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Abstract: Complex neutrosophic graphs are created by combining complex neutrosophic sets with
graph theory ideas. This provides a flexible framework for tackling complex problem-solving
circumstances. Various processes, such as union, join, and composition, are thoroughly investigated
to improve the administration of complicated neutrosophic graphs. This research also looks into
the area of complicated neutrosophic graph homeomorphisms, investigating the transformations
and mappings that occur inside these structures. This investigation advances our knowledge of the
intrinsic features and linkages found in complicated neutrosophic graphs. Finally, our methodology’s
practical usefulness is demonstrated by its use in the design of hospital infrastructure. We illustrate
the effectiveness of complicated neutrosophic graphs in addressing difficult design concerns and
optimizing infrastructure solutions for practical deployment in this real-world scenario.

Keywords: complex neutrosophic graphs; operations; isomorphism; complement
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1. Introduction

Many academics have disputed Zadeh’s initial claim that fuzzy sets (FSs) are a special
technique to convey uncertainty that occurs in many different fields [1] and for many
authors [2–7]. An FS is defined by a truth membership function with a range of [0, 1].
To expand on the concept of FSs because it is not generally the case that an element in an FS
has the falsity degree 1 − µ(x), Atanassov created intuitionistic fuzzy sets (IFSs) [8]. Truth
and falsity membership functions are used separately to describe an IFS such that the sum
of the truth and falsity degrees should not exceed more than one. Fuzzy sets simply offer the
degree of membership of an element in a certain set, as opposed to IFSs, which also provide
a degree of non-membership that is more or less independent from the other. Different kinds
of centroid modifications of IF values were introduced by Liu et al. in their publication [9].
Additionally, Feng et al. [10] developed many additional procedures for generalized IF
soft sets. To study the essence, source, and neutralities, as well as a neutrosophic set
(NS), Smarandache introduced the concept of neutrosophic as a kind of IFS. An NS is
defined by the membership functions for truth, indeterminacy, and falsity, respectively.
An NS is used as an effective tool for mathematics to assist with the inconsistent facts
that we face every day. Single-valued neutrosophic sets (SVNSs) were introduced by
Smarandache [11] and Wang et al. [12] for the use of NSs in science and engineering.
To manage uncertain information, an SVNS offers an alternative option. Ye [13] provided
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a method of decision making that uses the weighted correlation value of SVNSs to rank
the options. He also gave an example to illustrate how the suggested decision-making
method may be used. The SVN minimal spanning tree and associated clustering algorithm
were defined by the same author [5,14–20], who also put out a multi-criteria decision-
making approach for streamlined NSs that makes use of aggregation operators. These
theories are useful in a variety of scientific fields, but they have one significant flaw,
namely, the inability to represent two-dimensional events. Complex fuzzy sets (CFSs) were
proposed by Ramot et al. [21] to overcome this problem. A membership function µ(x) that
encompasses the complex plane’s unit circle and has a range greater than [0, 1] r identifies
a CF. Consequently, µ(x) is a complex-valued function that gives any element x in the
discourse universe a membership grade of the kind v(x)eiαx, i =

√
−1. Thus, the amplitude

term v(x), which is in the unit interval [0, 1], and the phase term (periodic term), α(x) which
is in the interval [0, 2π], are the two components that make up the membership function of
the CFS. A CFS model differs from every other model that is accessible in the scientific field
due to this phase term. The range of membership degrees for the CFS includes the complex
plane with the unit circle as opposed to a fuzzy characteristic function. Ramot et al.’s [22]
discussion of the complement, intersection, and union of CFSs included examples for clarity.
Yazdanbakhsh and Dick [23] offered a thorough analysis of CFSs. Complex intuitionistic
fuzzy sets (CIFSs) were developed by Alkouri and Salleh [24] to build upon the concept
of CFSs by introducing a non-membership degree v(x) = s(x)eiβ(x) to CFSs that are
subject to the restriction r + s ≤ 1. CIFSs are used to manage periodicity and uncertainty
knowledge concurrently. Complex-valued truth and falsity membership degrees may be
applied to express uncertainty in a variety of physical phenomena, including wave function,
impedance in electrical engineering and problem-solving situations. In contrast to the CIFS,
which contains two more phase words that are employed in concepts like projections,
cylindrical extensions, and distance measurement, the CFS has just one extra aspect term.
The concept of complex neutrosophic sets (CNSs), which may handle incorrect information
with a periodic nature, was put out by Ali and Smarandache [25]. We can observe that
ambiguity, consistency, and falsity in data are recurring phenomena, and the CNS plays a
key role in resolving these sorts of problems. A complex-valued truth t(x), complex-valued
indeterminate i(x), and complex-valued falsity f (x) membership function, each with a
range in the complex plane that extends from [0, 1] to the unit disc, are characteristics of a
CNS. They showed the use of CNSs in signal processing and offered set-theoretic operations,
including complement, union, intersection, complex neutrosophic product, Cartesian
product, distance measure, and equalities of CNSs. Fuzzy graphs (FGs), which were initially
established by Rosenfeld [26], were required due to the ambiguity in the representation of
distinct items and the unpredictable interactions between them. He investigated several
fundamental bridges and trees and determined some of their qualities. Bhattacharya [27]
made some comments about FGs and demonstrated that the conclusions drawn from (crisp)
graph theory are not necessarily applicable to FGs. By Thirunavukarasu et al. [28], FGs
were expanded to complex fuzzy graphs (CFGs) to manage hazy and uncertain interactions
with a periodic nature. They examined the lower and upper energy constraints of CFGs
and provided numerical examples to clarify these ideas. Pairwise relation FGs and CFGs
only reveal the truth degrees and uncertainty that occur frequently, respectively [29].
Intuitionistic fuzzy graphs (IFGs) were developed by Parvathi and Karunambigai [30] to
take both the truth and falsity degrees of pairwise interactions into account. Complex
intuitionistic fuzzy graphs (CIFGs) were developed by Yaqoob et al. [31] to manage the
periodic character of falsity degrees in IFGs. They investigated CIFG homomorphisms and
supplied a CIFG application to cellular network provider businesses for the testing of their
suggested strategy. Complex neutrosophic graphs (CNGs) were introduced by Yaqoob
and Akram to generalize the idea of neutrosophic graphs and CIFGs [32]. They talked
about certain fundamental CNG operations and described them with the aid of specific
illustrations. The existence of uncertain, recurring information in network models serves as
the motivating factor behind this research. When dealing with complex indeterminacy and



Mathematics 2024, 12, 719 3 of 23

periodicity-related behavior, a complex neutrosophic graph model is crucial. The suggested
model generalizes both the complex intuitionistic fuzzy model and the complex fuzzy
model. We take into account two voting processes to demonstrate the applicability of our
suggested model. Assume that in the first voting process, 0.8 voters choose “yes”, 0.4 choose
“no”, and 0.3 choose “undecided”, and that in the second voting process, 0.4 people choose
“yes”, 0.3 choose “no”, and 0.4 choose “undecided.” These two surgeries are thought to have
taken place on different days. A CFS cannot manage this circumstance since it only presents
the true voter participation rate of 0.8 while failing to account for false and uncertain degrees.
Similarly to this, a CIFS does not show the 0.4 undecided voters, but it does show the truth
0.6 and falsehood 0.3 degrees of voters. Using a complicated neutrosophic structure, we can
currently demonstrate this information if we set the amplitude terms as the membership
degrees of the first voting technique and the phase terms as the membership degrees
of the second voting procedure: 0.8ei0.4π , 0.3ei0.3π , 0.4ei0.4π . The goal of the proposed
study is to cope with the periodic nature of inconsistent information already present in
networks by applying an especially generalized idea of complex neutrosophic sets graphs.
The suggested study addresses the limitations of earlier research and generalizes the ideas
of CNGs, ICNGs, and CCNGs. The suggested model is a more open-ended framework
since it takes into account the uses of graphs as well as the hesitant nature of imperfect
information. Thus, combining the beneficial effects of CNSs with graph theory is the
fundamental goal of this research project (Table 1).

Table 1. Related works.

Year Method Application

[31] Complex intuitionistic fuzzy
graphs

Cellular network
provider companies

[33] On t-intuitionistic fuzzy
graphs Poverty reduction

[34] Neutrosophic graph Multicriteria decision-making
model

[35] Complex picture fuzzy graphs The influence of the
countries relationship

[17] Complex fermatean
neutrosophic graph Education system

[6] pentapartitioned neutrosophic
graphs

Determining safest paths and
towns in response to

COVID-19

1.1. Motivation

(1) Traditional techniques fail to cope with the complexity and ambiguity inherent in
real-world data.

(2) A complete mathematical foundation is required for successful management of com-
plicated data structures.

(3) There is practical relevance in addressing complicated neutrosophic graphs, as it is
critical for a variety of problem-solving scenarios across several areas.

1.2. Novelty

(1) A unique technique is introduced by combining complicated neutrosophic sets with
graph theory.

(2) The unified framework provides a new way to describe and analyze complicated
data structures.

(3) Investigating sophisticated neutrosophic graph homomorphisms elevates the field.
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1.3. Goal

(1) We aim to create an effective approach for dealing with complicated neutrosophic
graphs.

(2) We aim to provide practical solutions to key operations such as union, join, and com-
position.

(3) In the field of hospital infrastructure design, we demonstrate the approach’s success
through real-world application.

