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Uniqueness of a Generalized Solution

for a One-Dimensional Thermal

Explosion Model of a Compressible

Micropolar Real Gas. Mathematics

2024, 12, 717. https://doi.org/

10.3390/math12050717

Academic Editors: Siwei Liu and

Hazem El-Rabii

Received: 10 January 2024

Revised: 24 February 2024

Accepted: 26 February 2024

Published: 28 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Uniqueness of a Generalized Solution for a One-Dimensional
Thermal Explosion Model of a Compressible Micropolar
Real Gas
Angela Bašić-Šiško † and Ivan Dražić *,†
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Abstract: In this paper, we analyze a quasi-linear parabolic initial-boundary problem describing
the thermal explosion of a compressible micropolar real gas in one spatial dimension. The model
contains five variables, mass density, velocity, microrotation, temperature, and the mass fraction
of unburned fuel, while the associated problem contains homogeneous boundary conditions. The
aim of this work is to prove the uniqueness theorem of the generalized solution for the mentioned
initial-boundary problem. The uniqueness of the solution, together with the proven existence of the
solution, makes the described initial-boundary problem theoretically consistent, which provides a
basis for the development of numerical methods and the engineering application of the model.

Keywords: micropolar real gas; reactive fluid; uniqueness of the solution

MSC: 35Q35

1. Introduction
1.1. Introduction to the Topics Covered in this Paper

In this work, we study the problem of uniqueness of the solution of the system of
partial differential equations describing the one-dimensional flow and thermal explosion of
a micropolar compressible fluid. It is a parabolic system of quasi-linear equations that reads

∂tρ =− 1
L

ρ2∂xv, (1)

∂tv =− R
L

∂x(ρ
pθ) +

λ + 2µ

L2 ∂x(ρ∂xv), (2)

jI∂tω =
c0 + 2cd

L2 ∂x(ρ∂xω)− 4µr
ω

ρ
, (3)

cv∂tθ =
κ

L2 ∂x(ρ∂xθ)− R
L

ρpθ ∂xv +
λ + 2µ

L2 ρ(∂xv)2 +
c0 + 2cd

L2 ρ(∂xω)2 (4)

+ 4µr
ω2

ρ
+ δr(ρ, θ, z), (5)

∂tz =
σ

L2 ∂x

(
ρ2∂xz

)
− r(ρ, θ, z), (6)

for (x, t) ∈]0, 1[×]0, T[. The system is coupled with the following initial conditions

ρ(x, 0) = ρ0(x), v(x, 0) = v0(x), ω(x, 0) = ω0(x), θ(x, 0) = θ0(x), z(x, 0) = z0(x), (7)
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for x ∈ [0, 1], and the following homogeneous boundary conditions

v(0, t) = v(1, t) = 0, ω(0, t) = ω(1, t) = 0,

∂xθ(0, t) = ∂xθ(1, t) = 0, ∂xz(0, t) = ∂xz(1, t) = 0,
(8)

for t ∈ [0, T].
Here, ρ = ρ(x, t), v = v(x, t), ω = ω(x, t), θ = θ(x, t), and z = z(x, t) denote mass

density, velocity, microrotational velocity, absolute temperature, and mass fraction of
unburned fuel, respectively. Equations (1)–(4) represent laws of conservation of mass,
moment, momentum moment, and energy, while Equation (6) describes the dynamics of a
chemical reaction.

Let us first give some important information about the system, which is derived from
work [1]. The system is given in mass Lagrangian coordinates and the spatial coordinate x
is dimensionless, whereby L > 0 is the dimension-bearing constant obtained during the
derivation of the model. The rest of the constants that appear in the system are as follows:
jI > 0 is microinertia density; cv > 0 is specific heat for constant volume; κ > 0 is heat
conductivity coefficient; δ > 0 is the reaction rate; σ > 0 is the species diffusion coefficient;
λ and µ are coefficients of viscosity; and c0, cd, and µr are coefficients of microviscosity,
whereby the following inequalities hold:

µ ≥ 0, 3λ + 2µ ≥ 0, cd ≥ 0, 3c0 + 2cd ≥ 0, µr > 0. (9)

Here, we consider the real gas model which is characterized by the generalized
equation of state

P = Rρpθ, (10)

where P = P(x, t) is the pressure, while R > 0 and p ≥ 1 are constants (see [2]). For p = 1,
the model reduces to the ideal gas model.

Equation (10) resulted from the interpolation of the equations of state for ideal and
barotropic fluids, taking into account the generalization of the equation of state for gases
introduced in [3]. Since barotropic fluids have important applications in meteorology and
astrophysics, it is reasonable to assume that the addition of a temperature component will
allow the analysis of a larger number of thermodynamic problems related to this type of
fluid. On the other hand, if we consider (10) as a generalization of the equation of state
for an ideal gas, we can say that this equation allows the observation of gases that deviate
from ideal behavior, especially under extreme conditions such as thermal explosions, as
discussed in [3].

Function r represents the intensity of the chemical reaction, and Arrhenius’ law (see
[4] for details) is most often assumed to hold, that is

r(ρ, θ, z) = ϵρm−1zm exp
θ − 1

ϵθ
, (11)

where ϵ > 0 is the activation energy, and m ≥ 1 is an integer representing the overall sum
of the individual reaction orders of reactants. In this work, we allow r to assume a more
general form

r(ρ, θ, z) = zm r̃(ρ, θ, z), (12)

where m ≥ 1 is an integer, and r̃ :]0,+∞[×]0,+∞[×[0,+∞[ 7→ [0, ∞[ such that the following
holds:

• r̃ is bounded on each [a, b]×]0,+∞[×[0,+∞[, for 0 < a < b, ;
• r̃ is continuous with respect to ρ, Lipschitz continuous on bounded sets with respect

to ρ, and globally Lipschitz continuous with respect to θ and z;
• lim

ρ→0+
r̃(ρ, θ, z) = 0 and lim

θ→0+
r̃(ρ, θ, z) = 0.

These assumptions on r are inspired by the work in [2]. Let us notice that Arrhenius’
law (11) satisfies the stated assumptions, which indicates that they are not too restrictive.
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This problem falls into the category of quasi-linear parabolic problems (see [5] for
details) that are generally written as

∂tu + Au = f , (13)

where A is a quasi-linear elliptic spatial differential operator, where the quasi-linearity is
characterized by linearity in the highest-order derivatives, more precisely, in the second-
order derivatives. This form of the problem is advantageous since some general methods
for its solution are known, such as the Faedo–Galerkin projection onto finite-dimensional
subspaces (see [6]), which was used to prove the existence of this problem in [7].

