. mathematics

Article

Differential Fault and Algebraic Equation Combined Analysis

on PICO

Linxi Ding 1, Hongxin Zhang %%, Jun Xu 3, Xing Fang *

check for
updates

Citation: Ding, L.; Zhang, H.; Xu, J.;
Fang, X.; Wu, Y. Differential Fault
and Algebraic Equation Combined
Analysis on PICO. Mathematics 2024,
12,700. https://doi.org/10.3390/
math12050700

Academic Editor: Jonathan
Blackledge

Received: 30 January 2024
Revised: 19 February 2024
Accepted: 25 February 2024
Published: 28 February 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Yejing Wu !

School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China;
dinglinxi@bupt.edu.cn (L.D.); yejingwu@bupt.edu.cn (Y.W.)

Beijing Key Laboratory of Work Safety Intelligent Monitoring, Beijing University of Posts and Telecommunications,
Beijing 100876, China

Beijing Institute of Spacecraft System Engineering, Beijing 100094, China; xujun_bupt@163.com

Beijing Institute of Computer Technology and Applications, Beijing 100039, China; fancy_t@bupt.cn

* Correspondence: hongxinzhang@bupt.edu.cn

Abstract: In modern information technology, research on block cipher security is imperative. Concern-
ing the ultra lightweight block cipher PICO, there has been only one study focused on recovering its
complete master key, with a large search space of 24, and no fault analysis yet. This paper proposes
a new fault analysis approach, combining differential fault and algebraic equation techniques. It
achieved the recovery of PICO’s entire master key with 40 faults in an average time of 0.57 h. S-box
decomposition was utilized to optimize our approach, reducing the time by a remarkable 75.83%
under the identical 40-fault condition. Furthermore, PICO’s complete master key could be recovered

with 28 faults in an average time of 0.78 h, indicating a significant 237

reduction in its search space
compared to the previous study. This marks the first fault analysis on PICO. Compared to conven-
tional fault analysis methods DFA (differential fault analysis) and AFA (algebraic fault analysis),
our approach outperforms in recovering PICO’s entire master key, highlighting the cruciality of key
expansion complexity in block cipher security. Therefore, our approach could serve to recover master
keys of block ciphers with comparably complicated key expansions, and production of more secure

block ciphers could result.
Keywords: PICO; block cipher; differential fault; algebraic equation; S-box decomposition

MSC: 68P25

1. Introduction

With the continuous development and widespread adoption of modern information
technology, information security has become a crucial topic. Block ciphers implemented
on chips provide reliable means to ensure information security. As chips are becoming
more compact, lightweight block ciphers have been widely used due to their efficient
performance in environments with limited computational and storage resources, such as
PRESENT [1], SKINNY [2], GIFT [3], SIMON [4], SPECK [4], LBlock [5], RECTANGLE [¢],
etc. In this case, it is essential to conduct security analysis on various block ciphers, with a
particular focus on their performance in the face of key decryption.

PICO is an ultra lightweight block cipher presented by Bansod Gaurav et al. in 2016
that performs well on both software and hardware platforms. Compared to other block
ciphers, PICO has compact key scheduling which leads to fewer gate counts and lower
memory size. Along with its lower power consumption, this makes it well-suited for small-
scale and energy-constrained applications, such as RFID tags, wireless sensors, and other
IoT devices. Moreover, its strong S-box ensures robustness in the design and excellent
avalanche effect, enabling it to resist attacks with higher probability. For detailed data
comparisons between PICO and other block ciphers in terms of gate count, memory usage,

Mathematics 2024, 12, 700. https:/ /doi.org/10.3390 /math12050700

https://www.mdpi.com/journal /mathematics

https://doi.org/10.3390/math12050700
https://doi.org/10.3390/math12050700
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0009-0009-1093-0360
https://orcid.org/0000-0002-1801-6831
https://doi.org/10.3390/math12050700
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12050700?type=check_update&version=1

Mathematics 2024, 12, 700

2 0f 22

power consumption, etc., please refer to [7]. Given these strengths of PICO over other block
ciphers, conducting an analysis on it holds substantial significance.

Studies focused on PICO are as follows. In 2016, designers [7] of PICO claimed
that it can effectively resist linear attack, differential attack, biclique attack and algebraic
attack, but there was no specific experimental data available to support these theoretical
analyses. In 2017, refs. [8,9] constructed a 7-round multidimensional zero-correlation linear
distinguisher for PICO and recovered 50 bits of subkeys against 10-round PICO. In 2019,
ref. [10] studied the optimal differential trails of PICO and presented one for 21 rounds with
probability 2763, suggesting its potential use for key recovery. In 2020, ref. [11] searched
a 10-round integral distinguisher for PICO, utilized its 9-round integral distinguisher to
perform 11-round key recovery through 16 rounds of filtering, and recovered a total of
128 bits for the 10th and 11th round subkeys with a data complexity of 26346, In 2021,
ref. [12] used the same integral distinguisher as in ref. [11] to recover a total of 52 bits for
the 11th round subkeys through 16 rounds of filtering with a data complexity of 26317,
Ref. [13] also searched a 10-round integral distinguisher for PICO with a data complexity
of 23, Ref. [14] found a 7-round impossible differential distinguisher, which is the longest
impossible differential distinguisher found for PICO. In 2023, ref. [15] presented optimal
differential trails with their probabilities for rounds one to 22 of PICO, as well as 21-round
and 22-round differential distinguishers with their probabilities. It also constructed key
recovery on the 26-round PICO by employing a 21-round differential distinguisher and
on any round of PICO based on related-key distinguishers for any round with probability
one. Ref. [16] identified four 21-round differential distinguishers with probability 263 for
PICO, three of which differ from the one in ref. [10]. Additionally, three 20-round linear
distinguishers with correlation 2730 were uncovered for the first time, establishing them as
the longest linear distinguishers for PICO. These findings indicated that PICO has strong
resistance to both differential and linear attacks.

In a comprehensive review of the aforementioned research outcomes related to the key
recovery of PICO, refs. [8,9,11,12] accomplished the recovery of its partial subkeys, with-
out exploring the recovery of its master key. With ref. [15] being the only study addressing
the recovery of PICO’s master key, it obtained half of the entire 128-bit master key through
exhaustive search, which demands significant computational resource. Moreover, none of
the studies has provided a detailed fault analysis on PICO, which is an effective method
for recovering the master key of a block cipher.

Conventional fault analysis methods, such as differential fault analysis (DFA) and
algebraic fault analysis (AFA), are commonly employed. The concept of DFA was formally
presented in 1997 [17] by Biham Eli and Shamir Adi, and has been utilized widely since
then. It has been applied to block ciphers such as GIFT [18], PRESENT [18], SKINNY [19],
LBlock [20], etc., successfully recovering their master keys. AFA was first proposed by Cour-
tois NT et al. in 2010 [21] to break the key of DES and its general framework for lightweight
block ciphers was introduced by Zhang Fan et al. in 2016 [22]. It has been successfully
employed to recover the master keys of LBlock [22], PRESENT [22], SKINNY [23], etc.
However, there is currently no research on the application of these two methods on PICO.

In this paper, we propose a new fault analysis approach targeting the characteristics
of PICO’s key expansion. By combining both differential fault and algebraic equation
techniques, we successfully recovered the complete master key of PICO. Furthermore,
through the application of S-box decomposition, we effectively enhanced solving efficiency
and achieved notable advancements. In comparison to the previous study, the search space
of PICO’s master key was significantly reduced. To our knowledge, this represents the first
fault analysis conducted on PICO. Through comparisons with conventional fault analysis
methods DFA and AFA, our combined analysis approach excelled them with superior
solving performance, thereby revealing the crucial impact of key expansion complexity on
block cipher security.

Mathematics 2024, 12, 700

30f22

The paper is organized as follows. Section 2 introduces PICO cipher. Section 3 an-
alyzes the characteristics of PICO’s key expansion, proposes our differential fault and
algebraic equation combined analysis approach, and provides its application results on
PICO. Section 4 applies S-box decomposition to enhance our combined analysis approach
and compares its application results with the original ones. Section 5 compares our com-
bined analysis approach with conventional fault analysis methods DFA and AFA in terms
of their applications on PICO, thus highlighting our advantages. Section 6 summarizes our
achievements and outlines potential avenues for future research.

2. Description of PICO Cipher

PICO is an ultra lightweight block cipher based on the SPN (substitution-permutation
network) structure. It supports a 64-bit plaintext and a 128-bit master key, and produces a
64-bit ciphertext through 32 rounds of encryption and 1 round of whitening. Figure 1 shows
the structure of PICO cipher. The encryption process of PICO is described in Algorithm 1,
where P denotes the 64-bit plaintext, K denotes the 128-bit master key, C denotes the 64-bit
ciphertext, K/ (j = 0 to 32) denotes a 64-bit subkey, p’ (i = 0 to 63) denotes a 1-bit binary
digit, and symbol || is used to concatenate bits with the left being the most significant bit
and the right being the least significant bit.