The following are the contents of this essay: Complex neutrosophic graphs, union
graphs, sums of graphs, complements of graphs, and compositions of graphs are defined in
Section 3. We define the isomorphism of weak and strong complex neutrosophic graphs in
Section 4 and go through some of their homomorphism-related characteristics. We provide
some specific instances to support the suggested notions. In Section 5, the complex neutro-
sophic graph complement is defined and discussed. We provide a brief implementation of
our suggested paradigm in Section 6. The conclusions and recommendations are covered
in Section 7.

2. Preliminaries

Definition 1 ([36]). A neutrosophic graph denoted as G = ⟨Tσ1, Iσ2, Fσ3, Tµ1, Iµ2, Fµ3⟩ is
denoted by G∗ = (V, E), where V and E are the set of vertices and edges. The functions Tσ1, Iσ2,
and Fσ3 are mappings from V to the closed interval [0, 1], signifying the degrees of true, intermediate,
and false membership, respectively. It holds that 0 ≤ Tσ1(xi) + Iσ2(xi) + Fσ3(xi) ≤ 3 for all
xi ∈ V. Moreover, in the context of G∗, the functions Tµ1 , Iµ2 , and Fµ3 are mappings from V × V
to the closed interval [0, 1], representing the degrees of true, intermediate, and false membership,
respectively, for each edge (xi, xj) ∈ E, ẁi, ẁj ∈ V × V

Tµ1(ẁi, ẁj) ≤ Tσ1(ẁi) ∧ Tσ1(ẁj),
Iµ1(ẁi, ẁj) ≤ Iσ1(ẁi) ∧ Iσ1(ẁj),

Fµ1(ẁi, ẁj) ≥ Fσ1(ẁi) ∧ Fσ1(ẁj),

0 ≤ Tσ1(ẁi, ẁj) + Iσ2(ẁi, ẁj) + Fσ3(ẁi, ẁj) ≤ 3.

Definition 2. Let J be a universal set. A complex neutrosophic set (CNS) N can be expressed
as N = {(u, TRµA(ẁ)eiTRα(ẁ), IDµA(ẁ)eiID β(ẁ), FSµA(ẁ)eiFSγ(ẁ)|ẁ ∈ J}, where i =

√
−1;

TRµA(ẁ), IDµA(ẁ), FSµA(ẁ) ∈ [0, 1] are considered amplitude terms; α(ẁ), β(ẁ), γ(ẁ) ∈
[0, π] are known as phase terms; and for every ẁ ∈ J, TRµA(ẁ) + IDµA(ẁ) + FSµA(ẁ) ≤ 3.

Definition 3. A complex neutrosophic graph with an underlying set V is defined to be a pair
G = (A, B), where A is a complex neutrosophic set on E ⊆ V × V such that

TRµB(ẁ, ù)eiαB(ẁ,ù) ≤ ∧{TRµA(ẁ), TRµA(ù)}ei∧{TRαA(ẁ),TRαA(ù)}

INµB(ẁ, ù)eiβB(ẁ,ù) ≤ ∧{INµA(ẁ), INµA(ù)}ei∧{IN βA(ẁ),IN βA(ù)}

FSµB(ẁ, ù)eiγB(ẁ,ù) ≥ ∨{FSµA(ẁ), FSµA(ù)}ei∨{FSγA(ẁ),FSγA(ù)}

for all ẁ, ù ∈ V.

Example 1. Let the vertex set V = {a, b, c, d} and edge set E = {ab, ac, cd} on G∗ = (V, E). Let
A be a complex neutrosophic graph subset of V, and let B be a complex neutrosophic graph subset of
E ⊆ V × V, as given:

A = ( (0.2ei0.3π ,0.3ei0.5π ,0.5ei0.6π)
a , (0.9ei0.6π ,0.1ei0.4π ,0.3ei0.2π)

b , (0.8ei0.4π ,0.4ei1.3π ,0.5ei0.6π)
c , (0.9ei1.1π ,0.3ei0.6π ,0.4ei0.4π)

d )

B = ( (0.2ei0.3π ,0.1ei0.4π ,0.5ei0.2π)
ab , (0.2ei0.3π ,0.3ei0.3π ,0.5ei0.6π)

ac , (0.8ei0.4π ,0.1ei0.3π ,0.5ei0.6π)
bc , (0.8ei0.4π ,0.3ei0.3π ,0.5ei0.6π)

cd ).

1. It can be seen from simple calculations that the graph in Figure 1 is a complex neutro-
sophic graph.
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2. O(G) = (2.8ei2.4π , 1.1e2.8π , 1.7e1.4π)
3. Each vertex in G has a degree of deg(a) = 0.4, deg(b) = 1.0, deg(c) = 1.8, and deg(c) = 0.8.

Figure 1. CNG G.

Definition 4. Let G = (A, B) be a complex neutrosophic graph. The order of a complex neutro-
sophic graph is defined by

O(G) = ( ∑
ẁ∈V

TRµA(ẁ)e∑ẁ∈V iTRαA(ẁ), ∑
ẁ∈V

INµA(ẁ)e∑ẁ∈V iID βA(ẁ), ∑
ẁ∈V

FSµB(ẁ)e∑ẁ∈V iFSγA(ẁ))

and the degree of a vertex ẁ in G is defined by

D(G) = ( ∑̀
w∈E

TRµB(ẁù)e∑ẁ∈E iTRαB(ẁù), ∑̀
w∈E

INµB(ẁù)e∑ẁ∈E iID βB(ẁù), ∑̀
w∈E

FSµB(ẁù)e∑ẁ∈E iFSγB(ẁù))

3. Operations of Complex Neutrosophic Graph

Definition 5. Let G1 = (A1, B1) and G2 = (A2, B2) be two complex neutrosophic graphs;
the Cartesian product G1 × G2 of two complex neutrosophic graphs is defined as a pair G1 × G2 =
(A1 × A2, B1 × B2), such that

1. TRµA1×A2(ẁ1, ẁ2)e
iαA1×A2 (ẁ1,ẁ2) = ∧{TRµA1(ẁ1), TRµA2(ẁ2)}ei∧{TRαA1

(ẁ1),TRαA2 (ẁ2)}

IDµA1×A2(ẁ1, ẁ2)e
iβA1×A2 (ẁ1,ẁ2) = ∧{IDµA1(ẁ1), IDµA2(ẁ2)}ei∧{ID βA1

(ẁ1),ID βA2 (ẁ2)}

FSµA1×A2(ẁ1, ẁ2)e
iγA1×A2 (ẁ1,ẁ2) = ∨{FSµA1(ẁ1), FSµA2(ẁ2)}ei∨{FSγA1

(ẁ1),FSγA2 (ẁ2)}

For all ẁ1, ẁ2 ∈ V.

2. TRµB1×B2(ẁ1, ẁ2)e
iαB1×B2 (ẁ1,ẁ2) = ∧{TRµB1(ẁ1), TRµB2(ẁ2)}ei∧{TRαB1 (ẁ1),TRαB2 (ẁ2)}

IDµB1×B2(ẁ1, ẁ2)e
iβB1×B2 (ẁ1,ẁ2) = ∧{IDµB1(ẁ1), IDµB2(ẁ2)}ei∧{ID βB1 (ẁ1),ID βB2 (ẁ2)}

FSµB1×B2(ẁ1, ẁ2)e
iγB1×B2 (ẁ1,ẁ2) = ∨{FSµB1(ẁ1), FSµB2(ẁ2)}ei∨{FSγB1 (ẁ1),FSγB2 (ẁ2)}

For all ẁ1 ∈ V1 and ẁ2ù2 ∈ E2.

3. TRµB1×B2 ((ẁ1, z), (ù1, t̀))eiαB1×B2 ((ẁ1,t̀),(ù1,t̀)) = ∧{TRµB1 ((ẁ1ù1), TRµA2 (t̀))}ei∧{TRαB1 ((ẁ1 ù1),TRαA2 (t̀))}

IDµB1×B2 ((ẁ1, t̀), (ù1, t̀))eiβB1×B2 ((ẁ1,t̀),(ù1,t̀)) = ∧{IDµB1 ((ẁ1ù1), IDµA2 (t̀))}ei∧{ID βB1 ((ẁ1 ù1),ID βA2 (t̀))}

FSµB1×B2 ((ẁ1, t̀), (ù1, t̀))eiγB1×B2 ((ẁ1,t̀),(ù1,t̀)) = ∨{FSµB1 ((ẁ1ù1), FSµB2 ((ẁ1ù1)}ei∨{FSγB1 ((ẁ1 ù1),FSγA2 (t̀))}

For all t̀ ∈ V2 and ẁ1ù1 ∈ E1.
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Definition 6. Let G1 × G2 be two complex neutrosophic graphs. The degree of a vertex in G1 × G2
can be defined as follows: for any (ẁ1, ẁ2) ∈ V1 × V2,
DG1×G2(ẁ1, ẁ2) =(
∑(ẁ1,ẁ2)(ù1,ù2)∈E TRµB1×B2((ẁ1, ẁ2), (ù1, ù2))e

i ∑(ẁ1,ẁ2)(ù1,ù2)∈E TRαB1×B2 ((ẁ1,ẁ2),(ù1,ù2)),

∑(ẁ1,ẁ2)(ù1,ù2)∈E IDµB1×B2((ẁ1, ẁ2), (ù1, ù2))e
i ∑(ẁ1,ẁ2)(ù1,ù2)∈E ID βB1×B2 ((ẁ1,ẁ2),(ù1,ù2)),

∑(ẁ1,ẁ2)(ù1,ù2)∈E FSµB1×B2((ẁ1, ẁ2), (ù1, ù2))e
i ∑(ẁ1,ẁ2)(ù1,ù2)∈E FSγB1×B2 ((ẁ1,ẁ2),(ù1,ù2))

)
Example 2. Consider the two complex neutrosophic graphs G1 and G2, as shown in Figures 2 and 3,
and their Cartesian product, as shown in Figure 4.