1.2. Literature Review and Important Results

The classical continuum as a modeling tool is extremely robust in modeling a large
number of materials. However, as the development of scientific models increasingly focuses
on the micro- and nanolevel, it becomes apparent that neglecting certain material properties
related to microlevel behavior does not yield satisfactory results [8]. In the past, there were
several approaches that attempted to account for the microproperties and microbehavior
of materials, but most of these models proved to be too complex for mathematical and
engineering analysis [9]. An optimal model that could describe micro-behaviors was
introduced by Ahmed Cemal Eringen in the second half of the last century. Eringen
emphasizes the importance of microrotations, which he adds as a new model variable while
neglecting microdeformations [10].

In this paper, we focus on micropolar fluid, which is increasingly used in various fields
of science, for example, in chemistry [11], physics [12], metallurgy [13], biomedicine [14],
thermodynamics [15], mechanical engineering [16], and many others. The mathematical
analysis of micropolar fluids can be divided into two broad areas—incompressible fluid
theory and compressible fluid theory, with incompressible fluids being far better studied
from the point of view of both mathematical properties and applications. For an overview
of the results and recent achievements in the field of incompressible fluids, we refer to the
following papers [17–19]:

Classical compressible fluid is still a field with many open problems. In particular,
the mathematical analysis of three-dimensional models [20], of models admitting an initial
vacuum [21], and of models with time-dependent domains [22] stand out.

The mathematical analysis of the compressible micropolar fluid began with the as-
sumption of the ideality of the fluid, i.e., Clapeyron’s equation of state. The mathematical
model of an ideal micropolar compressible and thermally conductive fluid with homoge-
neous boundary conditions was presented by N. Mujaković in 1998 [23]. The described
model was also considered in three dimensions but assuming spherical [24] or cylindrical
symmetry [25,26]. In all the above cases, the existence and uniqueness of the global general-
ized solution were proved, and the problems of regularity and stabilization of the solution
were also considered [27]. The flow model of the described fluid between parallel plates
has also been studied, but so far, only the uniqueness of the solution has been proved [28].

In this paper, we are concerned with a model in which Clapeyron’s equation of state
is generalized. In other words, it is no longer an ideal fluid but a real fluid. This type
of fluid has been considered in the classical case in the context of several mathematical
problems, considering in particular the problem of the existence of a solution, the problem
of regularity, and the problem of stabilization of the solution [29–34]. For the micropolar
case of a real fluid in one dimension, the local and global existence and the uniqueness of
the generalized solution have been proved so far [35–37].

In addition to the generalization of the equation of state, we are also dealing with a
more complex system of partial differential equations describing the problem of thermal
explosion. This problem has been analyzed so far mainly in the case of a classical ideal
fluid [4,38] and classical real fluid [2,39,40].

In this work, the problem of the thermal explosion of a real gas is extended to the
micropolar case, and the corresponding model is governed by (1)–(8). For this problem, the
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local and global existence of a generalized solution has been proved so far [7,41], and the
uniqueness of the generalized solution is proved in this work.

1.3. Research Aims and Objectives

Our primary goal in this article is to rigorously establish the uniqueness of the solution
to the problem (1)–(8). A secondary goal is the development and adaptation of proof
methods for the uniqueness of solutions related to the equations for real micropolar fluids,
which can be applied to mathematically similar problems modeling other phenomena.

1.4. Structure of the Article

In Section 1, the problem studied is described and an overview of the relevant results is
given. The Section 2 lists the specific mathematical tools needed to prove the main theorem.
In Section 3, the generalized solution to the problem described is defined in detail, while
the main result is described in Section 4. In Section 5, auxiliary results are given, on the
basis of which the main result is proved in Section 6.

1.5. Positioning of Our Results within the Relevant Field

The analyzed problem of the thermal explosion of a micropolar real gas is at an early
stage of mathematical analysis. So far, only the existence of the solution has been proven,
while the uniqueness of the solution has not yet been confirmed. By proving uniqueness,
the model becomes theoretically consistent and is suitable for further mathematical and
technical analyses. This means that the result of this work places the observed initial-
boundary problem in the realm of engineering models for which it makes sense to continue
the analysis, either in the context of developing numerical methods or in the sense of
research for concrete practical applications. Moreover, the proof itself shows in its tech-
nical aspect the necessary adaptations to prove uniqueness that must be made when the
classical thermal explosion model is considered in the context of micropolar fluids, since
the uniqueness of this problem has not yet been analyzed in the context of micropolarity.
This adaptation can then be applied to similar quasi-linear parabolic problems. It is also
important to point out that in similar papers dealing with the classical model, uniqueness
is almost always only assumed and not rigorously analyzed and proved.

2. Preliminaries

In this section, we provide an overview of some known inequalities, namely Young’s,
Hölder’s, Poincaré’s, Ladyzhenskaya’s, and Grönwall’s inequality, which we use in the
following. For simplicity, here and below, we use the following abbreviated notation for
the L2 and L∞ norm:

∥ f ∥ = ∥ f ∥L2(a,b), | f | = ∥ f ∥L∞(a,b). (14)

Proposition 1 (Young, in [42]). Let α, β ≥ 0, q ∈]1, ∞[ and q′ = q
q−1 . Then, the following

inequality holds

αβ ≤ αq

q
+

βq′

q′
. (15)

Moreover, if γ > 0, then

ab ≤ γqaq

q
+

bq′

q′γq′ . (16)

Proposition 2 (Hölder, in [42]). Let q ∈ [1, ∞] and q′ = q
q−1 . If f and g are measurable functions

on [a, b], then
∥ f g∥L1(a,b) ≤ ∥ f ∥Lq(a,b) · ∥g∥Lq′ (a,b). (17)

Proposition 3 (Poincaré, in [6]; Gagliardo–Ladyzhenskaya, in [5]). Let f :]a, b[→ R. If one of
the following conditions holds:
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1. f ∈ H1
0(a, b);

2. f ∈ H1(a, b) and
∫ b

a f (x)dx = 0;

then

∥ f ∥ ≤ C∥ f ′∥, (18)

| f |2 ≤ C∥ f ∥ · ∥ f ′∥, (19)

| f | ≤ C∥ f ′∥, (20)

where positive constant C does not depend on function f .

