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Abstract: The problem of the interferometric phase unwrapping in radar remote sensing of Earth
systems is considered. Such interferograms are widely used in the problems of creating and updating
maps of the relief of the Earth’s surface in geodesy, cartography, environmental monitoring, geological,
hydrological and glaciological studies, and for monitoring transport communications. Modern radar
systems have ultra-high spatial resolution and a wide band, which leads to the need to unwrap large
interferograms from several tens of millions of elements. The implementation of calculations by these
methods requires a processing time of several days. In this paper, an effective method for equalizing
the inverse vortex field for phase unwrapping is proposed, which allows solving a problem with
quasi-linear computational complexity depending on the interferogram size and the number of
singular points on it. To implement the method, a parallel algorithm for solving the problem on a
multi-core processor using OpenMP technology was developed. Numerical experiments on radar
data models were carried out to investigate the effectiveness of the algorithm depending on the size
of the source data, the density of singular points and the number of processor cores.

Keywords: remote sensing of the Earth; interferometric synthetic aperture radar systems; phase
unwrapping problem; parallel algorithm; OpenMP technology

MSC: 65Y05; 78A55

1. Introduction

Space radar interferometry (SAR interferometry, InSAR, [1–4]) consists in the joint pro-
cessing of phase fields obtained by shooting the same area simultaneously with two antenna
systems or one antenna on two orbits. Radar satellite imagery in interferometric modes
is implemented by modern spacecraft of the appropriate class (TerraSAR-X/TanDEM-X,
Cosmo-SkyMed, SARlupe, Sentinel-1A/B, “Condor-FKA”, YaoGan, ICEYE, Capella Space,
etc.). Interferometric processing algorithms are an integral part of most widely used soft-
ware packages for processing Earth remote sensing data (ENVI SARSCAPE, PHOTOMOD
RADAR, Imagine IFSAR DEM, ESA SNAP, etc.).

Interferometric processing includes several stages of the conversion of radar infor-
mation. The main stages are interferogram generation, phase noise filtration and phase
unwrapping, which eliminates the ambiguity in phase measurements. The flowchart of the
whole processing is shown in Figure 1. The initial data for the interferometric survey of the
Earth’s surface are two complex radar images obtained by a synthesized aperture radar
from two parallel orbits located at a short distance (up to several km for space photography)
from each other (Figure 2).
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Figure 1. The radar remote sensing data interferometric processing flowchart for obtaining the digital
elevation models of the Earth’s surface.

Figure 2. Geometry of radar interferometric survey: P1 and P2 are positions of the X-ray carrier
(centers of synthesized apertures) during observations of the surface element, R1,m,n and R2,m,n are
the slant ranges, R⊕ is the Earth radius, B1,2 is the interferometric baseline, θ0 is the incidence angle
of the antenna beam, H⊕ and H are the height of the carrier orbit above the Earth’s surface and
the height reduced to the geometry of the “flat Earth” for the first observation: (A) vertical plane;
(B) spatial disposition.

The mathematical description of the interferogram in discrete coordinates (m, n) in-
cludes the following components:

• The topographic phase Ψm,n due to the terrain;
• The phase ∆Dm,n caused by a change in the inclined range due to the displacement of

the surface element between shots;
• The phase ∆ϕmath,m,n caused by a change in the conditions of propagation of radio

waves in the atmosphere during the period between surveys [1,2];
• Phase noise ∆ϕnoise,m,n caused by a partial loss of coherence of reflected waves due to

differences in shooting angles and surface variability during the time between shots
during two-pass shooting (spatial and temporal decorrelation).

As a result, the interferometric phase has the following form [1,4]:

∆ϕm,n ≈ W
{
−Ψm,n −

4π

λ
∆Dm,n + ∆ϕatm,m,n + ∆ϕnoise,m,n

}
Ψm,n =

4π

λ
∆Rm,n =

4π

λ
(R1,m,n − R2,m,n),

(1)

where m, n are the coordinates of the interferogram elements, ∆Rm,n is the difference of the
minimum (traverse) inclined ranges from the radar to the surface element during the first
and second surveys, λ is the radar wavelength, and W{·} is the symbolic record of phase
wrapping into the range of values [−π, π).