KeyRegister
e Ktk T ke
!) 4 | v
Plaintext i #C) » SubColumn »| BitShuffle 1 #C) » Ciphertext
| |
I I
I i=0 to 31 !

Figure 1. The structure of PICO.

Algorithm 1: Encryption of PICO
Input: P, K
Output: C
P=pS | p2]l p%
Generate subkeys KY, KL, ... K32,
X0+ Pp;
fori =0;i < 32;i+ + do
Si <+ AddRoundKey(X', K');
St + SubColumn(S:);
P, < BitShuffle(Si ,);
xi+1 — pi

® NN S R W N =

out
out’

9 C + AddRoundKey(X3?,K%?);
10 return C

¢ Key Expansion
PICO’s key expansion is motivated from that of SPECK cipher [4], according to
its designers [7]. The 128-bit master key is used to generate 33 subkeys, each of
size 64-bit. The exact process of key expansion is presented in Algorithm 2, where

Ljand L} (j = 0to31) are intermediate variables, k' (i = 0to 127) denotes a 1-
bit binary digit, symbol & represents bitwise exclusive-OR operation, RCS(X, n)
represents right circular shift of variable X by #n bits, and LCS(X, n) represents left
circular shift of variable X by n bits.

e AddRoundKey
Perform a bit-by-bit XOR operation between the 64-bit round input and its correspond-
ing 64-bit subkey.

Mathematics 2024, 12, 700 4 0f22

e SubColumn
Let S; = x% || x%2 || -+ || x° denote the 64-bit input of SubColumn , perform the
substitution <y48+i || y32+i H y16+i ” yi) — SubColumn(x48+i ” 32+ ” x16-+i H xi)
according to Table 1, where i ranges from 0 to 15, and obtain the 64-bit output of
SubColumn as Spur = y* || y% || -+ || y°. This operation resembles the one in
RECTANGLE cipher [6], as explained by PICO’s designers [7].

Table 1. S-box of PICO.

* BitShuffle
Perform a bitwise permutation on the 64-bit output of SubColumn according to Table 2.

Table 2. P-box of PICO.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
p(i) 10 21 28 38 44 48 5 1 51 15 41 2 60 34 24 20

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
(i) 5 6 17 31 36 53 12 46 30 52 11 4 23 35 40 63

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
p(i) 8§ 39 3 43 57 49 16 25 37 42 61 50 O 9 18 26

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
p(i) 58 55 7 19 29 14 47 32 33 5 62 45 13 54 22 27

)

Algorithm 2: Key expansion of PICO

Input: K

Output: K°, K1, ... K%
1 K:k127 ” k126 H ” ko;
2 KO =K% | K2 || - || K7
3 L(l) — k127 H k126 H H k64,'
4 forj=0;7 <32;j++do

14}

I, « K& RCS(L),3) & I;
Kt « L) & LCS(K,7) @ j;
7 | U I

8 return KO, Kl,... K%

(=2}

3. Proposed Combined Analysis on PICO

This chapter unfolds as follows. Section 3.1 explores the characteristics of PICO’s mas-
ter key, emphasizing that two distinct master keys can generate an identical set of subkeys.
Section 3.2 demonstrates the process of solving subkeys with differential faults. Section 3.3
analyzes the reverse key expansion of PICO and introduce algebraic equations. Section 3.4
illustrates the experimental results obtained from our combined analysis on PICO.

3.1. Characteristics of PICO’s Master Key

Assuming all subkeys KY, KL, .-, K3 are known, L(l] needs to be determined in order
to solve for the master key K. The solution for L is given in Equation (1)

LY@ RCS(LY,3) = K@ K! @ LCS(KY, 7). (1)

Mathematics 2024, 12, 700 50f 22
Let L) = k127 || k126 || - - - || k%, where k%7 denotes the most significant bit and k% denotes
the least significant bit, then Equation (1) can be expressed as Equation (2)
KA @ k7 = ¢, i=0to60 2
K @3t =, i=61t063,

where ¢’ (i = 0 to 63) is a known constant, and k®**7 € {0, 1}. Therefore, the solutions to
Equation (1) are either non-existent or consist of two solutions, with these two solutions
being bitwise complements in a 64-bit binary form. Since the master key must exist, there
is at least one solution, resulting in Equation (1) having two solutions.

In consequence, when all subkeys of PICO are determined, there exist two master
keys capable of generating all correct subkeys, hence both of these master keys serving
identical roles and bringing about equivalent effects in the encryption process. Based on
this, in the subsequent solving steps in this paper, both of the master keys are considered
correct, and obtaining either one is considered a successful solution.

3.2. Solving Subkeys with Differential Faults

The brief strategy for efficiently solving subkeys with differential faults involves several
key steps. Initially, a fault is injected into the input of the SubColumn operation in the preceding
round for the target subkey. Subsequently, the output of the SubColumn operation in that specific
round is constrained based on the differential of each S-box output. Following this, faults are
injected multiple times, and the results are intersected to further refine possible output values of
the SubColumn operation, until that is exclusively determined. Ultimately, the desired subkey
can be deduced through a systematic analysis of the round operations.

Firstly, we introduce the necessary tools. The inverse versions of Tables 1 and 2 serve
as the lookup tables for the inverse S-box and P-box of PICO. Algorithm 3 details the
computation process for establishing correspondences of the inputs, outputs and their
differentials of PICO’s S-box, resulting in associations between the differential outputs of
the S-box and its potential outputs, as elaborated in Table 3.

Algorithm 3: Generation of correspondence relevant to differential values of
PICO’s S-box

1 for AX = 0000 to 1111 do

2 for X = 0000 to 1111 do

3 Y < SubColumn(X);

4 X* «— X AX;

5 Y* « SubColumn(X*);
6 AY <~ YDY?

Table 3. Possible output of PICO’s S-box by its differential output.

AY Possible Y

0,12338,9,A,B,CF
AE
1,4,8,9,C,D

3,5
0,1,2,56,7,8, F
0,8
4,5,6,7,C,D,E,F
4,E

1,A

0,7,B,C
2,3,6,B,E, F
3,7,9,D
2,4,5,6,9,A,B,D

MMM OOWRE OO U bW

Mathematics 2024, 12, 700

6 of 22

Next, we delineate the process of solving subkeys with differential faults, where
the subkeys are sequentially determined in reverse order, starting from K32 down to K°.
In each round of SubColumn in PICO, a total of 16 S-boxes are utilized, and the output
of each S-box needs to be determined according to Table 3. Only when the differential
output AY of an S-box is non-zero can relevant information about that S-box be obtained.
To leverage the substitution characteristics of the SubColumn operation, we adopt double-
byte faults for the following reasons. When a fault is injected into the SubColumn input
X = x9 || x92 || - - - || % in a particular round, for the four sets of bits x% || x62 || .- - || x*8,
X x40 ||| 232, 63 || 430 || - || %%, and 12 || 21 || -+ - || x0, we note that each set
of 16 bits distinctly impacts all 16 different S-boxes, and a double-byte fault can precisely
accomplish a 0-1 flip for each bit among the 16 bits in one of these sets, which induces
changes in the input to every S-box among the 16 different S-boxes. According to Table 1,
changes in the input of an S-box result in definite changes to its output, signifying that
the differential output AY of each S-box is non-zero, and therefore pertinent information
for each S-box can be acquired. Moreover, up to four random and non-repeating fault
injection in each round can cover all 64 bits, ensuring that every bit in each of the 4-bit
S-box input undergoes a bit flip for all 16 S-boxes. The correspondence between S-box
outputs and its potential differential values of the output can be derived from the reverse
version of Table 3, and it indicates that to determine the output of an S-box, a maximum
of four differential output is required. Hence, at most four random and non-repeating
fault injections are sufficient to uniquely determine the correct output value of an S-box.
In short, the application of double-byte faults ensures that valuable information about each
S-box is obtained after each fault injection, and consequently, this minimizes the number of
faults required to solve a subkey, with a maximum of four. Given the resemblance of the
SubColumn operation in PICO to that in RECTANGLE, this double-byte differential fault
model is applicable to block ciphers sharing comparable SubColumn properties.

Algorithm 4 outlines the detailed process of solving subkeys through the injection of
differential faults, where X, X*, and AX respectively denote the correct value, erroneous
value, and their differential value before and after fault injection, Faultlnjection represents
injecting a double-byte fault that is randomly selected and non-repeating from previous
instances and continuing encrypting to generate an erroneous ciphertext, and TableLookup
represents the result set obtained from consulting Table 3.