Proposition 4 (Grönwall, in [43]). Let ξ, f , g, h be real-valued measurable functions on [a, b],
with f h, gh, and ξh integrable. If f , g, h are non-negative and

ξ(x) ≤ f (x) + g(x)
∫ x

a
h(t)ξ(t)dt, x ∈ [a, b] (21)

then

ξ(x) ≤ f (x) + g(x)
∫ x

a
f (t)h(t) exp

(∫ x

t
g(s)h(s)ds

)
dt (22)

holds a.e. on [a, b].

3. Generalized Solution

Generalized solution [1,7] to the initial-boundary value problem (1)–(8) in QT =
]0, 1[×]0, T[, for T > 0, is a function

(x, t) 7→ (ρ, v, ω, θ, z)(x, t), (x, t) ∈ QT , (23)

such that

ρ ∈ L∞(0, T; H1(0, 1)
)
∩ H1(QT), ess inf

QT
ρ > 0, (24)

v, ω, θ, z ∈ L∞(0, T; H1(0, 1)
)
∩ H1(QT) ∩ L2(0, T; H2(0, 1)

)
. (25)

ρ, v, ω, θ, and z satisfy Equations (1)–(6) a.e. in QT in the sense of weak derivatives, initial
conditions (7) a.e. in ]0, 1[, and boundary conditions (8) in the sense of traces.

We call the solution to the problem generalized because the above Equations (1)–(6)
are not generally satisfied in the sense of classical definition of (partial) derivatives due to
functions involved not being necessarily smooth enough but in a more general sense of
theory of distributions, or more specifically, Sobolev spaces and weak derivatives (see for
example [6,42]). According to the definition of weak derivatives, Equations (1)–(6) translate
into the following:

∫∫
QT

[
ρ∂tϕ − 1

L
ρ2∂xvϕ

]
dxdt = 0, (26)∫∫

QT

[
v∂tϕ +

R
L
(ρ)pθ∂xϕ − λ + 2µ

L2 ρ∂xv∂xϕ

]
dxdt = 0, (27)∫∫

QT

[
ω∂tϕ − c0 + 2cd

L2 jI
ρ∂xω∂xϕ − 4

µr

jI

ω

ρ
ϕ

]
dxdt = 0, (28)

∫∫
QT

[
θ∂tϕ − κ

L2cv
(ρ∂xθ)∂xϕ +

R
Lcv

(ρ)pθ∂xvϕ +
λ + 2µ

L2cv
ρ(∂xv)2ϕ + 4

µr

cv

(ω)2

ρ
ϕ

+
c0 + 2cd

L2cv
ρ(∂xω)2ϕ +

δ

cv
r(ρ, θ, z)ϕ

]
dxdt = 0,

(29)

∫∫
QT

[
z∂tϕ − σ

L2 (ρ)
2∂xz∂xϕ − r(ρ, θ, z)ϕ

]
dxdt = 0, (30)
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for all test functions ϕ = ϕ(x, t).
From the embedding theorems for function spaces (see [6,44] for details), it can be

seen that for a generalized solution (ρ, v, ω, θ, z), even stronger inclusions are valid, more
precisely:

ρ ∈ C
(
[0, T]; L2(0, 1)

)
∩ L∞(0, T; C([0, 1])

)
, (31)

v, ω, θ, z ∈ L2(0, T; C1([0, 1])
)
∩ C

(
[0, T]; H1(0, 1)

)
∩ C

(
QT
)
. (32)

If additionally ρ0 ∈ H1(0, 1), then

ρ ∈ C
(
QT
)

(33)

also holds.
Let us mention that in [7] it is shown that the initial-boundary value problem (1)–(8)

has a generalized solution locally in time if the following holds for the initial functions:

ρ0, θ0, z0 ∈ H1(]0, 1[), v0, ω0 ∈ H1
0(]0, 1[), (34)

ess inf
x∈]0,1[

ρ0(x) > 0, ess inf
x∈]0,1[

θ0(x) > 0, 0 ≤ z0 ≤ 1, ∀x ∈ [0, 1], (35)

that is, the following theorem holds.

Theorem 1 (On the local existence of the generalized solution [7]). Let the functions ρ0, v0,
ω0, θ0, z0 satisfy the conditions (34)–(35). Let r be defined by (12) and m from (12) be either an
odd integer or equal to 2. There exists T0 ∈]0, T] such that the problem (1)–(8) has a generalized
solution in Q0 := QT0 such that

θ > 0 and 0 ≤ z ≤ 1 in Q0. (36)

For the convenience of the reader, we outline the basic ideas of the proof of Theorem 1.
The proof is constructive and is divided into several main steps. First, it is necessary to
construct a series of approximate solutions; the Faedo–Galekin method was used for this
purpose. Subsequently, a series of a priori estimates were obtained for the constructed
approximate solutions. The obtained a priori estimates allowed the choice of a sufficiently
small time interval in which the approximate solutions are bounded. In the last step, the
transition to the limits using the compactness theorems leads to obtaining the solution of
the observed system defined on a previously chosen sufficiently small time interval.

We have also dealt with the problem of the global existence of the solution, which was
proven in [41]. For the sake of completeness, we reproduce this result in the following theorem.

Theorem 2 (On global existence of the generalized solution [41]). Let the functions r, ρ0, v0,
ω0, θ0, and z0 satisfy the conditions of Theorem 1. Then, for any T > 0, there is a generalized
solution (ρ, v, ω, θ, z) of the initial-boundary value problem (1)–(8) on QT =]0, 1[×]0, T[ with
property (36).

The proof of Theorem 2 is based on the application of the extension principle and
Theorem 1, which means that the generalized solution can be extended in the time domain.

4. Main Result

In this section, we state the main result, give a few initial remarks to be used below,
and describe the idea of the proof.

Let us first emphasize that, although it is known that our problem has a local and
global solution (Theorems 1 and 2), the proof of the main theorem does not depend on the
time interval in which the solution exists. For this reason, an arbitrary time interval is given
in the statement of the theorem. We must also note that the conditions (34)–(35) that were
necessary for the proof of local existence are not used in the proof of the theorem.
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The following theorem expresses the main result of this work.

Theorem 3. The generalized solution to the initial-boundary value problem (1)–(8) in QT =
]0, 1[×]0, T[ is unique for any T > 0 for which this solution exists.

