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Abstract: Topological data analysis (TDA) methods have recently emerged as powerful tools for
uncovering intricate patterns and relationships in complex biological data, demonstrating their
effectiveness in identifying key genes in breast, lung, and blood cancer. In this study, we applied a
TDA technique, specifically persistent homology (PH), to identify key pathways for early detection
of hepatocellular carcinoma (HCC). Recognizing the limitations of current strategies for this purpose,
we meticulously used PH to analyze RNA sequencing (RNA-seq) data from peripheral blood of both
HCC patients and normal controls. This approach enabled us to gain nuanced insights by detecting
significant differences between control and disease sample classes. By leveraging topological descrip-
tors crucial for capturing subtle changes between these classes, our study identified 23 noteworthy
pathways, including the apelin signaling pathway, the IL-17 signaling pathway, and the p53 signaling
pathway. Subsequently, we performed a comparative analysis with a classical enrichment-based
pathway analysis method which revealed both shared and unique findings. Notably, while the
IL-17 signaling pathway was identified by both methods, the HCC-related apelin signaling and p53
signaling pathways emerged exclusively through our topological approach. In summary, our study
underscores the potential of PH to complement traditional pathway analysis approaches, potentially
providing additional knowledge for the development of innovative early detection strategies of HCC
from blood samples.

Keywords: topological data analysis; persistent homology; RNA-seq; gene expression; cancer;
hepatocellular carcinoma; pathway analysis

MSC: 55N31; 92-08; 92C42

1. Introduction

Primary liver cancer is one of the most common forms of cancer worldwide, with
more than 905,000 new cases diagnosed and over 830,000 cancer-related deaths reported
each year [1]. Hepatocellular carcinoma (HCC) is the most prevalent type of primary
liver cancer accounting for over 75% of all cases, thus representing a significant global
health concern [1]. One of the major challenges in HCC diagnosis is the lack of noticeable
symptoms in the early stages of the disease, often leading to patients being diagnosed only
when the disease has reached an advanced stage [2].
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Diagnosing HCC and predicting treatment responses can be achieved using various
biomarkers [3]. The World Health Organization (WHO) defines a biomarker as “any
substance, structure or process that can be measured in the body or its products and
[that can] influence or predict the incidence of outcome or disease” [4]. The conventional
biomarker for early HCC detection, α-fetoprotein (AFP), is no longer recommended due
to its limited sensitivity and specificity [5,6]. While newer biomarkers like des-γ-carboxy-
prothrombin (DCP), osteopontin, interleukin-6 (Il-6), and Golgi protein 73 (GP73) have
shown promise, none have achieved sufficient sensitivity or specificity [7]. Combining
multiple biomarkers is a current approach showing potential to enhance HCC detection
and monitoring [3]. Nevertheless, there is still room and a need for more accurate and
reliable biomarkers for effective HCC prognosis, diagnosis, and treatment. This is especially
true at the level of functional pathways involving many genes, which still poses a challenge
in current research.

Topological data analysis (TDA) is a modern interdisciplinary field that combines
algebraic topology, computational geometry, and statistical learning to analyze large vol-
umes of high-dimensional data and extract relevant information [8]. It offers advantages
such as independence from the choice of metric, robustness against noise, and a qualitative
approach to understanding the ‘shape’ of data [9,10]. It can also integrate and visualize mul-
tidimensional data, potentially providing a better understanding of relationships between
clinical samples where traditional data analysis methods may fall short [11].

TDA has proven to be a versatile tool across diverse applications, including digital data
classification [12], multidimensional data derived from magnetic resonance imaging (MRI)
scans of osteoarthritis patients [13], and the integration of computed tomography (CT) and
MRI scans with clinical data from patients with traumatic brain injury [14]. Its efficacy
extends to the analysis of mammogram scans/images [15,16] and it has demonstrated
utility in genomics, particularly in the analysis of DNA copy number aberrations [17]. In
the realm of infectious diseases, TDA has been applied to whole-blood RNA sequencing
(RNA-seq) gene expression data [18] and to measurements of inflammatory biomarkers
in blood plasma [19] from coronavirus disease 2019 (COVID-19) patients. A TDA-based
approach also demonstrated its capability to distinguish idiopathic pulmonary fibrosis
from multiple other diseases based on peripheral blood mononuclear cell (PBMC) gene
expression data [20].

In short, TDA holds immense potential as a reliable tool for analyzing multidimen-
sional data, such as gene expression levels obtained by RNA-seq. However, a specific
implementation applying this method to functional pathways in order to capture topologi-
cal changes based on the set of genes involved in a functional pathway is still lacking. To
address this, our research utilizes persistent homology (PH) to identify significant pathways
as potential prognostic biomarkers.

Figure 1 visually outlines our research pipeline, illustrating the process of evaluating
alterations in genome-wide correlation of gene expression levels between control and
disease sample classes. With this approach, we first identify a set of topological descriptors
that show significant changes between HCC samples and normal controls. Then, we
apply this pipeline to multiple pathway-specific subsets of genes to assess changes in the
correlation of gene expression specifically within these pathways, mirroring the evaluation
conducted on the full (genome-wide) gene expression data. Thus, we identify those cellular
pathways that reflect the global changes in HCC samples as potential biomarker pathways.
In addition to the pipeline sketch in Figure 1, we have included Algorithm 1 in Section 3 to
further enhance the presentation of our proposed method.

In the case of analyzed HCC expression data from peripheral blood, taken from a
study by Han et al. [21], we hypothesized that PH could facilitate early HCC detection by
identifying such potential biomarker pathways. Specifically, we analyzed RNA-seq gene
expression data from PBMCs of both HCC patients and normal controls, with 17 samples
in each class. For each class, we first mapped the gene expression profile of each sample to
a multidimensional space to form a point cloud. Then, we utilized PH to explore various
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topological descriptors associated with a persistence diagram in order to extract relevant
features from the shape of the point cloud. Finally, we compared the descriptors obtained
from the two sample classes to identify relevant differences.
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Figure 1. Pipeline for the step-by-step persistent homology (PH) analysis of gene expression data.
First, the gene expression dataset is partitioned into control (healthy) and disease (HCC) sample
classes. PH is then computed for each class, utilizing point clouds in a multidimensional space where
each point represents the gene expression levels of one sample and distances between points are mea-
sured based on correlation coefficients. Subsequent steps involve extracting topological descriptors
from the computed persistence diagrams. The final stage involves assessing the significance of the
differences in these descriptors between the two classes using a permutation test. This workflow can
be applied either to genome-wide gene expression data or to pathway-specific subsets thereof.

Our analysis unveiled several significant cellular pathways whose expression patterns
differ between peripheral blood from HCC patients and that from healthy controls. We
evaluated our findings by conducting a comparative assessment with the frequently used
enrichment-based pathway analysis, revealing pathways that were common or unique to
both methods. The literature support and discussion of our results clearly demonstrate
the benefit of PH for detecting functional pathways. Our findings reveal that previously
unidentified pathways can be uncovered through the application of TDA using PH, and a
set of key topological descriptors that effectively capture changes in gene expression be-
tween healthy and disease samples can be defined. This approach proves to be a promising
tool that can be applied to other datasets and diseases, hopefully contributing to a deeper
understanding of the complexities inherent in biological data and systems.

With this study, and the application of TDA for the identification of disease-associated
pathways, we intend to address a major limitation of the most commonly used pathway
analysis strategies: the assumption that alterations in the biological activity of a pathway
depend on the overexpression or underexpression of a significant number of the genes
involved in the pathway. However, for both signaling pathways and metabolic pathways,
the output can depend on other factors such as coordinated feedback and timing [22–24].

