where a machine produces three different
products, and each working cycle is the time that the machine takes to produce one product.
Thus, the RMSE of the output for cycle c is

RMSE(c) =

√
∑T

t=1(ω(t)− ωd(t))2

T
, (33)

where T is the required time for producing one product, and the failure criterion is

FT(c) =

{
False RMSE(c) ≤ 0.1 ωd(c)
True RMSE(c) ≥ 0.1 ωd(c)

, (34)

where ωd(c) is the desired angular velocity for cycle c, which is considered constant during
each working cycle. Considering three different outputs, the failure thresholds will be
RMSE(c) ≥ 0.1, 0.2, and 0.3 for output equal to 1, 2, and 3, respectively. The deviation
threshold for R is considered to be 0.15 ohms.

FR =

{
False if Rm(c) ≥ 0.15
True if Rm(c) < 0.15

. (35)

This meant that regardless of the failure based on RMSE(c), the simulation stopped if
the motor resistance decreased to less than 0.15 ohms according to (32f).

3.2. Validation

To validate the result, a visual representation of state–action costs will be presented.
The state–action cost map (SACM) enumerates all possible combinations of the system
states (discretized within their operational limits) along the y-axis and the potential system
inputs along the x-axis. This approach visualizes the cost associated with each state–action
pair, as dictated by the cost function. This will provide the ground for comparison of the
control quality of different controllers. Generation of the combination of the states for the
y-axis can differ according to the order in which the states are used for the generation of all
combinations, but this will not affect the result. The method used for this article employs a
system with two states, x1 and x2:

X = {(x1
1, x2

1)︸ ︷︷ ︸
X0

, (x1
1, x2

2)︸ ︷︷ ︸
X1

, · · · , (x1
I , x2

J−1)︸ ︷︷ ︸
Xn−1

, (x1
I , x2

J )︸ ︷︷ ︸
Xn

}, (36a)
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U = {u1, u2, . . . , um}, (36b)

where I is the number of quantized levels for x1, J is the number of quantized levels for
x2, n is the number of possible unique states (all combinations of x1 and x2), and m is the
number of quantized levels for u. The value of each point in the SACM is the normalized
cost of that state–action combination computed according to (4).

The SACM is, eventually, a single map,

J(X, U) =∥ e(X) ∥2
Q1

+ ∥ U ∥2
Q2

+ ∥ f (X, U) ∥2
Q3

(37)

that shows the total cost of each state–action of the system.

4. Results

The response of the LQR when subjected to a step input of magnitude three, with the
accompanying degradation that it imposed on the system, is depicted in Figure 2. Choosing
a step size of three, rather than one or two, enhanced the clarity when comparing the
actions of the controller. This increased clarity came from the fact that a step size of three
resulted in a more significant degradation of the system than step sizes of one or two. As
a result, it became simpler to observe and assess the performance of the control method.
Therefore, unless specified otherwise, the step response will be referred to as “step size
of three”.

Figure 2. LQR step responses.

The degradation curve in Figure 2 shows the effect of different system states or inputs on
the degradation. The curves depict the parameter Dj described in Equations (32d) and (32e).
The results show that the first degradation model was highly sensitive to variations in the
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system states, current, and angular velocity, as compared to the second degradation model,
which was more influenced by the system input, that is, the voltage. Furthermore, the
second degradation model exhibited significantly greater degradation of the system than
the first degradation model.

In the next step, the degradation models mentioned in (32) were applied to (31), and
data were recorded from the degrading machine.

These data were then used to calculate Wx and Wu, using (8) and (14). In the next step,
the linear–quadratic degradation control feedback mentioned in (16) was implemented
for both degradation models mentioned in (31). Following the development of the LQDR
controller, the production sequences for products 1, 2, and 3 were subjected to simulation,
using a machine model that degraded over time, which was controlled by the LQDR
algorithm. This simulation process continued until the occurrence of a failure, defined
by the criteria outlined in Equations (34) or (35). The outcomes of these run-to-failure
simulations, conducted for both the LQR and the LQDR controllers, are analyzed and
compared in the subsequent sections.

4.1. Controlling the First Degradation Model

Figure 3 displays the comparative responses of the LQR and the LQDR to the first
degradation model. All the simulations in this section were conducted with fixed values of
Q1 equal to 1 and Q2 equal to 2. In the case of the LQDR simulations, the value of Q3 was
held constant at 12×2.