3.3. Reverse Key Expansion and Representation of Algebraic Equations

Implementing the approach outlined in Section 3.2 allows for the extraction of one
subkey with at most every four faults. This implies that a maximum of 132 faults can reveal
all 33 subkeys for the entire rounds, and the master key can be obtained by referring to
Section 3.1. However, this method requires a high number of faults. To address this issue,
we propose an approach that combines the application of differential faults with algebraic
equation solving. Our primary strategy comprises the following steps. At the outset, we
utilize differential faults to deduce a subset of subkeys. Afterward, we restrict the potential
values of the remaining subkeys and the master key according to reverse key expansion.
Subsequently, we apply algebraic equations to achieve the reverse deduction. Finally, we
filter the derived master keys based on the condition that the correct ciphertext can be
generated through encryption when using the master key for the correct plaintext. This
process continues until a qualifying master key is identified.

When a subset of subkeys is already solved, the procedure for deducing the rest of
subkeys through reverse key expansion is presented in Algorithm 5. This reveals that when
only one specific K/T! (0 < j < 31) is known, there exist at most 2% sets of possible values
for K/ and K/=1, and at most 2/—i64 possible values for Ki (0 <i < j—2),and when
both K/*1 and K/ are known, there are up to 2/ ~/+2 possible values for K' (0 <i <j—1).
Considering that subkeys are sequentially determined in reverse order, as explained in
Section 3.2, when only K32 is known, there exist at most 2°° possible master keys, and when
K32 ...K/ (0 < j < 31) are known, up to 2/*! possible master keys can be obtained.

Mathematics 2024, 12, 700

7 of 22

Algorithm 4: Solving for K32, K3! - -

- K9 with Differential Faults

1 Generate random P, K, where K is unknown to the analyst;

gl e W N

© ® g o

10

C + Enc(P,K);
/ /solving for K32
for num = 0; num < 4;num + + do

31
Sout

P31

out

if |Setgn | > 1 then

31
C* < FaultInjection(Enc(P, K),Faultﬁi?m ;

AC+ CohpCH

AP3l «+ AG;

AS3L, « BitShuffle 1(AP3,);

Setgn < Setgn N TableLookup(AS3L,);

out

€ Set531t;
< BitShuffle(S3l.);
K2« Pl &G

14 //solving for Kf(] =31to1)
15 an — SubColumn’l(Sfmt);
16 for num = 0;num < 4;num + + do
17 | if [Set 1| > 1then

out

j—1

18 C* < FaultInjection(Enc(P, K),Faultﬁ;';‘m);
19 Pg&t* +— K32 @ C*
20 S3L" < BitShuf fle=' (P3L");
21 S3 < SubColumn="(S2L,");
22 fori =30;i >j—1,i——do
23 Péut* « Kitlg 5;:1*}
24 St " < BitShuffle=' (P! ,");
25 Si " < SubColumn=1(S.,,");

j j i,
26 ASin 1(— Si, 69 S
27 AP(]?; — Aan; '
28 AS) ! BitShuffle1 (AP 1;
29 Set j1 <= Set i1 N TableLookup(ASZ);tl);

[out out
30 S{;tl € SEtS{»;tl;
21 P« BitShuffle(S),));
. - .

32 K/« PC]mt @Sﬁn;
33 //solving for KO
34 S?n — SubColumn’l(Sgut);
35 K+ P& S);

36 return K32, K31 ... K0

Mathematics 2024, 12, 700

8 of 22

Algorithm 5: Solving for K’ (0 < i < 31) using reverse key expansion

1

N

N G = (&%)

®

9

10
11

/ /scenario 1: solving for K’ (i = j to 0) while K/*! (0 < j < 31) is solved
KI ? LCS(K,7) & L) ® RCS(L},3) = Kt & j;
L]z. = le; ‘ .
K—1=RCS(Ka® L, & (j—1)),7);
fori=j—2;i >0;i——do
L @ RCS(LT, 3) = K+l @ LT
Ly = LI,
K' = RCS((K' @ L, @1),7);
/ /scenario 2: solving for K (i = j — 1 to 0) while K/*! and K/ (0 < j < 31) are
solved ‘
L, =Kt @ LCS(K,7) @ j;
fori;j—l;iZQ;i——do ‘
Lyt @ RCS(Ly™,3) = K @ L5
per;
K' = RCS((K @ L, @1),7);

Algebraic equations are introduced due to the following two reasons. Firstly, the re-

verse key expansion involves the solving of Equation (3)

L' @ RCS(L™,3) = K & L4 3)

Moreover, the derived master key must undergo additional constraints, ensuring that its
use for encrypting the correct plaintext produces the correct ciphertext. The construction of
algebraic equations is detailed below, comprising representations for assignment, reverse
key expansion, and forward encryption, and the solver we employ is CryptoMiniSat [24],
with the specific version being CryptoMiniSat 5.8.0.

Equations for assignment

Include the constant 1, subkeys K32...Ki (0 < j < 32) solved with differential
faults, the correct plaintext P, and the correct ciphertext C, for a total of (2241 — 64j)
equations.

Equations for reverse key expansion

For each round of reverse key expansion, three sets of equations are included, as indi-
cated by Equations (4)—(6).

jl=00rj =1,i=0to63 (4)
K ok gl of =0, i=0t06 -
K7 oV ol of =0, i=7t063
ol ool =0, i=0t060 6
ol erial' =0, i=6lto63
In total there are 6144 equations for all 32 rounds.
Equations for forward encryption
AddRoundKey: For the r-th (r = 1 to 33) round, let x%3 || x™02 || - - - || ¥ denote the
input of AddRoundKey, k™93 || k"2 || - - - || k¥ denote the subkey, and y" || 1762 ||

-+ || y* denote the output of AddRoundKey. Equation (7) signifies the AddRoundKey
operation in each round.

@K Gyt =0,i =0to 63 @)

Mathematics 2024, 12, 700

9 of 22

In total there are 2112 equations for all 33 rounds.

SubColumn: The S-box needs to be expressed in the form of algebraic equations [25],
and the computed representation of PICO’s S-box is as depicted in Equation (8), where
x3 || x2 || x1 || xoand y3 || y2 || y1 || yo respectively denote the input and output of
an S-box, x3 and y3 denote the most significant bit, and x¢ and yy denote the least
significant bit.

yo =14 xp+x1+x2+x3+x1x3
Y1 = Xp + X2 + X3 + XpX1 + XpX2 + X1X2X3

(8)
Y2 = X1+ X2 + XoX3 + X2X3
Y3 = X3+ XpX1 + XoX2 + XoX3 + X1X2 + X0X1X3
For the i-th (i = 0 to 15) S-box in the r-th (r = 1 to 32) round, let x5 || x4 || 2" || x5

denote the input to the S-box, and v5' || y5' || ¥} || vi' denote the output of the S-box.
Equation (9) signifies the SubColumn operation in each round.

1+ xg'i + xi’i + xé’i + xg'i + x;'ixg'i + yg'i =0

Xy x4 Xy xRy =0

x{’i + xg’i + x(’)’ixg’i + xg’ixg’i + yg’i =0

xg’i + x(r)'ix;'i + x(r)’ix;'i + x(’)'ixg’i + x;'ixg’i + xg'ixg’ixg'i + yg’i =
Meanwhile, for each S-box, there exist six quadratic variables x(r]’i x;'i, x(r)’i x;'i, xg’ixg'i, xg'ixg’i,
x;’ixg’i, xg’ixg’i and two cubic variables x6’ix§’ix§’i, xg’ixg’ixg’l, each requiring representa-
tion through additional equations due to the nature of CryptoMiniSat v5.8.0.

For a quadratic variable, let m;’b = xZ’ixz’i, and the representation is given in Equation (10).

r,i rio__

XV omy, = 1
r,i rio_

X,V omy, = 1 (10)
r,i 1 ri_

my, N XV Xy = 1

For a cubic variable, let m}", - = x7'x,"x;", and the representation is given in Equation (11).

r,i ri
XV omy, = 1
W, =1
r,i r,i, (11)
XV omy, o= 1
r,i r,i r,i ri__
ma,b,c Voxg Vv X, Voxs =

In total there are 15,360 equations for all 32 rounds.

BitShuffle: For the r-th (r = 1 to 32) round, let x"%3 || ™92 || - .- || x"* denote the input
of BitShuffle, and y"3 || 462 || - - - || y"° denote the output of BitShuffle. Equation (12)
signifies the BitShuffle operation in each round.

Xy) =0,i = 0to 63 (12)

In total there are 2048 equations for all 32 rounds.

The complete set comprises (27,905 — 64f) equations, where j ranges from 0 to 32,

and we convert the aforementioned equations into CNF format as input for the solver.