We hypothesized that such effects could be better captured by TDA rather than an
enrichment analysis approach based on differential expression of individual genes, and
thus TDA might offer additional clues for pathway analysis, complementing traditional
approaches rather than replacing them.

This motivated our exploration of TDA, specifically PH, to identify key pathways
associated with HCC from peripheral blood samples. Our aim is to demonstrate how PH
can provide valuable insights into intricate patterns and relationships in complex biological
data, particularly in the context of HCC. By analyzing RNA-seq data, we seek to bridge
gaps in current pathway analysis approaches.

The results of this pilot study showcase that PH-based methods can complement
traditional pathway analysis approaches and provide a promising tool that could be ap-
plicable to various datasets and diseases, thus contributing to a deeper understanding of
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complexities inherent in biological data and systems. Our key contributions include the ap-
plication of PH to analyze RNA-seq data from peripheral blood samples, the identification
of topological descriptors capable of capturing changes in gene expression between healthy
and disease samples, the identification of significant cellular pathways distinguishing HCC
and healthy samples which include pathways known to be associated with HCC, such as
the apelin signaling pathway, the IL-17 signaling pathway, and the p53 signaling pathway,
as well as previously unidentified pathways. In addition, comparative analysis with the
frequently used enrichment-based pathway analysis method reveals pathways that are
common or unique to both methods, which underscores that they can be considered as
complementing each other.

The paper is structured as follows: this section described the biomedical context and
the objectives of the study. In Section 2, we present a basic introduction to topological
data analysis. Section 3 details the materials and methods employed in the study. In
Section 4, our results are presented, followed by a discussion in Section 5. Finally, Section 6
encompasses the conclusions and future research directions.

2. Topological Data Analysis: Background

In this section, we will provide a brief overview of homology (in the mathematical
sense of topology, not biology or evolution) and persistent homology. For detailed formal
definitions and further mathematical terms, please refer to Appendix A.

2.1. Simplicial Complex and Homology

Topology is a mathematical discipline that explores the structural relationships and
connections between various regions within a space, similar to observing individual points
or composed objects and determining how they are connected and what makes them
different from one another. Having in mind a rubber sheet that can be stretched and
deformed, but not torn or punctured, topology can be used for understanding which
shapes can be transformed into one another through stretching without breaking [25].
TDA builds on these concepts to decipher the essential features of a dataset, even if it is
composed of a limited set of data points. It thus helps to determine key characteristics of a
complex shape using just a few points.

Homology is a mathematical technique that utilizes algebra to study the complex
shapes of objects, starting from simple building blocks called k-simplices (like points, lines,
triangles, and more), as illustrated in Figure 2. These blocks are assembled to create more
complex shapes, like networks.
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Figure 2. From left to right: 0-simplex (vertex), 1-simplex (edge), 2-simplex (triangle), and 3-
simplex (tetrahedron).

Usually, specific nomenclature is used to refer to the k-simplices of the lowest di-
mensions, k: “vertex” (point) for a 0-simplex, “edge” (two points joined by a line) for
a 1-simplex, “triangle” (three points with joining edges and their enclosed space) for a
2-simplex, and “tetrahedron” (a solid triangular pyramid) for a 3-simplex (see Figure 2).

Simplicial complexes are systematic collections of these building blocks, as illustrated
in Figure 3a–c. The dimension of a simplicial complex is the maximum dimension of
any of its building blocks (simplices). For example, a network can be considered as a
1-dimensional simplicial complex with nodes (points, k = 0) and edges (lines, k = 1).
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Figure 3. Correct (a) and incorrect (b,c) examples of a simplicial complex, and an example of filtrations
((d), details in Appendix A) of a simplicial complex. (a) Example of a simplicial complex. (b) The
example does not constitute a simplicial complex because the leftmost edge (1-simplex) and point
(0-simplex) of the triangle (2-simplex) are not included in the complex. (c) The example does not
constitute a simplicial complex because the intersection between the top 1-simplex (edge) and the
top 2-simplex (triangle)—represented by the blue-colored point—is neither empty nor a face (see
Appendix A) of both building blocks: it is a face of the edge but not of the triangle. Likewise, the
intersection between the two triangles—represented by the blue-colored line—is neither empty nor a
face of either building block. (d) Example for the construction of filtrations of simplicial complexes
with the VR method at different threshold radii r (indicated by brown-shaped circles). When pairwise
distances do not exceed 2r and the circles overlap, data points are linked by edges (red lines) and
form higher-dimensional simplices along with their enclosed spaces (blue-shaded).

Various approaches are available for constructing simplicial complexes from initially
unconnected data points, such as those we obtain when considering each sample as a
point in a multidimensional space (see Section 3.1). We will use the Vietoris–Rips (VR) [25]
complex method, which is commonly preferred in PH calculations for TDA due to its
computational advantages. Essentially, the VR method assembles data points into higher-
order objects if balls (circles) of a given threshold radius r, centered at the data points,
overlap each other: i.e., their pairwise distances do not exceed 2r, as illustrated in Figure 3d.
For more details and an alternative method, see Appendix A.

Some key characteristics of simplicial complexes can be expressed by means of a set of
topological invariants called Betti numbers. The k-th Betti number of a simplicial complex
K is denoted as βk(K), with k = 0 measuring the number of 0-dimensional holes (connected
components), k = 1 measuring the number of 1-dimensional or “circular” holes (1-cycles),
and k = 2 measuring the number of 2-dimensional holes (“cavities” or “voids”). A formal
definition of βk(K) is provided in Appendix A.

The “holes” (of different dimensions) measured by these Betti numbers—i.e., the
connected components, the circular holes, and the cavities—are referred to as “topological
features” of a simplicial complex.

2.2. Persistent Homology

For a point cloud representing a set of data points in a high-dimensional space, classical
homology, as outlined above, fails to give meaningful information. This limitation arises
because when constructing simplicial complexes from individual data points, a dataset’s
topology can vary significantly depending on the choice of the distance threshold parameter
r, as can be seen in Figure 3d. Thus, determining a single representative threshold for the
entire dataset can be a challenging or even an impossible task. To address this issue, the
PH method offers an alternative approach.

Indeed, PH considers multiple or all values of the thresholding parameter r. As r
increases, initially disconnected simplices can merge to form new, larger simplices (like
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edges formed from individual data points). These new simplices are then added to the
current simplicial complex, resulting in a sequence of subcomplexes known as a “filtered
simplicial complex” (see Figure 3d and Appendix A for more details).

PH involves tracking when (i.e., at what threshold parameter r) new topological
features (e.g., circular holes) emerge (referred to as ‘birth’) and when they disappear
(referred to as ‘death’) by recording the corresponding distance thresholds r. This process
captures how the topological properties of the complexes evolve as r increases.

Various methods in computational topology allow the summary and visualization of
PH and multi-scale topological features, including persistence barcodes [26], persistence
diagrams [27,28], persistence landscapes [29,30], persistence images [31], and persistence
curves [32], each offering insights into data topology for different applications. In Figure 4,
we provide an illustrative example for a given point cloud (Figure 4a).
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Figure 4. Visual representations of PH and topological features. (a) Data point cloud (same as
Figure 3d, first panel). (b) Persistence barcode. (c) Persistence diagram. (d) Betti curves. Blue bars,
points, and curves represent the 0-dimensional topological features (data points), while the red bar,
triangle, and curve represent the 1-dimensional topological feature (1-cycle; see Figure 3d, last panel).
The threshold radius r varies in increments of 0.05, ranging from r = 0 to r = 0.5.