To prove this theorem, we mainly use the techniques from the work in [28,45]. Some
parts of the proof coincide with the proof in [36], where the uniqueness of the solution for a
similar model is considered; so, where this is the case, we omit the detailed procedure and
provide an appropriate reference.

Before we start with the proof, we write the problem in an equivalent form, where
instead of mass density ρ, we use a specific volume u defined by

u =
1
ρ

. (37)

We perform this because the proof is somewhat easier to write when we use this new
form of system instead of the original. Transition to the new form is legitimate due to
condition (24) in the definition of a generalized solution. Moreover, from (24), (31) and (37),
we conclude that

u ∈ L∞(QT) and ess inf
QT

u > 0. (38)

So, the function u has the same properties as the function ρ.
To simplify the notation, we also introduce the following functions:

ru(u, θ, z) = r
(

1
u

, θ, z
)

, r̃u(u, θ, z) = r̃
(

1
u

, θ, z
)

, (39)

where r and r̃ are from (12). The obtained system reads

∂tu =
1
L

∂xv, (40)

∂tv =− R
L

∂x

(
θ

up

)
+

λ + 2µ

L2 ∂x

(
∂xv
u

)
, (41)

jI∂tω =
c0 + 2cd

L2 ∂x

(
∂xω

u

)
− 4µrωu, (42)

cv∂tθ =
κ

L2 ∂x

(
∂xθ

u

)
− R

L
θ ∂xv

up +
λ + 2µ

L2
(∂xv)2

u
+

c0 + 2cd
L2

(∂xω)2

u

+ 4µrω2u + δru(u, θ, z),
(43)

∂tz =
σ

L2 ∂x

(
∂xz
u2

)
− ru(u, θ, z), (44)

for (x, t) ∈]0, 1[×]0, T[,

u(x, 0) =
1

ρ0(x)
, v(x, 0) = v0(x), ω(x, 0) = ω0(x),

θ(x, 0) = θ0(x), z(x, 0) = z0(x),
(45)

for x ∈ [0, 1],

v(0, t) = v(1, t) = 0, ω(0, t) = ω(1, t) = 0,

∂xθ(0, t) = ∂xθ(1, t) = 0, ∂xz(0, t) = ∂xz(1, t) = 0,
(46)

for t ∈ [0, T].
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We prove the theorem using the reductio ad absurdum method, i.e., we assume that the
problem (40)–(46) has two solutions,

(ui, vi, ωi, θi, zi), i = 1, 2, (47)

in QT , where T > 0 is arbitrary but fixed. Then, we construct an auxiliary system for
the difference of these two solutions, and using a series of estimates, we show that the
difference between the two solutions is zero. A key tool in the proof is the integral form of
the Grönwall’s inequality given in Proposition 4.

Now, we construct the auxiliary system described. Let us denote differences in
functions ui, vi, ωi, θi, zi, i = 1, 2, by

u = u1 − u2, v = v1 − v2, ω = ω1 − ω2, θ = θ1 − θ2, z = z1 − z2. (48)

After subtracting Equations (40)–(44), which, by assumption, hold for (ui, vi, ωi, θi, zi),
i = 1, 2, we obtain

∂tu =
1
L

∂xv, (49)

∂tv =− R
L

∂x

(
θ

up
1
−

(up
1 − up

2 ) θ2

up
1 up

2

)
+

λ + 2µ

L2 ∂x

(
∂xv
u1

− u ∂xv2

u1u2

)
, (50)

jI∂tω =
c0 + 2cd

L2 ∂x

(
∂xω

u1
− u ∂xω2

u1u2

)
− 4µr(ω u1 + u ω2), (51)

cv∂tθ =
κ

L2 ∂x

(
∂xθ

u1
− u ∂xθ2

u1u2

)
− R

L

(
θ1 ∂xv

up
1

+
θ ∂xv2

up
1

−
(up

1 − up
2 ) θ2 ∂xv2

up
1 up

2

)

+
λ + 2µ

L2

(
(∂xv1 + ∂xv2) ∂xv

u1
− (∂xv2)

2u
u1u2

)
+

c0 + 2cd
L2

(
(∂xω1 + ∂xω2) ∂xω

u1
− (∂xω2)

2u
u1u2

)
+ 4µr

(
(ω1 + ω2) u1ω + ω2

2 u
)

+ δ(ru(u1, θ1, z1)− ru(u2, θ2, z2)),

(52)

∂tz =
σ

L2 ∂x

(
∂xz
u2

1
− u(u1 + u2)∂xz2

u2
1u2

2

)
− (ru(u1, θ1, z1)− ru(u2, θ2, z2)), (53)

for (x, t) ∈ ΩT .
Furthermore, since (ρi, vi, ωi, θi, zi) satisfy initial and boundary conditions (45)–(46), the

differences (u, v, ω, θ, z) satisfy the following homogeneous initial and boundary conditions:

u(x, 0) = 0, v(x, 0) = 0, ω(x, 0) = 0, θ(x, 0) = 0, z(x, 0) = 0, (54)

for x ∈ [0, 1],

v(0, t) = v(1, t) = 0, ω(0, t) = ω(1, t) = 0,

∂xθ(0, t) = ∂xθ(1, t) = 0, ∂xz(0, t) = ∂xz(1, t) = 0,
(55)

for t ∈ [0, T].

5. Auxiliary Results

In this section, we state and prove several auxiliary estimates for functions u, v, ω, θ,
and z defined by (48).



Mathematics 2024, 12, 717 9 of 18

Lemma 1. There exists C > 0 such that for all t ∈]0, T[, we have

∥u(t)∥2 + ∥up
1 (t)− up

2 (t)∥
2 + ∥v(t)∥2 + ∥ω(t)∥2

+
∫ t

0

(
∥∂xv(τ)∥2 + ∥∂xω(τ)∥2

)
dτ ≤ C

∫ t

0
∥θ(τ)∥2dτ.

(56)

Proof. The proof of this lemma is analogous to the proof of Lemma 5 in [36], where
estimates are obtained for u, v, and ω, which solve the nonreactive model (i.e., a model
where z = 0). For readers’ convenience, here, we outline the proof of this lemma. For more
details, we refer the reader to [36].