Figure 2. CNG G1.

Figure 3. CNG G2.

Figure 4. CNG of G1 × G2.

Then, their corresponding Cartesian product G1 × G2 is shown in Figure 4.

Theorem 1. The Cartesian product of two complex neutrosophic graphs is a complex neutro-
sophic graph.

Proof. The conditions for A1 × A2 are obvious; therefore, we verify only the conditions for
B1 × B2. Let ẁ ∈ V1 and ẁ2ù2 ∈ E2. Then,
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TRµB1×B2((ẁ, ẁ2), (ẁ, ù2))e
iαB1×B2 ((ẁ,ẁ2),(ẁ,ù2))

= ∧{TRµA1(ẁ), TRµB2(ẁ2ù2))}ei∧{TRαA1
(ẁ),TRαB2 (ẁ2ù2)}

≤ ∧{TRµA1(ẁ),∧{TRµB2(ẁ2, ù2)}}ei∧{TRµA1
(ẁ),∧{TRµA2 (ẁ2),TRµA2 (ù2)}}

= ∧{∧{TRµA1(ẁ), TRµA2(ẁ2)},∧{TRµA1(ẁ), TRµA2(ù2)}},

ei∧{∧{TRµA1
(ẁ),TRµA2 (ẁ2)},∧{TRµA1

(ẁ),TRµA2 (ù2)}}

= ∧{TRµA1×A2((ẁ, ẁ2), TRµA1×A2((ẁ, ù2)}ei∧{TRµA1×A2 ((ẁ,ẁ2),TRµA1×A2 ((ẁ,ù2)}

IDµB1×B2((ẁ, ẁ2), (ẁ, ù2))e
iβB1×B2 ((ẁ,ẁ2),(ẁ,ù2))

= ∧{IDµA1(ẁ), IDµB2(ẁ2ù2))}ei∧{ID βA1
(ẁ),ID βB2 (ẁ2ù2)}

≤ ∧{IDµA1(ẁ),∧{IDµB2(ẁ2, ù2)}}ei∧{ID βA1
(ẁ),∧{ID βA2 (ẁ2),ID βA2 (ù2)}}

= ∧{∧{IDµA1(ẁ), IDµA2(ẁ2)},∧{IDµA1(ẁ), IDµA2(ù2)}},

ei∧{∧{ID βA1
(ẁ),ID βA2 (ẁ2)},∧{ID βA1

(ẁ),ID βA2 (ù2)}}

= ∧{IDµA1×A2((ẁ, ẁ2), IDµA1×A2((ẁ, ù2)}ei∧{ID βA1×A2 ((ẁ,ẁ2),ID βA1×A2 ((ẁ,ù2)}

FSµB1×B2((ẁ, ẁ2), (ẁ, ù2))e
iγB1×B2 ((ẁ,ẁ2),(ẁ,ù2))

= ∨{FSµA1(ẁ), FSµB2(ẁ2ù2))}ei∨{ASγA1
(ẁ),FSγB2 (ẁ2ù2)}

≤ ∨{FSµA1(ẁ),∨{FSµB2(ẁ2, ù2)}}ei∨{FSγA1
(ẁ),∨{TRγA2 (ẁ2),TRγA2(ù2)}}

= ∨{∨{FSµA1(ẁ), FSµA2(ẁ2)},∨{FSµA1(ẁ), FSµA2(ù2)}},

ei∨{∨{FSγA1
(ẁ),FSγA2 (ẁ2)},∨{FSγA1

(ẁ),FSγA2 (ù2)}}

= ∨{FSγA1×A2((ẁ, ẁ2), FSγA1×A2((ẁ, ù2)}ei∨{FSγA1×A2 ((ẁ,ẁ2),FSγA1×A2 ((ẁ,ù2)}

Similarly, we can prove it for t̀ ∈ V2 and ẁ1ù1 ∈ E1.

Definition 7. Let G1 = (A1, B1) and G2 = (A2, B2) be two complex neutrosophic graphs;
then, the composition G1 ◦ G2 of two complex neutrosophic graphs is defined as a pair G1 ◦ G2 =
(A1 ◦ A2, B1 ◦ B2), such that

1. TRµA1◦A2((ẁ1, ẁ2))e
iTRαA1◦A2 ((ẁ1,ẁ2)) = ∧{TRµA1(ẁ1), TRµA1(ẁ2)}ei∧{TRαA1

(ẁ1),TRαA2 (ẁ2)}

IDµA1◦A2((ẁ1, ẁ2))eiID_A1◦A2((ẁ1,ẁ2)) = ∧{IDµA1(ẁ1), IDµA1(ẁ2)}ei∧{ID βA1
(ẁ1),ID βA1

(ẁ2)}

FSµA1◦A2((ẁ1, ẁ2))e
iFSγA1◦A2 ((ẁ1,ẁ2)) = ∨{FSµA1(ẁ1), FSµA1(ẁ2)}ei∨{FSγA1

(ẁ1),FSγA2 (ẁ2)}

For all ẁ1, ẁ2 ∈ V.

2. TRµB1◦B2((ẁ1, ẁ2))e
iTRαB1◦B2 ((ẁ1,ẁ2)) = ∧{TRµB1(ẁ1), TRµB1(ẁ2)}ei∧{TRαB1 (ẁ1),TRαB2 (ẁ2)}

IDµB1◦B2((ẁ1, ẁ2))e
iID βB1◦B2 ((ẁ1,ẁ2)) = ∧{IDµB1(ẁ1), IDµB1(ẁ2)}ei∧{ID βB1 (ẁ1),ID βB1 (ẁ2)}

FSµB1◦B2((ẁ1, ẁ2))e
iFSγB1◦B2 ((ẁ1,ẁ2)) = ∨{FSµB1(ẁ1), FSµB1(ẁ2)}ei∨{FSγB1 (ẁ1),FSγB2 (ẁ2)}

For all ẁ1 ∈ V1, and ẁ2ù2 ∈ E2.
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3. TRµB1◦B2((ẁ1, t̀)(ù1, t̀))eiTRαB1◦B2 ((ẁ1,t̀)(ù1,t̀)) = ∧{TRµB1(ẁ1ù1), TRµA2(t̀)}ei∧{TRαB1 (ẁ1ù1),TRαA2 (t̀)}

IDµB1◦B2((ẁ1, t̀)(ù1, t̀))eiID_B1◦B2((ẁ1,t̀)(ù1,t̀)) = ∧{IDµB1(ẁ1ù1), IDµA2(t̀)}ei∧{ID βB1 (ẁ1ù1),ID βA2 (t̀)}

FSµB1◦B2((ẁ1, t̀)(ù1, t̀))eiFSγB1◦B2 ((ẁ1,t̀)(ù1,t̀)) = ∨{FSµB1(ẁ1ù1), FSµA2(t̀)}ei∨{FSγB1 (ẁ1ù1),FSγA2 (t̀)}

For all t̀ ∈ V2, and ẁ1ù1 ∈ E1.

4. TRµB1◦B2((ẁ1, ẁ2)(ù1, ù2))e
iTRαB1◦B2 ((ẁ1,ẁ2)(ù1,ù2)) = ∧{TRµA2(ẁ2), TRµA2(ù2), TRµB1(ẁ1ù1)}

ei∧{TRαA2 (ẁ2),TRαA2 ù2),TRαB1 (ẁ1ù1)}

IDµB1◦B2((ẁ1, ẁ2)(ù1, ù2))e
iID βB1◦B2 ((ẁ1,ẁ2)(ù1,ù2)) = ∧{IDµA2(ẁ2), IDµA2(ù2), IDµB1(ẁ1ù1)}

ei∧{ID βA2 (ẁ2),ID βA2 ù2),ID βB1 (ẁ1ù1)}

FSµB1◦B2((ẁ1, ẁ2)(ù1, ù2))e
iFSγB1◦B2 ((ẁ1,ẁ2)(ù1,ù2)) = ∨{FSµA2(ẁ2), FSµA2(ù2), FSµB1(ẁ1ù1)}

ei∨{FSγA2 (ẁ2),FSγA2 ù2),FSγB1 (ẁ1ù1)}

For all ẁ2, ù2 ∈ V2, ẁ2 ̸= ù2, and ẁ1ù1 ∈ E1.

Definition 8. Let G1 = (A1, B1) and G2 = (A2, B2) be two complex neutrosophic graphs; then,
the G1 ◦ G2 be two complex neutrosophic graphs. The degree of a vertex in G1 ◦ G2 can be defined
as follows: for any (ẁ1, ẁ2) ∈ V1 ◦ V2,
DG1◦G2(ẁ1, ẁ2) =(
∑(ẁ1,ẁ2)(ù1,ù2)∈E TRµB1◦B2((ẁ1, ẁ2), (ù1, ù2))e

i ∑(ẁ1,ẁ2)(ù1,ù2)∈E TRαB1◦B2 ((ẁ1,ẁ2),(ù1,ù2)),

∑(ẁ1,ẁ2)(ù1,ù2)∈E IDµB1◦B2((ẁ1, ẁ2), (ù1, ù2))e
i ∑(ẁ1,ẁ2)(ù1,ù2)∈E ID βB1◦B2 ((ẁ1,ẁ2),(ù1,ù2)),

∑(ẁ1,ẁ2)(ù1,ù2)∈E FSµB1◦B2((ẁ1, ẁ2), (ù1, ù2))e
i ∑(ẁ1,ẁ2)(ù1,ù2)∈E FSγB1◦B2 ((ẁ1,ẁ2),(ù1,ù2))

)
.