Both persistence barcodes (Figure 4b) and persistence diagrams (Figure 4c) offer a
clear representation of the lifespan (persistence) of each feature. Essentially, a persistence
barcode portrays each feature as a bar, with the length of the bar reflecting the feature’s
lifespan, while a persistence diagram visually represents each topological feature as a
point on a graph, with the x- and y-axes denoting the distance threshold parameter r at
the feature’s birth and death, respectively. In both visualization techniques, the color of
the bar (in the persistence barcode) or point (in the persistence diagram) can indicate the
dimension k of the corresponding topological feature.

Longer bars in the persistence barcode (or points located farther from the diagonal
in the persistence diagram) are typically considered robust features of the dataset, while
shorter bars in the persistence barcode (or points near the diagonal in the persistence
diagram) are often interpreted as noise or less significant features [9]. Thus, PH is robust
against data noise, making it a stable representation, where small perturbations in the data
have only a minor effect on the barcode or persistence diagram.

Additionally, the evolution of Betti numbers as r increases can be visualized as Betti
curves (see Figure 4d). For example, consider the topological features shown at three thresh-
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olds: r = 0.25, r = 0.375, and r = 0.5. At r = 0.25, β0 = 6, because there are only
six connected components; the two closest points at the bottom left corner of Figure 4a have
merged into one connected component, while β1 = 0 due to the absence of 1-dimensional
circular holes, i.e., 1-cycles (see also Figure 3d, third panel). At r = 0.375, β0 = 4, because
there are only four connected components; the three closest points at the top right corner
of Figure 4a have merged into one connected component, while β1 = 0 because there still
is no 1-cycle (see also Figure 3d, fourth panel), whereas at r = 0.5, β0 = 1, because the
threshold radius r is large enough to merge all points into a single connected component,
while β1 = 1 due to the presence of a 1-cycle (see also Figure 3d, last panel).

3. Materials and Methods

As the research pipeline was previously outlined in Figure 1 and a more detailed
implementation provided in Algorithm 1. Detailed information about the expression and
pathway datasets used, the topological descriptors explored, and the methods employed in
this study are explained in this section.

Algorithm 1: Persistent Homology Analysis of Gene Expression Data

Input:

• Gene expression dataset (control and disease samples).

Output:

• Persistence diagrams, persistence barcodes, and Betti curves.
• Significant topological descriptors indicating differences between sample classes.
• Significant KEGG pathways exhibiting topological changes similar to those observed for the genome-wide gene

expression dataset.
1. PartitionDataset(GeneExpressionDataset)

i. Separate the gene expression dataset into control (healthy) and disease (HCC) sample classes.

2. For each sample class:

a. ConstructPointCloud(GeneExpressionClass)

i. Create a multidimensional point cloud, where each point represents the gene expression levels of a specific
sample from the GeneExpressionClass.

ii. Measure distances between points (samples) based on correlation coefficients.

b. ComputePersistentHomology(PointCloud)

i. Identify persistent features using the point cloud.
ii. Generate persistence diagrams and persistence barcodes representing birth and death of topological features.

c. ExtractTopologicalDescriptors(PersistenceHomology)

i. Measure all the topological descriptors defined in Section 3 from the persistence homology computed for the
sample class.

3. AssessDifferences(TopologicalDescriptorsControl, TopologicalDescriptorsDisease)

i. Randomly permute the class labels of the samples and recompute topological descriptors (steps 1 and 2). Perform this
random permutation 2000 times to obtain a distribution of random values for each topological descriptor.

ii. Compare the observed/actual values of each descriptor with their corresponding values obtained from
permuted/randomized class labels to determine statistical significance.

4. IdentifySignificantDescriptors(TopologicalDescriptor)

i. Identify topological descriptors showing significant differences between control and disease classes.

5. ApplyWorkflowToSubsets(GeneExpressionDataset, PathwaySubsetGeneSets)

i. For the pathway-specific analysis, the focus is on subsets of genes associated with each particular pathway.
ii. Apply steps 1–4 above to each KEGG pathway gene set, limiting the gene expression dataset to the subset of genes

involved in the given pathway.
iii. Identify pathways where the topological descriptors, specifically those that showed significance in the genome-wide

gene expression dataset at step 4, also demonstrate significance.
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3.1. PBMC Gene Expression Data

Gene expression dataset. The data were obtained from a study by Han et al. [21],
which employed RNA-seq to profile gene expression patterns in PBMC from 17 patients
with hepatocellular carcinoma and 17 healthy controls of similar age. Of 30,474 genes with
discernible gene expression levels in the PBMC samples, as selected by the original authors,
we used only those 26,575 genes that have a corresponding HGNC gene symbol.

RNA-seq data were generated by Han et al. based on the following experimental
technique: RNA transcripts (molecules) extracted from cells are converted to their DNA
equivalent and subsequently fractured into smaller pieces which are sequenced. The
obtained sequence “reads” are then aligned/mapped to the reference genome or transcrip-
tome. Since the number of RNA transcripts of a gene present in the cells determines the
number of obtained sequence reads for that gene, gene expression levels can be estimated
from the number of reads which map to the corresponding genomic regions.

Data pre-processing and normalization. As suggested by a recent validation by
Abrams et al. [33], we employed the Transcripts Per Million (TPM) method [34] to normalize
the RNA-seq gene expression data using ‘edgeR’ [35] (R package version 3.42.4, R version
4.3.0). Afterwards, a log2 transformation was carried out on the resultant TPM values.

Data representation for genome-wide gene expression. Each sample was treated as a
data point (sample vector) within a 26,575-dimensional space, defined by the expression
levels of the individual genes in that sample. Thus, the set of HCC or control samples form
a ’point cloud’ to which PH can be applied.

Data representation for pathway-specific gene expression. For gene sets from indi-
vidual cellular pathways, we essentially used the data representation in a point cloud but
defined each data point (sample vector) only by the expression levels of the genes involved
in each pathway, thus reducing the 26,575-dimensional space to an N-dimensional space,
where N is the number of genes involved in the pathway.

Distance metric. To measure the distances between samples, i.e., between the data
points in the point cloud, different distance metrics can be used, such as the Euclidean
distance or a distance based on a correlation coefficient. In biomedical research, the
similarity (or dissimilarity) of samples is usually measured in terms of the positive (or
negative) correlation of their gene expression profiles. Therefore, we defined the distance
between two samples as 1 − ρ, where ρ is the Pearson correlation coefficient between the
samples. Since ρ can range from −1 (perfect anti-correlation) to 1 (perfect correlation), the
distance can theoretically range from 0 to 2.

3.2. KEGG Pathways

We obtained a list of cellular pathways and their associated genes from the Kyoto
Encyclopedia of Genes and Genomes (KEGG) [36] database using the R (version 4.3.0)
packages, ‘AnnotationDbi’ (version 1.62.2), and ‘org.Hs.eg.db’ (version 3.17.0). For our
study, we focused exclusively on the 251 metabolic pathways and signaling pathways.

3.3. PH Implementation

In this study, we employed PH as the chosen topological method. We categorized the
gene expression dataset into two classes consisting of control samples only and disease sam-
ples only, and applied PH to both classes individually. We constructed the VR complexes
from the corresponding sample point clouds, using the distance metric defined above.
The Python version of ‘Gudhi’ [37] (version 3.7.1) (https://gudhi.inria.fr/ (accessed on 20
December 2023)) was used for the computation of PH and for generating our visualizations.