Figure 3. Step response of LQR vs. LQDR for step = three.

The difference between the control strategies is evident in the top three plots of
Figure 3. As anticipated, penalizing the controller for system degradation led to an increase
in input usage, as changes in the input voltage resulted in a lower degradation rate than
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variations in the angular velocity and current. Consequently, the controller swiftly injected
more voltage at the outset, even though this action may have initially exacerbated the ma-
chine’s degradation. Nonetheless, this course of action ultimately decreased the cumulative
change in the system states over time, leading to a reduction in system degradation in the
long term. This outcome can be seen in the bottom plot of Figure 3, which displays the
degradation (D1 from (32d)) experienced by both control strategies. It is apparent that the
LQDR imposed less degradation on the system. This can be corroborated by Figure 4a,
which shows the degradation of the motor resistance over time using the LQR and the
LQDR. Figure 4a provides a visual representation of how the motor resistance deteriorated
when controlled by both the LQR and the LQDR controllers. The simulation process for
the machine, emphasizing its degradation, was carried out until it hit a failure threshold
as defined in either (34) or (35). The findings from these simulations reveal a significant
difference in durability between the two control strategies. Specifically, the LQR controller
led to the machine reaching its failure point after merely 327 cycles. In contrast, the LQDR
controller demonstrated a considerable improvement in longevity, enabling the machine to
continue operating up to the 1521st cycle before succumbing to the failure criteria.

(a) (b)

(c)

Figure 4. LQDR vs. LQR: (a) Degradation of the motor resistance LQR vs. LQDR. (b) RMSE of LQR
vs. LQDR. (c) Outputs of LQR vs. LQDR.
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It is evident that the LQDR effectively protected the motor resistance from degradation.
Figure 4a illustrates that after 327 cycles the motor resistance lost only a fraction of its
nominal value (less than 20%) while employing the LQDR. In contrast, when employing
the LQR, the motor resistance lost half of its nominal value over the same number of cycles.
Furthermore, the data demonstrate that the LQDR-controlled motor lost the same amount
of resistance that the LQR-controlled motor lost during 327 cycles but took 890 cycles to do
so. Additionally, the LQDR effectively controlled the motor until the resistance reached
the lowest permissible value, as outlined in (35) (i.e., 0.15 ohms). Conversely, the LQR lost
control even when the motor resistance was still half of its nominal value. The evidence of
this failure is demonstrated in Figure 4b.

The RMSE of the output was analyzed for both the LQR and the LQDR and is presented
in Figure 4b. As mentioned, three desired outputs were considered for simulation. Each
curve in Figure 4b represents the RMSE of the output for desired outputs of 1, 2, and 3,
respectively, for both the LQR and the LQDR. The lower lines on the graphs indicate the
output RMSE for a desired output of 1; the thick middle lines represent the RMSE of the
outputs for a desired output of 2, and the top lines indicate the RMSE of the desired outputs
equal to 3.

It can be seen that motor-resistance degradation affected the output error of the LQR
exponentially compared to the LQDR, which increased linearly. After 327 cycles, the
RMSE of the output for the LQR exceeded the threshold. Specifically, the lower blue line,
representing the output RMSE for a desired output of 1, surpassed the failure threshold of
0.1, as defined in (34). However, at the same number of cycles, the RMSE for the output of
the LQDR was considerably lower, which coincided with the reduction of the degradation
in the motor resistance. Finally, it should be noted that unlike the LQR, which lost control
after 327 cycles, the LQDR continued to operate until the maximum possible time when
the resistance of the motor dropped below 0.15 ohms and the simulation stopped.

Figure 4c shows the unit step responses of the LQR and the LQDR at their final cycles
prior to failure. By comparing the last operational cycle of both controllers, the impact of
degradation on their responses can be discerned. Notably, the LQR controller demonstrated
significantly lower resistance to internal parameter changes resulting from degradation
than the LQDR. Specifically, the stability of the LQR was lost after 327 cycles, whereas
the LQDR maintained stability even after 1521 cycles. To further illustrate this point, the
response of the LQDR at cycle 327, during which the LQR failed, is plotted, highlighting
the stable and accurate nature of the LQDR response. Based on the findings presented
in this section, it can be concluded that the LQDR rather than the LQR provides better
control quality in the face of changing system parameters due to degradation. Moreover,
the LQDR’s ability to control machine degradation offers several distinct advantages.