The purpose of interferometric processing is to restore the absolute phase Ψ̂m,n by
performing the phase unwrapping operation, which implies disclosure of 2π-ambiguity
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of phase measurements, and suppressing the noise component ∆ϕnoise,m,n. The main
problems that have to be overcome with interferometric processing, first of all, include the
decorrelation of reflected signals and the complexity of phase unwrapping, especially when
processing high-resolution radar data containing a large number of phase discontinuity
areas (primarily when imaging urban areas, i.e., buildings and structures).

The beginning of research in the field of phase unwrapping can be attributed to
the second half of the 1970s. The research was related to the cepstral processing of one-
dimensional and two-dimensional signals obtained from astronomical measurements.
The first practical results in the field of space radar interferometry were demonstrated
in the second half of the 1980s. The development of radar space technologies for remote
sensing of the Earth for terrain mapping in the 1980s and 1990s. This led to the development
of dozens of new algorithms for the phase unwrapping. The problem of phase unwrapping
does not have an unambiguous analytical solution and in practice is solved by approximate
methods. The algorithms were developed using the mathematical apparatus of vector
field theory (Goldstein Residual Cut method and Green’s function method), optimization
theory (integer optimization method and minimum cost flow method [5,6]), filtration
theory (Kalman filtration method, nonlinear stochastic filtration method, etc.), solving large
systems of linear equations (least squares method), genetic algorithms, neural networks,
deep learning techniques, like wrap counting, phase regression, gradient information
fusion, etc. [7–10]. The reviews [1,4,7,11] mention more than 50 different phase unwrapping
algorithms. Parallel computing is also actual in the area of the phase unwrapping [12].

In the works [1,6], it is indicated that in the mathematical formulation, the task of
phase unwrapping is NP-difficult. This significantly complicates the interferometric pro-
cessing of large images (more than two thousand elements on each side) containing a
large number of phase discontinuities (singularities). Many unwrapping algorithms (in
particular, the region growing algorithm) are linear in terms of computational complexity,
but they leave extensive artifacts. This leads to a deterioration in the accuracy of digital
terrain models up to values comparable to the relief approximation by an equivalent plane.
The most common algorithm for solving this problem is the minimum cost flow algorithm.
It allows one to obtain a solution to the problem that is close to optimal.

Note that most of the unwrapping methods with acceptable accuracy (the minimum
flow cost method [6], the brunch-cut method, etc.) have at least quadratic computational
complexity, which makes their parallel implementation ineffective or impossible. Methods
that allow parallel implementation (the least squares method, Green’s functions, etc.) have
insufficient accuracy for practical application. For example, in the works of Aoki [13],
Tomioka [14,15], an algorithm suitable for parallel implementation and having linear
computational complexity is proposed. This algorithm uses the direct elimination of
discontinuity points with the addition of a vortex shape δϕ̄ to the interferogram of the
following form:

δϕ̄ = ± arctg

{
m − m0/p

n − n0/p

}
, (2)

where m0/p, n0/p are the coordinates of the singular point where the center of the vortex
is placed. After this elimination of discontinuities, the absolute phase is restored using
the phase gradient summation. However, this approach leads to an incongruent solution,
and in some of the cases, does not allow to obtain a correct solution due to the appearance
of residual phase discontinuities.

In the works [16,17], the sequential inverse vortex phase field algorithm and its block
implementation were proposed.

In this paper, we propose a new parallel phase unwrapping algorithm, which uses
the direct elimination of singular points using a similar model (2). The advantages and
novelty of the proposed method of inverse vortex phase field flattening lie in the possibility
of its parallel implementation. The algorithm uses recursive alignment of the inverse
vortex field and low-frequency filtering, which makes it possible to obtain a congruent
solution and significantly reduces phase unwrapping errors. The proposed algorithm
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solves the problem of phase unwrapping in quasi-linear time and allows the parallelization
of calculations. The algorithm is implemented on a multicore processor using OpenMP
technology. The properties and characteristics of real interferometric SAR data are in-
vestigated. The interferogram models with the appropriate characteristics for efficiency
investigation are proposed. Computational experiments are carried out on the proposed
models. The efficiency of the algorithm is investigated depending on the dimension of the
source data and the number of processor cores.