3.4. Topological Descriptors

Let k represent the dimension of a k-simplex in an n-dimensional simplicial complex.
We defined several key descriptors for the topological features in our analysis. Specifically,
mk represents the count of k-dimensional topological features, bi,k denotes the “birth time”
of the i-th k-dimensional feature (threshold radius r at which the feature appears), di,k

https://gudhi.inria.fr/
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denotes the “death time” of the i-th k-dimensional feature (r at which the feature ceases
to exist), and plk corresponds to the total (summed) persistence (lifetime) of all features
of dimension k. The topological descriptors we consider for our analysis are explicitly
defined as shown in Table 1. It is worth noting that most of these descriptors apply to
topological features (k-cycles) of specific dimension k within a persistence diagram. Only
two descriptors, namely the classical and persistence-wise Euler characteristics, take into
account the contribution of topological features (k-cycles) across all possible dimensions
(e.g., connected components, 1-cycles, cavities, etc.).

Table 1. Topological descriptors.

Descriptor
(Short Form) Formula

Classical Euler characteristic
(Classical EC) ∑n

k=0 (−1)kmk

Persistence-wise Euler characteristic
(Persistence EC) ∑n

k=0 (−1)k plk

Sum of persistence of k-dimensional features
(Sum P-k) plk = ∑mk

i=1
(
di,k − bi,k

)
Average persistence of k-dimensional features
(Average P-k)

1
mk

∑mk
i=1

(
di,k − bi,k

)
Maximum persistence of k-dimensional features
(Max P-k) max

i

{
di,k − bi,k

}
Range of persistence of k-dimensional features
(Range P-k) max

i

{
di,k − bi,k

}
− min

i

{
di,k − bi,k

}
Sum of birth times of k-dimensional features
(Sum BT-k) ∑mk

k=1 bi,k

Average birth times of k-dimensional features
(Average BT-k)

1
mk

∑mk
k=1 bi,k

Sum of death times of k-dimensional features
(Sum DT-k) ∑mk

k=1 di,k

Average death times of k-dimensional features
(Average DT-k)

1
mk

∑mk
k=1 di,k

It is important to highlight that a value of zero for a topological descriptor of dimension
k typically indicates the absence of features in that particular dimension. Exceptions to this
are Classical EC and Persistence EC, where a value of zero does not necessarily indicate the
absence of features due to the involvement of multiple dimensions in their computation.

3.5. Differential Expression Analysis

For the classical approach to pathway analysis, differential expression analysis was
performed using the ‘PyDESeq2’ [38] package (version 0.4.4) for Python (version 3.10.7).
Only genes with an adjusted p-value < 0.05 (adjusted for multiple testing using the
Benjamini–Hochberg method) and a log fold change ≥ 1 were considered as significantly
differentially expressed.

3.6. Enrichment Analysis of Pathways

The classical enrichment-based pathway analysis was carried out using the ‘Scipy’ [39]
package (version 1.10.1) for Python (version 3.10.7). Essentially, it performs a hypergeo-
metric enrichment test (one-sided Fisher’s exact test) to identify pathways containing a
significantly high number of differentially expressed genes. For each pathway, it calcu-
lates a p-value, which in essence is the likelihood of observing at least m differentially
expressed genes in a pathway purely by chance, considering the total number of genes in
the dataset, the total number of genes in the pathway, and the total number of differentially
expressed genes. p-values were corrected for multiple testing (251 pathways) using the
Benjamini–Hochberg method.
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3.7. Significance of Topological Descriptors

To assess whether topological descriptors of the PH-based approach differ signif-
icantly between sample classes, we performed a two-tailed statistical permutation test
using Python (version 3.10.7) and the Benjamini–Hochberg correction of p-values for
multiple testing using the ‘Statsmodels’ [40] package (version 0.13.5). Essentially, 2000 ran-
dom permutations of the sample labels were generated, and there were correspondingly
2000 random assignments of samples to the disease and control classes.

For each of the permutations, we applied PH and computed the values of the topolog-
ical descriptors individually for the two sample classes. For each topological descriptor
TD, we computed the difference between disease and control samples as: TD(disease)—
TD(control). We repeated this entire process for all 2000 permutations to build a distribution
of differences under the null hypothesis that there is no association (or biological distinction)
between the peripheral blood samples of the two classes.

To quantify significance, for each descriptor, we calculated the empirical or permuta-
tion p-value, which measures the proportion of random permutations that yield a more
extreme value (in either direction) than the observed (actual) value. Subsequently, to ac-
count for multiple testing, we applied the Benjamini–Hochberg procedure, which resulted
in adjusted p-values. These adjusted p-values help control the false discovery rates (FDR),
indicating the likelihood of false discoveries (incorrectly identifying differences) and po-
tential for false positives (attaining statistically significant results by chance) among the
descriptors. Throughout our analysis, we set the FDR threshold to be less than 0.05.

4. Results
4.1. Genome-Wide Persistent Homology Analysis

Initially, we leveraged the full (genome-wide) HCC RNA-seq gene expression dataset
from the study by Han et al. [21] (see Section 3 for details) to identify key topological
descriptors that effectively capture changes in genome-wide gene expression between
17 HCC samples and 17 healthy controls.

The process, outlined in Figure 1 and Algorithm 1, begins by partitioning the genome-
wide gene expression data into datasets for control and disease samples. PH is then
individually applied to each class.

For each sample class, the genome-wide gene expression levels of each individual
sample are represented as a data point in the input point cloud, used for the construction
of the VR complexes and the computations of their persistent homologies. Distances be-
tween data points are measured based on the Pearson correlation coefficient between the
corresponding samples, as detailed in Section 3.1. Subsequently, topological descriptors
for both sample classes were derived from the persistence diagrams obtained through
PH calculations (see Section 3.4 for details about each descriptor). To visualize the
topological (homological) evolution resulting from the computation of PH, we created
and plotted persistence barcodes, persistence diagrams, and Betti curves for each class
(see Figure 5).

We noticed that the most persistent features were the 0-dimensional features (i.e., con-
nected components). This observation remains valid irrespective of whether the data were
from the control class or the disease class. Additionally, 1-dimensional topological features
(i.e., 1-cycles/circular holes) and 2-dimensional topological features (i.e., 2-cycles/voids)
were also present although not as persistent as the 0-dimensional topological features.
No 3-dimensional topological features (3-cycles) were detected, which allowed us to omit
the calculation of topological features of higher dimensions (3 and above), resulting in a
substantial reduction in computation time without compromising the quality of the output
represented by the computed topological descriptors. In addition, we observed that since
most of the 1-dimensional and 2-dimensional topological cycles were not very persistent
(had short lifespans), the value of Persistence EC was very close to that of Sum P-0 (see
Table 2 and Supplementary Table S1).
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We then assessed through a permutation test whether the computed values of a
topological descriptor significantly differed between disease and control samples. To
achieve this, we first computed the values of all the considered topological descriptors for
both classes and then determined the difference between the two classes for each descriptor
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(see Section 3.7). These differences served as our measure of the global changes in gene
expression observable in HCC peripheral blood samples with respect to controls.

Table 2. Significant topological descriptors and differences between control and disease classes for
the genome-wide gene expression dataset.

Descriptors
Dataset Difference

(Disease—Control)
adj. p-Value

Disease Class Control Class

Persistence EC 0.6252 0.3509 0.2743 <0.00050
Sum P-0 0.6305 0.3573 0.2732 <0.00050

Average P-0 0.0371 0.0210 0.0161 <0.00050
Range P-2 0.0000 0.0003 −0.0003 0.03667
Sum BT-2 0.0000 0.0569 −0.0569 0.03667
Sum DT-2 0.0000 0.0577 −0.0577 0.03667

4.2. Choice of Relevant Topological Descriptors

To identify the subset of topological descriptors that best reflect genome-wide gene
expression changes in HCC samples, we performed a two-tailed permutation test on the
sample labels (random assignment of samples to disease and control classes) to evaluate
the statistical significance of the observed differences in topological descriptors between
peripheral blood from HCC patients and healthy controls.