Mathematics 2024, 12, 700

10 of 22

3.4. Experiments about Our Combined Analysis on PICO

The comprehensive strategy of our combined analysis approach encompasses two main
components—solving a subset of subkeys with differential faults, as detailed in Section 3.2,
and establishing an algebraic equation set, as instructed by Section 3.3. In the case of PICO,
double-byte faults are injected multiple times into the input of SubColumn in the preceding
round for each of the target subkey, with the aim of minimizing the number of faults used,
and the subset of subkeys can be acquired sequentially in reverse order. Within the algebraic
equation set, equations representing the full-round reverse key expansion and assigning
for the subset of subkeys derived from differential faults are utilized to solve potential full-
round subkeys and their corresponding master keys. Additionally, equations representing
the full-round forward encryption and assigning for the correct plaintext and ciphertext are
employed to verify each set of potential full-round subkeys for the purpose of the correct
master key, ensuring that the ciphertext obtained by encrypting the correct plaintext with the
corresponding subkey set is accurate. Consequently, the complete master key of PICO can be
obtained. Following this, we carried out experiments on our combined analysis on PICO.

In practical experiments, various methods can be employed to inject faults [26-34],
including variations in the operational voltage, clock, or temperature of the circuit, elec-
tromagnetic pulse interference with circuit operation, utilization of laser, UV-ray, X-ray,
or focused ion beam (FIB), etc. In addition to this, the rest of the key recovery processes
are all accomplished through computer computations. Considering this case, this paper
assumes that faults can be successfully injected and concentrated on computations within
the computer. Our experiments run on a server with the Ubuntu 18.04.6 LTS operating
system. It is equipped with two physical CPUs, each consisting of twelve cores and two
threads per core. The solver version used is CryptoMiniSat 5.8.0 and multi-threading is
implemented for parallel computation during the experiment.

Algorithm 6 outlines the experimental procedures of our combined analysis on
PICO, where N denotes the number of experiments, n denotes the number of faults used,
T; (i = 0 to N — 1) denotes the solving time for the i-th experiment, and T, denotes the
average solving time across N experiments. In our experiments, Python v3.9.2 is employed
for simulating differential fault injection, solving a subset of subkeys, establishing algebraic
equation sets, and generating cnf files. CryptoMiniSat v5.8.0 is utilized to solve CNF
equations, with the process ceasing upon identification of a matching master key. As
Python v3.9.2 can solve the subset of subkeys within a matter of seconds, the experimental
results to be observed are the solving time by CryptoMiniSat v5.8.0, which covers the time
required for solving reverse key expansion equations and filtering through encryption
verification, and the number of faults used.

Algorithm 6: Experimental Procedures of our Combined Analysis on PICO

Input: N

Output: n, T;, Tpoe

1 fori =0;i < N;i+ + do

2 Generate random P, K, where K is unknown to the analyst;

3 C + Enc(P,K);

4 | Solving for K32 ... K/ (0 < j < 32) with differential faults and record the
number of faults used as #n;

5 Generate assignment equations for 1, P, C, K32, ... , KJ;

6 for round = 0;round < 33;round + + do

7 Generate equations for reverse key expansion;

8 L Generate equations for forward encryption;

9 Combine all the aforementioned equations into one set;
10 T; < solving the equation set with CryptoMiniSat v5.8.0;
11 Tpoe < Sum(T;)/N;

12 return n, T;, Ty,

Mathematics 2024, 12, 700

11 of 22

For each scenario, we conducted 100 experiments, and the detailed results are pre-
sented in Figure 2 and Table 4. When utilizing 44 differential faults to derive subkeys
K*2, K3 ... K?2, the master key of PICO could be recovered in an average time of 884.77 s.
Similarly, when utilizing 40 differential faults to derive subkeys K32, K3! ... K??, the master
key of PICO could be recovered in an average time of 2056.56 s. These demonstrate that our
combined analysis approach is an effective method to obtain PICO’s complete master key.

0.20 -
0.19 - 022 .
s] [Original S-box 022 [Original S-box
s 8
020 |
0.16
0.18 4
0.1 017
014 0.4 016 4 0.16
> P~ 0.14 -
2124 Zro1
g g
% o0 0.10 g 012
o = 0.10
9] @ 010
= 008 =
008 0.08
0.06 006 0.07
0.06
006 006 "
0.04 - 0.04 0.05
0.04 4
00 0.03 0.03
0.02
0024 0.02 4
0.01 001 001 0.01 0.01 0.01
11 000 0.00 0.00 0.00
0.00 T— 17— T T T —1 0.00 — T T T T
0 240 480 720 960 1200 1440 1680 1920 2160 2400 2640 2880 3120 3360 3600 0500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6300 7000 7500
Solving Time (s) Solving Time (s)
(a) (b)

Figure 2. Distribution of solving time under varying numbers of faults when conducting combined
analysis on PICO using the original S-box. (a) n = 44; (b) n = 40.

Table 4. Solving results under varying numbers of faults when conducting combined analysis on
PICO using the original S-box.

Solving Time (s)

Number of Faults - Success Rate within1h
Average Median
44 884.77 713.33 100%
40 2056.56 1691.03 83%

4. Optimization through S-Box Decomposition

Within our combined analysis approach proposed in Section 3, the two primary met-
rics for evaluating results are the number of applied faults and the time taken for successful
solving. We aim to enhance the effectiveness of our approach further. As algebraic equa-
tions are introduced, and the nature of the solver CryptoMiniSat v5.8.0 necessitates the use
of additional equations to represent higher-order variables, we implement S-box decompo-
sition [35,36] to reduce the variety of higher-order variables, thereby decreasing the number
of equations required to represent full-round SubColumn. Consequently, the solving time of
the solver is shortened under the same quantity of faults, ultimately resulting in a reduction
in the number of faults needed to recover the master key in practical applications.

The algebraic equation representation of PICO’s S-box, as presented in Section 3,
consists of six quadratic variables and two cubic variables. Our objective is to decompose
the original 4 x 4 S-box into two separate 4 x 4 S-boxes, with two requirements. Firstly,
higher-order variables in the representation of decomposed S-boxes should include only
quadratic terms. Additionally, the output for identical inputs should remain consistent
through either the original S-box or the decomposed S-boxes.

Let X = (x3,x2,x1, %) denote the input to the S-box, where x3 denotes the most
significant bit and xg denotes the least significant bit. Let Equation (13) represent the
algebraic equations for the original S-box,

S(X) = (s3(X),52(X),51(X),50(X)), (13)

and Equations (14) and (15) represent the algebraic equations for the two decomposed
S-boxes, respectively,

Mathematics 2024, 12, 700 12 of 22
G(X) = (g3(X), 82(X), g1(X), g0(X)), (14)
F(X) = (g3(X),82(X), 81(X), 80(X)), (15)

where ¢;(X) and f;(X) (i = 0 to 3) are both quadratic Boolean functions, and G(X) and F(X)
are both quadratic vectorial Boolean functions, satisfying S(X) = F(G(X)) while S, G, F :
GF(2)* — GF(2)*. Quadratic Boolean functions g; (i = 0 to 3) are represented in the form
of ANF equations, as indicated in Equation (16),

Si(X) = aj0 +a;1x0 + a;px1 + a;3x2 + a;4X3 + a;5X0X1 + 4;6X0X2 + a;7X0X3 + 4;8X1X2 + ;,9X1X3 + 4; 10X2X3, (16)

where a;; (j = 0to 10) are the coefficients of g;, with values of 0 or 1. The steps for
implementing S-box decomposition are shown in Figure 3.

Following S-box decomposition using Python v3.9.2, we obtain 2,257,920 pairs of G(X)
and F(X) satisfying S(X) = F(G(X)), with the highest-order variables in both G(X) and F(X)
not exceeding quadratic. And after selection, we end up with 24 pairs of G(X) and F(X), where
the minimum number of types of quadratic variables is five and the minimum weight sum
is 244. These 24 pairs of G(X) and F(X) share similar forms, as presented in Table 5.

Table 5. Forms of the final 24 pairs of G(X) and F(X) after S-box decomposition.

Quantity of Variables
Function
Quadratic Terms Linear Terms Constant Terms

1 3 1

. 2 0

gi(X) (i=0t03) 0 5 0
0 1 0

0 2 0

. 2 1 1

£;(X) (i=0to03) 0 1 0
1 1 0

Therefore, we choose one set for subsequent experiments. The decomposed S-boxes
we opted for is detailed in Table 6, and its algebraic equation representation is provided in
Equation (17).

Table 6. Decomposed S-boxes of PICO.