Multiplying (49) by u and integrating over ]0, 1[, we obtain

1
2

d
dt

(
||u(t)||2

)
=

1
L

∫ 1

0
u ∂xv dx. (57)

Hölder’s and Young’s inequality then implies

d
dt

(
||u(t)||2

)
≤ C||u(t)|| · ||∂xv(t)|| ≤ C

(
||u(t)||2 + ||∂xv(t)||2

)
. (58)

Integrating (58) over ]0, t[ and taking into account initial conditions (54), we have

||u(t)||2 ≤ C
∫ t

0
||u(τ)||2dτ + C

∫ t

0
||∂xv(τ)||2dτ. (59)

Finally, Grönwall’s inequality applied to (59) implies

||u(t)||2 ≤ C
∫ t

0
||∂xv(τ)||2dτ. (60)

Now, let p > 1. Multiplying (40), for ui and vi, i = 1, 2, by up−1
i , respectively, we obtain

∂t(u
p
i ) =

p
L

∂xvi up−1
i , i = 1, 2. (61)

By subtracting Equation (61) for i = 1 and i = 2, we obtain

d
dt

(
up

1 − up
2

)
=

p
L

(
∂xvup−1

1 + ∂xv2
up

1 − up
2

u1
− ∂xv2

up−1
2 u
u1

)
. (62)

Now, similar to the proof of estimate (60), after multiplying (62) by (up
1 − up

2 ), integrat-
ing over ]0, 1[, using property (38), Hölder’s and Young’s inequality, and Proposition 3, we
obtain

1
2

d
dt

(
||up

1 (t)− up
2 (t)||

2
)

=
p
L

∫ 1

0

(
∂xvup−1

1 (up
1 − up

2 ) + ∂xv2
(up

1 − up
2 )

2

u1
− ∂xv2

up−1
2 u
u1

(up
1 − up

2 )

)
dx

≤C
[(

||∂xv(t)||2 + ||up
1 (t)− up

2 (t)||
2
)
+
(

1 + ||∂xxv2(t)||2
)
||up

1 (t)− up
2 (t)||

2

+
(

1 + ||∂xxv2(t)||2
)(

||u(t)||2 + ||up
1 (t)− up

2 (t)||
2
)]

.

(63)
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Integrating (63) over ]0, t[ and taking into account initial conditions (45), we obtain

||up
1 (t)− up

2 (t)||
2 ≤ C

∫ t

0

(
1 + ||∂xxv2(τ)||2

)
||up

1 (τ)− up
2 (τ)||

2dτ

+ C
∫ t

0

(
1 + ||∂xxv2(τ)||2

)
||u(τ)||2dτ + C

∫ t

0
||∂xv(τ)||2dτ.

(64)

Estimates (60) and (64) imply

||up
1 (t)− up

2 (t)||
2 ≤ C

∫ t

0

(
1 + ||∂xxv2(τ)||2

)
||up

1 (τ)− up
2 (τ)||

2dτ

+C
∫ t

0
||∂xv(τ)||2dτ,

(65)

from which Grönwall’s inequality implies

||up
1 (t)− up

2 (t)||
2 ≤ C

∫ t

0
||∂xv(τ)||2dτ. (66)

Multiplying (50)–(51) by v and ω, respectively, integrating over ]0, 1[, and taking into
account (55), we obtain

1
2

d
dt

(
||v(t)||2

)
+

λ + 2µ

L2

∫ 1

0

(∂xv)2

u1
dx =

R
L

∫ 1

0

θ∂xv
up

1
dx

− R
L

∫ 1

0

(up
1 − up

2 )θ2∂xv
up

1 up
2

dx +
λ + 2µ

L2

∫ 1

0

u∂xv ∂xv2

u1u2
dx,

(67)

jI
2

d
dt

(
||ω(t)||2

)
+

c0 + 2cd
L2

∫ 1

0

(∂xω)2

u1
dx

=
c0 + 2cd

L2

∫ 1

0

u∂xω ∂xω2

u1u2
dx − 4µr

∫ 1

0

(
u1ω2 + u ω2ω

)
dx.

(68)

Applying (38), we obtain estimates from below for the integrals on the left side of
(67)–(68)

λ + 2µ

L2

∫ 1

0

(∂xv)2

u1
dx ≥ C1||∂xv(t)||2, (69)

c0 + 2cd
L2

∫ 1

0

(∂xω)2

u1
dx ≥ C2||∂xω(t)||2. (70)

Applying (38), Hölder’s, and Young’s inequality, and Proposition 3, we estimate
integrals on the right-hand side of (67)–(68) similarly as we did before. Taking that into
account together with (60), (66), and (69)–(70), we obtain

1
2

d
dt
||v(t)||2 + C1||∂xv(t)||2 ≤ 3α||∂xv(t)||2

+
C
α

(
||θ(t)||2 + ||up

1 (t)− up
2 (t)||

2 + ||u(t)||2 ||∂xxv2(t)||2
)

,
(71)

jI
2

d
dt
||ω(t)||2 + C2||∂xω(t)||2 ≤ 2α||∂xω(t)||2 + C||ω(t)||2

+
C
α

(
1 + ||∂xxω2(t)||2

)
||u(t)||2.

(72)

where α > 0 is to be determined in the next step.
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Integrating (71)–(72) over ]0, t[ and taking into account initial conditions (54), as well
as α < min

{
C1
3 , C2

2

}
, we obtain

||v(t)||2 +
∫ t

0
||∂xv(τ)||2dτ ≤C

∫ t

0
||θ(τ)||2dτ

+ C
∫ t

0

(
1 + ||∂xxv2(τ)||2

) ∫ τ

0
||∂xv(s)||2ds dτ,

(73)

||ω(t)||2 +
∫ t

0
||∂xω(τ)||2dτ ≤C

∫ t

0
||ω(τ)||2dτ + C

∫ t

0
||θ(τ)||2 dτ. (74)

Applying Grönwall’s inequality to (73)–(74) implies

||v(t)||2 +
∫ t

0
||∂xv(τ)||2dτ ≤ C

∫ t

0
||θ(τ)||2dτ, (75)

||ω(t)||2 +
∫ t

0
||∂xω(τ)||2dτ ≤ C

∫ t

0
||θ(τ)||2dτ. (76)

Adding up (60), (66), (75), and (76), we obtain (56).