Section 2 of this article describes the properties and characteristics of the source data.
In Section 3, a numerical method for solving the phase unwrapping problem (the IVPF
method) is proposed, which approximately solves the unwrapping problem in quasi-linear
time. A block diagram of the numerical method is given. In Section 4, a parallel phase
unwrapping algorithm is developed and described based on the numerical method of
solving the problem. Section 5 presents the results of numerical experiments to evaluate
the effectiveness of the algorithm when implemented on a multicore processor using
OpenMP technology.

2. Source Data for the Problem

Interferograms of space radar systems for the remote sensing of the Earth are two-
dimensional random processes (images), the characteristic feature of which is interference
fringes. The fringe boundaries correspond to the breakout of phase differences by 2π value
(or to a change in the difference distance by 4π∆R/λ value) and depend on the geometric
characteristics of the system and the terrain. Examples of interferograms of the ALOS
PALSAR spacecraft are shown in Figure 3).

Figure 3. Interferograms of the ALOS PALSAR radar of a section of the Earth’s surface under
various imaging modes: (A) HH–polarization, B⊥ = 3500 m; (B) HV–polarization, B⊥= 3500 m;
(C) HH–polarization, B⊥= 500 m.

Phase unwrapping is the main stage of interferometric processing of Earth radar
sensing data. As a result of its execution, the resulting phase pattern begins to repeat the
shape of the relief of the surface area from which the radar signal was received. When
the phase is unwrapped, the interference fringes of the relative phase ∆ϕm,n are “stitched”
into the picture of the absolute phase Ψ̂m,n (Figure 4). The main approach to solving
this problem is to sum the phase gradient along a trajectory covering all the elements of
the interferogram:

δϕm,n = W
{

∆ϕm,n − ∆ϕm−mi ,n−nj

}
,

Ψm,n = δϕm,n + δϕm−i,n−j,
(3)
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Figure 4. Phase unwrapping: (A) interferogram, (B) absolute (unwrapped) phase.

The result of such unwrapping will be correct only if there are no phase gaps in
the interferogram. A phase gap, as a rule, is a certain line on an arbitrary trajectory.
In the presence of the gap area, the unwrapping results depend on the direction of phase
differences summation δϕm,n [4]. The gap is bordered by singular points (phase gap points),
where the condition of equality of the sum of phase differences on an elementary closed
contour is violated

Qm,n = W{∆ϕm,n − ∆ϕm−1,n}+ W{∆ϕm−1,n − ∆ϕm−1,n−1}+
+W{∆ϕm−1,n−1 − ∆ϕm,n−1}+ W{∆ϕm−1,n − ∆ϕm,n},

(4)

where Qm,n is a residue function, which is other than zero at the interferogram singular
points and calculated according to rules similar to the rules for calculating the deductions
of functions of a complex variable. The singular points occur on the interferogram, as a rule,
in pairs. An error occurs when crossing the line connecting them when unwrapping accord-
ing to the rule (3). The error lies in the appearance or omission of one interference band
(Figure 5). The absolute phase in such a situation, in principle, cannot be unambiguously
restored [1,4].

Figure 5. The error of the phase unwrapping (artifact) during the passage of the phase gap: (A) the
initial interferogram (the red circles show the phase growth directions); (B) the unwrapping of the
interferogram about the rule (3) in the horizontal direction; (C) the unwrapping of the interferogram
about the rule (3) in the vertical direction (arrows show the boundaries of the artifact expressed in
“extra” interference fringe).

Effective phase unwrapping algorithms should form a solution to the unwrapping
problem in which phase unwrapping artifacts are localized in the smallest possible neigh-
borhood of the phase gap area. In the next section, we propose a method for equalizing the
inverse vortex phase field (IVPF), which allows us to localize artifacts in the vicinity of the
rupture, and at the same time has quasi-linear accuracy.
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3. Numerical Method for Problem Solving

The proposed sequential method of equalization of the inverse vortex field of the
phase is based on the direct elimination of interferogram discontinuities by artificial dis-
continuities (elementary phase vortices) of the inverse direction [16]. A set of artificial
discontinuities forms an inverse vortex field of the phase. Next, the recursive alignment of
this field and its adaptive filtering are performed.