Several of the topological descriptors showed highly significant differences (FDR
below 0.05) between control and disease samples (see Table 2 and Figure A3, as well
as Supplementary Table S1 and Figure S1 for additional details). Specifically, we have
identified the persistence-wise Euler characteristic (Persistence EC), the sum of persistence
of 0-dimensional features (Sum P-0), the average persistence of 0-dimensional features
(Average P-0), the range of persistence of 2-dimensional features (Range P-2), the sum
of birth times of 2-dimensional features (Sum BT-2), and the sum of death times of 2-
dimensional features (Sum DT-2) as the descriptors meeting our statistical significance
criteria. Hence, we selected them as representative of the differences in peripheral blood
between HCC patients and healthy controls.

Furthermore, we made noteworthy observations regarding these descriptors. Specif-
ically, we found that Persistence EC, Sum P-0, and Average P-0 exhibited higher values
in the disease class compared to the control class, while Range P-2, Sum BT-2, and Sum
DT-2 had higher values in the control class because topological features of the dimensions
k = 2 are not present in the PH of the disease class. The observation of higher values for
topological descriptors in dimension k = 0 (namely, Sum P-0 and Average P-0) indicates a
greater sample heterogeneity in the disease class compared to the control class, similar to
what has been observed for autism spectrum disorder in a previous study [41].

In summary, we identified a subset of six topological descriptors (see Table 2) that best
reflect genome-wide gene expression changes in peripheral blood from HCC patients.

4.3. Classical Differential Gene Expression Analysis and Enrichment-Based Pathway Analysis

Before using our new PH-based approach for pathway analysis, we applied the most
frequently used classical pathway analysis method, so that we would be able to compare
our results to those which can be obtained using a standard approach.

First, we used the genome-wide expression data and identified 1426 differentially
expressed genes (adjusted p-value (FDR) of less than 0.05 and log-fold change of at least
1). Among these significantly dysregulated genes, 1242 genes were up-regulated, while
184 genes were down-regulated in peripheral blood of HCC patients (see Supplementary File S2
for details).

Afterwards, we assessed the significance of 251 KEGG metabolic pathways and signal-
ing pathways by performing a hypergeometric enrichment test (one-sided Fisher’s exact
test; see Section 3) to identify pathways containing a significant number of differentially
expressed genes. Only sixteen pathways exhibited a significant enrichment in differentially
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expressed genes with an adjusted p-value (FDR) of less than 0.05 (see Supplementary
Table S2 for details).

4.4. Persistent Homology Analysis for Pathway-Specific Gene Sets

Subsequent to the selection of six topological descriptors indicative of genome-wide
gene expression patterns in peripheral blood from HCC patients, we investigated whether
there are specific cellular pathways which reflect these global changes, hypothesizing that
such pathways might potentially aid in an early detection of HCC from peripheral blood.

To this end, we applied our PH pipeline to various subsets of genes involved in specific
cellular pathways, taking only the corresponding gene expression data instead of the full
(genome-wide) dataset. That is, using functional gene sets for 251 metabolic pathways
and signaling pathways from the KEGG database [36], we applied essentially the same
methodology that we had used for the genome-wide gene expression dataset (see above)
to focus only on the expression levels of the sets of genes involved in individual KEGG
pathways to define the sample data points in the point cloud (see Section 3.1).

Our primary objective here was to assess the significance of pathways based on
whether the previously identified topological descriptors showed significant differences
between HCC samples and control samples—limited to the gene expression of the cor-
responding pathway gene sets—because we reasoned that those pathways which yield
significant changes for the same topological descriptors would best reflect the genome-wide
differences between HCC samples and those from healthy controls.

First considering individual topological descriptors, we observed that Persistence
EC and Average P-0 detected the same set of pathways (138 pathways), while Sum BT-2
and Sum DT-2 produced identical results (36 pathways). In addition, Sum P-0 identified
137 pathways and Range P-2 identified 181 pathways, respectively (see Supplementary
File S1 for a detailed list).

Visualizations in Figure 6 illustrate the number of pathways for which the individual
topological descriptors show significant differences between HCC samples and controls, as
well as the overlap of these sets of pathways with the 16 pathways identified as enriched in
differently expressed genes.
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bars), respectively.
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Since our purpose is to identify pathways that best reflect the genome-wide changes
in gene expression, instead of considering pathways with respect to individual topological
descriptors, we define a pathway as significant when it exhibits significant changes across
all six topological descriptors, mirroring the observations made for the genome-wide gene
expression dataset. This criterion was met by twenty-three pathways, as illustrated in
Figure 7a and detailed in Table 3.
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Figure 7. UpSet plot of intersections of significant pathways for the PH method. The plots depict
the unique pathways identified by each topological descriptor and their overlaps, including the
pathways identified by the enrichment-based pathway analysis method. (a) Topological descriptors
only: Persistence EC/Average P-0 vs. Sum P-0 vs. Range P-2 vs. Sum BT-2/Sum DT-2. The
common intersection represents 23 pathways significantly identified by the PH method. (b) As
in (a) but including enriched pathways. The common intersection represents the only pathway
(IL-17 signaling pathway) significantly identified by both the PH method and the enrichment-based
pathway analysis method.

Table 3. Significant KEGG pathways and the differences and adjusted p-values of individual topolog-
ical descriptors between control and disease sample classes. A difference of zero with a significant
p-value indicates that the corresponding topological features were absent in PH of both HCC and
control sample classes, but not when sample classes were randomized.

Pathway
(KEGG ID) Descriptor Difference

(Disease—Control) adj. p-Value

ABC transporters
(02010)

Persistence EC 1.0659 <0.0005
Sum P-0 1.0650 <0.0005

Average P-0 0.0626 <0.0005
Range P-2 0.0000 <0.0005
Sum BT-2 0.0000 0.0240
Sum DT-2 0.0000 0.0240

Apelin signaling pathway
(04371)

Persistence EC 0.3427 0.0220
Sum P-0 0.3429 0.0220

Average P-0 0.0202 0.0220
Range P-2 0.0000 0.0220
Sum BT-2 0.0383 0.0318
Sum DT-2 0.0385 0.0318

Ascorbate and aldarate
metabolism

(00053)

Persistence EC 0.4311 0.0330
Sum P-0 0.4293 0.0330

Average P-0 0.0253 0.0330
Range P-2 0.0000 <0.0005
Sum BT-2 0.0000 0.0420
Sum DT-2 0.0000 0.0420
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Table 3. Cont.