Example 3. Consider the two complex neutrosophic graphs, as shown in Figure 5, and their
composition, as shown in Figure 6.

Figure 5. CNG of G1 and G2.

Then, their composition G1 ◦ G2 is shown in Figure 6.
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Figure 6. CNG of G1 ◦ G2.

Definition 9. Let G1 = (A1, B1) and G2 = (A2, B2) be two complex neutrosophic graphs; then,
the union G1 ∪ G2 = (A1 ∪ A2, B1 ∪ B2) of two complex neutrosophic graphs is defined as follows:

1. TRµA1∪A2(ẁ)eiTRαA1∪A2 (ẁ) = TRµA1(ẁ)eiTRαA1
(ẁ)

IDµA1∪A2(ẁ)eiID βA1∪A2 (ẁ) = IDµA1(ẁ)eiID βA1
(ẁ)

FSµA1∪A2(ẁ)eiFSγA1∪A2 (ẁ) = FSµA1(ẁ)eiFSγA1
(ẁ), for ẁ ∈ V1 and ẁ /∈ V2.

2. TRµA1∪A2(ẁ)eiTRαA1∪A2 (ẁ) = TRµA2(ẁ)eiTRαA2 (ẁ)

IDµA1∪A2(ẁ)eiID βA1∪A2 (ẁ) = IDµA2(ẁ)eiID βA2 (ẁ)

FSµA1∪A2(ẁ)eiFSγA1∪A2 (ẁ) = FSµA2(ẁ)eiFSγA2 (ẁ), for ẁ ∈ V2 and ẁ /∈ V1.

3. TRµA1∪A2(ẁ)eiTRαA1∪A2 (ẁ) = ∨{TRµA2(ẁ), TRµA2(ẁ)}ei∨{TRαA2 (ẁ),TRαA2 (ẁ)}

IDµA1∪A2(ẁ)eiID βA1∪A2 (ẁ) = ∨{IDµA2(ẁ), IDµA2(ẁ)}ei∨{ID βA2 (ẁ),ID βA2 (ẁ)}

FSµA1∪A2(ẁ)eiFSγA1∪A2 (ẁ) = ∧{FDµA2(ẁ), FSµA2(ẁ)}ei∧{FSγA2 (ẁ),FSγA2 (ẁ)},
for ẁ ∈ V1 ∩ V2.

4. TRµB1∪B2(ẁù)eiTRαB1∪B2 (ẁù) = TRµB1(ẁù)eiTRαB1 (ẁù)

IDµB1∪B2(ẁù)eiID βB1∪B2 (ẁù) = IDµB1(ẁù)eiID βB1 (ẁù)

FSµB1∪B2(ẁù)eiFSγB1∪B2 (ẁù) = FSγB1(ẁù)eiFSγB1 (ẁù), for ẁù ∈ E1 and ẁù /∈ E2.

5. TRµB1∪B2(ẁù)eiTRαB1∪B2 (ẁù) = TRµB2(ẁù)eiTRαB2 (ẁù)

IDµB1∪B2(ẁù)eiID βB1∪B2 (ẁù) = IDµB2(ẁù)eiID βB2 (ẁù)

FSµB1∪B2(ẁù)eiFSγB1∪B2 (ẁù) = FSµB2(ẁù)eiFSγB2 (ẁù), for ẁù ∈ E2 and ẁù /∈ E1.

6. TRµB1∪B2(ẁù)eiTRαB1∪B2 (ẁù) = ∨{TRµB2(ẁù), TRµB2(ẁù)}ei∨{TRαB2 (ẁù),TRαB2 (ẁù)}

IDµB1∪B2(ẁù)eiID βB1∪B2 (ẁù) = ∨{IDµB2(ẁù), IDµB2(ẁù)}ei∨{ID βB2 (ẁù),ID βB2 (ẁù)}

FSµB1∪B2(ẁù)eiFSγB1∪B2 (ẁù) = ∧{IDµB2(ẁù), FSµB2(ẁù)}ei∧{FSγB2 (ẁù),FSγB2 (ẁù)},
for ẁù ∈ E1 ∩ E2.

Example 4. Consider the two complex neutrosophic graphs, as shown in Figure 7, and their union,
as shown in Figure 8.
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Figure 7. CNG of G1 and G2.

Figure 8. CNG of G1 ∪ G2.

Definition 10. Let G1 = (A1, B1) and G2 = (A2, B2) be two complex neutrosophic graphs;
then, the join G1 + G2 = (A1 + A2, B1 + B2) of the two complex neutrosophic graphs, where
V1

⋂
V2 = ∅, is defined as follows:

1. TRµA1|A2
(ẁ)eiTRαA1+A2 (ẁ) = TRµA1∪A2(ẁ)eiTRαA1∪A2 (ẁ)

IDµA1|A2
(ẁ)eiID βA1+A2 (ẁ) = IDµA1∪A2(ẁ)eiID βA1∪A2 (ẁ)

FSµA1+A2(ẁ)eiFSγA1+A2 (ẁ) = FSµA1∪A2(ẁ)eiFSγA1∪A2 (ẁ), if ẁ ∈ V1 ∪ V2.

2. TRµB1|B2
(ẁù)eiTRαB1+B2 (ẁ) = TRµA1∪A2(ẁù)eiTRαA1∪A2 (ẁ)

IDµB1|B2
(ẁù)eiID βB1+B2 (ẁ) = IDµA1∪A2(ẁù)eiID βA1∪A2 (ẁ)

FSµB1+B2(ẁù)eiFSγB1+B2 (ẁ) = FSµA1∪A2(ẁù)eiFSγA1∪A2 (ẁ), for ẁù ∈ E1 ∩ E2.

3. TRµB1+B2(ẁù)eiTRαB1+B2 (ẁù) = ∧{TRµA1(ẁ), TRµA1(ù)}ei∧{TRαA1
(ẁ),TRαA1

(ù)}

IDµB1+B2(ẁù)eiID βB1+B2 (ẁù) = ∧{IDµA1(ẁ), IDµA1(ù)}ei∧{ID βA1
(ẁ),ID βA1

(ù)}

FSµB1+B2(ẁù)eiFSγB1+B2 (ẁù) = ∨{FSµA1(ẁ), FSµA1(ù)}ei∨{FSγA1
(ẁ),FSγA1

(ù)}.
Here, ẁù ∈ E, where E is the set of all edges joining the vertices of V1 and V2.

Example 5. Consider the two complex neutrosophic graphs, as shown in Figure 9, and their join,
as shown in Figure 10.
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Figure 9. CNG of G1 and G2.

Figure 10. CNG of G1 + G2.

Proposition 1. The join of two complex neutrosophic graphs is a neutrosophic graph.

Theorem 2. Let G1 = (A1, B1) and G2 = (A2, B2) be complex neutrosophic graphs of the graphs
G∗

1 and G∗
2 and let V1 ∩ V2 = ∅. Then, union G1 ∪ G2 = (A1 ∪ A2, B1 ∪ B2) is a complex

neutrosophic graph of G∗ if and only if G1 and G2 are complex neutrosophic graphs of the graphs
G∗

1 and G∗
2 , respectively.

Proof. Suppose that G1 ∪ G2 is a complex neutrosophic graph. Let ẁù /∈ E1 and ẁ, ù ∈
V1 − V2. Thus,

TRµB1(ẁù)eiTRαB1 (ẁ) = TRµB1∪B2(ẁù)eiTRαB1∪B2 (ẁ)

= ∧{TRµA1∩A2(ẁ), TRµA1∩A2(ù)}ei∧{TRαA1∩A2 (ẁ),TRαA1∩A2 (ù)}

= ∧{TRµA1(ẁ), TRµA1(ù)}ei∧{TRαA1
(ẁ),TRαA1

(ù)}

IDµB1(ẁù)eiID βB1 (ẁ) = IDµB1∪B2(ẁù)eiID βB1∪B2 (ẁ)

= ∧{IDµA1∩A2(ẁ), IDµA1∩A2(ù)}ei∧{ID βA1∩A2 (ẁ),IDαA1∩A2 (ù)}

= ∧{IDµA1(ẁ), IDµA1(ù)}ei∧{ID βA1
(ẁ),ID βA1

(ù)}

FSµB1(ẁù)eiFSγB1 (ẁ) = FSµB1∪B2(ẁù)eiFSγB1∪B2 (ẁ)

= ∨{FSµA1∩A2(ẁ), FSµA1∩A2(ù)}ei∨{FSγA1∩A2 (ẁ),FSγA1∩A2 (ù)}

= ∨{FSγA1(ẁ), FSγA1(ù)}ei∨{FSγA1
(ẁ),FSγA1

(ù)}
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This shows that G1 = (A1, B1) is a complex neutrosophic graph. Similarly, we can
show that G2 = (A2, B2) is a complex neutrosophic graph. The converse part is obvious.

Theorem 3. Let G1 = (A1, B1) and G2 = (A2, B2) be complex neutrosophic graphs of the graphs
G∗

1 and G∗
2 , and let V1 ∩ V2 = ∅. Then, join G1 + G2 = (A1 + A2, B1 + B2) is a complex

neutrosophic graph of G∗ if and only if G1 and G2 are complex neutrosophic graphs of the graphs
G∗

1 and G∗
2 , respectively.