X 0o 1 4 5 6 7 9 B C D E F
GX 1 o F E 2 3 C D 4 7 B 8 5 6 A 9
Fx, 2 1 6 F A 9 C 5 3 0 7 E B 8 D 4

G(x3,x2,x1,%0) = (83,82, 81, 80)
g0 =1+ x0+x2+ x3 + x1x3
g1 = X1 + X2 + XpX3 + X2X3

82 =x1+x3
83 = X1
F(x3,x2,x1,%0) = (f3, f2. f1, fo) (17)
fo=2x0+x3
f1 =14 x0+ xx1 + x1x2
fa=x

f3 = x2+ x0x1

Mathematics 2024, 12, 700

13 of 22

An algebraic equation set can be established utilizing the decomposed S-boxes as per
Section 3.3, and variations in parameters before and after decomposition are summarized
in Table 7. It reveals a reduction of 3584 equations, which suggests a potential speedup.

iterate over G(0) from 1 to F

START

Let X=(x3, x2, x1, x0), G(X)=(g3(X), g2(X), g1(X), go(X)), F(X)=(fx(X), fo(X), fu(X), fo(X)),
Qi X)=0i 0+ 1X0+@i 21+ 3X2H @1 4 X3+ SXOX T+ 6X0X 2+ 7X0X 3+ sX1X 2+ A 90X X3+ 10X23 (=0 o 3)

Let ai=0, i.e., G(0)=0, iterate over ai;(j=1 to 10) in {0,1}

No . .
»| Discard it

Check whether gi(X) is balanced

Compute G(X) with gi(X)

Check whether G(X) is balanced

No
»| Discard it

Compute F(X)=S(G(X))

Check whether F(X) is quadratic Discard it

4< Add G(X) and F(X) as a pair to set C

Tlate and compare the numbe
types of quadratic variables in each pair of
G(X) and F(X) in set C

Otherwise

Discard it

If minimum

alculate and compare the weight sum Otherwise

each pair of G(X) and F(X) Discard it

If minimum

Retain pairs of G(X) and F(X) as final results

Figure 3. Flowchart for decomposing the S-box.

Table 7. Comparison of parameters before and after S-box decomposition.

Quantity of Parameters

Types of Equations
Types of Types of yp q ;))
Cubic Variables Quadratic High-Order Representing Equations in Total
Variables Variables Full-Round
in Total SubColumn
Original S-box 2 6 8 15,360 27,905—64; (0 < j < 32)
Decomposed S-boxes 0 3+2 5 11,776 24,321—-64j (0 < j < 32)

Mathematics 2024, 12, 700

14 of 22

After establishing the equation set based on the decomposed S-boxes, experiments
are performed following Algorithm 6, with 100 trials for each scenario. Comparisons of
experimental results for 44 and 40 faults before and after S-box decomposition are displayed
in Figure 4 and Table 8. Figure 4 demonstrates that, under consistent conditions, the time
distribution for solving PICO’s master key is significantly concentrated in shorter time
intervals when using the decomposed S-boxes, in comparison with the period before S-box
decomposition. Table 8 indicates that after S-box decomposition, for a fault count of 44,
the average and median solving times for PICO’s master key decreased by 64.89% and
64.13%, respectively. Similarly, for a fault count of 40, the average and median solving
times decreased by 75.83% and 75.30%, respectively. Additionally, S-box decomposition
enabled the success rate for solving within 1h to reach 100% in both scenarios.

Table 8. Comparison of solving results under varying numbers of faults when conducting combined
analysis on PICO using the original and decomposed S-boxes.

Solving Time (s)

Number of Faults Type of S-Box - Success Rate within1h
Average Median
4 original S-box 884.77 713.33 100%
decomposed S-boxes 310.60 255.85 100%
40 original S-box 2056.56 1691.03 83%
decomposed S-boxes 497.13 417.72 100%
7w []Original S-box :6::] [1Original S-box
] []Decomposed S-boxes| 050] [IDecomposed S-boxes|

0.40 4

0.35 4 =

? 0304 é‘ 035 - o=
9] 9]

3,025 = 030

o o

I 020 4 © 025

i O 019 =5 a2

0.15 42

0.10 o i .
0.10 . -

T T T T T L
120 360 600 840 1080 1320 1560 1800 2040 2280 2520 2760 3000 3240 3480 250 750 1250 1750 2250 2750 3250 3750 4250 4750 5250 5750 6250 6750 7250

Solving Time (s) Solving Time (s)

@) (b)
Figure 4. Comparison of solving time distribution under varying numbers of faults when conducting
combined analysis on PICO using the original and decomposed S-boxes. (a) n = 44; (b) n = 40.

With the maximum solving time set to 1h, we carried out more comparative ex-
periments and the comparison of success rates within 1h can be observed in Figure 5.
The results suggest that with fault counts of 40 and 36, S-box decomposition led to a 100%
success rate for solving within 1h. Similarly, for fault counts of 32 and 28, S-box decom-
position increased the success rate by 61% and 55%, respectively. All the aforementioned
experimental outcomes confirm that S-box decomposition is a potent optimization for our
combined analysis on PICO.

Mathematics 2024, 12, 700 15 of 22

—=— Original S-box

—<— Decomposed S-boxes

100 1.00 1.00 1.00
. I 0.95
0.90 —)
™ .83
ﬁ 0.80 075
L
[

-5 070 -

<

-

.-

2 060 1 55

]

< 050

a2

@ 0.40

) 34

9 030 ~

=2 .

n ~~.0.20
0.20 .
0.10
0.00 T T T T T

44 40 36 32 28

Number of Faults

Figure 5. Comparison of success rate within 1h under varying numbers of faults when conducting
combined analysis on PICO using the original and decomposed S-boxes.

Figure 6 and Table 9 present detailed experimental results for fault counts of 32 and
28 when using the decomposed S-boxes. When utilizing 32 differential faults to derive
subkeys K32, K31 . . . K25, the master key of PICO could be recovered in an average time of
1457.13 5. Similarly, when utilizing 28 differential faults to derive subkeys K32, K3! . .. K26,
the master key of PICO could be recovered in an average time of 2821.62s. Compared
to Section 3, where 40 faults were required to recover PICO’s master key in 0.57 h, S-box
decomposition allowed the solution for only 28 faults in 0.78 h, which reduced the fault
count by 30% while maintaining the average solving time within 1 h.

0.26
016 -| 016 ‘I:I Decomposed S-boxes‘ 026 = ‘I:I Decomposed S—boxes‘
015 024
0.14
0.14 o |
02902 0.21
0.20 -]
o2 %2
0.18 -]
?u.w 4 0.10 20164
=1
% % 0.14
50.08 4 .08 =
8 8 0.12 o
23
0.06 |06 = 0104 0.09
0.8 0.08
0.04 0.04
0.04 0.06 -]
0.03 0.03 004
0.02 502 0041 0.03 0.03
001 001 0.01 0.02 ’_| ’_| 001 L 001 0.01
.l 1000 000]
0.00 T T T T T T T T T T 1 0.00 T T T T T T T T T T T 1

T T T T T T
0 300 600 900 1200 1500 1800 2100 2400 2700 3000 3300 3600 3900 4200 4500 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000

Solving Time (s) Solving Time (s)

(a) (b)
Figure 6. Distribution of solving time under varying numbers of faults when conducting combined
analysis on PICO using the decomposed S-boxes. (a) n = 32; (b) n = 28.

Table 9. Solving results under varying numbers of faults when conducting combined analysis on
PICO using the decomposed S-boxes.

Solving Time (s)

Number of Faults : Success Rate within1h
Average Median

32 1457.13 1211.00 95%
28 2821.62 2194.28 75%

Mathematics 2024, 12, 700

16 of 22

In contrast to ref. [15], the only study concerning master key recovery of PICO, the mere
use of a 64-bit exhaustive search resulted in 2% possible master key permutations, not
accounting for the complexity of searching for the other 64 bits. However, in our combined
analysis approach using the decomposed S-boxes with 28 faults, the search space for PICO’s
master key was reduced to 2%, signifying a massive decrease of 2%7.

5. Comparison with DFA and AFA

Differential fault analysis (DFA) and algebraic fault analysis (AFA) are both conven-
tional fault analysis methods for conducting key recovery. However, neither of these
approaches has been applied in the study of PICO. In this section, we compare our com-
bined analysis approach with these two methods and elucidate the reasons and benefits of
opting for our approach.

5.1. Comparison with DFA

The fundamental concept of DFA is to extract valuable information about the key
by examining the differences in ciphertext values before and after injecting faults, along
with the encryption process from the site of fault injection to completion. According to
Sections 3.2 and 3.3, for PICO cipher, if one utilizes differential faults to derive all subkeys,
the correct master key can be obtained, but the number of faults used can be as high
as 132. And if one opts to obtain a subset of subkeys with fewer differential faults and then
deduce the master key through reverse key expansion, the process of reverse key expansion
requires resolution of a significant number of equations, leading to non-unique solutions.
Accordingly, the inclusion of accurate plaintext-ciphertext pairs and the entire encryption
process is necessary to distinguish the correct master key. In this way, despite the reduction
in faults, the solving process becomes much more intricate and complex.

Therefore, based on the characteristics of the solving process, we introduce an algebraic
method, making the part of equation solving in the reverse key expansion process handled
by the solver, with the subsequent filtering process achievable through algebraic equations.

5.2. Comparison with AFA

The core idea of AFA is to use algebraic equations to articulate the encryption process
both before and after fault injection, and employ a solver to determine the master key.
The established equations serve various roles. Multiple sets of equations that cover the
encryption process from the site of fault injection to completion are to obtain the subkeys for
these rounds. Additionally, equations representing key expansion are to acquire possible
master keys. Furthermore, equations for full-round encryption are to ensure that the
attained master key can encrypt the correct plaintext into the correct ciphertext.