The interferogram in the description of the method is described as an argument to
a function of a complex variable İ(z) = exp{δϕm,n}|z=m+jn. The continuity of the phase
can be restored if a zero of the complex variable q of the order is artificially placed at each
singular point of the interferogram q of the positive sign, and a pole of the complex variable
q of the order is placed at the singular point with a negative sign. In this case, the inverse
vortex field of the interferogram phase has the form

Ċ∗(z) = exp

(
j · arg

{
(z − zp1)

qp1(z − zp2)
qp2 · · · (z − zpµ)

qpµ

(z − z01)q01(z − z02)q01 · · · (z − z0u)q0ν

})
, (5)

where µ, ν are the numbers of the interferogram singular points of the positive and negative
signs, respectively; qpi is the order of the i-th pole; and q0j is the order of the j-th zero.
Multiplication of the complex interferogram İ(z) by the inverse vortex field Ċ∗(z) should
lead to the disappearance of singular points and the formation of a discontinuous relative
phase. After that, the final unwrapping could be performed by summing the differences
along any trajectory on the interferogram. The differences should be collapsed into a phase
ambiguity interval [−π, π). So, the absolute phase Ψ̃m,n (see Figure 6) is as follows:

Ψ̃m,n = Υr

{
arg{ İ(z) · Ċ∗(z)}

∣∣
z=m+jn

}
, (6)

where Υr{·} is the symbolic designation of the unwrapping according to the rule (3) of
summing the differences of neighboring interferogram elements.

Figure 6. Unwrapping of the interferogram using the built-in vortex field of the phase: (A) the initial
interferogram; (B) the phase of the product of the initial interferogram and the inverse vortex field;
(C) the unwrapped interferogram.

However, due to the discrete nature of the interferogram and the quantization of phase
values, after such multiplication, new singular points may appear or move to new positions.
To compensate for them, it is proposed to calculate the deduction function QII

m,n again,
form a new inverse vortex field ĊII(z) and re-apply multiplication to a new vortex field.
The procedure for such formation of the inverse phase field vortex is carried out iteratively
until all phase discontinuities are completely eliminated.

The final inverse vortex field of the phase C∗∗(z) will be the product of the inverse vor-
tex fields obtained in separate iterations of the algorithm and will have the following form:

Ċ∗∗(z) = ĊI(z) · ĊII(z) · ĊIII(z) · ... · ĊKItrs(z), (7)
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where ĊI(z), ĊII(z), ... are the inverse vortex fields obtained in the first, second and subse-
quent iterations of the algorithm, and KItrs is the number of iterations. Next, the absolute
phase is formed according to the rule (6).

In order to increase the accuracy of the absolute phase and restore small relief details,
it is proposed in this work to restore the congruence of the absolute phase by adding a
residual interferogram (residual phase):

İδ(z) = İ(z)/ejΨ̃m,n
∣∣
z=m+jn = − arg Ċ∗∗(z) (8)

to the continuous absolute phase Ψ̃m,n

Ψ̂m,n = Ψ̃m,n + arg
{

İδ(z)
∣∣
z=m+jn

}
. (9)

However, for interferograms of areas with rough terrain, a large number of extended
phase discontinuities occur, the lines of which will be located randomly on the residual
interferogram arg{ İδ(z)}. This leads to a number of problems that reduce the accuracy
of the obtained result (low-frequency fluctuations, etc.). To overcome these problems, it
is proposed to align the vortex field of the interferogram in such a way that the phase
discontinuity lines have a minimum length. For this purpose, the recursive formation of
the residual interferogram is used, which is carried out as follows.