To estimate function z, we should first determine the properties of the function ru.
From the definition of r̃u and properties of r stated in the introduction, it is easy to see
that r̃u is a non-negative function defined on ]0,+∞[×]0,+∞[×[0,+∞[, bounded on sets
of the form [a, b]×]0,+∞[×[0,+∞[, continuous with respect to ρ, and globally Lipschitz-
continuous with respect to θ and z, with the properties

lim
ρ→0+

r̃u(ρ, θ, z) = 0, lim
θ→0+

r̃u(ρ, θ, z) = 0. (77)

It is not hard to show that r̃ is also Lipschitz-continuous on bounded sets with respect
to ρ.

Let 0 < a < b and u1, u2 ∈]a, b[. Since r is Lipschitz-continuous on bounded sets with
respect to ρ, for all (θ, z) ∈]0,+∞[×[0,+∞[, we have

|r̃(u1, θ, z)− r̃(u2, θ, z)| ≤ Lρ,a,b|u1 − u2|, (78)

for some Lρ,a,b ≥ 0. From this, it follows that

|r̃u(u1, θ, z)− r̃u(u2, θ, z)| =
∣∣∣∣r( 1

u1
, θ, z

)
− r
(

1
u2

, θ, z
)∣∣∣∣

≤
Lρ,a,b

|u1u2|
|u1 − u2| ≤

Lρ,a,b

a2 |u1 − u2|,
(79)

i.e., r̃ is Lipschitz-continuous on ]a, b[×]0,+∞[×[0,+∞[ with respect to ρ.
In the following lemma, we estimate the function z.

Lemma 2. There exists C > 0 such that for all t ∈]0, T[ we have

∥z(t)∥2 +
∫ t

0
∥∂xz(τ)∥2dτ ≤ C

∫ t

0
∥θ(τ)∥2dτ. (80)



Mathematics 2024, 12, 717 12 of 18

Proof. After multiplying Equation (53) by z and then integrating it over ]0, 1[, applying
integration by parts, and substituting boundary conditions (55), we obtain

d
dt

(
∥z(t)∥2

)
+

σ

L2

∫ 1

0

(∂xz)2

u2
1

dx =

σ

L2

∫ 1

0

(u1 + u2)u∂xz ∂xz2

u2
1u2

2
dx −

∫ 1

0
z(ru(u1, θ1, z1)− ru(u2, θ2, z2)) dx.

(81)

Using properties (38), we obtain the following estimate for the integral on the left-hand
side of (81):

σ

L2

∫ 1

0

(∂xz)2

u2
1

dx ≥ C1∥∂xz(t)∥2. (82)

Notice that mapping x 7→ xm is Lipshitz-continuous on the bounded interval

I =
[

min
i=1,2

min
(x,t)∈QT

|zi(x, t)|, max
i=1,2

max
(x,t)∈QT

|zi(x, t)|
]

(83)

since the mean value theorem and (32) give

|ζm
1 − ζm

2 | ≤ m max
ζ∈I

|ζ|m−1|ζ1 − ζ2| ≤ C|ζ1 − ζ2|, (84)

for all ζ1, ζ2 ∈ I.
From (38), we have |ui| ≤ C, and u2

i ≥ C−1 > 0 for i = 1, 2. From there, we obtain the
following estimate for the first integral on the right side of (81):∣∣∣∣∣

∫ 1

0

(u1 + u2)u∂xz ∂xz2

u2
1u2

2
dx

∣∣∣∣∣ ≤
∫ 1

0

(|u1|+ |u2|) · |u| · |∂xz| · |∂xz2|
u2

1u2
2

dx

≤ C2

∫ 1

0
|u| · |∂xz| · |∂xz2| dx.

(85)

Proposition 3 implies that |∂xz2(t)| ≤ C∥∂xxz2(t)∥, so by using Hölder’s inequality
and the property (32) for the solutions, we obtain∫ 1

0
|u| · |∂xz| · |∂xz2| dx ≤ C3∥∂xz2∥

∫ 1

0
|u| · |∂xz| dx

≤ C3∥∂xxz2(t)∥ · ∥u(t)∥ · ∥∂xz(t)∥.
(86)

Young’s inequality, for some α > 0, which we determine later, implies

∥∂xxz2(t)∥ · ∥u(t)∥ · ∥∂xz(t)∥ ≤ α

C2C3
∥∂xz(t)∥2 +

C
α
∥u(t)∥2 ∥∂xxz2(t)∥2. (87)

Combining (85)–(87), we obtain the following estimates for the first integral on the
right side of (81):∣∣∣∣∣

∫ 1

0

(u1 + u2)u∂xz ∂xz2

u2
1u2

2
dx

∣∣∣∣∣ ≤ α∥∂xz(t)∥2 +
C
α
∥u(t)∥2 ∥∂xxz2(t)∥2. (88)

Property (38) implies that u takes values on a bounded set. Taking into account that
the function r̃u is bounded and globally Lipschitz-continuous with respect to θ and z, as
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well as Lipschitz-continuous with respect to u on all bounded sets, together with (79) and
(84), we have∣∣∣∣∫ 1

0
z(ru(u1, θ1, z1) −ru(u2, θ2, z2)) dx| ≤

∣∣∣∣∫ 1

0
z(zm

1 − zm
2 )r̃u(u1, θ1, z1)dx

∣∣∣∣
+

∣∣∣∣∫ 1

0
zzm

2 (r̃u(u1, θ1, z1)− r̃u(u2, θ1, z1))dx
∣∣∣∣

+

∣∣∣∣∫ 1

0
zzm

2 (r̃u(u2, θ1, z1)− r̃u(u2, θ2, z1))dx
∣∣∣∣

+

∣∣∣∣∫ 1

0
zzm

2 (r̃u(u2, θ2, z1)− r̃u(u2, θ2, z2))dx
∣∣∣∣

≤C
∫ 1

0

(
2|z|2 + |z| · |u|+ |z| · |θ|

)
dx.