Contrasting with our combined analysis, the distinguishing factor is that AFA utilizes
algebraic equations to solve subkeys used after the round of fault injection, while our
approach derives subkeys for each round in a reverse order using differential values before
and after fault injection. In the context of AFA, there are two subjective factors that can
affect the solving speed-the round of fault injection and the number of faults, each of
which is discussed individually as follows. When considering the round where faults are
injected, if the round is distant from the final round, there is a higher count of equations
from the injection site to the end and a larger number of subkeys to be solved, resulting in
an extended solving time. Conversely, if the round is close to the final round, the number
of derived subkeys decreases, and the subsequent filtering process takes longer due to the
increased count of possible master keys inferred from key expansion. The number of faults,
on the other hand, affects the quantity of equations from the fault injection round to the end.
These equations are designed for solving a specific number of subkeys. If the capability
to solve is already established, increasing the number of faults indiscriminately does not
enhance the solving speed. Hence, AFA is constrained by the objective experimental
conditions. Faster solving speed is attainable only when a greater number of threads
are concurrently engaged in the solution, provided that an appropriate selection of fault

Mathematics 2024, 12, 700

17 of 22

injection round and fault number is made. Otherwise, there is no alternative means
to expedite the process. However, our combined analysis approach can overcome this
drawback. The increase in the number of faults allows for the extraction of more subkeys
within seconds, leading to a reduction in the potential number of master keys and their
filtering time, ultimately shortening the overall solution time.

We have also experimented with the application of AFA on PICO to validate our
theory. All equations required are established through a forward process. The equations
before fault injection, referring to Section 3.3, amount to a total of 25,664, with the forward
and reverse representations of key expansion being identical. The assignment equations
and those after fault injection are detailed below. Due to the challenge of obtaining the
complete master key in a short time, we assign values to some bits of the master key and
test the time required to solve the remaining portion.

* Equations for assignment
Include the constant 1, the correct plaintext P, the correct ciphertext C, v (0 < v <128)
bits assigned to the master key, and erroneous ciphertexts CO* - - - C"~1"(n > 1) ob-
tained from fault injections performed n times, for a total of (641 + v + 129) equations.
¢ Equations for the differential values at the fault injection site
Assume the fault is injected in the input of SubColumn in the r-th (1 < r < 32) round.
Let x03 || x62 || - - || x™0 denote the state before fault injection, x03* || x"62" || .- ||
x"0" denote the state after fault injection, and a fault known in width and specific bit
positions be injected at x™7* || - - - || x"P* (0 < p < g < 63). Equations are as shown in
Equation (18).

Xyt =0, i=0top—1andi=gqto63
{ p q as)

x}’,i @ xr,i* — 1, l — p tO q

In total there are 64n equations for n instances of fault injections.

¢ Equations for forward encryption from the round of fault injection to the end
This segment encompasses the encryption processes from the r-th round to the con-
cluding round after each fault injection. Equation establishment refers to Section 3.3,
resulting in a total of (20, 128n — 608rn) equations for n instances of fault injections.

The complete set of AFA conducted on PICO comprises (20,2561 + v+ 25,793 —608rn)
equations, where 7 is no less than 1, v ranges from 0 to 128, and r ranges from 1 to 32.

Algorithm 7 outlines the experimental process of conducting AFA on PICO, where
r (1 < r < 32) denotes the round of fault injection, n (n > 1) denotes the number of faults,
w (w =1 or 4 or 8 or 16) denotes the width of faults, v (0 < v < 128) denotes the number
of bits assigned to the master key, N denotes the total number of experiments, Ns,. denotes
the number of experiments successfully solved within 1h, and Ryj, denotes the success rate
within 1 h for N experiments. The solving results to be observed remain as the outputs from
CryptoMiniSat v5.8.0. Additionally, each scenario in the following experiments consisted
of 50 trials.

Taking single-bit faults as examples. The selection of the fault injection round is guided
by Figure 7, with the aim of maximizing the diffusion and impact of the fault across several
encryption rounds. Moreover, we perform fault injections in different S-boxes to ensure
effective fault diffusion.

Experimental results for single-bit fault injection when conducting AFA on PICO are
presented in Figure 8. Figure 8a depicts that even with assigning bits to part of PICO’s
master key, there is still no round of fault injection that can achieve a success rate of 100%
within 1h. Figure 8b shows that simply increasing the number of faults does not lead to an
improvement in the success rate within 1 h. Figure 8c demonstrates a decline in the success
rate within 1 h as the number of bits assigned to PICO’s master key decreases, indicating the
challenge of using AFA to recover the complete master key of PICO within 1h. In addition,
experiments were conducted under the conditions of r = 29,n = 6 and v = 0, with the
objective of solving the entire master key of PICO. Across 15 experiments, the average

Mathematics 2024, 12, 700

18 of 22

solving time for PICO’s complete master key was 32.54 h, confirming the difficulty of
obtaining it within 1h using AFA. We also carried out experiments with nibble, single-byte,
and double-byte faults at various fault injection rounds and fault counts, and achieving a
success rate of 100% within 1h all proved challenging when assigning 10 bits to PICO’s
master key. Considering the reasons, we believe that the high complexity of PICO’s key
expansion and the resulting multiplicity of equation solutions lead to excessively long
equation solving time, causing difficulties in recovering its master key within a short time
period using AFA.

Algorithm 7: Experimental Procedures of AFA on PICO
Input: r,n,w,v, N
Output: Ry,
1 Ngye < 0;
2 fori=0;i < N;i+ + do
Generate random P, K, where K is unknown to the analyst;
C + Enc(P,K);
Generate assignment equations for 1, P, C;
for count = 0; count < v; count + + do
L Generate assignment equations for a randomly selected bit of K;

for round = 0;round < 33;round + + do
Generate equations for forward key expansion;
10 Generate equations for forward encryption;

NS G ok W

o @

11 for count = 0; count < n;count + + do
12 Inject a fault of width w at a randomly chosen and known to the analyst
position in the input of SubColumn in the rth round;

13 Generate assignment equations for CE#*;

14 Generate differential equations for the fault injection site;

15 for round = r;round < 33;round + + do

16 L Generate equations for forward encryption after the rth round ;

17 Combine all the aforementioned equations into one set;

18 Solve the equation set with CryptoMiniSat v5.8.0 while setting the maximum
solving time to 1 h;

19 if solving succeeds then

20 L Nsuc < Nsyc +1;

21 Ryj, < Nsyc/N;
22 return Ry,

However, our combined analysis approach adopts a strategy that involves first uti-
lizing differential faults to solve partial subkeys of PICO and then establishing algebraic
equations to recover its master key, with the former requiring no equation solving. This
strategic approach narrows down the search space for equation solutions, thereby effec-
tively addressing the issue of prolonged equation solving time. With the decomposed
S-boxes, our combined analysis approach achieved successful recovery of PICO’s entire
master key in an average time of 0.78 h, which was significantly shorter than the 32.54h
required when using AFA. Furthermore, all these AFA experiments were conducted with
known fault positions and still faced difficulties in obtaining solutions. In our approach,
valuable information can be obtained as long as the fault positions are non-repetitive,
eliminating the requirement for precise fault locations.

Mathematics 2024, 12, 700

19 of 22

0.80

Success Rate within 1Th

PP TP 939D $90 930D DPDP FDPD PDP FDIP FPPP FIIP FPD FPP PP $9DS D0

4

Round r |IIII||IIIIIIIIIIIIIIIIIIIIIIIIIII 11 11 111 1

1 | I Y I i 1 | I I I) B B |
s [s s J[s J[s][s]l s |l s][s][s][s][s][s]ls][s][s]
rTr1r TT1T1T1T TITT1TT1T TTT1TT TT T T T

FP9P EPD_PPPP F9 PP GPED GPD PP FODP PP PDEP PP PP S99 $oPP $9P
Roundﬂ1|"" e

s il s Il s s Ils]ls]ls s][s]ls]ls]|[s]ls]ls]ls]ls]

9999 P90 3990 $09% $999 +¢%f PP 900 FHEP 9999 P9 FHEP 4390 9909 6 4499

R dﬁzllllIIII\IIIIIIIIIIIIIII\IIIIIIIIIII‘I‘II‘I‘IIIIIIIII’:’I’IIII’IIIIIIII
T s s s (s I s 10][s J[s J[s 1l s][s][s 1[5][s][s][s]
L . T LS<JJ J:/JJ“I

||||||||ILQIIIIIIIIIIII TTTT TTT1TT TTTT T TTTT

— 77\7; = = /7@\'
R dr+3"""""""""""""'r ||||||||||||r I 111 11T AT T a1
M s [s][s)[s][s][s][s || s || || I[s][s || s JL s [s J[s]

IIIIIIIIILl\IIIIIIIIIIIIL,A/ IIIIIIIILKJJJ L 1 L L B i B

P S5 9 o8 ﬁ ¢¢¢_ﬁ{+¥+}¢¢ +¢+ o5 Fre o 7

R dr+4 | L1l (e I l/l/v'l I IIII I IIII ITI[IIII IIII 711
oo |,,,,||,,s,,||,Ls s]Ls A || SIS0 || s || s[5][s]

IIIIIIIL)‘/ TT T TTUTT
=

T TTIT TTJ

9999 S99 ¢$¢¢_$$+$ 76 956 ¢+;¥“¢$¢+7+¢¢¥/¢¢¢¢ w5 +¢¥¥j$¥$$:$$$+'¥$¢+ 9999

Figure 7. Diffusion of a single-bit fault in PICO.