4.2. Controlling the Second Degradation Model

For this section, the same methodology used in the previous section was employed to
design a controller for a system undergoing degradation according to a second degradation
model. As previously noted, the second model demonstrated that changes in voltage have
a considerably greater impact on system degradation compared to the first model, as
illustrated in the bottom plot of Figure 2. Consequently, compensating for this degradation
should result in a substantial increase in system lifetime. Figure 5 shows the step response
of the LQDR designed for the system degrading according to the second degradation model.
Notably, optimizations in (8) and (14) effectively accounted for the impact of the system
states and input on degradation, as demonstrated in the third plot of Figure 5, where the
rate of change in the input voltage in the LQDR has decreased compared to the LQR. This
was due to the recognition of voltage changes as the parameter with the most significant
effect on system degradation. As shown in the bottom plot of Figure 5, degradation in the
system significantly decreased in the LQDR compared to the LQR.

Figure 6a displays the degradation of motor resistance as affected by the second
degradation model. The graphs depict how many cycles the LQR and the LQDR controllers
were able to manage the machine before reaching a failure threshold, as outlined in (34)
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or (35). It is observed that the system experiencing the second degradation model had a
comparatively shorter lifespan than the system subjected to the first degradation model,
which was expected according to the degradation curves. Nonetheless, compensation for
more severe degradation would further enhance the system’s lifespan. This phenomenon
is evident in Figure 6a,b, where the implementation of the LQDR enabled the system to
operate for 2913 cycles by decreasing the motor resistance degradation and maintaining
the output error below an acceptable threshold.

Figure 6c depicts the unit step responses of the LQR and the LQDR for their respective
final operating cycles. Additionally, for comparative purposes, the response of the LQDR
during cycle 168, the cycle in which the LQR failed, is also presented. Notably, it is evident
that the LQDR for the second degradation model, similar to its performance in the first
degradation model, effectively managed the variations in the nominal system parameters
resulting from degradation while simultaneously mitigating degradation within the system.

Two points need to be addressed here regarding degradation control using the pro-
posed method. First, it has been previously noted that two degradation models were
developed to induce the controller to act in two opposed manners. Specifically, in the
first degradation model, the increased voltage over shorter periods of time resulted in
decreased degradation, while the opposite was true of the second model, where lower
input voltage over longer periods of time reduced degradation. As a result, the same
controller architecture with the optimal feedback introduced in (16) and utilizing the same
penalty matrix exhibited two entirely distinct modes of operation based on the working
conditions or the unique degradation model of the system, which was derived through
empirical analysis of historical data from the same system.

Figure 5. Step response of LQR vs. LQDR for step = three.
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(a) (b)

(c)

Figure 6. LQDR vs. LQR. (a) Degradation of the motor resistance LQR vs. the LQDR. (b) RMSE of
LQR vs. LQDR. (c) Outputs of LQR vs. LQDR.

Second, the present study revealed that the LQDR exhibited two distinct features when
compared to the conventional LQR. First, the LQDR demonstrated enhanced robustness
against variations in system parameters, resulting in better control quality. This observation
was supported by comparing the output error curves and unit step response curves before
and after the degradation. Second, the LQDR mitigated motor-resistance degradation without
explicit knowledge of the underlying degradation dynamics. This property is especially
advantageous in systems with many states, where the physical analysis and modeling of the
error may not be practically feasible while maintaining a high level of system reliability.

4.3. Validation Using SACM

Figure 7 provides additional insight into the control policy of the LQDR compared to
the LQR. The plots displayed in Figure 7 serve as an illustration of how the degradation
controller operates in response to the unique degradation of the system.

The procedure for generating the SACM was explained previously. The graph com-
prises two components: first, an underlying image that displays the cost (J(X, U)) intro-
duced in (37), and second, the state transition of the motor during the step response. The
underlying image shows the total cost, which is the summation of three terms of (37) for
every feasible state–action combination quantized with a precision of 0.1 over the entire
operational interval. A combination of states must be employed to accommodate all state
combinations in a single y-axis, implying that the distance between states in SACM does
not represent the actual distance in the real world. Additionally, lines between the circles
are drawn to indicate the sequence of states through which the system passes, and the
cost underlying the lines is not considered. Only the cost of the system states (the color
underlying the circles) is regarded as the cost of the system’s actions.