(89)

Applying Hölder’s and then Young’s inequality leads to∫ 1

0

(
2|z|2 + |z| |u|

|u1u2|
+ |zθ|

)
dx ≤C

(
∥z∥2 + ∥z∥ · ∥u∥+ ∥z∥ · ∥θ∥

)
≤C
(
∥z∥2 + ∥u∥2 + ∥θ∥2

)
,

(90)

which combined with (89) yields the following estimate for the second integral on the right
side of (81) ∣∣∣∣∫ 1

0
z(ru(u1, θ1, z1) −ru(u2, θ2, z2)) dx

∣∣∣∣ ≤ C
(
∥z∥2 + ∥u∥2 + ∥θ∥2

)
. (91)

After integrating (81) over ]0, t[ for any t ∈ [0, T] and then applying estimates (82) and
(91) and inserting initial conditions (54) into the obtained relation, we obtain

∥z(t)∥2 + C1

∫ t

0
∥∂xz(τ)∥2dτ ≤ α

∫ t

0
∥∂xz(τ)∥2dτ

+C
∫ t

0

(
∥z(τ)∥2 + ∥u(τ)∥2 + ∥θ(τ)∥2

)
dτ +

C
α

∫ t

0
∥∂xxz2(τ)∥2∥u(τ)∥2dτ.

(92)

Let α < C1. By applying estimate (56) in (92), we obtain

∥z(t)∥2 +
∫ t

0
∥∂xz(τ)∥2dτ ≤ C

∫ t

0
∥z(τ)∥2dτ + C

∫ t

0
∥θ(τ)∥2dτ

+C
∫ t

0

(
1 + ∥∂xxz2(τ)∥2

) ∫ τ

0
∥θ(s)∥ds dτ.

(93)

Using properties (25) in (93), we obtain

∥z(t)∥2 +
∫ t

0
∥∂xz(τ)∥2dτ ≤ C

∫ t

0
∥z(τ)∥2dτ + C

∫ t

0
∥θ(τ)∥2 dτ. (94)

Finally, taking

ξ(t) = ∥z(t)∥2 +
∫ t

0
∥∂xz(τ)∥2dτ (95)

in Grönwall’s inequality from Proposition 4 and taking into account (94), we conclude that
the assertion of the lemma holds.

6. Proof of Main Theorem

Now, we prove our main result, i.e., Theorem 3.
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First, we multiply (52) by θ and integrate the obtained equation over ]0, 1[, then after
applying integration by parts and inserting boundary conditions (55), we obtain

cv

2
d
dt

(
∥θ(t)∥2

)
+

κ

L2

∫ 1

0

(∂xθ)2

u1
dx =

κ

L2

∫ 1

0

u∂xθ ∂xθ2

u1u2
dx

− R
L

∫ 1

0

(
θ1∂xv

up
1

+
θ∂xv2

up
1

−
(up

1 − up
2 )θ2∂xv2

up
1 up

2

)
θ dx

+
λ + 2µ

L2

∫ 1

0

(
∂xv
u1

(∂xv1 + ∂xv2)−
(∂xv2)

2u
u1u2

)
θ dx

+
c0 + 2cd

L2

∫ 1

0

(
∂xω

u1
(∂xω1 + ∂xω2)−

(∂xω2)
2u

u1u2

)
θ dx

+ 4µr

∫ 1

0

(
(ω1 + ω2)ωu1 + ω2

2u
)

θ dx

+ δ
∫ 1

0
(ru(u1, θ1, z1)− ru(u2, θ2, z2))θ dx.

(96)

Using properties (37) and (38), we estimate the integral on the left-hand side of (96)
and obtain

κ

L2

∫ 1

0

(∂xθ)2

u1
dx ≥ C4∥∂xθ(t)∥2. (97)

We estimate integrals on the right-hand side of (96) using properties of function r̃u
defined by (32), (38), (39), Hölder’s and Young’s inequalities, and Proposition 3, for some
α > 0, which we specify later. Since these estimates are similar to estimates in the proof of
Lemma 6 in [36] and estimate (91) from Lemma 2 in the previous section of this paper, we
omit writing the details. The obtained estimates read as follows:∣∣∣∣∫ 1

0

u∂xθ ∂xθ2

u1u2
dx
∣∣∣∣ ≤ ∫ 1

0

|u| · |∂xθ| · |∂xθ2|
u1u2

dx ≤ C∥∂xxθ2∥
∫ 1

0
u|∂xθ| dx

≤ C∥∂xxθ2(t)∥ · ∥u(t)∥ · ∥∂xθ(t)∥ ≤ α∥∂xθ(t)∥2 +
C
α
∥∂xxθ2(t)∥2 · ∥u(t)∥2,

(98)

∣∣∣∣∣
∫ 1

0

θ1θ∂xv
up

1
dx

∣∣∣∣∣ ≤
∫ 1

0

θ1|θ| · |∂xv|
up

1
dx ≤ C∥∂xxv∥

∫ 1

0
θ1|θ| dx

≤ C∥∂xv(t)∥ · ∥θ(t)∥ ≤ C∥∂xv(t)∥2 + C∥θ(t)∥2,

(99)

∣∣∣∣∣
∫ 1

0

θ2∂xv2

up
1

dx

∣∣∣∣∣ ≤
∫ 1

0

θ2|∂xv2|
up

1
dx ≤ C∥∂xxv2∥

∫ 1

0
θ2 dx

≤ C∥∂xxv2(t)∥ · ∥θ(t)∥2 ≤ C
(

1 + ∥∂xxv2(t)∥2
)
∥θ(t)∥2,

(100)

∣∣∣∣∣
∫ 1

0

(up
1 − up

2 )θ2θ∂xv2

up
1 up

2
dx

∣∣∣∣∣ ≤ C∥∂xxv2(t)∥ · ∥up
1 (t)− up

2 (t)∥ · ∥θ(t)∥

≤ C∥∂xxv2(t)∥2 · ∥up
1 (t)− up

2 (t)∥
2 + C∥θ(t)∥2,

(101)

∣∣∣∣∫ 1

0

∂xv
u1

(∂xv1 + ∂xv2)θ dx
∣∣∣∣ ≤ C(∥∂xxv1(t)∥+ ∥∂xxv2(t)∥)∥∂xv(t)∥ · ∥θ(t)∥

≤ C∥∂xv(t)∥2 + C
(
∥∂xxv1(t)∥2 + ∥∂xxv2(t)∥2

)
∥θ(t)∥2,

(102)

∣∣∣∣∫ 1

0

(∂xv2)
2uθ

u1u2
dx
∣∣∣∣ ≤ C∥∂xxv2(t)∥2 · ∥u(t)∥ · ∥θ(t)∥

≤ C∥∂xxv2(t)∥2
(
∥u(t)∥2 + ∥θ(t)∥2

)
,

(103)
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∣∣∣∣∫ 1

0

∂xω

u1
(∂xω1 + ∂xω2)θ dx

∣∣∣∣ ≤ ∫ 1

0

|∂xω|
u1

(|∂xω1|+ |∂xω2|)θ dx

≤ C∥∂xω(t)∥2 + C
(
∥∂xxω1(t)∥2 + ∥∂xxω2(t)∥2

)
∥θ(t)∥2,

(104)