1.00 4 1.00 5
090 4 090 I
082 1698 o
> 3 ~
07— oso] OO e— @0 00 @08y 050 080
FAR 074 -] y <
b — (5,078) (7.078) =
\ = 070 o 070
E £ "
=
*§ 0.60 14058 § 0.60
% 0307 (3,0.46) % 00
,0.4 .44
& : &
w 040 o 040
g 3
9 030 S 030 26
3 3
59]
0.20 4 020 4
\
000 000 0104 0.10 o
— .
T T T T T L e o i B o o o A B o o A 0.00 T T
30 29 28 27 26 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 12 1 10 9 8 7
Round of Fault Injection Number of Faults Number of Assigned Bits
(@) (b) O

Figure 8. Success rate within 1h under different conditions when conducting AFA (algebraic fault
analysis) on PICO. (a) keeping n = 16,v = 10, and varying r as 30,29,28,27,26; (b) keeping

r = 29,v = 10, and varying n as 3,4,5,6,7,16,32,64; (c) keeping r = 29,n = 6, and varying v as
12,11,10,9,8,7.

5.3. Summary

To summarize, the high complexity of PICO’s key expansion results in challenges for
conventional fault analysis methods DFA and AFA in their attempts to solve its entire master
key with a reduced number of faults. It can be observed that, when using DFA, the reverse
process of PICO’s key expansion, specifically Equation (3), introduces the equation-solving

Mathematics 2024, 12, 700

20 of 22

issue during the backward derivation of the master key. And the presence of multiple
solutions to the equations results in an exponential increase in the number of derived master
keys throughout the successive round-by-round backward deduction process, necessitating
further filtering and verification. Likewise, when using AFA, the complexity arising from
the equation representation of PICO’s key expansion process poses challenges in solving
its master key.

However, our combined analysis approach offers two significant solutions compared
to DFA. As the number of faults is reduced, it effectively addresses the intricacy of equation
solving in the reverse process of PICO’s key expansion, and efficiently manages the filtering
problem of identifying the correct master key. Our combined analysis approach also stands
out from AFA with two notable advantages. It overcomes the limitation of AFA, where
adjustments to its two main parameters—the round of fault injection and the number of
faults—cannot shorten the solving time indiscriminately, and accomplishes the solution
of PICO’s entire master key within a significantly shorter time. Furthermore, it operates
without the need of specific fault locations.

6. Conclusions and Future Work

In this paper, we propose an innovative fault analysis approach addressing the com-
plicated key expansion of PICO cipher, which integrates techniques of both differential
fault and algebraic equation. With our approach, we achieved the successful recovery of
PICO’s complete master key with 40 faults in an average time of 0.57 h. We further optimize
our approach through S-box decomposition, attaining a significant 75.83% reduction in
average solving time under the consistent 40-fault condition. This advancement enabled
the resolution of PICO’s complete master key with 28 faults in an average time of 0.78 h.
Additionally, compared to the previous study, its search space was reduced from 2%* to 2%7,
representing a significant decrease of 2%. To our knowledge, this marks the first fault
analysis conducted on PICO. Through contrast with DFA and AFA, it can be observed that
the complex key expansion of PICO presents challenges for solving its master key, and our
combined analysis approach outperforms these two conventional fault analysis methods in
recovering PICO’s entire master key. Accordingly, this provides valuable inspiration for
future research.

As PICO’s key expansion is inspired by that of SPECK, where both share similar
characteristics, such as intermediate variables besides subkeys and circular shift operations,
our combined analysis approach offers a strategy for recovering the master keys of other
block ciphers with similarly intricate key expansions processes. For instance, if the reverse
process of key expansion consists of complex equation representations, leading to a non-
one-to-one correspondence between the parameters involved, thereby preventing the
unique determination of the key value, or if the solution to the master key has multiple
potential outcomes, and additional filtering is required to verify the solution. Moreover,
S-box decomposition holds promise for enhancing solving efficiency, provided that after
decomposing the S-box in the block cipher, there is a reduction in the number of types of
high-order variables, leading to fewer equations within the equation set.

In addition, given that the high complexity in PICO’s key expansion presents chal-
lenges for conventional fault analysis methods DFA and AFA in decrypting its master
key, it can be deduced that complex key expansions play a crucial role in protecting block
ciphers from key recovery attacks, where higher complexity corresponds to increased safety.
Consequently, in the design of future block ciphers, the complexity of their key expansions
can be enhanced to produce them with more secure structures, therefore enabling them
to be more resistant to key decryption threats. This can involve introducing alternating
iterative relationships among multiple intermediate variables, or implementing circular
shift operations on variables to generate non-unique values during reverse key deduction.
By doing so, block ciphers can be endowed with heightened security to effectively resist
key decryption.

Mathematics 2024, 12, 700 21 of 22

Author Contributions: Conceptualization, H.Z. and L.D.; methodology, L.D.; software, L.D.; valida-
tion, L.D. and Y.W.,; formal analysis, L.D.; investigation, L.D. and X.E; resources, H.Z.; data curation,
L.D.; writing—original draft preparation, L.D.; writing—review and editing, L.D.; visualization, L.D.;
supervision, H.Z. and J.X.; project administration, H.Z. and].X.; funding acquisition, H.Z. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (62071057).

Data Availability Statement: The data presented in this study are available on request from the
corresponding author

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References

1.

10.
11.
12.
13.
14.
15.
16.

17.

18.

19.
20.

Bogdanov, A.; Knudsen, L.R.; Leander, G.; Paar, C.; Poschmann, A.; Robshaw, M.].; Seurin, Y.; Vikkelsoe, C. PRESENT: An
ultra-lightweight block cipher. In Cryptographic Hardware and Embedded Systems—CHES 2007, Proceedings of the 9th International
Workshop, Vienna, Austria, 1013 September 2007; Proceedings 9; Springer: Berlin/Heidelberg, Germany, 2007; pp. 450—466.
Beierle, C.; Jean, J.; Kolbl, S.; Leander, G.; Moradi, A.; Peyrin, T.; Sasaki, Y.; Sasdrich, P.; Sim, S.M. The SKINNY family of block
ciphers and its low-latency variant MANTIS. In Advances in Cryptology—CRYPTO 2016, Proceedings of the 36th Annual International
Cryptology Conference, Santa Barbara, CA, USA, 14-18 August 2016; Proceedings, Part II 36; Springer: Berlin/Heidelberg, Germany,
2016; pp. 123-153.

Banik, S.; Pandey, S.K.; Peyrin, T.; Sasaki, Y.; Sim, S.M.; Todo, Y. GIFT: A small present: Towards reaching the limit of lightweight
encryption. In Cryptographic Hardware and Embedded Systems—CHES 2017, Proceedings of the 19th International Conference, Taipei,
Taiwan, 25-28 September 2017; Fischer, W., Homma, N., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland,
2017; pp. 321-345, ISBN 978-3-319-66787-4.

Beaulieu, R.; Shors, D.; Smith, J.; Treatman-Clark, S.; Weeks, B.; Wingers, L. The SIMON and SPECK Families of Lightweight
Block Ciphers. Cryptology ePrint Archive. Paper 2013/404. 2013. Available online: https://eprint.iacr.org/2013 /404 (accessed
on 30 January 2024).

Wu, W.; Zhang, L. LBlock: A lightweight block cipher. In Applied Cryptography and Network Security, Proceedings of the 9th
International Conference, ACNS 2011, Nerja, Spain, 7-10 June 2011; Proceedings 9; Springer: Berlin/Heidelberg, Germany, 2011;
pp- 327-344.

Zhang, W.; Bao, Z.; Lin, D.; Rijmen, V.; Yang, B.; Verbauwhede, I. RECTANGLE: A Bit-Slice Lightweight Block Cipher Suitable
for Multiple Platforms. Cryptology ePrint Archive. Paper 2014/084. 2014. Available online: https://eprint.iacr.org/2014 /084
(accessed on 30 January 2024).