4. Isomorphism of Complex Neutrosophic Graphs

Definition 11. Let G1 = (A1, B1) and G2 = (A2, B2) be two complex neutrosophic graphs.
A homomorphism g : G1 → G2 is a mapping g : V1 → V2 such that:

1.


TRµA1(ẁ1)e

iTRαA1
(ẁ1) ≤ TRµA2(φ(ẁ1))e

iTRαA2 (φ(ẁ1))

IDµA1(ẁ1)e
iID βA1

(ẁ1) ≤ IDµA2(φ(ẁ1))e
iID βA2 (φ(ẁ1)) f or all ẁ1 ù1 ∈ V1

FSµA1(ẁ1)e
iFSγA1

(ẁ1) ≥ FSµA2(φ(ẁ1))e
iFSγA2 (φ(ẁ1))

2.


TRµB1(ẁ1ù1)e

iTRαB1 (ẁ1ù1) ≤ TRµB2(φ(ẁ1)φ(ù1))e
iTRαB2 (φ(ẁ1)φ(ù1))

IDµB1(ẁ1ù1)e
iID βB1 (ẁ1ù1) ≤ IDµB2(φ(ẁ1)φ(ù1))e

iID βB2 (φ(ẁ1)φ(ù1)) f or all ẁ1 ù1 ∈ E1

FSµB1(ẁ1ù1)e
iIDγB1 (ẁ1ù1) ≥ FSµB2(φ(ẁ1)φ(ù1))e

iFSγB2 (φ(ẁ1)φ(ù1))

A bijective homomorphism with the property

3.


TRµA1(ẁ1)e

iTRαA1
(ẁ1) = TRµA2(φ(ẁ1))e

iTRαA2 (φ(ẁ1))

IDµA1(ẁ1)e
iID βA1

(ẁ1) = IDµA2(φ(ẁ1))e
iID βA2 (φ(ẁ1)) f or all ẁ1 ∈ V1

FSµA1(ẁ1)e
iFSγA1

(ẁ1) = FSµA2(φ(ẁ1))e
iFSγA2 (φ(ẁ1))

is called a week isomorphism. A bijective homomorphism with the property

4.


TRµB1(ẁ1ù1)e

iTRαB1 (ẁ1ù1) = TRµB2(φ(ẁ1)φ(ù1))e
iTRαB2 (φ(ẁ1)φ(ù1))

IDµB1(ẁ1ù1)e
iID βB1 (ẁ1ù1) = IDµB2(φ(ẁ1)φ(ù1))e

iID βB2 (φ(ẁ1)φ(ù1)) f or all ẁ1 ù1 ∈ E1

FSµB1(ẁ1ù1)e
iIDγB1 (ẁ1ù1) = FSµB2(φ(ẁ1)φ(ù1))e

iFSγB2 (φ(ẁ1)φ(ù1))

is called a strong co-isomorphism. A bijective mapping φ : G1 → G2 satisfying 3 and 4 is called an
isomorphism.

Theorem 4. An isomorphism between complex neutrosophic graphs is an equivalence relation.

Proof. The reflexivity and symmetry are obvious. To prove the transitivity, we let ψ :
V1 → V2 and φ : V2 → V3 be the isomorphism of G1 onto G2 and G2 onto G3, respectively.
Then, φ ◦ ψ : V1 → V3 is a bijective map from V1 to V3, where (φ ◦ ψ)(ẁ1) = φ(ψ(ẁ1))
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for all ẁ1 ∈ V1. Since a map ψ : V1 → V2 defined by ψ(ẁ1) = ẁ2 for ẁ1 ∈ V1 is an
isomorphism, here,

TRµA1(ẁ1)e
iTRαA1

(ẁ1) = TRµA2(ψ(ẁ1))e
iTRαA2 (ψ(ẁ1))

= TRµA2(ẁ2)e
iTRαA2 (ẁ2), f or all ẁ1 ∈ V1 (1)

IDµA1(ẁ1)e
iID βA1

(ẁ1) = IDµA2(ψ(ẁ1))e
iID βA2 (ψ(ẁ1))

= IDµA2(ẁ2)e
iID βA2 (ẁ2), f or all ẁ1 ∈ V1 (2)

FSµA1(ẁ1)e
iFSγA1

(ẁ1) = FSµA2(φ(ẁ1))e
iFSγA2 (φ(ẁ1))

= FSµA2(ẁ2)e
iFSγA2 (ẁ2), f or all ẁ1 ∈ V1 (3)

TRµB1(ẁ1ù1)e
iTRαB1 (ẁ1ù1) = TRµB2(ψ(ẁ1)ψ(ù1))e

iTRαB2 (ψ(ẁ1)ψ(ù1))

= TRµB2(ẁ2ù2)e
iTRαB2 (ẁ2ù2), f or all ẁ1ù1 ∈ E1 (4)

IDµB1(ẁ1ù1)e
iID βB1 (ẁ1ù1) = IDµB2(ψ(ẁ1)ψ(ù1))e

iID βB2 (ψ(ẁ1)ψ(ù1))

= IDµB2(ẁ2ù2)e
iID βB2 (ẁ2ù2), f or all ẁ1 ù1 ∈ E1 (5)

FSµB1(ẁ1ù1)e
iFSγB1 (ẁ1ù1) = FSµB2(ψ(ẁ1)ψ(ù1))e

iFSγB2 (ψ(ẁ1)ψ(ù1))

= FSµB2(ẁ2ù2)e
iFSγB2 (ẁ2ù2), f or all ẁ1 ù1 ∈ E1. (6)

Since a map φ : V2 → V3 defined by φ(ẁ2) = ẁ3 for ẁ2 ∈ V2 is an isomorphism,

TRµA2(ẁ2)e
iTRαA2 (ẁ2) = TRµA3(ψ(ẁ2))e

iTRαA3 (ψ(ẁ2))

= TRµA3(ẁ3)e
iTRαA3 (ẁ3), f or all ẁ2 ∈ V1 (7)

IDµA2(ẁ2)e
iID βA2 (ẁ2) = IDµA3(ψ(ẁ2))e

iID βA3 (ψ(ẁ2))

= IDµA3(ẁ3)e
iID βA3 (ẁ3), f or all ẁ2 ∈ V1 (8)

FSµA2(ẁ2)e
iFSγA2 (ẁ2) = FSµA3(φ(ẁ2))e

iFSγA3 (φ(ẁ2))

= FSµA3(ẁ3)e
iFSγA3 (ẁ3), f or all ẁ2 ∈ V1 (9)

TRµB2(ẁ2ù2)e
iTRαB2 (ẁ2ù2) = TRµB3(ψ(ẁ2)ψ(ù2))e

iTRαB3 (ψ(ẁ2)ψ(ù2))

= TRµB3(ẁ3ù3)e
iTRαB3 (ẁ3ù3), f or all ẁ2ù2 ∈ E1 (10)

IDµB2(ẁ2ù2)e
iID βB2 (ẁ2ù2) = IDµB3(ψ(ẁ2)ψ(ù2))e

iID βB3 (ψ(ẁ2)ψ(ù2))

= IDµB3(ẁ3ù3)e
iID βB3 (ẁ3ù3), f or all ẁ2ù2 ∈ E1 (11)

FSµB2(ẁ2ù2)e
iFSγB2 (ẁ2ù2) = FSµB3(φ(ẁ2 φ(ù2))e

iFSγB3 (φ(ẁ2)φ(ù2))

= FSµB3(ẁ3ù3)e
iFSγB3 (ẁ3ù3), f or all ẁ2ù2 ∈ E1. (12)

From (1), (7), and ψ(ẁ1) = ẁ2, ẁ1 ∈ V1, we have

TRµA1(ẁ1)e
iTRαA1

(ẁ1) = TRµA2(ψ(ẁ1))e
iTRαA2 (ψ(ẁ1))

= TRµA2(ẁ2)e
iTRαA2 (ẁ2)

= TRµA2(φ(ẁ2))e
iTRαA3 (φ(ẁ2))

= TRµA2(φ(ψ(ẁ1)))e
iTRαA3 (φ(ψ(ẁ2))).
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From (2), (8), and ψ(ẁ1) = ẁ2, ẁ1 ∈ V1, we have

IDµA1(ẁ1)e
iID βA1

(ẁ1) = IDµA2(ψ(ẁ1))e
iID βA2 (ψ(ẁ1))

= IDµA2(ẁ2)e
iID βA2 (ẁ2)

= IDµA2(φ(ẁ2))e
iID βA3 (φ(ẁ2))

= IDµA2(φ(ψ(ẁ1)))e
iID βA3 (φ(ψ(ẁ2))).

From (3), (9), and ψ(ẁ1) = ẁ2, ẁ1 ∈ V1, we have

FSµA1(ẁ1)e
iFSγA1

(ẁ1) = FSµA2(ψ(ẁ1))e
iFSγA2 (ψ(ẁ1))

= FSµA2(ẁ2)e
iFSγA2 (ẁ2)

= FSµA2(φ(ẁ2))e
iFSγA3 (φ(ẁ2))

= FSµA2(φ(ψ(ẁ1)))e
iFSγA3 (φ(ψ(ẁ2))).