Pathway
(KEGG ID) Descriptor Difference

(Disease—Control) adj. p-Value

Base excision repair
(03410)

Persistence EC 0.6788 <0.0005
Sum P-0 0.6727 <0.0005

Average P-0 0.0396 <0.0005
Range P-2 −0.0007 0.0220
Sum BT-2 −0.0957 0.0283
Sum DT-2 −0.0972 0.0283

beta-Alanine metabolism
(00410)

Persistence EC 0.3086 0.0440
Sum P-0 0.3157 0.0440

Average P-0 0.0186 0.0440
Range P-2 0.0000 <0.0005
Sum BT-2 −0.0357 0.0440
Sum DT-2 −0.0366 0.0440

Citrate cycle (TCA cycle)
(00020)

Persistence EC 1.1207 0.0110
Sum P-0 1.1070 0.0110

Average P-0 0.0652 0.0110
Range P-2 −0.0020 0.0110
Sum BT-2 −0.1709 0.0477
Sum DT-2 −0.1759 0.0477

Collecting duct acid secretion
(04966)

Persistence EC 1.1848 <0.0005
Sum P-0 1.1795 <0.0005

Average P-0 0.0693 <0.0005
Range P-2 0.0000 <0.0005
Sum BT-2 0.0000 0.0040
Sum DT-2 0.0000 0.0040

Drug metabolism—cytochrome
P450

(00982)

Persistence EC 0.4315 0.0320
Sum P-0 0.4568 0.0320

Average P-0 0.0268 0.0320
Range P-2 0.0000 <0.0005
Sum BT-2 0.0000 0.0320
Sum DT-2 0.0000 0.0320

Glycine, serine, and threonine
metabolism

(00260)

Persistence EC 1.6059 <0.0005
Sum P-0 1.5992 <0.0005

Average P-0 0.0940 <0.0005
Range P-2 0.0000 <0.0005
Sum BT-2 0.0000 0.0260
Sum DT-2 0.0000 0.0260

Histidine metabolism
(00340)

Persistence EC 0.8008 0.0140
Sum P-0 0.8045 0.0140

Average P-0 0.0473 0.0140
Range P-2 0.0000 <0.0005
Sum BT-2 0.0000 0.0140
Sum DT-2 0.0000 0.0140

IL-17 signaling pathway
(04657)

Persistence EC 0.3977 0.0360
Sum P-0 0.3962 0.0360

Average P-0 0.0233 0.0360
Range P-2 0.0000 <0.0005
Sum BT-2 0.0000 0.0360
Sum DT-2 0.0000 0.0360

p53 signaling pathway
(04115)

Persistence EC 0.4171 0.0165
Sum P-0 0.4117 0.0165

Average P-0 0.0242 0.0165
Range P-2 0.0000 <0.0005
Sum BT-2 0.0000 0.0385
Sum DT-2 0.0000 0.0385
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Table 3. Cont.

Pathway
(KEGG ID) Descriptor Difference

(Disease—Control) adj. p-Value

Pantothenate and CoA
biosynthesis

(00770)

Persistence EC 0.3973 0.0400
Sum P-0 0.3995 0.0400

Average P-0 0.0235 0.0400
Range P-2 0.0000 <0.0005
Sum BT-2 0.0000 0.0400
Sum DT-2 0.0000 0.0400

Phosphonate and phosphinate
metabolism

(00440)

Persistence EC 3.2065 0.0200
Sum P-0 3.2170 0.0154

Average P-0 0.1892 0.0154
Range P-2 0.0000 <0.0005
Sum BT-2 0.0000 0.0055
Sum DT-2 0.0000 0.0055

Porphyrin metabolism
(00860)

Persistence EC 2.3922 <0.0005
Sum P-0 2.4252 <0.0005

Average P-0 0.1426 <0.0005
Range P-2 0.0000 <0.0005
Sum BT-2 0.0000 0.0100
Sum DT-2 0.0000 0.0100

Primary bile acid biosynthesis
(00120)

Persistence EC 0.3730 0.0200
Sum P-0 0.3737 0.0200

Average P-0 0.0220 0.0200
Range P-2 0.0000 <0.0005
Sum BT-2 0.0000 0.0200
Sum DT-2 0.0000 0.0200

Protein processing in
endoplasmic reticulum

(04141)

Persistence EC 0.5312 <0.0005
Sum P-0 0.5237 <0.0005

Average P-0 0.0308 <0.0005
Range P-2 −0.0003 0.0176
Sum BT-2 −0.0638 0.0220
Sum DT-2 −0.0643 0.0220

Riboflavin metabolism
(00740)

Persistence EC 1.5118 <0.0005
Sum P-0 1.5413 <0.0005

Average P-0 0.0906 <0.0005
Range P-2 0.0000 <0.0005
Sum BT-2 0.0000 0.0495
Sum DT-2 0.0000 0.0495

RNA polymerase
(03020)

Persistence EC 0.3368 0.0377
Sum P-0 0.3691 0.0330

Average P-0 0.0218 0.0330
Range P-2 0.0000 0.0330
Sum BT-2 0.1141 0.0460
Sum DT-2 0.1171 0.0460

Sulfur metabolism
(00920)

Persistence EC 6.0523 <0.0005
Sum P-0 6.0452 <0.0005

Average P-0 0.3556 <0.0005
Range P-2 0.0000 <0.0005
Sum BT-2 0.0000 0.0220
Sum DT-2 0.0000 0.0220

Synaptic vesicle cycle
(04721)

Persistence EC 0.3297 <0.0005
Sum P-0 0.3305 <0.0005

Average P-0 0.0195 <0.0005
Range P-2 −0.0006 0.0385
Sum BT-2 −0.0523 0.0403
Sum DT-2 −0.0534 0.0403
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Table 3. Cont.

Pathway
(KEGG ID) Descriptor Difference

(Disease—Control) adj. p-Value

Tryptophan metabolism
(00380)

Persistence EC 0.2584 0.0424
Sum P-0 0.2530 0.0424

Average P-0 0.0148 0.0424
Range P-2 0.0000 <0.0005
Sum BT-2 0.0000 0.0424
Sum DT-2 0.0000 0.0424

Virion—Herpesvirus
(03266)

Persistence EC 1.1037 0.0220
Sum P-0 1.1240 0.0220

Average P-0 0.0661 0.0220
Range P-2 0.0000 <0.0005
Sum BT-2 0.0000 0.0220
Sum DT-2 0.0000 0.0220

It is important to note that for 2-dimensional features (cavities or voids), the associated
topological descriptors can also be significant if their difference between HCC samples and
controls is zero, indicating that these features are absent in the PH of both types of samples.
When randomizing sample classes, instead, these features can appear and thus lead to a
non-zero difference, such that a zero difference obtained with the correct sample classes
may indeed be statistically significant.

The pathways identified as relevant by our PH method include genetic information
processing pathways (RNA polymerase, protein processing in endoplasmic reticulum,
and base excision repair), environmental information processing pathways (ABC trans-
porters and apelin signaling pathway), a cellular process pathway (p53 signaling pathway),
organismal system pathways (IL-17 signaling pathway and collecting duct acid secre-
tion), and several metabolic pathways (riboflavin metabolism, citrate/TCA cycle, sulfur
metabolism, ascorbate and aldarate metabolism, drug metabolism—cytochrome P450,
glycine, serine and threonine metabolism, primary bile acid biosynthesis, phosphonate
and phosphinate metabolism, histidine metabolism, tryptophan metabolism, beta-alanine
metabolism, pantothenate and CoA biosynthesis, and porphyrin metabolism); refer to
Table 3 for additional details.

4.5. Comparison of Pathways Identified by the PH Method and the Enrichment Analysis

We compared our novel approach with the commonly used enrichment-based path-
way analysis method, which identifies significant pathways through the hypergeometric
enrichment test of differentially expressed genes in a pathway. Notably, our results revealed
mostly unique significant pathways obtained by these approaches.

Among the 23 significant pathways detected by our PH method, only the IL-17 signal-
ing pathway was also identified by the classical enrichment-based method (see Figure 8).
Remarkably, 22 pathways were unique to our PH method (see Figure 8). Although these
pathways did not show a significant enrichment in differentially expressed genes, they
provide valuable insights into the molecular processes that may help to detect HCC from
peripheral blood samples, deserving further investigation, experimental validation, and
functional studies. Similarly, the pathways uniquely identified by the hypergeometric
enrichment test (see Supplementary File S1 and Table S2 for details) but not detected by
our PH method should not be disregarded.