After the first iteration of constructing the inverse vortex field according to the
rules (5) and (6) using a two-dimensional low-pass Gaussian filter, the low-frequency
component of the phase of the resulting inverse vortex field ĖIr.1(z) is allocated. As a rule,
it also contains gaps. For this component, the inverse vortex field ĊIr.2(z) is constructed
again, from which the low-frequency component is again isolated. In this case, the cutoff
frequency of the amplitude–frequency response (frequency response) Fi of the filter is set
several times lower than in the previous step. The recursive descent with a gradual de-
crease in the frequency of the frequency response of the filter continues until a continuous
interferogram is obtained:

ĊIr.1(z) = Υv{ İ(z)}
ĖIr.1(z) = Ωγ1{ĊIr.1(z)}
ĊIr.2(z) = Υv{ĖIr.1(z)}
ĖIr.2(z) = Ωγ2{ĊIr.2(z)}
...
ĖIr.KI−Rc(z) = ΩγKI−Rc{CIr.KI−Rc−1(z)},

(10)

where Υv{·} is the symbolic designation of the construction of an inverse vortex field in
accordance with the Formula (6); Ωγi{·} is the symbolic designation of low-frequency
Gaussian filtering with a cutoff frequency filter frequency response Fi; ĊIr.i(z) are inverse
vortex fields after i-x recursion steps, ĊIr.1(z) = ĊI(z), ĖIr.1(z) are low-frequency com-
ponents of inverse vortex fields, KI−Rc is the depth of recursive descent at the I iteration.
From these vortex fields, the inverse vortex field of the first iteration of the algorithm
is formed

ĊI-Rc(z) =
ĊIr.1(z)
ĖIr.1(z)

· ĊIr.2(z)
ĖIr.2(z)

· ... · 1
ĖIr.KI-Rc(z)

. (11)

Similarly, an inverse vortex field is constructed in the following iterations of the
algorithm. The absolute phase is calculated according to the rule (9). When calculating the
residual interferogram, the product of the inverse vortex fields at all recursive transitions
is used

Ċ(z) = ĊI-Rc(z)ĊII-Rc(z)...ĊN-Rc(z). (12)

As a result of the application of recursive processing, the inverse vortex field has a
noticeably lower level of low-frequency fluctuations (Figure 7A,B). This leads to a significant
reduction in phase unwrapping errors.



Mathematics 2024, 12, 727 8 of 16

The proposed method of phase unwrapping based on the alignment of the inverse
vortex field of the phase (IVPF method) is implemented as an algorithm. The steps of the
algorithm are as follows:

(0) Initialization of input data and parameters: interferogram İ(z) and frequency response
of the filter FS.

(1) Detection of singular points (calculation of the interferogram residue function Qm,n
using Formula (4) and counting their number µ + ν. If µ + ν = 0, then go to step 6.

(2) Calculation of the inverse vortex field Ċ(z) by the Formula (5).
(3) Filtering of the field Ċ(z), obtaining a smoothed inverse vortex field Ė(z) using the

Formula (10).
(4) Calculation of the number of singular points of the smoothed inverse vortex field

µE + νE. If µE + νE = 0, then we accept the inverse vortex field Ċ(z) equal to the
smoothed Ė(z). Otherwise, we return to step 0 with the input arguments FS/4,
İ(z)Ċ(z)/Ė(z) → İ(z).

(5) Calculation of the continuous absolute phase according to Formula (6) and the residual
interferogram according to Formula (8).

(6) Calculation of the unwrapped interferogram according to Formula (9).

The calculations in step 2 (“unwrap3” sub-algorithm) are the most time-consuming
and take up most of the time of the entire algorithm.

Figure 7. Inverse vortex field of the ALOS PALSAR interferogram: (A) with alignment using two
passes according to the rules (5) and (6); (B) with recursive alignment; (C) with recursive alignment
and filtering with adaptive selected frequency response of the filter.

In Figure 8, a simplified block diagram of the unwrapping algorithm is presented.
The performance of the proposed algorithm was previously compared with widely

used phase unwrapping algorithms: minimum cost flow, Green’s functions and least
squares. These methods are most often used in specialized software (SARscape, PHO-
TOMOD RADAR, ESA SNAP, etc.). The results show that the proposed algorithm and
minimum cost flow are compared in accuracy for medium-sized interferograms. Green’s
functions and the Least squares algorithms are less accurate (20% using the root mean
square error criterion RMSE). For big-size interferograms, the proposed algorithm exceeds
the minimum cost flow algorithm (up to 15–20% in RMSE) due to its capability to process
the whole interferogram without decomposition.
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Figure 8. The simplified block diagram of the unwrapping algorithm.