From (4) and (10), we have

TRµB1(ẁ1ù1)e
iTRαB1 (ẁ1ù1) = TRµB2(ψ(ẁ1)ψ(ù1))e

iTRαB2 (ψ(ẁ1)ψ(ù1))

= TRµB2(ẁ2ù2)e
iTRαB2 (ẁ2ù2)

= TRµB3(φ(ẁ2)φ(ù2))e
iTRαB3 (φ(ẁ2)φ(ù2))

= TRµB3(φ(ψ(ẁ2))φ(ψ(ù2)))e
iTRαB3 (φ(ψ(ẁ2))φ(ψ(ù2))).

From (5) and (11), we have

IDµB1(ẁ1ù1)e
iID βB1 (ẁ1ù1) = IDµB2(ψ(ẁ1)ψ(ù1))e

iID βB2 (ψ(ẁ1)ψ(ù1))

= IDµB2(ẁ2ù2)e
iID βB2 (ẁ2ù2)

= IDµB3(φ(ẁ2)φ(ù2))e
iID βB3 (φ(ẁ2)φ(ù2))

= IDµB3(φ(ψ(ẁ2))φ(ψ(ù2)))e
iID βB3 (φ(ψ(ẁ2))φ(ψ(ù2))).

From (6) and (12), we have

FSµB1(ẁ1ù1)e
iFSγB1 (ẁ1ù1) = FSµB2(ψ(ẁ1)ψ(ù1))e

iFSγB2 (ψ(ẁ1)ψ(ù1))

= FSµB2(ẁ2ù2)e
iFSγB2 (ẁ2ù2)

= FSµB3(φ(ẁ2)φ(ù2))e
iFSγB3 (φ(ẁ2)φ(ù2))

= FSµB3(φ(ψ(ẁ2))φ(ψ(ù2)))e
iFSγB3 (φ(ψ(ẁ2))φ(ψ(ù2))).

For all ẁ1ù2 ∈ E1. Here, φ ◦ ψ is an isomorphism between G1 and G3. This completes
the proof.

Theorem 5. A weak isomorphism between complex neutrosophic graphs is a partial ordering relation.

Proof. The reflexivity and transitivity are obvious. To prove the anti-symmetry, we let
ψ : V1 → V2 be a strong isomorphism of G1 onto G2. Then, ψ is a bijective map defined by
ψ(ẁ1) = ẁ2 for all ẁ2 ∈ V1, satisfying
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TRµA2(ẁ1)e
iTRαA2 (ẁ1) = TRµA2(ψ(ẁ1))e

iTRαA2 (ψ(ẁ1)), f or all ẁ1 ∈ V1,

IDµA2(ẁ1)e
iTR βA2 (ẁ1) = IDµA2(ψ(ẁ1))e

iID βA2 (ψ(ẁ1)), f or all ẁ1 ∈ V1,

FSµA2(ẁ1)e
iFSγA2 (ẁ1) = FSµA2(ψ(ẁ1))e

iFSαA2 (ψ(ẁ1)), f or all ẁ1 ∈ V1

TRµB1(ẁ1ù1)e
iTRαB1 (ẁ1ù1) ≤ TRµB2(ψ(ẁ1)ψ(ù1))e

iTRαB2 (ψ(ẁ1)ψ(ù1)), f or allẁ1ù1 ∈ E1 (13)

IDµB1(ẁ1ù1)e
iID βB1 (ẁ1ù1) ≤ IDµB2(ψ(ẁ1)ψ(ù1))e

iID βB2 (ψ(ẁ1)ψ(ù1)), f or all ẁ1ù1 ∈ E1 (14)

FSµB1(ẁ1ù1)e
iFSγB1 (ẁ1ù1) ≥ IDµB2(ψ(ẁ1)ψ(ù1))e

iIDγB2 (ψ(ẁ1)ψ(ù1)), f or all ẁ1ù1 ∈ E1. (15)

Let φ : V2 → V1 be a strong isomorphism of G2 and G1. Then, g is a bijective map
defined by φ(ẁ2) = ẁ1 for all ẁ2 ∈ V2, satisfying

TRµA2(ẁ2)e
iTRαA2 (ẁ2) = TRµA1(φ(ẁ2))e

iTRαA1
(φ(ẁ2)), f or all ẁ2 ∈ V2

IDµA2(ẁ2)e
iID βA2 (ẁ2) = IDµA1(φ(ẁ2))e

iID βA1
(φ(ẁ2)), f or all ẁ2 ∈ V2

FSµA2(ẁ2)e
iFSγA2 (ẁ2) = FSµA1(φ(ẁ2))e

iFSγA1
(φ(ẁ2)), f or all ẁ2 ∈ V2

TRµB2(ẁ2ù2)e
iTRαB2 (ẁ2ù2) ≤ TRµB2(φ(ẁ2)φ(ù2))e

iTRαB2 (φ(ẁ2)φ(ù2)), f or all ẁ2ù2 ∈ E1 (16)

IDµB2(ẁ2ù2)e
iID βB2 (ẁ2ù2) ≤ IDµB2(φ(ẁ2)φ(ù2))e

iID βB2 (φ(ẁ2)φ(ù2)), f or all ẁ2ù2 ∈ E1 (17)

FSµB2(ẁ2ù2)e
iFSγB2 (ẁ2ù2) ≥ IDµB2(φ(ẁ2)φ(ù2))e

iIDγB2 (φ(ẁ2)φ(ù2)), f or all ẁ2ù2 ∈ E1. (18)

Inequalities (13)–(18) hold on the finite sets V1 and V2 only when G1 and G2 have the
same number of edges and the corresponding edges have the same weight. Hence, G1
and G2 are identical. Therefore, φ ◦ ψ is a strong isomorphism between G1 and G3. This
completes the proof.

5. Complement of Complex Neutrosophic Graphs

Definition 12. The complement of a week complex neutrosophic graph G = (A, B) of G∗ = (V, E)
is a weak complex neutrosophic graph G = (A, B) on G∗, as defined by
1. V = V

2.


TRµA(ẁ)eiTRαA(ẁ) = TRµA(ẁ)eiTRαA(ẁ)

IDµA(ẁ)eiID βA(ẁ) = IDµA(ẁ)eiID βA(ẁ) f or all ẁ ∈ V
FSµA(ẁ)eiFSγA(ẁ) = FSµA(ẁ)eiFSγA(ẁ)

3.



TRµB(ẁù)eiTRαB(ẁù) =

{
0 i f TRµB(ẁù)eiTRαB(ẁù) ̸= 0
∧{TRµA(ẁ), TRµA(ù)}ei∧{TRαA(ẁ),TRαA(ù)} i f TRµB(ẁù)eiTRαB(ẁù) = 0

IDµB(ẁù)eiTR βB(ẁù) =

{
0 i f IDµB(ẁù)eiID βB(ẁù) ̸= 0
∧{IDµA(ẁ), IDµA(ù)}, ei∧{ID βB(ẁ),ID βB(ù)} i f IDµB(ẁù)eiID βB(ẁù) = 0

FSµB(ẁù)eiFSγB(ẁù) =

{
0 i f FSµB(ẁù)eiFSγB(ẁù) ̸= 0
∨{FSµA(ẁ), FSµA(ù)}, ei∨{FSγB(ẁ),FSγB(ù)} i f FSµB(ẁù)eiFSγB(ẁù) = 0

Example 6. Consider a complex neutrosophic graph G, as shown in Figure 11, and the complement
of a neutrosophic graph, as shown in Figure 12.
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Figure 11. CNG of G1.

Figure 12. CNG of G1.

Definition 13. A complex neutrosophic graph G is called self-complement if G ≈ G.

Proposition 2. Let G = (A, B) be a self-complementary complex neutrosophic graph. Then,

1. ∑
ẁ ̸=ù

TRµB(ẁù)eiTRαB(ẁù) = ∑
ẁ ̸=ù

∧{TRµA(ẁ), TRµA(ù)}ei∧{TRαA(ẁ),TRαA(ù)}

2. ∑
ẁ ̸=ù

IDµB(ẁù)eiID βB(ẁù) = ∑
ẁ ̸=ù

∧{IDµA(ẁ), IDµA(ù)}ei∧{ID βA(ẁ),ID βA(ù)}

3. ∑
ẁ ̸=ù

FSµB(ẁù)eiFSγB(ẁù) = ∑
ẁ ̸=ù

∨{FSµA(ẁ), FSµA(ù)}ei∨{FSγA(ẁ),FSγA(ù)}

Proposition 3. Let G = (A, B) be a complex neutrosophic graph. If

1. TRµB(ẁù)eiTRαB(ẁù) = ∧{TRµA(ẁ), TRµA(ù)}ei∧{TRαA(ẁ),TRαA(ù)}

2. IDµB(ẁù)eiID βB(ẁù) = ∧{IDµA(ẁ), IDµA(ù)}ei∧{ID βA(ẁ),ID βA(ù)}

3. FSµB(ẁù)eiFSγB(ẁù) = ∨{FSµA(ẁ), FSµA(ù)}ei∨{FSγA(ẁ),FSγA(ù)}

ẁ, ù ∈ V, then G is self-complementary.

Proposition 4. Let G1 and G2 be complex neutrosophic graphs. If there is a strong isomorphism
between G1 and G2, then there is a strong isomorphism between G1 and G2.
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Proof. Let ψ be a strong isomorphism between G1 and G2. Then, ψ : V1 → V2 is a bijective
map that satisfies ψ(ẁ1) = ẁ2 for all ẁ1 ∈ V1 and ù1 ∈ V1,

TRµA1(ẁ1)e
iTRαA1

(ẁ1) = TRµA2(ψ(ẁ1))e
iTRαA2 (ψ(ẁ1)), f or all ẁ ∈ V1.