Interestingly, several pathways identified by our PH method have been previously
associated with HCC, or their association has been suggested by other computational
approaches. For completeness, we provide a list: genetic information processing pathways
(RNA polymerase [42], protein processing in endoplasmic reticulum [43], and base excision
repair [44,45]), environmental information processing pathways (ABC transporters [46–48]
and apelin signaling pathway [49,50]), a cellular processes pathway (p53 signaling path-
way [51–54]), organismal systems pathways (IL-17 signaling pathway [55,56] and synaptic
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vesicle cycle [57]), and several metabolism pathways (riboflavin metabolism [58], cit-
rate/TCA cycle [59–61], ascorbate and aldarate metabolism [62,63], drug metabolism—
cytochrome P450 [48,64–67], glycine, serine, and threonine metabolism [48,64,68], primary
bile acid biosynthesis [64], histidine metabolism [64], beta-alanine metabolism [64], tryp-
tophan metabolism [54,64,69,70], pantothenate and CoA biosynthesis [58,71–73], and por-
phyrin metabolism [58,74,75]). This suggests that our method may indeed be capable of
detecting subtle, HCC-related changes from peripheral blood.
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Fifteen pathways were enriched in differentially expressed genes but not detected as
significant by our PH method (see Figure 8). These include complement and coagulation cas-
cades, the PPAR signaling pathway, hematopoietic cell lineage, the cholesterol metabolism,
neutrophil extracellular trap formation, osteoclast differentiation, ECM–receptor interac-
tion, platelet activation, cytokine–cytokine receptor interaction, neuroactive ligand–receptor
interaction, the phagosome, fat digestion and absorption, the glycerolipid metabolism,
the JAK-STAT signaling pathway, and the calcium signaling pathway (see Supplementary
Table S2 for details).

5. Discussion

Detecting the presence of a severe disease such as HCC from the peripheral blood
sample of an individual necessitates the identification of key biomarkers, be they specific
metabolites, proteins, genes, or pathways. Unlike previous studies that primarily focused
on applications of PH for tasks such as classification, prediction, or clustering [76–78], our
study demonstrates the effectiveness of utilizing PH to explore the global characteristics
of RNA-seq expression data from peripheral blood of both HCC patients and healthy
individuals to identify significant pathways.

We first identified a set of topological descriptors that showed significant differences
with respect to genome-wide expression data of HCC samples and normal controls. Persis-
tence EC assesses the topological complexity of a pathway by examining persisting features
across multiple dimensions during various stages of filtration, i.e., at various threshold
radii r. Sum P-0, which is equivalent to the sum of death times of 0-dimensional features
(connected components), provides insights into their persistence, reflecting the heterogene-
ity of gene expression between samples. Longer persistence indicates larger distances in
the data point cloud and hence lower correlation between samples. Additionally, Average
P-0 captures the mean persistence of 0-dimensional features. On the other hand, Range P-2,
Sum BT-2, and Sum DT-2 elucidate the evolution of 2-dimensional features, emphasizing
the birth, persistence, and demise of voids or cavities within the topology of the samples’
point cloud.

We then applied the PH method to pathway-specific gene expression data rather than
genome-wide data, reasoning that pathways that reflect global changes may be particularly
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interesting as potential biomarker pathways. Among the twenty-three identified significant
pathways, the IL-17 signaling pathway, also detected by the classical enrichment analysis
method, is particularly noteworthy.

Figure 9 illustrates how pathways that were either identified as significant by our
PH method, or were not evidenced as such, do or do not reflect patterns observed from
genome-wide gene expression data.
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Figure 9. Comparison of Betti curves (for β0) between the control and disease sample classes.
(a) Genome-wide gene expression data. (b,c) Pathway-specific gene expression data for pathways
evidenced by the PH method: (b) the citrate cycle (TCA cycle) and (c) the p53 signaling pathway.
(d,e) Pathway-specific gene expression data for pathways not detected by the PH method: (d) the
fructose and mannose metabolism and (e) the phospholipase D signaling pathway.
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HCC-related samples generally showed more heterogeneity than control samples.
This is suggested by 0-Betti numbers β0, i.e., the numbers of connected components (but
disconnected between each other), which decline much slower with increasing threshold
radius r, indicating an overall lower pairwise correlation between samples.

The pathways identified as significant by our method displayed a pattern resembling
more closely the genome-wide gene expression dataset (Figure 9a). Specifically, for signifi-
cant pathways like the citrate cycle/TCA cycle (Figure 9b) and the p53 signaling pathway
(Figure 9c), the 0-Betti numbers in the control class (blue curves) exhibited a sudden and
faster drop than in the disease class (red curves), where the decline was more gradual.
Conversely, pathways not identified by our method, such as the fructose and mannose
metabolism (Figure 9d) and the phospholipase D signaling pathway (Figure 9e), showed a
simultaneous but gradual decline phase for both sample classes. This observation suggests
that topological features, such as the number of connected components, evolve differently
as the radius increases.

For many of the 23 pathways highlighted by our method, we found indications for
an experimentally validated or at least predicted association with HCC in the literature.
The identified pathways, particularly those exclusive to our method, despite not being
enriched in differentially expressed genes, offer a valuable resource for further exploration
and experimental validation as biomarkers for peripheral blood. The importance of the p53
signaling pathway (see Figure 9c), for example, is supported both methodologically and
biologically [51–54].

6. Conclusions and Future Research

Our study represents a pioneering effort in applying persistent homology (PH) anal-
ysis to identify tumor-associated pathways, particularly from PBMC samples of HCC
patients. Analyzing RNA-seq data from peripheral blood, we successfully identified 23 sig-
nificant pathways, including the apelin signaling pathway, the IL-17 signaling pathway,
and the p53 signaling pathway. Our findings suggest that PH-based methods are comple-
mentary to classical enrichment-based pathway analysis methods and could thus be used
in conjunction with current approaches to identify relevant pathways for experimental
validation. We anticipate that applying our method directly to samples from affected
disease tissues, rather than peripheral blood, could further advance our understanding of
complex diseases.

While TDA methods, including PH, have shown promise in various applications, their
use in gene expression analyses is still in its early stages and, to our best knowledge, ours
is the first application to the pathway analysis problem. Looking ahead, future research
could refine and expand the utility of TDA methods, particularly PH, by exploring their
integration with other approaches for the comprehensive analysis of complex biomedical
data. This approach holds the potential to advance our understanding of complex diseases
and ultimately improve diagnostic strategies. The gained knowledge, e.g., about potential
biomarker pathways, may ultimately help to develop early detection strategies that can be
applied to individual samples or patients.
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the p-values, and adjusted p-values for the genome-wide gene expression dataset; Table S2: List of
pathways identified through the enrichment-based pathway analysis.
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Appendix A. Simplicial Complex and Homology

We begin with the definition of a k-simplex, which is the building block of a simplicial
complex (see Figures 2 and 3).

Definition A1. A k-simplex σ = [u0, u1, · · · , uk] is the convex hull of k+ 1 affinely independent
points. That is, the set of all convex combinations ∑k

i=0 αiui such that ∑k
i=0 αi = 1 and 0 ≤ αi ≤ 1

for all i ∈ {0, 1, . . . , k}.

By the definition above, the dimension of σ is k. We usually assign specific nomencla-
ture for the initial dimensions: “vertex” (point) for a 0-simplex, “edge” (two points joined
by a line) for a 1-simplex, “triangle” (three points with joining edges and their enclosed
space) for a 2-simplex, and “tetrahedron” (a solid triangular pyramid) for a 3-simplex (see
Figure 2). A simplex spanned by a proper nonempty subset of the vertex set of σ is called a
face of σ. We write σ∗ ≤ σ if σ∗ is a face of σ.