Figure 7a,b show the step responses of the LQR and the LQDR plotted on the normal-
ized SACM, which only includes the cost of the output error and input:
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J(X, U) =∥ e(X) ∥2
Q1

+ ∥ U ∥2
Q2

. (38)

It can be seen that the reason for the behavior of the LQDR, especially in the system
with the first degradation model shown in Figure 7a, is not clear.

On the other hand, Figure 7c,d show the same responses, this time plotted on top of
the cost function that includes the degradation term,

J(X, U) =∥ e(X) ∥2
Q1

+ ∥ U ∥2
Q2

+ ∥ f (X, U) ∥2
Q3

. (39)

As can be seen in Figure 7c, the LQR response, represented by the blue curve, did not
incorporate the degradation cost pattern into its behavior. In contrast, the LQDR response,
depicted by the red curve, initially entered a high-cost region before swiftly transitioning
to a prolonged period of low-cost operation, resulting in a greater proportion of time spent
in a very low-cost region compared to the LQR response. Ultimately, the duration of time
spent in the very low-cost region by the system will compensate for the duration of time
spent in the high-cost region. This can also be seen in the bottom graph of Figure 3.

The operation is more clear in Figure 7d. It can be seen that the underlying cost
map is different from the first model, due to the difference in the degradation models.
Moreover, the elimination of costs is more transparent when comparing the results depicted
in Figure 7b. Note that the LQDR exhibited an improved awareness of the degradation
cost included in the cost function and tried to remain in the low-cost region for as long as
possible. Consequently, the level of degradation in the system diminished, leading to an
increase in the system lifespan compared to the LQR.

(a) (b)

(c) (d)

Figure 7. Step responses of LQR vs. LQDR: (a) Step response plotted on the SACM without degra-
dation awareness for deg. model 1. (b) Step response plotted on the SACM without degradation
awareness for deg. model 2. (c) Step response plotted on the SACM with degradation awareness for
deg. model 1. (d) Step response plotted on the SACM with degradation awareness for deg. model 2.
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5. Discussion

The summarized results from this section are presented in Table 1. Notably, the overall
enhancement of system reliability is closely tied to the penalty matrices, and the findings
discussed here are grounded in the specific penalty matrices used.

Table 1. Reliability improvement summary.

MTTF (Cycle) Deg. Rate (Ohm/Cycle)

LQR LQDR LQR LQDR

Deg. model 1 327 1521 0.03 0.01
Deg. model 2 168 2913 0.06 0.007

Applying the LQDR led to observable improvements in system reliability across all
criteria (control quality, RMSE, and MTTF). By reducing the degradation inflicted on the
system, the LQDR effectively extended the system’s lifespan. Additionally, there was a
significant reduction in the degradation rate in both instances examined.

The primary objective of the proposed approach is to control the system based on the
empirical identification of degradation models. The empirical estimation of degradation
cost has been demonstrated to offer significant advantages. Not only does it reduce the ex-
penses associated with physically modeling the degradation, but it also produces outcomes
that are physically interpretable and can be employed to control degradation.

The second aspect to be taken into account when designing this controller is the trade-
off between control quality and degradation control. The addition of a new criterion to
the optimization process will inevitably impact the final response. Therefore, the degree of
degradation control must be calibrated based on the limits of the system error, or input can
be increased. For instance, to assess the control quality of the system, a comparison of step
functions between Figures 4c and 6c can be made. Depending on the system type, such as
drones or autonomous cars, it may be acceptable to trade off settling time for longer motor
life. However, such trade-offs may not be acceptable for rolling mills where the output
quality is critical. Thus, this compromise is very system-dependent and should be studied
in detail before using the degradation control.

Another advantage of the proposed method is that not only the SoH but also the
cost of other desired parameters, such as spare-parts prices, delivery delay, electricity bill,
etc., can be calculated and included in the system control policy. Although the controller
response considering all of these costs might not be acceptable, the availability of such
information can facilitate the enhancement of designs towards more sustainable production
or optimization of production and maintenance planning.