IDµA1(ẁ1)e
iID βA1

(ẁ1) = IDµA2(ψ(ẁ1))e
iID βA2 (ψ(ẁ1)), f or all ẁ ∈ V1.

FSµA1(ẁ1)e
iFSγA1

(ẁ1) = FSµA2(ψ(ẁ1))e
iFSγA2 (ψ(ẁ1)), f or all ẁ ∈ V1

TRµA1(ẁ1ù1)e
iTRαA1

(ẁ1ù1) ≤ TRµA2(ψ(ẁ1)ψ(ù1))e
iTRαA2 (ψ(ẁ1)ψ(ù1)), f or all ẁ1ù1 ∈ E1.

IDµA1(ẁ1ù1)e
iID βA1

(ẁ1ù1) ≤ IDµA2(ψ(ẁ1)ψ(ù1))e
iID βA2 (ψ(ẁ1)ψ(ù1)), f or all ẁ1ù1 ∈ E1.

FSµA1(ẁ1ù1)e
iFSγA1

(ẁ1ù1) ≤ FSµA2(ψ(ẁ1)ψ(ù1))e
iFSγA2 (ψ(ẁ1)ψ(ù1)), f or all ẁ1ù1 ∈ E1.

Since ψ : V1 → V2 is a bijective map, ψ−1 : V1 → V2 is a bijective map such that
ψ−1(ẁ2 = ẁ1) for all ẁ2 ∈ V2. Thus,

TRµA1(ψ
−1(ẁ2))e

iTRαA1
(ψ−2(ẁ2)) = TRµA2(ẁ2)e

iTRαA2 (ẁ2), f or all ẁ2 ∈ V2.

IDµA1(ψ
−1(ẁ2))e

iID βA1
(ψ−2(ẁ2)) = IDµA2(ẁ2)e

iID βA2 (ẁ2), f or all ẁ2 ∈ V2.

FSµA1(ψ
−1(ẁ2))e

iFSγA1
(ψ−2(ẁ2)) = FSµA2(ẁ2)e

iFSγA2 (ẁ2), f or all ẁ2 ∈ V2.

By the definition of the complement, we have

TRµB1
(ẁ1ù1)e

iTRαB1
(ẁ1ù2) = ∧{TRµA2(ẁ1), TRµA2(ù1)}ei∧{TRαA2 (ẁ1),TRαA2 (ù1)}

≤ ∧{TRµA2(ψ(ẁ2)), TRµA2(ψ(ù2)}ei∧{TRαA2 (ψ(ẁ2)),TRαA2 (ψ(ù2))}

= ∧{TRµA2(ẁ2), TRµA2(ù2)}ei∧{TRαA2 (ẁ2),TRαA2 (ù2)}

= TRµB2(ẁ2ù2)e
iTRαB2 (ẁ2ù2).

IDµB1
(ẁ1ù1)e

iID βB1
(ẁ1ù2) = ∧{IDµA2(ẁ1), IDµA2(ù1)}ei∧{ID βA2 (ẁ1),ID βA2 (ù1)}

≤ ∧{IDµA2(ψ(ẁ2)), IDµA2(ψ(ù2)}ei∧{ID βA2 (ψ(ẁ2)),ID βA2 (ψ(ù2))}

= ∧{IDµA2(ẁ2), IDµA2(ù2)}ei∧{ID βA2 (ẁ2),ID βA2 (ù2)}

= IDµB2(ẁ2ù2)e
iID βB2 (ẁ2ù2).

FSµB1
(ẁ1ù1)e

iFSγB1
(ẁ1ù2) = ∨{FSµA2(ẁ1), FSµA2(ù1)}ei∨{FSγA2 (ẁ1),FSγA2 (ù1)}

≤ ∨{FSµA2(ψ(ẁ2)), FSµA2(ψ(ù2)}ei∨{FSγA2 (ψ(ẁ2)),FSγA2 (ψ(ù2))}

= ∨{FSµA2(ẁ2), FSµA2(ù2)}ei∨{FSγA2 (ẁ2),FSγA2 (ù2)}

= FSµB2(ẁ2ù2)e
iFSγB2 (ẁ2ù2).

Thus, ψ−1 : V2 → V1 is a bijective map that is a strong isomorphism between G1 and
G2. Hence, this is the proof.

6. Application

In the field of hospital infrastructure design, applying the ideas of complicated neu-
trosophic sets and graph theory might be quite beneficial. Assume a healthcare planning
team wants to strategically place medical facilities throughout many areas to guarantee
extensive access for the population. The team takes into account aspects such as population
density, current healthcare infrastructure, demographic trends, and geographic accessibility.
Vertex Set Definition: Let H = {Assam, Chhattisgarh, Haryana, Jammu and Kashmir, Manipur,
Meghalaya, Mizoram, Nagaland, Rajasthan, and Orissa} represent the set of regions to be
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considered. Each area represents a prospective site for a medical facility. Expert Opinions:
60% of healthcare planners say that there is no imminent need to establish healthcare
facilities, 40% are unsure about the necessity, and 70% percent say Assam already has
healthcare facilities. Further exploration reveals the phase terms 70% disagree, 50% have
a moderate attitude, and 60% believe Assam leads. The representation for Assam is
<A: 0.7ei0.6π , 0.6ei0.7π , 0.4ei0.5π>. Moreover, 60% of healthcare planners believe there is
no need to establish healthcare facilities, 30% are doubtful of the criterion, and 80% be-
lieve that Chhattisgarh already has healthcare facilities. Further exploration reveals the
phase terms 60% disagree, 20% have a moderate attitude, and 90% believe Chhattisgarh
leads. The representation for Chhattisgarh is <CG : 0.8ei0.9π , 0.6ei0.6π , 0.3ei0.2π>. In a
similar way, they design every other location as <HA : 0.6ei0.1π , 0.5ei0.7π , 0.8ei0.2π>,<JK :
0.8ei0.9π , 0.4ei0.6π , 0.4ei0.2π>,<MP : 0.5ei0.4π , 0.7ei0.1π , 0.9ei0.1π>,<MH : 0.8ei0.3π , 0.4ei0.2π ,
0.5ei0.6π>,<MZ : 0.4ei0.7π , 0.6ei0.7π , 0.7ei0.8π>,<NL : 0.8ei0.8π , 0.3ei0.7π , 0.4ei0.8π>,<RA :
0.5ei0.2π , 0.1ei0.6π , 0.6ei0.5π> and <OI : 0.9ei0.3π , 0.5ei0.7π , 0.8ei0.4π>. We denote this model as

A =



<A : 0.7ei0.6π , 0.6ei0.7π , 0.4ei0.5π>
<CG : 0.8ei0.9π , 0.6ei0.6π , 0.3ei0.2π>
<HA : 0.6ei0.1π , 0.5ei0.7π , 0.8ei0.2π>
<JK : 0.8ei0.9π , 0.4ei0.6π , 0.4ei0.2π>
<MP : 0.5ei0.4π , 0.7ei0.1π , 0.9ei0.1π>
<MH : 0.8ei0.3π , 0.4ei0.2π , 0.5ei0.6π>
<MZ : 0.4ei0.7π , 0.6ei0.7π , 0.6ei0.8π>
<NL : 0.8ei0.8π , 0.3ei0.7π , 0.4ei0.8π>
<RA : 0.5ei0.2π , 0.1ei0.6π , 0.7ei0.5π>
<OI : 0.9ei0.3π , 0.5ei0.7π , 0.8ei0.4π>

the positive features of a particular parameter for a particular location are shown by the
complex true and indeterminacy membership of the vertices, while the negative character-
istics are indicated by the complex false membership of the vertices. Finding the absolute
values now requires that we

|A| = (0.7, 0.6, 0.4)
|CG| = (0.8, 0.6, 0.3)
|HA| = (0.6, 0.5, 0.8)
|JK| = (0.8, 0.4, 0.4)
|MP| = (0.5, 0.7, 0.9)
|MH| = (0.8, 0.4, 0.5)
|MZ| = (0.4, 0.6, 0.6)
|NL| = (0.8, 0.3, 0.4)
|RA| = (0.5, 0.1, 0.7)
|OI| = (0.9, 0.5, 0.8)

The complex neutrosophic number score function is helpful in making decisions
to choose the best option. Q = (TRµiαQ, IDµiβQ, FSµiγQ) is defined as follows: S(Q) =
(TRµiαQ − IDµiβQ − FSµiγQ)− 1

2π (αQ − βQ − γQ)
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S(Q) = (TRµiαQ − IDµiβQ − FSµiγQ)− 1
2π

(αQ − βQ − γQ)

S(A) = (0.7 − 0.6 − 0.4)− 1
2π

(0.6 − 0.7 − 0.5) = 0. 64

S(CG) = (0.8 − 0.6 − 0.3)− 1
2π

(0.9 − 0.6 − 0.2) = −0.25

S(HA) = (0.6 − 0.5 − 0.8)− 1
2π

(0.1 − 0.7 − 0.2) = 0.55

S(JK) = (0.8 − 0.4 − 0.4)− 1
2π

(0.9 − 0.6 − 0.2) = −0.15

S(MP) = (0.5 − 0.7 − 0.9)− 1
2π

(0.4 − 0.1 − 0.1) = −1.41

S(MH) = (0.8 − 0.4 − 0.5)− 1
2π

(0.3 − 0.2 − 0.6) = 0.69

S(MZ) = (0.4 − 0.6 − 0.7)− 1
2π

(0.7 − 0.7 − 0.8) = 0.35

S(NL) = (0.8 − 0.1 − 0.7)− 1
2π

(0.8 − 0.7 − 0.8) = 1.09

S(RA) = (0.5 − 0.1 − 0.7)− 1
2π

(0.2 − 0.6 − 0.5) = 1.11

S(OI) = (0.9 − 0.5 − 0.8)− 1
2π

(0.3 − 0.7 − 0.4) = 0.85.