∣∣∣∣∫ 1

0

(∂xω2)
2uθ

u1u2
dx
∣∣∣∣ ≤ ∫ 1

0

(∂xω2)
2|u| · |θ|

u1u2
dx ≤ C∥∂xω2∥2

∫ 1

0
|u| · |θ| dx

≤ C∥∂xxω2(t)∥2∥u(t)∥∥θ(t)∥ ≤ C∥∂xxω2(t)∥2
(
∥u(t)∥2 + ∥θ(t)∥2

)
,

(105)

∣∣∣∣∫ 1

0
(ω1 + ω2)ωu1θ dx

∣∣∣∣ ≤ ∫ 1

0
(|ω1|+ |ω2|) · |ω| · u1 · |θ| dx ≤ C

∫ 1

0
|ω| · |θ| dx

≤ C∥ω(t)∥ · ∥θ(t)∥ ≤ C∥∂xω(t)∥2 + C∥u(t)∥2,
(106)

∣∣∣∣∫ 1

0
ω2

2uθ dx
∣∣∣∣ ≤ ∫ 1

0
ω2

2 · |u| · |θ| dx ≤ C
∫ 1

0
·|u| · |θ| dx

≤ C∥θ(t)∥ · ∥u(t)∥ ≤ C∥θ(t)∥2 + C∥u(t)∥2,
(107)

and finally,∣∣∣∣∫ 1

0
θ(ru(u1, θ1, z1)− ru(u2, θ2, z2))dx

∣∣∣∣ ≤ ∣∣∣∣∫ 1

0
θ(zm

1 − zm
2 )r̃u(u1, θ1, z1)dx

∣∣∣∣
+

∣∣∣∣∫ 1

0
θzm

2 (r̃u(u1, θ1, z1)− r̃u(u2, θ1, z1))dx
∣∣∣∣

+

∣∣∣∣∫ 1

0
θzm

2 (r̃u(u2, θ1, z1)− r̃u(u2, θ2, z1))dx
∣∣∣∣

+

∣∣∣∣∫ 1

0
θzm

2 (r̃u(u2, θ2, z1)− r̃u(u2, θ2, z2))dx
∣∣∣∣

≤ C
∫ 1

0

(
|zθ|+ |θ| |u|

|u1u2|
+ |θ|2

)
dx

≤ C
(
∥z∥ · ∥θ∥+ ∥u∥ · ∥θ∥+ ∥θ∥2

)
≤ C

(
∥z∥2 + ∥u∥2 + ∥θ∥2

)
.

(108)

where we additionally used the Lipschitz continuity of mapping x 7→ xm.
Using estimates (97)–(108) in (96), we obtain

cv

2
d
dt

(
∥θ(t)∥2

)
+ C4∥∂xθ(t)∥2 ≤ α∥∂xθ(t)∥2

+
C
α
∥∂xxθ2(t)∥2 · ∥u(t)∥2 + C

(
∥∂xv(t)∥2 + ∥∂xω(t)∥2

)
+ C

(
∥θ(t)∥2 + ∥u(t)∥2 + ∥up

1 (t)− up
2 (t)∥

2 + ∥z(τ)∥2
)

W(t),

(109)

where

W(t) = 1 + ∥∂xxv1(t)∥2 + ∥∂xxv2(t)∥2 + ∥∂xxω1(t)∥2 + ∥∂xxω2(t)∥2 + ∥∂xxθ2(t)∥2. (110)

Using (25), we conclude that the following holds:∫ t

0
W(τ)dτ ≤ C. (111)
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Let α < C4. After integrating (109) over ]0, t[ for any t ∈ [0, T] and then inserting initial
conditions (54), we obtain

∥θ(t)∥2 +
∫ t

0
∥∂xθ(τ)∥2dτ ≤ C

∫ t

0

[
∥∂xv(τ)∥2 + ∥∂xω(τ)∥2

+ W(τ)
(
∥θ(τ)∥2 + ∥u(τ)∥2 + ∥up

1 (τ)− up
2 (τ)∥

2 + ∥z(τ)∥2
)]

dτ,
(112)

for t ∈ [0, T]. Applying estimates (56)–(80) to (112) implies

∥θ(t)∥2 +
∫ t

0
∥θ(τ)∥2dτ ≤ C

∫ t

0
∥θ(τ)∥2dτ

+ C
∫ t

0
W(τ)

(
∥θ(τ)∥2 +

∫ τ

0
∥θ(s)∥2ds

)
dτ ≤ C

∫ t

0
W(τ)∥θ(τ)∥2dτ.

(113)

From (111), (113), and taking

ξ(t) = ∥θ(t)∥2 +
∫ t

0
∥θ(τ)∥2dτ (114)

in Grönwall’s inequality from Proposition 4, we conclude

θ = 0 in QT , (115)

and then, from (56)–(80), it also follows that

u = 0, v = 0, ω = 0, z = 0 in QT . (116)

This concludes the proof of Theorem 3.

7. Conclusions

In this paper, we have analyzed the thermal explosion model of a one-dimensional
micropolar real gas, which has the form of an initial-boundary value problem with a quasi-
linear parabolic system of partial differential equations. Previously, only the existence of
local and global solutions in time was known for this problem, which was not sufficient for
the theoretical consistency of the model. In this work, we have shown the uniqueness of
the solution to this problem, which makes the model theoretically consistent and suitable
for further analysis and research of its mathematical properties, as well as for the develop-
ment of numerical methods for its solution and finally for research on concrete practical
applications. From a mathematical point of view, the research of the given model will go
in several directions. Firstly, more precise mathematical properties of the solutions such
as regularity and stabilization properties of parabolic problems can be investigated. In
addition, it is certainly necessary to find an optimal method for the numerical solution to
the problem but also to explore problems with other boundary conditions, for example,
inhomogeneous boundary conditions, which can describe a larger number of phenomena.
It is certainly worth highlighting that several estimation methods have been used in the
work, which have been adapted to the analyzed system and, as such, can be used in the
analysis of problems with a similar mathematical structure.
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