Bansod, G.; Pisharoty, N.; Patil, A. PICO: An Ultra Lightweight and Low Power Encryption Design for Ubiquitous Computing.
Def. Sci.]. 2016, 66, 259. [CrossRef]

Ma, C,; Liu, G.; Li, C. Zero-correlation Linear Cryptanalysis on PICO and RECTANGLE.]. Cryptologic Res. 2017, 4, 413-422.
Ma, C. Application of Mixed-Integer Linear Program in the Security Analysis of Block Cipher. Master’s Thesis, National
University of Defense Technology, Changsha, China, 2017.

Kumar, M,; Suresh, T.; Pal, S.K.; Panigrahi, A. Optimal differential trails in lightweight block ciphers ANU and PICO. Cryptologia
2020, 44, 68-78. [CrossRef]

Liu, Z.; Yuan, Z.; Zhao, C.; Zhu, L. Integral attack on PICO algorithm based on division property. J. Comput. Appl. 2020, 40, 2967.
Liu, Z. Security Analysis of Block Cipher Based on Automated Search. Master’s Thesis, Xidian University, Xi’an, China, 2021.
Qiu, X. Research on Automatic Search Methods of New Distinguishers for Lightweight Block Ciphers. Master’s Thesis, Guilin
University of Electronic Technology, Guilin, China, 2021.

Zhao, C. Impossible Differential Cryptanalysis of Lightweight Block Ciphers. Master’s Thesis, Xidian University, Xi'an, China, 2021.
Wang, C.; Zhang, Z.; Hu, L. Differential Cryptanalysis on Ultra Lightweight Block Cipher PICO. J. Cryptologic Res. 2023, 10, 685.
Shi, K.; Ren, J.; Chen, S. MILP-Based Search for Differential and Linear Distinguishers of PICO Algorithm. . Cryptologic Res. 2023,
10, 910.

Biham, E.; Shamir, A. Differential fault analysis of secret key cryptosystems. In Advances in Cryptology—CRYPTO’97, Proceedings
of the 17th Annual International Cryptology Conference Santa Barbara, CA, USA, 17-21 August 1997; Proceedings 17; Springer:
Berlin/Heidelberg, Germany, 1997; pp. 513-525.

Luo, H.; Chen, W.; Ming, X.; Wu, Y. General differential fault attack on PRESENT and GIFT cipher with nibble. IEEE Access 2021,
9, 37697-37706. [CrossRef]

Vafaei, N.; Porkar, M.; Ramzanipour, H.; Bagheri, N. Practical Differential Fault Analysis on SKINNY. ISeCure 2022, 14, 9-19.
Xiao, H.; Wang, L. Differential fault analysis on the key schedule of the LBlock algorithm. IEEE Access 2022, 10, 62402-62411.
[CrossRef]

https://eprint.iacr.org/2013/404
https://eprint.iacr.org/2014/084
http://doi.org/10.14429/dsj.66.9276
http://dx.doi.org/10.1080/01611194.2019.1650844
http://dx.doi.org/10.1109/ACCESS.2021.3062665
http://dx.doi.org/10.1109/ACCESS.2022.3181992

Mathematics 2024, 12, 700 22 of 22

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.

31.

32.

33.

34.

35.

36.

Courtois, N.; Jackson, K.; Ware, D. Fault-algebraic attacks on inner rounds of des. In Proceedings of the e-Smart’10 Proceedings:
The Future of Digital Security Technologies, Sophia Antipolis, France, 22-24 September 2010 .

Zhang, F.; Guo, S.; Zhao, X.; Wang, T.; Yang, J.; Standaert, EX.; Gu, D. A framework for the analysis and evaluation of algebraic
fault attacks on lightweight block ciphers. IEEE Trans. Inf. Forensics Secur. 2016, 11, 1039-1054. [CrossRef]

Zhu, L.; Gong,].; Dong, L.; Zhang, C. Temperature-Triggered Hardware Trojan Based Algebraic Fault Analysis of SKINNY-64-64
Lightweight Block Cipher. Comput. Mater. Contin. 2023, 75, 5521-5537. [CrossRef]

Soos, M.; Nohl, K.; Castelluccia, C. Extending SAT solvers to cryptographic problems. In Theory and Applications of Satisfiability
Testing—SAT 2009, Proceedings of the International Conference on Theory and Applications of Satisfiability Testing, Swansea, UK, 30 June-3
July 2009; Springer: Berlin/Heidelberg, Germany, 2009; pp. 244-257.

Knudsen, L.R.; Miolane, C.V. Counting equations in algebraic attacks on block ciphers. Int.]. Inf. Secur. 2010, 9, 127-135.
[CrossRef]

Shepherd, C.; Markantonakis, K.; van Heijningen, N.; Aboulkassimi, D.; Gaine, C.; Heckmann, T.; Naccache, D. Physical fault
injection and side-channel attacks on mobile devices: A comprehensive analysis. Comput. Secur. 2021, 111, 102471. [CrossRef]
Baksi, A.; Bhasin, S.; Breier, J.; Jap, D.; Saha, D. A survey on fault attacks on symmetric key cryptosystems. ACM Comput. Surv.
2022, 55, 1-34. [CrossRef]

Breier, J.; Hou, X. How practical are fault injection attacks, really? IEEE Access 2022, 10, 113122-113130. [CrossRef]

Shuvo, AM.; Zhang, T.; Farahmandji, E; Tehranipoor, M. A Comprehensive Survey on Non-Invasive Fault Injection Attacks. Cryptology
ePrint Archive. Paper 2023/1769. 2023. Available online: https://eprint.iacr.org/2023/1769 (accessed on 30 January 2024).

Ruminot, N.; Estevez, C.; Montejo-Sanchez, S. A Novel Approach of a Low-Cost Voltage Fault Injection Method for Resource-
Constrained IoT Devices: Design and Analysis. Sensors 2023, 23, 7180. [CrossRef] [PubMed]

Beckers, A.; Kinugawa, M.; Hayashi, Y.; Fujimoto, D.; Balasch, J.; Gierlichs, B.; Verbauwhede, I. Design considerations for em
pulse fault injection. In Smart Card Research and Advanced Applications, Proceedings of the 18th International Conference, CARDIS 2019,
Prague, Czech Republic, 11-13 November 2019; Revised Selected Papers 18; Springer: Cham, Switzerland, 2020; pp. 176-192.
Skorobogatov, S.P.; Anderson, R.J. Optical fault induction attacks. In Cryptographic Hardware and Embedded Systems—CHES
2002, Proceedings of the 4th International Workshop, Redwood Shores, CA, USA, 13-15 August 2002; Revised Papers 4; Springer:
Berlin/Heidelberg, Germany, 2003; pp. 2-12.

Kréek, M.; Ordas, T.; Picek, S. Short Paper: Diversity Methods for Laser Fault Injection to Improve Location Coverage. Cryptology
ePrint Archive. Paper 2023/893. 2023. Available online: https:/ /eprint.iacr.org/2023/893 (accessed on 30 January 2024).
Anceau, S.; Bleuet, P,; Clédiere,].; Maingault, L.; Rainard, J.1.; Tucoulou, R. Nanofocused X-ray beam to reprogram secure circuits.
In Cryptographic Hardware and Embedded Systems—CHES 2017, Proceedings of the 19th International Conference, Taipei, Taiwan, 25-28
September 2017; Springer: Cham, Switzerland, 2017; pp. 175-188.

Poschmann, A.; Moradi, A.; Khoo, K.; Lim, CW.,; Wang, H.; Ling, S. Side-channel resistant crypto for less than 2300 GE.]. Cryptol.
2011, 24, 322-345. [CrossRef]

Jati, A.; Gupta, N.; Chattopadhyay, A.; Sanadhya, S.K.; Chang, D. Threshold Implementations of GIFT: A Trade-Off Analysis.
IEEE Trans. Inf. Forensics Secur. 2019, 15, 2110-2120. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TIFS.2016.2516905
http://dx.doi.org/10.32604/cmc.2023.037336
http://dx.doi.org/10.1007/s10207-009-0099-9
http://dx.doi.org/10.1016/j.cose.2021.102471
http://dx.doi.org/10.1145/3530054
http://dx.doi.org/10.1109/ACCESS.2022.3217212
https://eprint.iacr.org/2023/1769
http://dx.doi.org/10.3390/s23167180
http://www.ncbi.nlm.nih.gov/pubmed/37631717
https://eprint.iacr.org/2023/893
http://dx.doi.org/10.1007/s00145-010-9086-6
http://dx.doi.org/10.1109/TIFS.2019.2957974

	Introduction
	Description of PICO Cipher
	Proposed Combined Analysis on PICO
	Characteristics of PICO's Master Key
	Solving Subkeys with Differential Faults
	Reverse Key Expansion and Representation of Algebraic Equations
	Experiments about Our Combined Analysis on PICO

	Optimization through S-Box Decomposition
	Comparison with DFA and AFA
	Comparison with DFA
	Comparison with AFA
	Summary

	Conclusions and Future Work
	References