4. Parallel Implementation of the Numerical Algorithm

The sub-algorithm for constructing an inverse vortex field can be implemented on
parallel computing devices since the operations of constructing elementary vortices for
individual discontinuity points are performed independently of each other, while the
discontinuity points can be traversed in any order. To process large-sized interferograms,
the authors proposed [17], a block implementation of the algorithm. It consists in dividing
the interferogram into small blocks, constructing an inverse vortex field separately and
independently for each block, which is implemented as follows.

The calculation of the inverse vortex field (for the “unwrap3” algorithm) is the most
computationally intensive procedure in the entire algorithm and takes up to 90% of its
operation time. So, it is reasonable to use parallel calculations for its implementation.
The parallel implementation of the “unwrap3” sub-algorithm was first proposed in [17] and
can be implemented on two levels. The results of the calculations of block and non-block
implementations are identical, which is not always achievable for other phase unwrapping
algorithms (i.e., the minimum cost flow algorithm).

At the first level, calculations are parallelized by singular points throughout the entire
interferogram. The operations of constructing elementary vortices when calculating the
inverse vortex phase field for individual singular points can be performed independently
of each other. In this case, the bypass of the singular points can be performed in any order
since the calculation operations are commutative and associative. Therefore, the “unwrap3”
subalgorithm can be implemented in parallel computing systems. When calculating the
vortex field over the entire interferogram, exchange operations between processors are
not required. This reduces the time required to perform field calculations on a multicore
processor, but a large amount of memory is required.

At the second level, to reduce the amount of memory when processing large interfero-
grams, it is proposed to use splitting the interferogram into small blocks B. To calculate the
field in each j block (Bj), it is required to use positions of singular points from all blocks Bi

(including cases when i = j), i, j = 1, KB, where KB is the number of blocks. In this case,
the construction of the inverse vortex field is implemented as follows.

1. The entire interferogram of size M × N pixels is divided into blocks B of small size
M∗ × N∗ pixels. The optimal block size is selected experimentally. On the one hand,
the block and auxiliary data must fit entirely into the system’s RAM. On the other hand,
increasing the number of blocks should not significantly slow down calculations.

2. In each i-th block (Bi), the residue function (4) is calculated, and the coordinates of the
singular points are determined (mik, nik) (Figure 9).

3. In each j-th block, the fragment of an elementary vortex J∗(z) of size 2M∗ × 2N∗ is
calculated, the break point of which is located in the upper left corner of the i-th block,
and the boundaries cover the j-th block. When calculating the inverse vortex field in
the j-th block from the singular point k with coordinates (mik, nik) lying in the i block,
a fragment of the elementary vortex J∗(z) of the size of M∗ × N∗ shifted by (mik, nik)
relative to the upper-left corner is read. The contents of the read fragment are added
to the previously calculated inverse vortex field.

4. Step 3 is repeated until all singular points in block Bi have been passed.
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5. Steps 3–4 are repeated until all pairs of blocks Bi − Bj have been processed.
6. The inverse vortex fields of size M∗ × N∗, calculated in all blocks Bj, are joined into a

united inverse vortex field of size M × N.

Figure 9. Calculation of the inverse vortex field of the phase with a block implementation of
the unfolding algorithm: (A) splitting the interferogram; (B) elementary vortex for block Bi and
calculation of a fragment of the inverse vortex field from the singular point k in block Bj.

The block implementation does not use approximations, allowing one to obtain the
same result in constructing an inverse vortex field as the original IVPF algorithm. It reduces
the memory requirements of computing devices since the size of an elementary vortex
when using it becomes equal to 2M∗ × 2N∗ (four times the block size). The speed of the
parallel implementation of the algorithm is proportional to the square of the number of
interferogram blocks.

5. Numerical Experiments for Interferogram Models and OpenMP Performance

In the works [1,4], a classification of interferometric phase discontinuities is pro-
posed, depending on the sources of origin and the forms of their manifestation on the
interferogram. To solve problems related to evaluating the performance of phase un-
wrapping algorithms, it is proposed to use the following models of interferograms with
phase discontinuities.