Definition A2. A simplicial complex K is a finite union of simplices so that

• for any simplex σ ∈ K, all its faces must be in K;
• if σ = σ1 ∩ σ2 for any two simplices σ1, σ2 ∈ K then either σ = ∅ or σ is a common face of

σ1 and σ2.

The conditions above imply that if σ is a simplex in K, then all its faces must also be in
K and any two simplices in K that are not disjoint must share a common simplex that is
also a face to both of them. See Figure 3a–c for examples of what is a simplicial complex
and what is not. The dimension of a simplicial complex K is the maximum dimension of
any of its simplices.

https://dataview.ncbi.nlm.nih.gov/object/PRJNA739257
https://dataview.ncbi.nlm.nih.gov/object/PRJNA739257
https://github.com/DrMSAbdullahi/PBMC_RNASeqHCC_PH_Analysis
https://github.com/DrMSAbdullahi/PBMC_RNASeqHCC_PH_Analysis
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Many approaches exist for constructing simplicial complexes from a topological or
metric space, e.g., from the individual points of a point cloud. We will mention only
two commonly used approaches, starting with the Čech complex.

Definition A3. Let D be a finite set of simplices and r > 0; the Čech complex Č is defined as:

Čr(D) = {σ ⊆ D :
⋂
x∈σ

Bx(r) ̸= ∅},

where Bx(r) denotes a ball of radius r > 0 centered at x. Simply put, for each σ ∈ D, σ ∈ Čr(D)
if the set of all r-balls centered at points of σ has a nonempty intersection (see Figure A1a).

Another way of constructing simplicial complexes is the VR complex.

Definition A4. Let D be a finite set of simplices and r > 0; the Vietoris–Rips complex VR, is
defined as:

VRr(D) = {σ ⊆ D : diam σ ≤ 2r}.

Simply put, for each σ ∈ D, σ ∈ VRr(D) if the diameter of σ is at most 2r, which implies that the
data points of which σ is composed have pairwise distances that do not exceed the threshold 2r (see
Figure A1b).
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Figure A1. Example for the construction of simplicial complexes for a given point cloud (see Figure 4a
and first panel in Figure 3d): (a) Čech complex; (b) VR complex. Note: (b) is equivalent to panel 4 in
Figure 3d.

For the VR complex at threshold (radius) r, a k-simplex is formed when k + 1 points
are within a pairwise distance of at most 2r from each other, connecting each pair of points
with an edge. This is the same as demanding that each possible pair of balls with a radius
of r centered around k + 1 points have an overlapping region. For example, a 2-simplex is
formed when there are nonempty pairwise intersections among three balls, as shown in
Figure A1b.

For the Čech complex, in contrast, a k-simplex is formed in case there is a nonempty
intersection of all the k + 1 balls surrounding its points. For example, a 2-simplex is formed
when there is a nonempty intersection among the three balls. To illustrate the difference,
note that in Figure A1a (Čech complex), what appears to be a triangle is actually composed
of three individual 1-simplices (edges), while in Figure A1b (VR complex), the triangle
is indeed a 2-simplex because a pairwise intersection of the three r-balls is sufficient; an
intersection of all three r-balls is not required. Note that the edges in the VR complex
are the same as in the Čech complex, and the required threshold to form a triangle in the
Čech complex is slightly larger than in the VR complex. Consequently, the Čech complex
is a subcomplex of the VR complex, i.e., Čr(D) ⊆ VRr(D). The Čech complex has been
proven to have the same homology as the union of all balls of radius r centered around
the data points [25]. However, this equivalence need not hold for the VR complex. The VR
complex, on the other hand, has significantly lower memory requirements since only the
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edges need to be stored for its computation, while computing the Čech complex requires
the identification of higher-order intersections of the r-balls.

Definition A5. Suppose that K is a d-dimensional simplicial complex. Let k ∈ {0, 1, . . . , d}
and

{
σ1, σ2, . . . , σp

}
be the set of k-simplices of K. Then a k-chain is defined as:

c = ∑p
i=1 λiσi, where λi ∈ Z/2Z = {0, 1}.

Since the coefficients are in Z/2Z, a k-chain can be interpreted geometrically as a finite
assembly of k-simplices. The term ‘chain complex’ typically refers to the “space of k-chains”
of a simplicial complex K, denoted as Ck(K). This space, Ck(K), is defined as the collection
of elements that are finite sums of k-simplices from K. While k-chains encompass a wide
range of linear combinations of k-simplices within K, it is important to note that k-cycles
and k-boundaries are regarded as special cases of k-chains. Specifically, k-cycles represent
closed chains (loops that do not have any ‘loose ends’), whereas k-boundaries correspond
to the boundaries (edges) of (k + 1)-chains.

The boundary map ∂k : Ck(K) → Ck−1(K) is a homomorphism satisfying the funda-
mental property ∂k∂k+1 = 0. In simple terms, the boundary ∂k of a k-simplex σ is usually
denoted by ∂kσ and defined as the sum of (k − 1)-faces of σ. The kernel of ∂k (Ker ∂k for
short), called the “space of k-cycles of K”, is denoted by Zk(K) and defined as:

Zk(K) = {σ ∈ Ck(K) : ∂kσ = 0},

and the image of ∂k+1 (Im ∂k+1 for short), called the “space of k-boundaries of K”, is denoted
by Bk(K) and defined as:

Bk(K) = {σ ∈ Ck(K) : there is σ∗ ∈ Ck+1(K), ∂k+1(σ
∗) = σ}.

In what follows, we present the formal definition of a simplicial homology group,
which informally means a group containing cycles that are not boundaries.

Definition A6. The k-th simplicial homology group of a simplicial complex K is the quotient vector
space defined as:

Hk(K) =
Zk(K)
Bk(K)

.

The simplicial homology group serves as a container for cycles that are not mere
boundaries. The concept is crucial in computing Betti numbers, such as β0, β1, and β2,
which serve as robust measures for capturing topological features in data. These numbers
offer valuable insights into the structure of the data by quantifying various topological
characteristics, such as counting holes at different dimensions. For example, they can help
identify the number of distinct clusters, circles, voids, or higher-dimensional holes present
in the data.

The k-th Betti number of a simplicial complex K, denoted as βk(K), is formally defined
as the dimension of the k-th homology group, Hk(K) (i.e., βk(K) = dim Hk(K).) Importantly,
it is well-established that both Hk(K) and βk(K) are topological invariants. In other words,
if we have two simplicial complexes, K and L, whose geometric realizations are homotopy
equivalent, their homology groups must be isomorphic, and their corresponding Betti
numbers must be equal.

The concept of filtered simplicial complex is important in PH and is defined below.

Definition A7. A filtered simplicial complex is an ordered sequence of simplicial complexes:

∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km−1 = K
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so that Ki+1 = Ki ∪ σi+1 where σi+1 ⊂ K is a simplex and m is the number of filtrations. That is,
each step adds a new simplex (simplices), σi+1, to the complex.

To illustrate this concept, consider the simplicial complex in Figure A2a. By applying
a series of five filterings (as shown in Figure A2b), new simplices are gradually introduced,
forming a filtered simplicial complex that progressively reveals the evolving topological
features within the data. At the initial filtering, only local features are identified, while
at later stages, more global and persistent features, such as connected components, loops,
and voids, emerge and become visible. Another example of filtration is demonstrated in
Figure 3d. This ordered sequence of complexes provides a systematic way to understand
how the topology of the data changes with varying levels of scaling. It serves as a funda-
mental tool in TDA for revealing and quantifying the persistence of important topological
structures in complex datasets.
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