Finally, it is worth noting that the main limitation of this approach lies in the reliance
on degradation control quality, on the unsmoothness of the degradation model, and on the
available data processing capacity. This constraint arises due to the necessity of adopting
a linear structure for f , as mentioned in (13), in order to achieve a closed-form infinite
horizon feedback. In situations where the actual degradation model exhibits unsmooth
and nonlinear characteristics, this assumption adversely impacts the quality of degradation
control. Nevertheless, the accessibility of closed-form infinite horizon feedback offers
the opportunity to compute multiple linear feedback for distinct operational intervals by
treating the degradation model as piecewise linear. Thus, while this computation of diverse
feedback mitigates the issue of nonlinearity, it introduces additional complexity to the
system and demands a higher data-processing capacity.

The next phase of this research will focus on extending its application to other control
strategies, such as finite-horizon control, which allows for the inclusion of greater nonlin-
earity in the system model. Additionally, integrating the SAC and degradation control
mechanisms with PID control will be advantageous, given the widespread use of PID
controllers in the industry.
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6. Conclusions

This study introduces an innovative approach for managing degradation, thereby
significantly enhancing system availability by controlling the reliability through controlling
the degradation. A profound awareness of the implications of decisions and actions is
instilled in the controller through the development of the control mechanism. An opti-
mization technique that relies on historical data, rather than a specific system structure or
degradation model, is employed, leading to the successful implementation of the empirical
estimation of the SAC. This approach allows for the optimization of control actions aimed
at managing degradation, with the costs of actions being directly incorporated into the
feedback loop. The simulations clearly show that taking the costs of decisions into account,
especially in terms of the SoH, significantly enhances the system’s availability, which is
proportional to production reliability.

The foundation of the method lies in its unique independence from predefined sys-
tem structures or degradation models, focusing instead on the empirical insights drawn
from historical performance data. This independence allows for a flexible and adaptable
approach to degradation control, capable of accommodating a wide variety of system types
and operational conditions. Cost considerations are integrated into every aspect of the
control strategy, ensuring that decisions are made with a comprehensive understanding of
their potential impact on system health and longevity. The applicability across different
contexts and the precision of degradation estimation and control are significantly improved
by the empirical basis of the approach.

Finally, the results highlight the significant benefits of a cost-aware controller, which
effectively extends the system’s lifespan through strategic degradation management. The
simulations showed that a cost-aware controller could reduce the degradation rate from 0.03
to 0.01 in the first model and from 0.06 to 0.007 in the second. Moreover, this improved con-
trol over the degrading system significantly increased the motor’s operational life by about
5 times for the first degradation model and 17 times for the second model, respectively.

This advancement in control strategy represents a pivotal shift towards more sus-
tainable and efficient system management, promising considerable benefits in terms of
maintenance costs, system reliability, and overall performance. Looking ahead, the impli-
cations of this research open new horizons for exploring degradation control strategies
that are both dynamic and predictive, paving the way for future innovations in system
maintenance and reliability engineering.
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Abbreviations

List of Abbreviations
Abbreviation Meaning
LQDR linear–quadratic degradation controller
LQR linear–quadratic regulator
MTTF mean time to failure
PID proportional–integral–derivative
PPC production planning and control
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RMSE root-mean-square error
RUL remaining useful life
SAC state—action cost
SACM state—action cost map
SoC state of charge
SoH state of health
List of Symbols
Symbol Description
y measured output signal
u control input
z controlled variable
r reference signal
v1, v2 measurement error, variations in the system
e error signal
Q1, Q2, Q3 error, input signal, and degradation penalties
J optimization cost function
f degradation function
x system state(s)
A, B system’s parameters
C output gain matrix
N process noise matrix
M control parameter(s) matrix
Ψ state–action cost vector
ψ state–action cost
n number of all possible (combinations of) system states
m the number of all possible (combinations of) system actions
k number of all possible system state–action combinations
L vector of feedback coefficient
S solution to the Riccati equation
Wx effect of states on the degradation
Wu effect of inputs on the degradation
U21, U11 Schur vectors
im motor current
ωm motor angular velocity
Rm motor resistance
Lm motor inductance
ke motor back-emf
kt motor torque constant
Jm motor inertia
fm friction coefficient
v motor input voltage
I identity matrix
Di, Dω , Dv effect of current, angular velocity, and input voltage on degradation
D1, D2 degradation models
T required time for producing one product
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