Data Models

A. A “rough surface” model is a flat surface with full or partial decorrelation of echo
signals. The model is described as follows:

Ψm,n = arg{Ẋ1,m,n · X∗
2,m,n}, (13)

where Ẋ1,m,n is a complex uncorrelated Gaussian discrete random process, and Ẋ2,m,n is a
complex Gaussian discrete random process having a correlation coefficient with the process
Ẋ1,m,n. It is obtained as follows:

X∗
2,m,n = ρẊ1,m,n +

√
1 − ρ2Ẋ20,m,n , (14)
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where Ẋ20,m,n is a complex uncorrelated Gaussian discrete random process. This process
is uncorrelated with the process Ẋ1,m,n. ρ = 0 corresponds to a complete decorrelation of
echo signals (phase noise, see Figure 10). ρ ∈ (0, 1) corresponds to a partial decorrelation.

The density of singular points in the full decorrelation case
µ + ν

NM
= 1/3 (Figure 11A).

As the correlation coefficient increases, the average density of singular points decreases
(Figure 11B).

Figure 10. The “rough surface” model: (A) interferogram; (B) interferogram fragment (the red boxes
illustrate the singular points location).

Figure 11. The densities of the singular points for the “rough surface” model: (A) a dependence of
the singular points density on the interferogram size; (B) a dependence of the singular points density
on the correlation coefficient ρ.

This model makes it possible to estimate the computational time of phase unwrapping
algorithms. It allows one to control the interferogram size and the number of singular points.
At the same time, the model does not allow estimating the accuracy of phase unwrapping.

B. A “random smooth surface” model in an equidistant projection. It represents a
random discrete low-frequency Gaussian field H(m′, n′) with an amplitude spectral density
of the form

Sk,l = exp

{
−1

2

[(
k − M/2

FS

)2
+

(
l − N/2

FS

)2
]}

, (15)

where N and M are interferogram sizes, k = 1..M and l = 1..N are the spectral density
sampling indices, and FS is the spectral density cutoff frequency (upper boundary frequency
of the process). The transformation of the model into an equidistant projection, typical for
side-view radars, is carried out as follows.
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At first, the ranges R(m′, n′) are calculated for each element of the model:

R(m′, n′) =
√
(HB − H(m′, n′))2 + (LB + n′)2, (16)

where HB is the height of the orbit; LB is the ground range from the satellite point to the
nearest edge of the model; and m′, n′ are pixel coordinates of the model elements before
conversion to an equidistant projection, where m′ is the line number, n′ is the column
number. Then, the coordinates of the model elements are converted so that the column
number corresponds to the number of the radar range channel, and the row number does
not change. So, we have

m = m′,

n = [
R1(m′, n′)− Rmin

δR
],

(17)

where Rmin is the minimum inclined range, and δR is the spatial resolution of the radar
along the inclined range. The absolute phase ∆Ψm,n for the model is calculated as follows:

∆Ψm,n =
4πB⊥H(m, n)
λR(m, n) sin θ0

, (18)

where θ0 is the inclination angle, and θ0 ≈ atan(LB/HB), B⊥ is the length of the projection
of the interferometric baseline on the slant range direction. The conversion of the absolute
phase into the interferogram of the model is carried out by the operation of phase wrapping

∆ϕm,n = W{Ψ0,m,n}, (19)

where W{Ψ0,m,n} is the operation of the phase wrapping into the range of values [−π, π).
The model examples of absolute phases ∆Ψm,n and corresponding interferograms ∆ϕm,n
for different inclination angles θ0 are shown in Figure 12. Low inclination angles lead to the
appearance of the foreshortening phenomenon, which produces phase gaps and singular
points. As the inclination angle increases, the number of singular points decreases.

The “random smooth surface” model allows one to estimate both the accuracy of the
phase unwrapping and computational speed of the unwrapping algorithms. On the other
hand, the number of singular points in this case is less predictable.

The numerical experiments for the phase unwrapping consist in the execution of the
IVPF algorithm (5)–(12) over the model interferograms under different conditions (number
of interferogram elements N, number of singular points µ + ν, interferogram smoothness).

The experiments were performed on an Intel(R) Core(TM) i7-8700 processor (3.2 GHz,
6 cores) using the MSVC compiler of the MS Visual Studio 2022 under Windows 10 op-
erating system. The initial data had a size of 750 × 750 elements and approximately
187,000 singular points. The results of the computation are adequate for the uncorrelated
surfaces of SAR images.