Since the RA score has the highest value, it is better suited to start the hospital
infrastructure design. There is no edge between the vertices in this complex neutrosophic
application, as shown in Figure 13.

Figure 13. CNG with no edge.

Here, for situation 2, we proceed as follows:
Take S = {Assam(A), Chhattisgarh(CG), Haryana(HA), Jammu and Kashmir(JK),

Manipur(MP), Meghalaya(MH), Mizoram(MZ), Nagaland(NL), Rajasthan(RA), and
Orissa(OI)} = {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10}. The group then examines circum-
stance two as follows: depending on the team’s state, we identify more edges
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A =



<R1R2 : 0.8ei0.9π , 0.6ei0.6π , 0.3ei0.2π>
<R1R3 : 0.7ei0.8π , 0.5ei0.9π , 0.9ei0.5π>
<R1R4 : 0.6ei0.4π , 0.6ei0.5π , 0.7ei0.2π>
<R1R5 : 0.4ei0.8π , 0.7ei0.6π , 0.8ei0.9π>
<R1R6 : 0.8ei0.3π , 0.4ei0.2π , 0.6ei0.6π>
<R1R7 : 0.4ei0.6π , 0.6ei0.7π , 0.6ei0.8π>
<R1R8 : 0.7ei0.6π , 0.3ei0.7π , 0.8ei0.5π>
<R1R9 : 0.5ei0.2π , 0.1ei0.6π , 0.7ei0.5π>
<R1R10 : 0.7ei0.6π , 0.5ei0.7π , 0.8ei0.5π>
<R2R3 : 0.6ei0.1π , 0.5ei0.6π , 0.8ei0.2π>
<R2R4 : 0.8ei0.9π , 0.4ei0.6π , 0.4ei0.2π>
<R2R5 : 0.5ei0.4π , 0.6ei0.1π , 0.9ei0.2π>
<R2R6 : 0.8ei0.3π , 0.4ei0.2π , 0.5ei0.6π>
<R2R7 : 0.4ei0.7π , 0.6ei0.6π , 0.6ei0.8π>
<R2R8 : 0.8ei0.8Π, 0.3ei0.6π , 0.4ei0.8π>
<R2R9 : 0.5ei0.2π , 0.1ei0.6π , 0.8ei0.5π>
<R2R10 : 0.8ei0.3π , 0.5ei0.6π , 0.8ei0.4π>
<R3R4 : 0.6ei0.1π , 0.4ei0.6π , 0.8ei0.2π>
<R3R5 : 0.5ei0.1π , 0.5ei0.1π , 0.9ei0.2π>
<R3R6 : 0.6ei0.1π , 0.4ei0.2π , 0.8ei0.6π>
<R3R7 : 0.4ei0.1π , 0.5ei0.7π , 0.8ei0.8π>
<R3R8 : 0.6ei0.1π , 0.3ei0.7π , 0.8ei0.8π>
<R3R9 : 0.5ei0.1π , 0.3ei0.7π , 0.8ei0.5π>
<R3R10 : 0.6ei0.1π , 0.5ei0.7π , 0.8ei0.4π>
<R4R5 : 0.5ei0.4π , 0.4ei0.1π , 0.9ei0.1π>
<R4R6 : 0.8ei0.3π , 0.4ei0.2π , 0.8ei0.6π>
<R4R7 : 0.4ei0.7π , 0.4ei0.6π , 0.6ei0.8π>
<R4R8 : 0.8ei0.8π , 0.3ei0.6π , 0.4ei0.8π>
<R4R9 : 0.5ei0.2π , 0.1ei0.6π , 0.7ei0.5π>
<R4R10 : 0.8ei0.3π , 0.4ei0.6π , 0.8ei0.2π>
<R5R6 : 0.5ei0.3π , 0.4ei0.2π , 0.9ei0.6π>
<R5R7 : 0.4ei0.4π , 0.6ei0.7π , 0.9ei0.8π>
<R5R8 : 0.5ei0.4π , 0.3ei0.1π , 0.9ei0.8π>
<R5R9 : 0.5ei0.2π , 0.1ei0.6π , 0.9ei0.5π>
<R5R10 : 0.5ei0.3π , 0.5ei0.1π , 0.9ei0.4π>
<R6R7 : 0.4ei0.3π , 0.4ei0.2π , 0.6ei0.8π>
<R6R8 : 0.8ei0.3π , 0.3ei0.2π , 0.5ei0.8π>
<R6R9 : 0.5ei0.2π , 0.3ei0.1π , 0.7ei0.6π>
<R6R10 : 0.8ei0.5π , 0.4ei0.2π , 0.8ei0.6π>
<R7R8 : 0.4ei0.7π , 0.5ei0.7π , 0.8ei0.8π>
<R7R9 : 0.4ei0.2π , 0.1ei0.6π , 0.7ei0.8π>
<R7R10 : 0.4ei0.3π , 0.5ei0.7π , 0.8ei0.8π>
<R8R9 : 0.5ei0.2π , 0.1ei0.6π , 0.7ei0.8π>
<R8R10 : 0.8ei0.3π , 0.3ei0.7π , 0.8ei0.8π>
<R9R10 : 0.5ei0.2π , 0.1ei0.6π , 0.8ei0.5π>

traditional neutrosophic membership values of edges are given
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R1R2 = −0.22, R1R3 = −0.5, R1R4 = 0.0, R1R5 = −1, R1R6 = 0.0,

R1R7 = −0.7 R1R8 = 1, R1R9 = −1.5, R1R10 = −0.5, R2R3 = −0.6,

R2R4 = 0.0, R2R5 = −1 R2R6 = 0.0, R2R7 = −0.7, R2R8 = 1.1955,

R2R9 = −0.3, R2R10 = −0.4, R3R4 = −0.5 R3R5 = −0.9, R3R6 = −0.5,

R3R7 = −0.7, R3R8 = −0.3, R3R9 = −0.4, R3R10 = −0.5 R4R5 = −0.8,

R4R6 = −0.3, R4R7 = −0.5, R4R8 = 1.145, R4R9 = −0.2, R4R10 = −0.3

R5R6 = −0.7, R5R7 = −0.9, R5R8 = −0.6, R5R9 = −0.4, R5R10 = −0.9,

R6R7 = −0.5 R6R8 = 0.1, R6R9 = −0.2, R6R10 = −0.3, R7R8 = −0.8,

R7R9 = −0.7, R7R10 = −0.7 R8R9 = −0.1, R8R10 = −0.1, R9R10 = −0.3

R2R8 is the largest value and, therefore, more suitable for starting hospital infrastruc-
ture design. A complex neutrosophic graph with an edge is shown in Figure 14, and a
graphical representation of the score value with edges is shown in Figure 15.

Figure 14. CNG with edges.

Figure 15. Graphical representation of Score Value with edges.
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Comparative Analysis

In hospital infrastructure design, complex neutrosophic graphs outperform neutro-
sophic graphs because complex neutrosophic graphs can manage multiple uncertainties
more effectively than neutrosophic graphs. Both methods expand classical graph theory to
incorporate uncertainty. Neutrosophic numbers are used by neutrosophic graphs to indicate
uncertainty; however, complex neutrosophic graphs represent complicated uncertainties in
a more nuanced manner by adding interval neutrosophic sets. When designing hospitals,
where there are many different and related variables, complex neutrosophic graphs are
excellent at capturing the complex dynamics of patient requirements, resource allocation,
and operational restrictions. Modeling the intricate relationships across healthcare systems
is made easier and more resilient with the help of complex neutrosophic graphs, which
offer a more thorough framework. Complex neutrosophic graphs also ensure the effective
analysis and optimization of hospital infrastructure since they have better computing
capabilities, even if they may add some computational overhead. As a result, complex
neutrosophic graphs are the method of choice for designing hospital infrastructure as they
can effectively represent and handle the complex uncertainties that are present in these
kinds of systems.

7. Conclusions

Complex neutrosophic models provide higher versatility and comparability than stan-
dard neutrosophic models. Within this domain, one noteworthy addition is the difficult
neutrosophic graph, which includes three complex membership grades for each vertex and
edge. By exploiting this complex architecture, we can improve approximation accuracy.
In recent research, several vertex degrees were investigated, with a focus on understanding
the entire contribution of amplitude within the neutrosophic network. The degrees of
vertices in a complex neutrosophic network not only give detailed information but also
show the contributions of both amplitude and phase components. This study concentrated
solely on complicated neutrosophic graphs and their accompanying network structures,
with a special emphasis on the linkages between many major colleges. Certain methods,
such as directed cognition, were shown to be only practicable inside a linked, complex
neutrosophic graphical system. However, exact data gathering proved difficult, forcing at-
tempts to identify the size and sequence of the intricate neutrosophic network. Furthermore,
the study revealed several operations applicable to complicated neutrosophic graphs, such
as union, intersection, and join. Finally, the possible use of complex neutrosophic graphs to
solve decision-making problems for hospital infrastructure design was considered.
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