The complexity of the IVPF algorithm has the form of O(N · M · (ν + µ)). So, the com-
puting time for the algorithm is proportional to the number of interferogram elements and
the singular points. For real SAR image data, the interferogram size may exceed several
tens of thousands of elements on each interferogram side, so the execution time may be
several days.

1. Experiment consisted in the parallelization of the ”unwrap3” algorithm and reducing
the computational time of the whole IVPF phase unwrapping algorithm using the “rough
surface model A” under different parameters.

For studying the threading performance, we used the speedup Sm = T1/Tm and
efficiency Em = Sm/m coefficients, where Tm is the computing time on m OpenMP threads
for the same problem.
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Figure 12. The fragments of the “random smooth surface” model (the red boxes illustrate the singular
points location): (A) absolute phase, θ0 = 30◦, (B) interferogram, θ0 = 30◦, (C) absolute phase,
θ0 = 55◦, (D) interferogram, θ0 = 55◦.

Table 1 shows the results of solving the problem on various numbers of the OpenMP
threads for the “rough surface model A”. The table contains the computing times of the
algorithm, speedup and efficiency coefficients.

Table 1. Performance for the model A (750 × 750 elements, 187,000 singular points).

Number m of
OpenMP Threads Time Tm [min.] Speedup Sm Efficiency Em

1 59.8 — —
2 29.9 2.00 1.00
6 16.0 3.75 0.62
12 10.7 5.60 0.47

A speedup of 5.6 times on the 6-core processor was achieved. Using the parallel
algorithm reduces the computing time proportional to the square root of the number
of threads.

The further increase in the number of threads leads to longer computations due to
increased data exchange between threads and RAM limitations. The minimum computing
time is obtained with 12 threads for a 6-core processor (2 threads per core). In the future,
to further reduce computing time, we plan to develop a parallel algorithm for a graphics
processor (GPU) containing several thousand processor cores.

2. Experiment consisted in measuring both accuracy σΨ and computational speed for
the IVPF algorithm using the model “random smooth surface” model. An example of such
unwrapping is shown in Figure 13. The initial data had the size of 1000...5000 elements per
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each side and approximately 50,000 singular points. The accuracy σΨ of the unwrapped
phase was about 1.2 radians.

Figure 13. The results of the “random smooth surface” model unwrapping (the red boxes illustrate the
singular points location): (A) absolute phase, (B) interferogram, (C) unwrapped phase, (D) difference
map between the absolute phase (reference) and the unwrapped phase.

Table 2 shows the results of solving the problem on various numbers of the OpenMP
threads for the “random smooth surface” model. The table contains the computing times
of the algorithm, speedup and efficiency coefficients.

Table 2. Performance of model B (approximately 50,000 singular points).

Interferogram
Number

Number m of
OpenMP Threads Time Tm [min] Speedup Sm

Acurracy σΨ

[Radians]

1 1 13.8 — 1.27
(1000 × 1000) 12 2.7 5.1 1.27

2 1 64.3 — 1.22
(2500 × 2500) 12 12.6 5.1 1.22

3 1 298 — 1.19
(5000 × 5000) 12 53.3 5.6 1.19

6. Conclusions

In this work, we construct the numerical method and the parallel algorithm for
interferometric phase unwrapping for the radar remote sensing of the Earth systems.
The method is based on the iterative computation of the inverse vortex phase field for
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the elimination of phase gaps on the interferogram. The advantages and novelty of the
proposed method lie in its low (quasi-linear) computational complexity, high accuracy,
and the possibility of its parallel implementation. For the large-sized interferograms (more
than 2000 × 2000 elements) processing, dividing the interferogram into independent blocks
is proposed. For analysis of the computational efficiency, the “rough surface model” and
“smooth surface model” are proposed. The parallel algorithm is implemented using a
multicore processor and OpenMP technology. The speedup of 5.1 ... 5.6 times on the 6-core
processor for the algorithm is achieved. It is shown that parallel implementation does not
affect the accuracy of the unwrapping method.

The further plans consist in the realization of the algorithm on the graphic processors
(GPUs) for interferometric phase unwrapping with the big data.
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